液液萃取和固液萃取

合集下载

第二章 液液萃取

第二章 液液萃取
• 思考题
2020/3/12
19
(4)溶剂的回收
➢溶剂的损耗在成本控制中占据很重要的地位,有 的甚至占很大比重。必须回收。 ➢要求萃取剂对其他组分的相对挥发度大,且不形 成恒沸物,如果被萃物不挥发或挥发度很低,而萃 取剂为易挥发组分时,则萃取剂的汽化热要小,以 节省能源。(被萃物为液体和固体两种情况?)
夹带损失。例如:水溶解有机溶剂。
2020/3/12
15
(2) 萃取剂选择要点
① 选择性好:萃取剂对某种组分的溶解能力较大, 对另一种较小,表现为选择性系数大。 ② 萃取容量大:单位体积的萃取剂能萃取大量的目 的物,表现为分配系数大。 ③ 萃取剂与原溶剂的互溶度:二者最好互不溶解, 减少了溶剂分离的步骤。 ④ 萃取剂与原溶剂有较大的密度差,易与原料液相 分层不乳化、不产生第三相。萃取剂密度最好大于 原溶剂(?)
kA

yA xA
kB

yB xB
分配系数反映了被萃组分在两个平衡液相中的分配关系,
分配系数的值越大,被萃物越容易进入萃取相,萃取分离
效果越好。k与溶剂的性质和温度有关,在一定的条件下
为常数,应根据实验来测定;k=0,表示待萃取物不被萃
取,k=∞,表示完全被萃取。
2020/3/12
7
2. 选择性系数(分离系数)
2020/3/12
18
• 几种特殊溶剂:醋酸丁酯、丁醇、戊醇、丁酮、甲 基叔丁基醚、这些溶剂在水中或酸性水中溶解度不 大。适用于萃取在酸性水中溶解度大的物质。
• 普通含氧原子的溶剂在酸性溶液中,易与氢离子形 成氢键而易溶于水,而这些含氧的大分子溶剂由于 位阻大,阻碍了氢键的形成,故在水中溶解度小。
2020/3/12

第三章 溶剂萃取法

第三章  溶剂萃取法

[I2]O KD = D = ——— [I2]W 不符合分配定律的体系:KD≠D 分配比除与一些 常数有关以外,还与酸度、溶质的浓度等因素有 关,它并不是一个常数。
分离与富集方法介绍
例如:
醋酸在苯—水萃取体系中
• 在两相间的分配: [CH3COOH] W ====[CH3COOH] O • 在水相电离: CH3COOH ====CH3COO- + H+ • 在苯相中缔合: 2CH3COOH(O)====(CH3COOH)2(O)
分离与富集方法介绍
一、萃取分离法的基本原理
利用化合物在两种互不相溶(或微溶)
的溶剂中溶解度或分配系数的不同,使化
合物从一种溶剂内转移到另外一种溶剂中。
经过反复多次萃取,将绝大部分的化合物
提取出来。
分离与富集方法介绍
1.萃取过程的本质 就是将物质由亲水性转化为疏水性的过程。
2、萃取物 亲水性物质:离子型化合物,易溶于水而难溶于 有机溶剂的物质。如无机离子,含亲水基团OH,-SO3H,-NH2…的物质。 疏水性或亲油性物质:共价化合物,具有难溶于 水而易溶于有机溶剂的物质。如许多有机化合物, 酚酞,油脂等(含疏水基团-CH3,-C2H5,苯基等)
[OsO4]O + 4[(OsO4)4]O
分离与富集方法介绍
(3)分配系数与分配比关系
• 当溶质在两相中以相同的单一形式存在,且溶液较 稀,KD=D。否则KD≠D。 • 分配系数与萃取体系和温度有关,而分配比除与萃 取体系和温度有关外,还与酸度、溶质的浓度等因 素有关
分离与富集方法介绍
(4) 萃取百分率
分离与富集方法介绍
有机化合物在有机溶剂中一般比在水中溶解
度大。用有机溶剂提取溶解于水的化合物是萃

萃取的工艺类型

萃取的工艺类型

萃取的工艺类型介绍萃取是一种常见的分离和提取技术,广泛应用于化学、制药、食品、环境等领域。

它通过利用物质在不同相中的分配差异,将目标物质从混合物中分离出来。

萃取的工艺类型主要包括固液萃取、液液萃取和固相萃取。

固液萃取固液萃取是指将固体样品中的目标物质通过溶剂进行提取的过程。

它适用于固体样品中目标物质的含量较低,或者需要对固体样品进行预处理的情况。

固液萃取的步骤主要包括样品的预处理、溶剂的选择、溶剂与固体的接触和分离等。

样品的预处理在固液萃取前,通常需要对固体样品进行预处理,以提高目标物质的提取效率。

常见的预处理方法包括研磨、粉碎、酸碱处理等。

溶剂的选择溶剂的选择在固液萃取中非常重要,它直接影响到目标物质的提取效率和纯度。

常用的溶剂包括水、有机溶剂(如乙醚、丙酮、甲醇等)和混合溶剂。

选择合适的溶剂需要考虑目标物质的溶解度、选择性以及安全性等因素。

溶剂与固体的接触溶剂与固体的接触是固液萃取中的关键步骤。

它可以通过搅拌、超声波处理、加热等方式来增加溶剂与固体的接触面积和提高目标物质的溶解度。

分离在固液萃取完成后,需要将溶液中的目标物质与固体分离。

常用的分离方法包括离心、过滤、蒸发等。

选择合适的分离方法需要考虑目标物质的性质、溶剂的挥发性以及实验室条件等因素。

液液萃取液液萃取是指将混合液中的目标物质通过溶剂的选择性提取的过程。

它适用于目标物质在不同溶剂中的分配系数差异较大的情况。

液液萃取的步骤主要包括混合液的制备、溶剂的选择、溶剂的接触和分离等。

混合液的制备液液萃取前,需要将含有目标物质的混合液制备好。

混合液的制备可以通过溶解、反应等方式进行。

溶剂的选择液液萃取中,选择合适的溶剂对提取效果至关重要。

溶剂的选择需要考虑目标物质的溶解度、选择性以及溶剂的毒性和挥发性等因素。

溶剂的接触溶剂与混合液的接触是液液萃取中的关键步骤。

它可以通过搅拌、摇床、萃取漏斗等方式来增加溶剂与混合液的接触面积,从而提高目标物质的分配系数。

萃取分离技术

萃取分离技术

如中药大黄中的大黄酸、大黄素和大黄酚的分离
OH O OH
OH O OH
OH O OH
COOH HO
CH3
O
O
大黄酸
大黄素
酸性最强
酸性其次
溶于NaHCO3
溶于Na2CO3
CH3 O
大黄酚
酸性最弱
溶于NaOH
2.萃取溶剂的选择原则 萃取溶剂与溶液的溶剂互溶性差,两 溶剂的密度差异明显 “相似相溶”,萃取剂对目标物的选 择性高 化学性质稳定(洗涤例外) 沸点较低,易回收 价格低,毒性小,不易着火。
液—液萃取和液—固萃取
常用溶剂
• 非极性~弱极性溶剂 • 石油醚: 低碳烷烃混合物,市售3种类型(按沸程
30~60℃、60~90℃、90~120℃),无毒、易燃, 反复使用后性质略有变化。
• 乙醚: 弱极性,低沸点,易爆,一般不用作工业生 产。
• 苯: 非极性,致癌物质,谨慎使用。 • 正己烷: 与石油醚性质似,工业价格贵,不用作工
某些甙类
某些甙类(黄酮甙)
石油醚、己烷
乙醚、氯仿 氯仿:乙醇 (2:1)
乙酸乙酯
大 某些甙类(皂甙、蒽醌甙)
正丁醇
亲水性 强亲水性
极性很大的甙、糖类、氨基酸、某些生 物碱盐
蛋白质、粘液质、果胶、糖类、氨基酸、 无机盐类
丙酮、乙醇、 甲醇

萃取分离 目的: 将目标物选择性地溶集于某
一溶剂中,常用于粗分。
密度
1.00 0.79 0.79 0.79 0.71
0.68—0.72
0.78 0.88 0.87
溶剂名称
乙酸乙酯 二氧六环 二氯甲烷 二氯乙烷 三氯甲烷 四氯甲烷 硝基甲烷

化工原理第十一章液液萃取和固液萃取

化工原理第十一章液液萃取和固液萃取

E R
kA yA
xA
y
0 A
x
0 A
y
0 A
x
0 A
B
kB
yB xB
y
0 B
x
0 B
1
y
0 A
1
x
0 A
M
S
要求:1,
kA 越大越好,kB 越小越好。
原料液
萃取剂 S
S
A+B
xF
yA
萃取相 E
y0
萃取液 E A
A(大量),B(少量)
S+A+B 萃余相 R
x B+A+S A
S
x0
萃余液 R A B (大量),A(少量)
R R
B
第十一章 液液萃取和固液萃取
S
R,xR E,yE
R,xR E,yE
S
E M
S0
S
16/19
2.解析法
总: F S R E
溶质 A:FxA,F SyA,S RxA,R EyA,E
萃取剂 S:0 SyS,S RxS,R EyS,E
相平衡:k A
y A, E x A,R
kB
yB,E xB,R
幻灯片1目录
§11.1 概述 §11.2 液液相平衡关系及相图
浙江大学本科生课程 化工原理
第十一章 液液萃取和固液萃取
1/12
第十一章 液液萃取和固液萃取
§11.1 概述
1.什么是液液萃取?
利用液体混合物中各组分在外加溶剂中溶解度 的差异而分离该混合物的操作,称为~。外加 溶剂称为萃取剂。
浙江大学本科生课程 化工原理
FxF S 0 MxM

萃取技术_精品文档

萃取技术_精品文档
0 萃取技术
概述 溶液萃取技术 双水相萃取 超临界流体萃取 其他萃取技术
0.1 概述
一、基本概念及分类
概念:萃取是利用溶质在互不混溶的两相之间分 配系数的不同而使溶质得到纯化或浓缩的技术。
分类:
参与溶质 分配的两 相不同
液-固萃取 液-液萃取
萃取原理
物理萃取 化学萃取 双水相萃取 超临界萃取
K = 萃取相浓度/萃余相浓度= X/Y 应用条件:(1)稀溶液;(2)溶质对溶剂之
互溶度没有影响;(3)必须是同一种分子类 型,即不发生缔合或离解。
分离因数
若原来的料液中除溶质A以外,还含有溶 质B,则由于A、B的分配系数不同, A和 B就得到了一定程度的分离。如A的分配系 数较B大,这样萃取剂对溶质A和B分离能 力的大小可用分离因数β来表征:
常用聚合物: 聚乙二醇-葡聚糖
聚乙二醇-无机盐系统
无毒原则
双水相体系形成的原因
1. 双水相体系的成因是聚合物之间的不相溶性, 即聚合物分子的空间阻碍作用,相互间无法 渗透,从而分为两相。一般认为,只要两种 聚合物水溶液的水溶性有所差异,混合时就 可发生相分离,并且水溶性差别越大,相分 离的倾向越大。
0.2 溶剂萃取技术
就是在液体混合物(原料液)中加入一种与其 基本不相混溶的液体作为溶剂,构成第二相, 利用原料液中各组分在两个液相中的溶解度 不同而使原料液混合物得以分离。选用的溶 剂称为萃取剂,以S表示;原料中容易溶于S 的组分,称为溶质,以A表示;难溶于S的组 分称为原溶剂(或稀释剂),以B表示。
2. pH的影响
pH会影响蛋白质中可离解基团的离解度, 因而改变蛋白质所带电荷和分配系数;另外, pH还影响系统缓冲物质磷酸盐的离解程度, 从而影响分配系数。

中华人民共和国国家环境保护标准水质多环芳烃的测定液液萃取和固

中华人民共和国国家环境保护标准水质多环芳烃的测定液液萃取和固

中华人民共和国国家环境保护标准HJ 478—2009代替GB 13198—91水质 多环芳烃的测定液液萃取和固相萃取高效液相色谱法 Water quality-Determination of polycyclic aromatic hydrocarbons by liquid‐ liquid extraction and solid‐phase extraction -High performanceliquid chromatography(发布稿)本电子版为发布稿。

请以中国环境科学出版社出版的正式标准文本为准。

环 境 保 护 部 发布目次前言 (Ⅱ)1适用范围 (1)2方法原理 (1)3试剂和材料 (1)4仪器和设备 (2)5样品 (3)6分析步骤 (3)7结果计算 (6)8准确度和精密度 (7)9质量控制和质量保证 (7)附录A(规范性附录) 方法的检出限和测定下限 (8)附录B(资料性附录) 方法的精密度和准确度 (10)前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水中多环芳烃的测定方法,制定本标准。

本标准规定了测定水中十六种多环芳烃的液液萃取和固相萃取高效液相色谱法。

本标准适用于饮用水、地下水、地表水、海水、工业废水及生活污水中十六种多环芳烃的测定。

本标准是对《水质六种特定多环芳烃的测定高效液相色谱法》(GB 13198—91)的修订。

本标准首次发布于1991年,原标准起草单位为北京环境保护监测中心。

本次为第一次修订。

本次修订的主要内容有:——增加了方法的测定组分;——增加了固相萃取方法;——修改了萃取溶剂体系及净化的方法;——修改了高效液相色谱法的流动相配比;——修改了高效液相色谱法的检测条件;——增加了质量保证和质量控制的规定。

自本标准实施之日起,原国家环境保护局1991年8月31日批准、发布的国家环境保护标准《水质六种特定多环芳烃的测定高效液相色谱法》(GB 13198—91)废止。

Chapter_2_固液萃取

Chapter_2_固液萃取

若以重液为分散相时,则应将降液管改为升液管,安装在筛板上方。 在筛板塔内分散相的液体经多次分散和凝聚,而且筛板的存在又抑 制了塔内的轴向混合,故其效率高,应用广泛。

脉冲筛板塔
脉冲筛板塔的基本结构
与普通筛板相同,但 没有溢流管,如图 4.50(2)所示。 工作原理
工作原理
操作时,轻、重液相均穿过筛板面作逆流
这种设备适于处理两相密度差很小或易乳化的体系。
图4. 52 离心萃取机
液膜
④溶液扩散到固相表面 固相内部的溶质与溶剂形成的溶液,通过 固体空隙以扩散的形式到达固相表面。
液相主体
溶剂
界面 固相主体
溶质
⑤溶液进入液相主体
通过固扩散到达固相表面的溶液,再以扩
溶液
散的形式穿过液膜进入液相主体。
实验告诉我们,在浸提操作中,通常随着 浸提过程的进行,浸提速度将越来越慢。 在生物化工生产中,固相物质(材料)通常是粉碎成颗粒以后再进行浸 提。这样,我们可以此可认为,上述五个步骤中,溶液中的溶质通过固相
运动,分散在筛板之间不分层。由于普通筛
板塔内轻、重相液逆向运动的相对速度小,
界面湍动程度低,从而限制了传质效率的进
一步提高。引入脉冲作用目的是为了提高流
体间的湍动程度。产生脉冲的方法有往复泵、
隔膜泵、压缩空气等。脉冲振幅范围为
往复筛板塔
原理与脉冲筛板塔相同,但它采用将筛 板固定在中心轴上,由塔顶的传动机 构带动作上下往复运动。如图4.50(3) 所示, 往复振动的幅度范围3~5mm,频率可达 1000/min。 当筛板向上运动时,筛板上侧液体经筛 孔向下喷射;当筛板向下运动时,筛 板下侧的液体向上喷射,故使两相接 触表面及湍动程度增加,因而传质效 率高。 往复筛板塔的传质效率高,流动阻力小, 生产能力大,故在生产上应用日益广 泛。

固相萃取法和液液萃取法得关系

固相萃取法和液液萃取法得关系

固相萃取法和液液萃取法得关系固相萃取法和液液萃取法,嘿,这俩可真是化学实验里的一对“欢喜冤家”啊!咱先说说固相萃取法,它就像是个细心的“筛选大师”。

你看啊,它能把混合溶液里咱想要的那些成分,精准地给“揪”出来。

就好比在一堆五颜六色的糖果里,它能准确无误地挑出红色的糖果来,厉害吧!它操作起来相对简单,而且还挺高效的呢。

再瞧瞧液液萃取法,这可是个经验丰富的“老江湖”。

它通过两种不相溶的液体来达到分离的目的。

就好像是两个小伙伴,一个喜欢苹果,一个喜欢橘子,把它们放在一起,苹果就会跑到喜欢它的小伙伴那里去啦。

液液萃取法在很多领域都有它的身影,有着自己独特的地位。

那它们俩到底啥关系呢?嗯,它们就像是并肩作战的好战友。

有时候呢,固相萃取法能解决的问题,液液萃取法不一定行;反过来,液液萃取法能搞定的事儿,固相萃取法也未必能做到最好。

它们各自有各自的优势和适用场景。

比如说,在处理一些复杂的样品时,固相萃取法可能就更得心应手,能快速地把目标物分离出来。

而在一些特定的情况下,液液萃取法的效果又会特别显著,能把需要的成分分得清清楚楚。

这不就像咱生活里,有人擅长画画,有人擅长唱歌,各有所长嘛!那有人可能会问了,既然它们都这么好,那到底该选哪个呢?这可没有标准答案哦!这得根据具体的实验要求、样品性质等等来决定呀。

就像你去买衣服,得看场合、看喜好、看身材来选合适的款式,对吧?要是选错了方法,那可就像穿错了衣服,会感觉别扭不舒服呢。

而且啊,它们俩还在不断发展进步呢!科学家们一直在努力改进它们,让它们变得更厉害、更高效。

说不定未来的某一天,它们会有更让人惊叹的表现呢!总之呢,固相萃取法和液液萃取法,它们是化学实验里不可或缺的好帮手。

它们相互补充,共同为我们探索化学世界的奥秘贡献力量。

咱可得好好了解它们,把它们用在刀刃上,让我们的实验更成功、更精彩呀!难道不是吗?。

水质 硝基苯类化合物的测定 液液萃取和固相萃取-气相色谱法

水质 硝基苯类化合物的测定 液液萃取和固相萃取-气相色谱法

水质硝基苯类化合物的测定液液萃取/固相萃取-气相色谱法1. 适用范围本方法规定了水中15种硝基苯类化合物的液液萃取和固相萃取气相色谱测定方法。

15种硝基苯类化合物包括硝基苯、对-硝基甲苯、间-硝基甲苯、邻-硝基甲苯、对-硝基氯苯、间-硝基氯苯、邻-硝基氯苯、对-二硝基苯、间-二硝基苯、邻-二硝基苯、2,4-二硝基甲苯、2,6-二硝基甲苯、3,4-二硝基甲苯、2,4-二硝基氯苯、2,4,6-三硝基甲苯。

本方法适用于地表水、地下水、工业废水、生活污水和海水中硝基苯类化合物的测定。

液液萃取法取样量为200ml,方法检出限为0.017μg/L~ 0.22μg/L;固相萃取法取样量为1.0L时,方法检出限为0.0032μg/L~0.048μg/L。

详见附录A。

2. 原理液液萃取:用一定量的甲苯萃取水中硝基苯类化合物,萃取液经脱水、净化后进行色谱分析。

固相萃取:使用固相萃取柱或萃取盘吸附富集水中硝基苯类化合物,用正己烷/丙酮洗脱,洗脱液经脱水、定容后进行色谱分析。

萃取液注入气相色谱仪中,用石英毛细管柱将目标化合物分离,用电子捕获检测器测定,保留时间定性,外标法定量。

3. 干扰及消除3.1 水样中可能共存的有机氯农药(六六六、DDT)、卤代烃、氯苯等有机化合物在电子捕获检测器上虽有响应,在该方法中因保留时间的不同,对方法无明显干扰。

3.2 水中可能共存其他含卤素或氮等在电子捕获检测器上有响应的有机物可能干扰测定,选择极性差别较大的两种毛细柱分别分离测定,则可在很大程度上减小定性误差。

3.3 对于背景干扰复杂的样品也可使用气相色谱质谱法进行定性测定。

4. 试剂和材料除非另有说明,分析时均使用符合国家标准的分析纯化学试剂,试验用水为新制备的去离子水或蒸馏水。

4.1 正己烷(C6H14):色谱纯。

4.2 丙酮(C3H6O):色谱纯。

4.3 甲醇(CH4O):色谱纯。

4.4 甲苯(C7H8):色谱纯。

4.5 无水硫酸钠(Na2SO4):在450℃的烘箱中烘烤4h,置于干燥器中冷却至室温,装入瓶中,于干燥器中保存。

第2章萃取.

第2章萃取.

4
含Ni2+水溶液(水相) 丁二酮肟萃取剂
氨性缓冲液(pH9) 加入CHCl3有机相
00:15
萃取过程
振荡萃取
静置分层
5
§2.1 固液萃取(浸取)
1.药材有效成分的浸取
中药材成分:有效成分、辅助成分、无效成 分、组织物 浸取目的:选择适宜的溶剂和方法,充分浸 出有效成分及辅助成分,尽量减少或出去无 效成分。
1.0 0.8 A 0.6
qi lg q0
lg
Ⅰ Ⅱ
A’
qi lg k q0
τ/h
qi 1 q0
0.3 B 0.2 0.1 B’

c
Ⅱ τ/h
q 0 qi k b q0
浸出曲线
00:15
b 1
洗脱系数
29
5.浸取方法、工艺及设备
浸渍法:适宜于黏性药物、无组织结构的药材、
物料中水含量
微波剂量 萃取时间
00:15
基体物质
37
设备:专用密闭容器
应用: 多糖类成分 黄酮类成分 蒽醌类成分
有机酸类成分
挥发油
鲜药材处理
00:15
38
其他的强化浸取方法:
电磁场强化浸出
流化床强化浸出 电场强化浸出 电磁振动强化浸出 脉冲强化浸出 挤压强化浸出
00:15 39
§2.2
液液萃取
解:设药材中所吸收溶剂量为1,则总溶剂量为M=20/4=5
00:15
24
多级逆流浸取:
C= 0 新溶剂 g1
g2
g5
浓溶液
1
X 药渣 s1
2
s2
5
S5
新药 材

萃取法名词解释

萃取法名词解释

萃取法是一种常用的化学分离和提取方法,用于从混合物中分离出所需的化合物或物质。

它基于不同物质在不同溶剂中的溶解度差异,通过选择合适的溶剂和提取条件,使目标物质在溶剂中溶解或萃取出来,从而实现分离和纯化的目的。

一般而言,萃取法可以分为以下几种常见类型:
1. 液液萃取:液液萃取是最常见的一种萃取方法,通常利用两种不相溶的溶剂(如有机溶剂和水)的差异来实现目标物质的分离。

通过合适的溶剂选择、pH调节、摇床或离心等步骤,可以将目标物质从原混合物中提取出来。

2. 固液萃取:固液萃取是将目标物质从固体基质中提取出来的方法。

常见的固液萃取包括榨汁、浸泡等。

在固液萃取过程中,通常使用合适的溶剂使目标物质溶解,然后通过过滤或离心等方式分离固体残渣和溶液,最终得到目标物质。

3. 气液萃取:气液萃取主要用于从气相中提取物质。

常见的气液萃取方法包括气相萃取、蒸馏和吸附等。

在气液萃取中,通常利用物质在气相和液相之间的分配系数差异,通过适当的温度和压力控制,使目标物质从气相中富集到液相中。

萃取法在化学、生物化学、环境科学等领域广泛应用,用于分离和提取化合物、有机物、天然产物等。

具体的萃取方法选择取决于目标物质的性质、混合物的组成和特点,以及实验条件和目的等因素。

液液萃取和固液萃取

液液萃取和固液萃取

S
图10-2 三角形中的相组成
2018/11/13
3
一、相组成表示方法 三个组分得含量之和应符合
BE BG HS BS
w( A) w(S ) w( B) 100%
二、溶解度曲线
R4 xA RC R R2 3 R1 B K E4 E C E3 E2 E1 C4 C S 辅助曲线
kA A在E相中得浓度 y A = A在R相中得浓度 y A
同样,对稀释剂B有
kB
B在E相中得浓度 yB = B在R相中得浓度 yB

萃取剂的选择性,用选择性系数

表示
k A y A / x A y A / yB ( A / B) E kB yB / xB xA / xB ( A / B) R
2018/11/13
1
10.1.1液液萃取概述 萃取是分离液体(或固体)混合物的一种单元操作,其方法是 选择一种溶剂使混合物中于分离的组分溶解与其中,其余组分则不 溶或少溶而获得分离。 萃取的基本过程如图11—1所示。
萃取剂S 原料液 A+B 1 图 11- 1 萃 取 过 程 示 意 图 1- 混 合 器 ; 2- 分 层 器 2 萃余相R
R ME E MR
R B
'
R
M
E S
R ME M RE
图 11- 6 单 级 萃 取 的 图 解 计 算
4、连点S、E和点S、R并分别延长交AB于点E‘和R’,则点E’和R’分别 表示萃取液和萃余液得组成
2018/11/13
8
二、S和B完全不互溶时得图解计算
Y
当S和B完全不互溶时,则萃 取相含全部溶剂,萃余相含全 部稀释饥,萃取前厚的物料衡 算式为(萃取剂为纯溶剂):

萃取的工艺类型

萃取的工艺类型

萃取的工艺类型萃取是一种常见的化学分离技术,它可以通过溶剂的选择性提取出需要的化合物。

萃取工艺类型包括固液萃取、液液萃取、超临界流体萃取和固相微萃取等多种类型。

下面将详细介绍这些类型的工艺流程。

一、固液萃取固液萃取是指将需要提取的物质溶解在适当的溶剂中,然后通过与另一个不相溶的固体(如活性炭)接触,使目标物质从溶液中被吸附到固体上。

其主要流程包括:1.样品制备:将待测样品加入适当量的溶剂中,并进行均匀搅拌。

2.吸附:将活性炭等固体吸附剂加入上述混合物中,并进行充分搅拌。

3.过滤:用滤纸或滤膜过滤掉含有吸附剂和目标物质的混合物,得到含有目标物质的吸附剂。

4.洗脱:用适当量的洗脱剂(如乙醇或水)洗脱吸附剂,将目标物质从吸附剂上提取出来。

二、液液萃取液液萃取是指将需要提取的物质从一个溶液中转移到另一个不相溶的溶剂中。

其主要流程包括:1.样品制备:将待测样品加入适当量的有机溶剂中,并进行均匀搅拌。

2.萃取:加入另一种不相容的有机溶剂,并进行充分混合,使目标物质从水相转移到有机相。

3.分离:通过离心或沉淀法将两种相分离,得到含有目标物质的有机相。

4.洗涤:用适当量的洗脱剂(如水)洗涤有机相,去除杂质。

5.浓缩:用旋转蒸发器等方法浓缩目标物质,得到纯化后的产物。

三、超临界流体萃取超临界流体萃取是指利用高压和高温下的超临界流体(如二氧化碳)对样品进行萃取。

其主要流程包括:1.样品制备:将待测样品加入适当量的溶剂中,并进行均匀搅拌。

2.萃取:将样品混合液加入超临界二氧化碳中,并进行充分混合,使目标物质从溶液中萃取出来。

3.分离:通过减压法将二氧化碳和目标物质分离,得到含有目标物质的萃取液。

4.洗涤:用适当量的洗脱剂(如水)洗涤萃取液,去除杂质。

5.浓缩:用旋转蒸发器等方法浓缩目标物质,得到纯化后的产物。

四、固相微萃取固相微萃取是指利用固相材料(如吸附树脂)对样品进行富集和分离。

其主要流程包括:1.样品制备:将待测样品加入适当量的溶剂中,并进行均匀搅拌。

水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法HJ478-2009

水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法HJ478-2009

HJ 中华人民共和国国家环境保护标准HJ 478-2009代替GB 13198—91水质多环芳烃的测定液液萃取和固相萃取高效液相色谱法Water quality—Determination of polycyclic aromatic hydrocarbons—Liquid-liquid extraction and solid-phase extraction followed by highperformance liquid chromatographic method2009-09-27发布 2009-11-01实施环境保护部发布HJ478—2009中华人民共和国环境保护部公告2009年第47号为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《水质多环芳烃的测定液液萃取和固相萃取高效液相色谱法》等十八项标准为国家环境保护标准,并予发布。

标准名称、编号如下:一、《水质多环芳烃的测定液液萃取和固相萃取高效液相色谱法》(HJ 478—2009);二、《环境空气氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法》(HJ 479—2009);三、《环境空气氟化物的测定滤膜采样氟离子选择电极法》(HJ 480—2009);四、《环境空气氟化物的测定石灰滤纸采样氟离子选择电极法》(HJ 481—2009);五、《环境空气二氧化硫的测定甲醛吸收-副玫瑰苯胺分光光度法》(HJ 482—2009);六、《环境空气二氧化硫的测定四氯汞盐吸收-副玫瑰苯胺分光光度法》(HJ 483—2009);七、《水质氰化物的测定容量法和分光光度法》(HJ 484—2009);八、《水质铜的测定二乙基二硫代氨基甲酸钠分光光度法》(HJ 485—2009);九、《水质铜的测定 2,9-二甲基-1,10菲啰啉分光光度法》(HJ 486—2009);十、《水质氟化物的测定茜素磺酸锆目视比色法》(HJ 487—2009);十一、《水质氟化物的测定氟试剂分光光度法》(HJ 488—2009);十二、《水质银的测定 3,5-Br2-PADAP分光光度法》(HJ 489—2009);十三、《水质银的测定镉试剂2B分光光度法》(HJ 490—2009);十四、《土壤总铬的测定火焰原子吸收分光光度法》(HJ 491—2009);十五、《空气质量词汇》(HJ 492—2009);十六、《水质样品的保存和管理技术规定》(HJ 493—2009);十七、《水质采样技术指导》(HJ 494—2009);十八、《水质采样方案设计技术指导》(HJ 495—2009)。

化工原理第十一章 液液萃取和固液萃取

化工原理第十一章 液液萃取和固液萃取

yA yA
同样,对稀释剂B有
kB
B在E相中得浓度= B在R相中得浓度
yB yB
萃取剂的选择性,用选择性系数 表示
kA yA / xA yA / yB (A / B)E kB yB / xB xA / xB ( A / B)R
要注意以下几方面:
1、 选择性 2、 萃取相与萃余相的分离 3、 萃取剂得回收
C2 ( b)
C1
图11-3 相平衡图
2024/3/26
5
三、杠杆规则
如图11-4所示,混合物M分成任意两个 相E和R,或由任意两个相E和R混合成一 个相M,或任意两个组分E和R混合成一个 混合物M(E、、R、M可以为同一相)。 则在三角形相图中表示其组成得点M、E 和R必在以直线上,且符合以下比例关系
除此之外,萃取剂还应满足一般得工业要求。
2024/3/26
7
11.1.4单级萃取
S F
S
E 3
萃 取 液E'
M
S
2
1
R
4
图 11- 5 单 击 萃 取 流 程
萃 余 液 R‘
1- 混 合 器 ; 2- 分 层 器 ; 3- 萃 取 相 分 离 设 备 ; 4- 萃 余 相 分 离 设 备
2024/3/26
8
一、利用三角形相图的图解计算
如图11—6所示,单级萃取得计算步骤
如下:
A
E'
1、 根据已知得平衡数据在直角三角形
相图中作出溶解度曲线及辅助曲线。
辅助曲线
2、由已知原料液组成xF在边AB上定点
F,连接点S和F。有
F
S FM
F MS
3、点M利用辅助曲线作联结线。有

化学知识点萃取方法总结

化学知识点萃取方法总结

化学知识点萃取方法总结导言萃取是化学分离与提纯物质的一种重要方法。

它利用不同物质在不同溶剂中的溶解度差异,通过适当的溶剂选择和搅拌分离出需要的物质。

萃取方法在化学实验、工业生产、环境监测等领域都有广泛应用。

本文将综述常见的萃取方法,包括液-液萃取、固-液萃取和超临界流体萃取,分析其原理、特点和应用。

一、液-液萃取1.1 原理液-液萃取是指通过两种相互不溶的液体,根据不同物质在两相中的溶解度差异,使目标物质从原液体中转移到萃取液中的过程。

其实质是溶质在两种不同溶剂中的分配系数Kd差异。

通常用分配系数来定量描述萃取效果:\[K_d = \frac{[A]_o}{[A]_e}\]其中,[A]_o为溶液中溶质A的浓度,[A]_e为溶液中残留溶质A的浓度。

1.2 特点液-液萃取具有操作简单、效果显著、成本低廉的特点,适用于分离提纯有机物、萃取金属离子、分离提纯多肽等领域。

不过其局限性在于对于大批量物质的处理不太方便,并且有机溶剂的挥发性和有毒性是其应用的局限。

1.3 应用液-液萃取在化学实验室中常用于有机物的分离提纯,如提炼天然产物、从混合溶液中分离有机物等。

在工业上,液-液萃取应用广泛,如从煤气中提取甲醛、从煤焦油中提取芳烃、从金属矿石中提取金属等。

二、固-液萃取2.1 原理固-液萃取是指将溶质从固相物质中提取到液相溶剂中的过程。

其方法包括浸提法、搅拌法、超声波法等。

浸提法是将固体样品浸于适当的溶剂中,通过固液相间的质量传递使目标物质转移到溶剂中。

搅拌法和超声波法则是利用机械能和超声波能将溶质部分从固体中释放到液相中。

2.2 特点固-液萃取适用于提取天然产物、植物中的有效成分、环境中的有机污染物等。

其优点在于选择合适的溶剂可以避免有机溶剂挥发、局部毒性等问题,且提取效率高、成本低廉。

但固-液萃取也存在着固液相分离不完全、富集效率低等问题,需要结合其他方法来解决。

2.3 应用固-液萃取在药物提取、环境监测、食品加工等领域有着广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.萃取剂的选择 要求:
1、对溶质溶解性大 2、选择性好 3、B与S互溶度越小越好 4、萃取剂易于回收 5、萃取相与萃余相密度差异大
浙江大学本科生课程 化工原理
第十一章 液液萃取和固液萃取
4/12
§11.2 液液相平衡关系及相图 一、 三角形相图及其应用
A
①顶点代表纯组分 ②每条边代表二元溶液 ③相图中的点代表三元溶液
§11.1 概述 §11.2 液液相平衡关系及相图
浙江大学本科生课程 化工原理
第十一章 液液萃取和固液萃取
1/12
第十一章 液液萃取和固液萃取
§11.1 概述
1.什么是液液萃取?
利用液体混合物中各组分在外加溶剂中溶解度 的差异而分离该混合物的操作,称为~。外加 溶剂称为萃取剂。
浙江大学本科生课程 化工原理
萃取剂 S
S
A+B
B
E M
和点
R
萃取液 E
萃取相 E
A(大量),B(少量)
S+A+B
S
萃余相 R
浙江大学本科生课程 化工原理
B+A+S
萃余液 R
第十一章 液液萃取B和(固大液量萃)取,A(少量)
杠杆 差点
S
6/12
§11.2 液液相平衡关系及相图
A
思考:如何证明上述杠杆原理?
物料衡算:F S M
FxF S 0 MxM
F
FxF F SxM
差点 M
F xM 0 MS S xF xM FM
和点
原料液 F A+B
浙江大学本科生课程 化工原理
萃取剂 S
萃取相 E S+A+B 萃余相 R B+A+S
S
B
萃取液 E A(大量),B(少量) S
萃余液 R B (大量),A(少量)
第十一章 液液萃取和固液萃取
萃余液 R A B (大量),A(少量)
BR
两相区
辅助线
M
B、S 部分互溶时
ES
第十一章 液液萃取和固液萃取
8/12
§11.2 液液相平衡关系及相图
A
A
xF
P
xF
P
R B
浙江大学本科生课程 化工原理
E
R
M
SB
B、S 部分互溶时
第十一章 液液萃取和固液萃取
E
M
S
9/12
§11.2 液液相平衡关系及相图
(2) 分配曲线
A
分配曲线
yA
xF
P
E R
k A yA kB yB
xA xB
y
0 A
y
0 B
x
0 A
x
0 B
y
0 A
1
y
0 A
x
0 A
1
x
0 A
B
M
S
要求:1,
kA 越大越好,kB 越小越好。
原料液
萃取剂 S
S
A+B
xF
yA
萃取相 E
y0
萃取液 E A
A(大量),B(少量)
S+A+B 萃余相 R
x B+A+S A
S
x0
萃取剂 S
S
萃取相 E
萃取液 E (纯 A)
S+A
萃余相 R(萃余液 R)
B+A
B 与 S 完全不互溶时
浙江大学本科生课程 化工原理
第十一章 液液萃取和固液萃取
11/12
§11.2 液液相平衡关系及相图 A
2、B与S部分互溶时,相平衡关系的解析表示:
分配系数ki、选择性系数
kA
yA xA
kB
yB xB
杠 杆
差点 S
7/12
§11.2 液液相平衡关系及相图
二、 萃取过程中的相平衡关系
1、B与S部分互溶时,
A
相平衡关系的图形表示:
A
B多S少 +A R(B 层)
(1) 溶解度曲线、 辅助线、 共轭线
均相区
S多B少 +A E(S 层)
P 临界混溶点(褶点)
溶解度曲线
浙江大学本科生课程 化工原理
共轭线(联结线)
R
E
P
B
M
S
xA
B、S 部分互溶时
思考:若B与S互溶度变大,则两相区范围如何变化?
若B与S完全不互溶,则在三角形相图中溶解
度曲线 如何画?
浙江大学本科生课程
化工原理
第十一章 液液萃取和固液萃取
10/12
§11.2 液液相平衡关系及相图
2、B与S完全不互溶时,相平衡关系的图形表示: 用分配曲线
原料液 A+B
%A %B %S 100%
浙江大学本科生课程 化工原理
B
第十一章 液液萃取和固液萃取
S
三角形相图
5/12
§11.2 液液相平衡关系及相图
三角形相图的应用:
A
1、查取浓度;
E
2、表示混合、分离等过程;
3、定量计算----杠杆原理
F
差点
杠杆原理: F MS
S FM R
R ME E RM
原料液 F
第十一章 液液萃取和固液萃取
2/12
§11.1 概述
2.萃取流程:
原料液 A+B
溶质
原溶剂
萃取剂 S
萃取相 E S+A+B 萃余相 R B+A+SS萃取来自 E A(大量),B(少量) S
萃余液 R B (大量),A(少量)
浙江大学本科生课程 化工原理
第十一章 液液萃取和固液萃取
3/12
§11.1 概述
相关文档
最新文档