硝化耗碱计算
工艺计算MBBR
TN= NH4+-N=
58 mg/L 45 mg/L
TN= NH4+-N=
10 mg/L 1.5 mg/L
碱度SALK=
280 mg/L
pH=
7.2
SS=
70 mg/L
SS=Ce=
20 mg/L
VSS= f=VSS/SS= 夏季平均温度 T1= 冬季平均温度 T2=
52.5 mg/L 0.75
25 ℃ 10 ℃
0.451 m/s 0.174 m3/s
污泥回流渠道设计流速v 2=
0.7 m/s
渠道断面积 A=QR/v 2=
0.248 m2
渠道断面 b×h=
1×
校核流速 v= (3)进水竖井
0.347 m/s
进水孔过流量: Q'=( 1+R)× Q/n=
孔口流速 v'= 孔口过水断面积 A'=Q'/v'=
0.6 m/s 0.289 m2
(2)混合液回流比R 内计算
总氮率 ηN=(进水 TN-出水 TN)/ 进水 TN=
82.76%
混合液回流比R内= η/(1- η)=
6、剩余污泥量 (1)生物污泥产量
480%
PX YQ(S0 S) 1 Kd c
381.4 kg/d
(2) 非生物污泥量PS
PS=Q(X1-Xe)= (3) 剩余污泥量 ΔX Δ X=PX+PS= 设剩余污泥含水率按
0.5 m 0.174 m3/s
(4) 出水堰及出水竖井 矩形堰流量公式: Q3
3
0.42 2gbH 2
1.866 b H3/2
出水流量Q3= 堰宽 b= 堰上水头 H= 出水孔孔口流速v3=
工艺计算A2O-AO-MBBR
设计处理水量Q= 15000 m3/d=
625.00 m3/h=
0.17 m3/s
总变化系数Kz=
1.53
进水水质:
出水水质:
进水CODCr=
300 mg/L
CODCr=
30 mg/L
BOD5=S0=
145 mg/L
BOD5=Sz=
6 mg/L
TN=
58 mg/L
(5)最大需氧量 AORmax=KzAOR=
去除1kgBOD的需氧 量=
1812.36 kgO2/d
4936.53 kgO2/d=
7558.43 kgO2/d=
2.37
kgO2/kgB OD5
205.69
kgO2/ h
314.93
kgO2/ h
(6)标准需氧量
SOR
AOR Cs(20) (Csb(T ) C) 1.024(t20)
0.8 ms/ 0.217 m2
出水管管径d4= 4 Q 4
v
校核管道流速v= 9、设计需氧量 AOR=碳化需氧量+ 硝化需氧量-反硝 化脱氮产氧量= (去除BOD需氧量剩余污泥中BOD氧 当量)+(氨氮硝化 需氧量-剩余污泥 中氨氮的氧当量)
反硝化 - 脱氮产
氧量
0.526 m 0.451 m/s
(1)估算出水溶 解性BOD5(Se)
S
Sz
1.42
VSS TSS(1 TSS
ekt )
(2)设计污泥龄
-8.56 mg/L
计算
硝化速率
N
0.47e0.098(T 15)
N
N 10(0.05T
碱度计算
污水生物硝化处理工艺pH值控制及碱度核算污水生物硝化处理工艺pH值控制及碱度核算一、影响硝化的重要因素1、pH和碱度对硝化的影响pH值酸碱度是影响硝化作用的重要因素。
硝化细菌对pH反应很敏感,在pH中性或微碱性条件下(pH为8~9的范围内),其生物活性最强,硝化过程迅速。
当pH>9."6或<6."0时,硝化菌的生物活性将受到抑制并趋于停止。
若pH>9."6时,虽然NH4+转化为NO2—和NO3—的过程仍然异常迅速,但是从NH4的电离平衡关系可知,NH3的浓度会迅速增加。
由于硝化菌对NH3极敏感,结果会影响到硝化作用速率。
在酸性条件下,当pH<7."0时硝化作用速度减慢,pH<6."5硝化作用速度显著减慢,硝化速率将明显下降。
pH<5."0时硝化作用速率接近零。
pH下降的原因pH下降的原因可能有两个,一是进水中有强酸排入,导致人流污水pH降低,因而混合液的pH也随之降低。
由硝化方程式可知,随着NH3-N被转化成NO3—-N,会产生部分矿化酸度H+,这部分酸度将消耗部分碱度,每克NH3-N转化成NO3—-N约消耗7."14g碱度(以CaC03计)。
因而当污水中的碱度不足而TKN负荷又较高时,便会耗尽污水中的碱度,使混合液中的pH值降低至7.0以下,使硝化速率降低或受到抑制。
如果无强酸排人,正常的城市污水应该是偏碱性的,即pH一般都大于7."0,此时的pH则主要取决于人流污水中碱度的大小。
所以,在生物硝化反应器中,应尽量控制混合液pH>7."0,制pH>7."0,是生物硝化系统顺利进行的前提。
而要准确控制pH,pH<6."5时,则必须向污水中加碱。
应进行碱度核算。
2、有机负荷的影响在采用曝气生物滤池工艺进行硝化除氮时,NH4-N的去除在一定程度上取决于有机负荷。
当有机负荷稍高于3."0kgBOD/(m3滤料·d)时,NH3-N的去除受到抑制;当有机负荷高于4."0kgBOD/(m3滤料·d)时,NH3-N的去除受到明显抑制。
AO工艺设计计算公式
AO工艺设计计算公式A/O工艺设计参数在A/O工艺的设计中,需要考虑以下参数:1.水力停留时间:硝化不少于5-6小时,反硝化不超过2小时,A段:O段=1:3.2.污泥回流比:50-100%。
3.混合液回流比:300-400%。
4.反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N。
5.硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d。
6.硝化段污泥负荷率:BOD5/MLSS<0.18KgBOD5/KgMLSS·d。
7.混合液浓度x=3000-4000mg/L(MLSS)。
8.溶解氧:A段DO2-4mg/L。
9.pH值:A段pH=6.5-7.5,O段pH=7.0-8.0.10.水温:硝化20-30℃,反硝化20-30℃。
11.碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。
反硝化反应还原1gNO3--N将放出2.6g 氧,生成3.75g碱度(以CaCO3计)。
12.需氧量Ro:单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。
微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。
Ro=a’QSr+b’VX+4.6Nr。
其中,a’为平均转化1Kg的BOD的需氧量KgO2/KgBOD,b’为微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。
13.Nr为被硝化的氨量,kd/d4.6为1kgNH3-N转化成NO3-所需的氧量(KgO2)。
对于不同类型的污水,其a’和b’值也有所不同。
最后,还需要考虑供氧量的问题。
由于充氧与水温、气压、水深等因素有关,因此氧转移系数应作修正。
ρ表示所在地区实际压力(Pa)与标准大气压下Cs值的比值。
公式为ρ=实际Cs值/(Pa)=所在地区实际压力(Pa)/(Pa)。
AAO生化池计算书
n
=
tp
=
四、 好氧池容积 1、 以硝化反应计算 反应池中氨氮浓度
硝化作用中氮的半速率常数
15℃时硝化菌最大比生长率 硝化菌比生长率 设计泥龄安全系数 硝化需要最小泥龄 实际取值设计泥龄 好氧池容积 好氧池停留时间 2、 按有机物降解的污泥负荷计算 好氧池容积
Na
=
KN
=
=
μ=
F
=
θco
=
θco' =
有机氮+氨氮+硝态氮
有机氮+氨氮+硝态氮 ηTN=(Nti-Nte)/Nti 有机氮+氨氮,生活污水TKN≈TN,进水硝态氮很 少 有机氮+氨氮,假设有机氮完全转化为氨氮 氨氮 氨氮
采用0.03~0.06kgNO3-N/(kgMLSS·d) kde(t)=kde(20)*1.08(t-20)
△XV=y*Yt*[Q(Si-Se)/1000] △N=Nti-Nte-n1*△XV △Nt=△N*Q/1000 Vn=[Q(Nki-Nte)/1000-n1△XV]/kde(t)X Vn=△Nt/(kde(t)*X*y)
参照6.10.3,进水中不可降解污泥,即悬浮固 体的污泥转化率无试验资料时采用0.5~ 0.7gMLSS/gSS △X=YQ(Si-Se)/1000-KdVXV+fQ(SSo-SSe)/1000
99.2~99.7% 污泥贮池停留时间:一般0.5~2.0h m=△X/[Q(Si-Se)/1000)],剩余污泥产率,活 性污泥法去除1kgBOD产生污泥0.4-0.6kg污泥, 生物膜法为0.3-0.45,生物转盘为0.25
6.06
℃ ℃ m Pa mg/l mg/l m ×105Pa
污水处理中硝化细菌生存的影响因素及控制
污水处理中硝化细菌生存的影响因素及控制污泥负荷Ns硝化细菌更多的还是在伴随着菌胶团的生存,有机物的去除是先进行碳氧氧化,再进行氮氧化。
有机物先通过菌胶团分解氧化生成二氧化碳与水,部分作为自身能量消耗。
只有有机负荷降低到一定程度,硝化细菌才开始工作进行硝化反应。
对于这个污泥负荷,设计值及经验值一般小于0.15kgBOD5/KgMLss.d。
通过介绍相信大家也能知道污泥负荷对于硝化细菌,硝化反应是尤为重要!污泥龄(SRT)首先简单介绍一下污泥龄:污泥龄是指曝气池中活性污泥的总量与每日排放的剩余污泥的比值,稳定运行时剩余污泥量就是新增长的活性污泥量。
因此,污泥龄也是新增长的活性污泥在曝气池中的平均停留时间,也可以理解为污泥总量增长一倍也就是繁殖一代所需要的时间。
泥龄ts是活性污泥在曝气池中的平均停留时间,即曝气池中的活性污泥量/每天从曝气池系统排出的剩余污泥量TS=(X*VT)/(QS*XR+Q*XE)式中:tS——泥龄,dX——曝气池中的活性污泥浓度,即 MLSS,kg/m3VT——曝气池总体积,m3QS——每天排出的剩余污泥体积,m3/dXR——剩余污泥浓度,kg/m3Q——设计污水流量,m3/dXE——二沉池出水的悬浮固体浓度,kg/m3为了保证好氧系统的微生物中有足够的硝化菌,需要增加硝化菌的繁殖数量,为此虽然硝化菌的繁殖周期在5d,但是为了提高硝化菌的浓度,通常将污泥龄控制在繁殖周期的 2 倍。
有些资料也显示是10~15d。
案例分享:某生活污水处理厂,主要工艺为A2O工艺,进水水量5000m3/d,进水COD300-400mg/l 进水氨氮为 20mg/l,出水在16-20mg/l,氨氮出水要求 5mg/l。
从去除率来看脱氮效果不明显,几乎没有经过现场询问运营人员,运行管理人员平时运行,如果出水 COD 升高,检测SV30 为 85%时,他们就采取排泥措施,还有DO偏高,污泥沉降性能不好,他们也会排泥,基本 1-2d 排一次泥,根据现场分析判断,排泥太勤,污泥龄短硝化菌流失,硝化效率低下甚至无去除率。
污水处理技术之关于硝化反硝化的碳源、碱度的计算
污水处理技术之关于硝化反硝化的碳源、碱度的计算一、硝化细菌硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。
他包括两个基本反应步骤:由亚硝酸菌(N i t r o s o m o n a s s p)参与将氨氮转化为亚硝酸盐的反应;硝酸菌(N i t ro b a c t e r s p)参与的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用C O2、C O32-、H C O3-等做为碳源,通过N H3、N H4+、或N O2-的氧化还原反应获得能量。
硝化反应过程需要在好氧(A e ro bi c或O x i c)条件下进行,并以氧做为电子受体,氮元素做为电子供体。
其相应的反应式为:亚硝化反应方程式:55N H4++76O2+109H C O3→C5H7O2N﹢54N O2-+57H2O+104H2C O3硝化反应方程式:400N O2-+195O2+N H4-+4H2C O3+H C O3-→C5H7O2N+400N O3-+3H2O硝化过程总反应式:N H4-+1.83O2+1.98H C O3→0.021C5H7O2N+0.98N O3-+1.04H2O+1.884H2C O3通过上述反应过程的物料衡算可知,在硝化反应过程中,将1克氨氮氧化为硝酸盐氮需好氧4.57克(其中亚硝化反应需耗氧3.43克,硝化反应耗氧量为1.14克),同时约需耗7.14克重碳酸盐(以C a C O3计)碱度。
在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子N H4-→羟胺N H2O H→硝酰基N O H→亚硝酸盐N O2-→硝酸盐N O3-。
二、反硝化细菌反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。
反硝化是将硝化反应过程中产生的硝酸盐和亚硝酸盐还原成氮气的过程,反硝化菌是一类化能异养兼性缺氧型微生物。
当有分子态氧存在时,反硝化菌氧化分解有机物,利用分子氧作为最终电子受体,当无分子态氧存在时,反硝化细菌利用硝酸盐和亚硝酸盐中的N3+和N5+做为电子受体,O2-作为受氢体生成水和O H-碱度,有机物则作为碳源提供电子供体提供能量并得到氧化稳定,由此可知反硝化反应须在缺氧条件下进行。
A2O法工艺计算(带公式)
一、工艺流程二、主要设计参数三、设计计算A2/O工艺计算项目设计流量(m3/d)COD (mg/l)BOD5 S0(mg/l)TSS(mg/l)VSS(mg/l)进水40000320160150105出水602020(活性污泥法)(1)判断是否可采用A2O法(用污泥负荷法)COD/TN=9.142857143>8TP/BOD5=0.025<0.06符合要求(2) 有关设计参数0.132、回流污泥浓度X R=66003、污泥回流比R=1004、混合液悬浮固体浓度X=RX R/(1+R)33005、混合液回流比R内TN去除率ηtx=(TN0-TN e)/TN0×100%=57混合液回流比R内=ηTN/(1-ηTN)×100%=133取R内=200(3)反应池容积V,m3V=QS0/NX=14918.41m3反应池总水力停留时间:t=V/Q=0.37(d)=8.88(h)各段水力停留时间和容积:厌氧:缺氧:好氧=1:1:3厌氧池水力停留时间t厌= 1.78(h)池容V厌=2983.7(m3)缺氧池水力停留时间t缺= 1.78(h)池容V缺=2983.7(m3)好氧池水力停留时间t好= 5.33(h)池容V好=8951(m3)(4)校核氮磷负荷,kgTN/(kgMLSS·d)好氧段总氮负荷=Q·TN0/(XV好)=0.0473961[kgTN/(kgMLSS·d)]厌氧段总磷负荷=Q·T P0/(XV厌)=0.0162499[kgTP/(kgMLSS·d)] (5)剩余污泥量△X,kg/d△X=P x+P sP x=YQ(S0-S e)-k d VX R1、BOD5污泥负荷N=Ps=(TSS-TSS c)*50%取污泥增殖系数Y=0.6污泥自氧化率k d=0.05将各值代入:P x=1637kg/dPs=2600kg/d△X=4237kg/d(6)碱度校核每氧化1mgNH3-N需消耗碱度7.14mg;每还原1mgNO3--N产生碱度3.57mg;去除1mgBOD5产生碱度剩余碱度SΔLK1=进水碱度-硝化消耗碱度+反硝化产生碱度+去除BOD5产生碱度假设生物污泥中含氮量以12.40%计,则:每日用于合成的总氮202.98kg/d即,进水总氮中有 5.07mg/l用于合成。
工艺计算MBBR
NW
0.124
Y(S0 S) (1 K d c )
=
(θ为温度 系数,取 1.08)
7600.5 m3 12.16 h 12173.6 m3
7.14 mg碱度; 0.1 mg碱度; 3.57 mg碱度;
5.75 mg/L 50.75 mg/L
42.25 mg/L 633.69 kg/d
kgNO3-0.028 N/kgMLVS
(1)估算出水溶 解性BOD5(Se)
S
Sz
1.42
VSS TSS(1 TSS
ekt )
(2)设计污泥龄
-8.56 mg/L
计算
硝化速率
N
0.47e0.098(T 15)
N
N 10(0.05T
1.158)
O2 kO2
O2
1
0.833(7.2
pH)
低温时μN(10)= 硝化反应所需的最 小泥龄θcm=
(4)出水堰及出水 竖井
3
矩形堰流量公式: Q3 0.42 2gbH 2 1.866b H3/2
出水流量Q3=
堰宽b=
堰上水头H=
出水孔孔口流速v3=
孔口过水断面积A3=
(5)出水管。
管道流速v4=
(
m b
q
2
g
)
2
/
3
管道过水断面积A4=
0.174 m3/s 6m
0.062 m 0.6 m/s
0.289 m2
氧总转移系数α=
氧在污水中饱和溶
解度修正系数β=
曝气池内平均溶解
氧浓度C=
所在地区大气压力
p=
因海拔高度不高引
起的压力系数ρ=
关于硝化反应的问题
1. 关于硝化反应消耗碱度问题
在硝化过程中,需要消耗一定的碱度,如果污水中没有足够的碱度,硝化反应将导致pH值的下降,使反应速率减缓,所以硝化反应要顺利进行就必须要使污水中的碱度大于硝化所需的碱度。
一般来说,在硝化反应中每硝化1gNH3-N 需要消耗7.14g碱度,所以硝化过程中需要的碱度量可按下式计算:
碱度=(7.14QΔC NH3-N)/1000
式中:Q——进入滤池的日平均污水量,m3/d;
ΔC NH3-N——进出滤池NH3-N浓度的差值,mg/L;
7.14——硝化需碱量系数,kgO2/kgNH3-N。
在实际工程应用中,对于典型的城市污水,进水中NH3-N浓度一般为
20-40mg/L,TKN约50-60mg/L,碱度约300 mg/L(以CaCO3计)左右。
假定部分TKN用于细胞合成,部分转化为氨氮,则污水中的氨氮约为50 mg/L左右(按最大值估算),按硝化反应氨氮去除率为80%计,则硝化反应消耗的碱约50×7.14×0.8=285.6 mg/L。
硝化反应过程及方程式如下:
2、反硝化反应问题。
硝化反硝化系统加碱量如何计算
硝化反硝化系统加碱量如何计算一、硝化细菌硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。
他包括两个基本反应步骤:由亚硝酸菌(Nitrosomonas sp)参与将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参与的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+或NO2-的氧化还原反应获得能量。
硝化反应过程需要在好氧(Aerobic 或Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。
其相应的反应式为:亚硝化反应方程式:55NH4++76O2+109HCO3→C5H7O2N﹢54NO2-+57H2O+104H2CO3硝化反应方程式:400NO2-+195O2+NH4-+4H2CO3+HCO3-→C5H7O2N+400NO3-+3H2O硝化过程总反应式:NH4-+1.83O2+1.98HCO3→0.021C5H7O2N+0.98NO3-+1.04H2O+1.884H2CO3通过上述反应过程的物料衡算可知,在硝化反应过程中,将1g氨氮氧化为硝酸盐氮需好氧4.57g(其中亚硝化反应需耗氧3.43g,硝化反应耗氧量为1.14g),同时约需耗7.14g重碳酸盐(以CaCO3计)碱度。
在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐NO2-→硝酸盐NO3-。
二、反硝化细菌反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出,从而达到除氮的目的。
反硝化是将硝化反应过程中产生的硝酸盐和亚硝酸盐还原成氮气的过程,反硝化菌是一类化能异养兼性缺氧型微生物。
当有分子态氧存在时,反硝化菌氧化分解有机物,利用分子氧作为最终电子受体,当无分子态氧存在时,反硝化细菌利用硝酸盐和亚硝酸盐中的N3+和N5+做为电子受体,有机物则作为碳源提供电子供体提供能量并得到氧化稳定,由此可知反硝化反应须在缺氧条件下进行。
氧化沟设计计算公式表
25 ℃
15 ℃
100 mg/L mg碱度/mgNH4-
7.14 N氧化 mg碱度/mgNO3+-
3.57 N还原
0.2 mg/L
混合液浓度X= 曝气池出 水溶解氧 浓度 活性污泥 产率系数 Y=
20℃时反 硝化速率 常数 qdn,20= 反硝化温 度校正系 数= 硝化反应 安全系数 K=
硝化所需 氧=
氧化沟工艺设计计算
设计处理水量Q=
300 m3/d=
进水水质:
进水CODCr= BOD5=S0= TN= NH4+-N=
碱度SALK= SS=
1620 mg/L 840 mg/L 250 mg/L 180 mg/L 280 mg/L 180 mg/L
(一)设计参数:
12.50 m3/h
出水水质:
CODCr=
(4)硝化剩余污泥 NH4-N需氧量
D4=0.56×WV×f=
(5)总氧量 D=D1+D2-D3-D4=
254.17 218.7 33.76 16.79 422.31
kg/d
kg/d
R0
DCS (20) [ CS(T ) C] (T -20)
678.83
kg/d
7 污泥回流量计算
kg/d 按设定条件 X0=
5.5 m 22.5 m
4.00 d
4 碱度平衡计算
(1)硝化消耗碱度= (2)反硝化产生碱度=
(3)去除BOD5产生碱 度= (4)剩余碱度=
1030.25 mg/L 154.54 mg/L
71.4 mg/L 175.69 mg/L
5 实际需氧计算
(1)碳化需氧量
D1 Q(So Se) 1.42Wv= 0.68
污水深度处理硝化和反硝化
污水深度处理的硝化与反硝化一。
硝化(1) 微生物:自营养型亚硝酸菌(Nitrosmohas)自营养型硝酸菌(Nitrobacter)(2) 反应:城市污水中的氮化物主要是NH3,硝化菌的作用是将NH3—N氧化为NO3—NNH+4+1.5O2———NO2+H2O+H+-ΔE亚硝酸菌ΔE=278.42kJNO2+0.5O2———NO-3-ΔE硝酸菌ΔE=278.42kJNH+4+2.0O2——— NO-3+H2+2H+-ΔE硝酸菌ΔE=351kJ研究表明,硝化反应速率主要取决于氨氮转化为亚硝酸盐的反应速率。
硝酸菌的细胞组织表示为C5H7NO255NH+4+76O2+109HCO-3———C5H7NO2+54NO-2+57H2O+104H2Co3亚硝酸菌400 NO2+ NH+4+4 H2Co3+ HCO-3+195 O2——— C5H7NO2+3 H2O+400 NO-3硝酸菌NH+4+1.86 O2+1.98HCO-3——— 0.02C5H7NO2+1.04H2O+0.98 NO-3+1.88H2Co3硝酸菌(3) 保证硝化反应正常进行的必要条件:pH 8~9水温亚硝酸菌反应最佳温度t=35 0C t>15 0CDO 2 ~ 3 mg / L > 1.0 mg / L硝化1克NH3—N:消耗4。
57克O2消耗7。
14克碱度(擦C a Co3计)生成0。
17克硝酸菌细胞(4) 亚硝酸菌的增殖速度 t=25O C活性污泥中µ(Nitrosmohas)=0.18e 0.116(T-15) day –1µ(Nitrosmohas)=0.322 day –1(20OC)纯种培养:µ(Nitrosmohas)=0.41e 0.018(T-15) day -1河水中µ(Nitrosmohas)=0.79e 0.069(T-15) day -1一般它营养型细菌的比增长速度µ =1。
A2O工艺脱氮除磷工艺计算
1.已知条件⑴设计流量,Q 25000m 3/d不考虑变化系数⑵设计进水水质COD 350mg/L BOD 5浓度S O 180mg/L TSS浓度X O 150mg/L VSS 105mg/L MLVSS/MLSS=0.7TN O 35mg/L NH 3-N 26mg/L TP 4mg/L 碱度SALK 280mg/L PH 7.0~7.5Tmax 25℃Tmin 14℃⑶设计出水水质COD 60mg/L BOD 5浓度S e 20mg/L TSS浓度X e 20mg/L TN 15mg/L NH 3-N 8mg/L TP1.5mg/L2.设计计算(用污泥负荷法)COD/TN 10.00>8厌氧池,参考值TP/BOD 50.02<0.06厌氧池,参考值符合要求工艺要求⑵有关设计参数①BOD5污泥负荷N 0.13②回流污泥浓度X R 6600mg/L ③污泥回流比R100% ⑴判断是否可采用A 2/O工艺kgBOD 5/(kgMLSS·d)A 2/O 生物脱氮除磷工艺设计④混合液悬浮物固体浓度X=R/(1+R)*X R 3300mg/L⑤混合液回流比R 内57.14% 133.33%计算选择R 内200%⑶反应池容积,Vm 3V=QS O /NX 10489.51m 3反应池总水力停留时间,tt=V/Q0.42d 10.07h 厌氧池水力停留时间 2.01h 厌氧池容积2097.90m 3缺氧池水力停留时间 2.01h 缺氧池容积2097.90m 3好氧池水力停留时间 6.04h 好氧池容积6293.71m 3⑷校核氮磷负荷0.042<0.05kgTN/(kgMLSS·d)0.014<0.06kgTN/(kgMLSS·d)⑸剩余污泥量△X kg/d1188kg/d 1625kg/d 2813kg/d⑹碱度校核P S =Q×(TSS-TSSe)×50%△X=P X +P S取污泥增殖系数Y=0.6,污泥自身氧化系数kd=0.05每氧化1mgNH 3-N需消耗碱度7.14mg好氧段总氮负荷=Q×TN O /X×V 好厌氧段总磷负荷=Q×TP O /X×V 厌P X =Y×Q×(So-Se)-k d ×V×X RTN去除率ηTN =(T NO -T Ne )/T NO *100%混合液回流比R内=ηTN /(1-ηTN )*100%各段水力停留时间和容积厌氧池 :缺氧池 :好氧池=1 :1 :3kgTN/(kgMLSS·d)剩余碱度S ALK1=进水碱度-硝化消耗碱度+反硝化碱度+去除BOD 5产生的碱度每天用于合成的总氮=12.4%*P X147.37kg/d即,进水总氮中有 5.89mg/L 用于合成21.11mg/L所需脱硝量14.11mg/L 需还原的硝酸盐氮量NT 352.63mg/L 剩余碱度S ALK1195.66>100mg/L⑼曝气池系统计算①设计需氧量AOR碳化需氧量4662.96kgO 2/d硝化需氧量2427.10kgO 2/d反硝化脱氮产生的氧量1008.52kgO 2/d6081.54kgO 2/d253.40kgO 2/h最大需氧量与平均需氧量之比为1.4AOR max =1.4AOR 354.76kgO 2/h 1.52kgO 2/kgBOD 5②标准需氧量氧气转化率EA20%淹没深度,H5.8m每去除1mgBOD 5产生碱度0.1mg每还原1mgNO 3-N产生碱度3.57mg 被氧化的NH 3-N=进水总氮-出水总氮-用于合成总氮以CaCO 3计可以维持可以维持PH≥PH≥PH≥77.2AOR=碳化需氧量(去除BOD 5需氧量-剩余污泥中BODu氧当量)+硝化需氧量(NH 3-N硝化需氧量-剩余污泥中NH 3-N的氧当量)-反硝化脱氮产氧量出水溶解性BOD 5浓度S取6.41mg/LD1=Q×(S O -S)/(1-e -0.23×5)-1.42×P XD2=4.6×Q×(N O -Ne)-4.6×12.4%×P XD3=2.86N T假设生物污泥中含氮量以12.4%计总需氧量AOR=D1+D2-D3采用鼓风曝气,微孔曝气器。
生物脱氮原理
关于氨氮消耗碱度的理论计算问题书上写的理论上降解1克氨氮要消耗7.14克碱度(以碳酸钙计算),这里是不是说就是消耗7.14克碳酸钙啊?如果换算成纯碱又如何计算?换算成小苏打又怎么计算呢?消耗的是碳酸氢根。
碳酸钙分子量100,纯碱106。
以碳酸钙计算的量乘以1.06就是需要的纯碱量。
在不考虑细菌增值硝化消耗的碱度为1g氨氮7.14g碱度(碳酸钙),在考虑细菌增值的情况下是8.62g碱度(碳酸钙)。
碱度与硝化的比例系数为7.1 即每氧化1mg氨氮为硝酸根需消耗7.1mg碱度而发生反硝化反应时每反应掉1mg硝酸根可以产生 3.57mg碱度所以,脱氮反应时为了取得好的效果必须不断补充碱度以下文字是从《室外排水设计规范GB 50014-2006》摘录的积磷菌、反硝化菌和硝化细菌生长的最佳pH值在中性或弱碱性范围,当pH 值偏离最佳值时,反应速度逐渐下降,碱度起着缓冲作用。
污水厂生产实践表明,为使好氧池的pH值维持在中性附近,池中剩余总碱度宜大于70mg/L。
每克氨氮氧化成硝态氮需消耗7.14g 碱度,大大消耗了混合液的碱度。
反硝化时,还原1g 硝态氮成氮气,理论上可回收 3.57g 碱度,此外,去除1g五日生化需氧量可以产生0.3g碱度。
出水剩余总碱度可按下式计算,剩余总碱度=进水总碱度+0.3×五日生化需氧量去除量+3×反硝化脱氮量一7.14×硝化氮量,式中 3 为美国EPA(美国环境保护署)推荐的还原1g硝态氮可回收3g碱度。
由硝化方程式可知,随着NH3-N被转化成NO3—-N,会产生部分矿化酸度H+,这部分酸度将消耗部分碱度,每克NH3-N 转化成NO3—-N约消耗7.14g碱度(以CaC03计)。
因而当污水中的碱度不足而TKN负荷又较高时,便会耗尽污水中的碱度,使混合液中的pH值降低至7.0以下,使硝化速率降低或受到抑制。
也就是说它只是个理论值,具体只能通过实验得出了。
污水处理中pH值与碱度的关系
污水处理中pH值与碱度的关系碱度与pH并不是一个概念,实际意义也不同,碱度说明的是缓冲能力,pH 是酸碱性的直接表现!一、pHpH值,亦称氢离子浓度指数、酸碱值,是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。
“pH"中的“H"代表氢离子(H+),而"p"的来源则有多种说,引用化学界的概念是把p加在无量纲量前面表示该量的负对数。
pH值其实是一个“对数单位”。
每个数字代表水的酸度10倍的变化。
水pH 为5等于10倍具有pH为6的水的酸性。
在标准温度和压力下,pH=7的水溶液(如:纯水为中性,这是因为水在标准温度和压力下自然电离出的氢离子和氢氧根离子浓度的乘积(水的离子积常数始终是1×10-14,且两种离子的浓度都是1×10-7moL,pH值小于7说明H+的浓度大于OH-的浓度,故溶液酸性强,而pH值大于7则说明H+的浓度小于OH-的浓度,故溶液碱性强。
所以pH值愈小,溶液的酸性愈强;pH愈大,溶液的碱性也就愈强。
二、碱度碱度是指水中能与强酸发生中和作用的物质的总量。
这类物质包括强碱、弱碱、强碱弱酸盐等。
天然水中的碱度主要是由重碳酸盐(bicarbonate,碳酸氢盐,下同)、碳酸盐和氢氧化物引起的,其中重碳酸盐是水中碱度的主要形式。
引起碱度的污染源主要是造纸、印染、化工、电镀等行业排放的废水及洗涤剂、化肥和农药在使用过程中的流失。
碱度和酸度是判断水质和废水处理控制的重要指标。
碱度也常用于评价水体的缓冲能力及金属在其中的溶解性和毒性等。
工程中用得更多的是总碱度这个定义,一般表征为相当于碳酸钙的浓度值。
三、pH值与碱度的关系两种并没有很明确的对应关系,碱度相同的水(或溶液),其pH值不一定相同。
反之,pH值相同的水(或溶液),其碱度也不一定相同。
原因是pH值直接反映水中H+或OH-的含量,而碱度除包括OH-外,还包括CO3-2、HCO3-等碱性物质的含量。
AAO设计计算表(污水厂:平均日计算池容表)
NX 校核好氧区总氮负荷=QTN0/XV好 = 校核厌氧区总磷负荷=QTP0/XV厌 =
500 0.045 0.031 17683.0 10150
1 0.3917
3 7.66 6382.98 19200 3100.0 31.15 2.98 9.74 18.43 3100.0 10150.0 19200.0 32450.0 0.0308 0.0521 0.04557 0.00097
最大时标准需氧量SORmax=
夏季平均空气用量QF(25)= SOR(25)/0.28/EA= 最大空气用量Qmax=
气水比=
3.28
1577.69 4260.50 5879.49
4.26 0.85 0.95
2 91200 0.900
7 0.2 6.8 157840 25% 16.62% 8.38 9.17 11.33 9.72 239.34 330.28 3419.10 4718.35
(1)若生物污泥中约含
即进水总氮中用于合成的氮有: (2)被氧化的氨氮=进水总氮出水氨氮-用于合成的总氮= (3)所需脱硝量=进水总氮-出 水总氮-用于合成的总氮= (4)需还原的硝酸盐氮量NT=Q ×(脱5)硝剩量余=碱度SALK1=进水碱度-硝 化消耗碱度+反硝化产生碱度+去 除BOD5产生碱度
曝气头氧转移效率EA=
气泡离开水面时含氧量Qt= 21(1 - E A )
79 21 (1 E A )
夏季清水氧饱和度CS(25)=
Cs(20)=
冬季清水氧饱和度Cs(10)=
曝气池内平均溶解氧饱和度Csb(25)=Cs(25)
pb 2.066105
O42t
硝化消耗碱度
硝化消耗碱度嘿,朋友们!今天咱来聊聊硝化消耗碱度这个事儿。
你知道吗,这硝化就像是一场奇妙的化学反应大冒险!在咱们的水族世界或者污水处理系统里啊,硝化细菌那可是超级大功臣呢!它们勤勤恳恳地工作,把那些有害的氨氮转化成相对安全的硝酸盐。
可别小看了这个过程,这里面可藏着碱度的秘密呢!就好比咱人干活会累,会消耗体力一样,硝化细菌工作的时候也会消耗碱度呀!这碱度就像是它们的能量补给站。
要是碱度不够了,那硝化细菌可就有点力不从心啦,就像人饿了肚子没力气干活一样。
那后果可严重咯,水质可能就变差啦,鱼虾们可能就不开心啦,这可怎么行呢!咱来打个比方吧,硝化过程就像是一场赛跑,硝化细菌是运动员,碱度就是它们的能量饮料。
没有足够的能量饮料,运动员还怎么跑得快,跑得稳呀!你想想看,如果在比赛中,运动员突然没力气了,那比赛不就乱套啦?那怎么知道碱度够不够呢?这可得咱多留意啦!就像咱平时得留意自己身体状况一样。
可以通过一些测试工具来检测,一旦发现碱度有点低了,那咱就得赶紧想办法给它补上呀!不然等出了问题可就麻烦咯!怎么补碱度呢?这就有很多办法啦!可以添加一些专门的药剂,就像给身体补充营养剂一样。
也可以通过调整水质的其他方面来间接提高碱度。
这就像是给身体打造一个良好的环境,让它能更好地工作。
咱可不能小瞧了这硝化消耗碱度的事儿啊,它关系到整个生态系统的稳定呢!要是不重视,那后果可不堪设想。
难道你想看到自己精心打造的水族世界变得乱七八糟吗?肯定不想吧!所以啊,大家一定要重视起来,多关注关注硝化和碱度的情况。
就像照顾自己的宝贝一样照顾好咱们的水族环境。
让那些小鱼小虾们能在一个健康、舒适的家里快乐生活。
这多有意思呀!别等出了问题才后悔莫及,那可就晚啦!大家说是不是这个理儿呀!总之,要时刻保持警惕,让硝化和碱度都处在一个良好的状态,这样咱们的水族世界才能一直生机勃勃呀!。
硝化-反硝化-碱度-DO与pH值关系
硝化-反硝化-碱度-DO与pH值关系硝化系统与pH值关系(2007-05-19 22:51:41)分类:七彩水质专题发生硝化反应,那么必须控制污泥龄大于硝化细菌的世代时间方可。
按照污水处理的理论,硝化细菌世代周期5~8天,反硝化细菌世代周期15天左右。
碱度是为硝化细菌提供生长所需营养物质,氧化1mg NH4-N需要碱度7.14 mg。
硝化过程只有在污泥负荷<0.15kgBOD/(kgSS·d)时才会发生。
在反应过程中氧化1kg氨氮约消耗4.6kg氧,同时消耗约7.14kg碳酸钙碱度。
为保证硝化作用的彻底进行,一般来说出水中应有剩余碱度。
合适的pH是微生物发挥最佳活性必须的,一般微生物要在pH6-9范围内比较合适。
实际上,因为水质的差异,相同pH 的水,碱度可以相差很多。
对于A/O工艺。
其中硝化液回流进行反硝化,这样可以利用原污水中的有机物做为反硝化的电子供体,同时可提供部分碱度,抵消硝化段的部分碱度消耗。
该工艺脱氮率的提高要靠增加回流比实现,但回流比不宜太高,否则回流混合液中夹带的DO会影响到反硝化段的缺氧状态,另外回流比增大,运行费用也会增加。
水的碱度是指水中含有能接受氢离子的物质的量,例如氢氧根,碳酸盐,重碳酸盐,磷酸盐,磷酸氢盐,硅酸盐,硅酸氢盐,亚硫酸盐,腐植酸盐和氨等,都是水中常见的碱性物质,它们都能与酸进行反应。
因此,选用适宜的指示剂,以酸的标准溶液对它们进行滴定,便可测出水中碱度的含量.。
碱度可分为酚酞碱度和全碱度两种。
酚酞碱度是以酚酞作指示剂时所测出的量,其终点的pH值为8.3;全碱度是以甲基橙作指示剂时测出的量,终点的pH值为4.2.若碱度很小时,全碱度宜以甲基红-亚甲基蓝作指示剂,终点的pH值为5.0。
碱度以CaCO3(碳酸钙)浓度表示,单位为mg/l。
PH的值是H离子浓度的体现,当PH=7是,说明H离子浓度为10的-7次幂,所以OH离子的浓度也是10的-7次幂,为中型,当PH=8时,H离子浓度为10的-8次幂,OH离子浓度是10的-6次幂,这都是H离子的浓度小于1mol/L时的计算方法,当H离子浓度大于1时,就不用了。