金属材料与热处理简介

合集下载

金属材料与热处理

金属材料与热处理

金属材料与热处理一、金属材料的性能:一般指使用性能和工艺性能。

使用性能——指为保证机械零件、工程构件或工具正常工作情况下,材料应具备的性能,它包括机械性能和物理性能、化学性能等。

工艺性能——指机械零件在冷加工或热加工的制造过程中,材料应具备的性能。

它包括铸造性能、锻造性能、热处理性能以及金属切削加工性能等。

(一)、工艺性能:1、金属的物理性能——包括:密度、熔点、热膨胀性、导热性、导电性和磁性等。

(1)、密度——表示某种物质单位体积的质量。

ρ=m/v 千克/米3(或kg/cm2)g/cm2m——质量v——体积常见金属材料的密度千克/米3(2)、熔点——金属或合金的熔程度叫熔点。

纯金属有固定的熔点,绝大多数合金的熔点是一个温度范围,从开始熔化到熔化终了的温度相差十到几百度。

如含碳3%的铸铁,其熔化温度范围为1148~1279℃。

熔点高低表示金属熔化难易程度。

熔点低的金属一般熔化后其液态流动性好,易铸造成型,且凝固后收缩量小。

熔点高的金属在温度高时,其工作性能变化较小,如高速钢、硬质合金钢就是利用这一特性。

(3)、热膨胀——固态金属或合金因温度变化而具有一定的温-度,在一定温度下,固体的各个线度是一定的。

当固休受热后,随着温度升高,它的各种线度都要增长。

工程上对金属的热膨胀大小常用线膨胀系数来表示。

线膨胀系数——单位长度每升高1℃所引起的延伸量。

即:αL=L1-L0//L0(t1-t0)厘米/厘米—℃(1/℃)式中:αL——线膨胀系数L1——升温后的长度t0——升温前的温度t1——升温后的温度体膨胀系数可用线膨胀系数的三倍近似计算,αV=3αL;面膨胀系数可用线膨胀系数的二倍近似计算,αS=2αL。

金属的热膨胀量虽然很微小,但会产生很大的内应力,使工件变形或断裂。

但工业上也常利用这一特性来装配组合件。

(4)、导热性——金属在加热或冷却时能够传导热量的性质称为导热性。

不同金属的导热性各有不同,导热性的好坏用热导率来表示。

金属材料和热处理基本概念及基础知识-热处理工艺

金属材料和热处理基本概念及基础知识-热处理工艺

淬透性一般可用淬火临界直径、截面硬度分布曲 线和端淬硬度分布曲线等表示。由于钢中化学成分的 波动,表示钢淬透性硬度曲线有一个波动范围,被称 为淬透性带。 钢材的淬透性与淬硬性是两个完全不同的概念。 淬火硬度高的不一定淬透性好,而硬度低的钢材也可 能具有高的淬透性。 一般机械制造行业大多以心部获得50% 马氏体为 淬火临界直径标准,对于重要机加及军工行业则以心 部获得90 %马氏体作为临界直径标准,以保证零件整 个截面都获得较高力学性能。
2.加热与保温时间
五、钢的回火与回火工艺
将淬火钢重新加热到A1以下某一温度,保温后冷 却到室温的热处理工艺称回火。
1、回火的目的
• ⑴ 降低淬火钢的脆性,消除或减少淬火钢的内应力。 • ⑵ 提高钢的塑性和韧性,获得所要求的性能。
• ⑶ 稳定工件尺寸,降低硬度,便于切削加工。


第四节 钢的表面淬火
将钢加热到临界点以上(某些退火也可在临界点以下) 保温一定时间,随炉缓慢冷却,以获得接近平衡状态组织的 热处理工艺。主要用于铸、锻、焊件毛坯的热处理。
• 1、退火的目的 • 1)降低钢件硬度,便于切削加工。 • 2)消除工件内应力,稳定尺寸。
• 3)细化晶粒,改善组织,提高钢的机械性能。 • 4)为最终热处理做好组织准备。



一、钢的渗碳 渗碳是将钢件加热到奥氏体状态下,于富碳介质 中长时间加热,使碳原子渗入表层,增加钢件表层的 含碳量,然后通过淬火获得高硬度的马氏体组织,达 到提高强度、耐磨性及疲劳强度的目的。 渗碳一般用含碳0.1~0.25%的低碳钢。 渗碳—淬火+低温回火
1、渗碳方法
⑴ 气体渗碳(煤油、苯、甲醇+丙酮) 渗碳介质的分解—吸收—扩散三个基本过程。 主要应控制好加热温度(930 º C)和保温时间。 温度越高,渗速越大,扩散层越厚,但晶粒越大,使 钢变脆。保温时间取决于渗层厚度,但时间越长,扩 散速度减慢。钢件渗碳几小时到几十小时,可得到 0.5~2mm的渗碳层深度。 ⑵ 固体渗碳 ⑶ 液体渗碳

金属材料及热处理的基本知识

金属材料及热处理的基本知识

金属材料及热处理的基本知识金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。

其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。

钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。

另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。

在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。

早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。

白口铸铁的柔化处理就是制造农具的重要工艺。

公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。

中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。

随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。

三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。

这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。

中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。

但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。

1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。

金属材料与热处理

金属材料与热处理

金属材料与热处理金属材料与热处理是机械工程学中的一个重要研究领域,它既涉及有关金属材料的诸多性能,又涉及各种热处理技术。

热处理是指在金属材料内部的改变或外观表现,从而改变材料的性质或性能的各种处理方法。

这种处理主要通过改变金属材料的内部成分和结构来实现。

金属材料和热处理技术在机械制造领域有着重要的应用,也是机械工程中重要的研究内容。

金属材料可以被应用于工程上有关设备的制造厂、汽车制造厂、船舶制造厂等。

热处理是钢和铁等材料性能调节的重要手段,是机械制造的一部分。

改变材料的热处理条件,可以改变工件的外观、物理性能和机械性能等,使之更加适用于某些工程上的要求。

热处理的发展主要集中在以下几个方面。

首先是改进材料的强度;其次是改善材料的韧性;第三是改善材料的韧度;最后是改善材料的冷硬度和抗疲劳性能,及提高材料的耐腐蚀、抗温度等性能。

在这些方面,近几年来取得了较大的进展。

强化冷却技术大大提高了普通钢的性能,提高退火质量的水冷却技术也取得了巨大进步,渗碳深色炼钢技术也得到了迅速发展。

热处理同时也涉及到热处理和控制系统的设计与应用。

控制系统对热处理过程起着至关重要的作用。

热处理过程涉及到温度控制、热源更替、室内条件变化等,这些都是控制系统关注的焦点。

控制系统不仅能提供相应数据和处理,而且还能检测设备运行状态,控制处理温度值,从而控制处理的质量和可靠性。

由于金属材料在机械系统中的重要性,热处理已经成为金属材料和机械系统设计中必不可少的一部分。

它可以改变金属材料的性能指标,并使其满足工程要求,这是关于金属材料和热处理的关键研究内容之一。

希望随着技术的发展,今后金属材料和热处理技术在机械领域乃至其他领域发挥更大的作用。

金属材料与热处理(最全)

金属材料与热处理(最全)
PQ线-碳在铁素体中的固溶线,铁碳合金由727° 冷却至室温时,将从铁素体析出渗碳体,称为三 次渗碳体
典型铁碳合金的平衡结晶过程 及组织
A F+A F
L L+A
A+Fe3C
F+Fe3C
L+Fe3C
1.纯铁(﹤0.0218%C) 2.钢(0.0218%~2.11%C)
亚共析钢( 0.0218%~0.77%C) 共析钢(0.77%C) 过共析钢(0.77%C ~2.11%C )
3.5 铁碳相图在工业中的应用
1、在选材方面的应用 : 根据零件的不同性能要求 来合理地选择材料。 2、在铸造生产上的应用: 参照铁碳相图可以确定钢 铁的浇注温度,通常浇注 温度在液相线以上 50- 60℃。纯铁和共晶白口铸 铁的铸造性能最好。 3、在锻压生产上的应用: 锻扎温度控制在单相奥氏 体区。 4、在热处理生产上的应用 :热处理工艺的加热温度 依据铁碳相图确定。
金属材料与热处理(最全)
工程材料的分类
工程材料
黑色金属材料:钢和铸铁
金属材料
有色金属材料
铝及铝合金 铜及铜合金 滑动轴承合金
高分子材料
非金属材料 陶瓷材料 复合材料
当今社会科学技术突飞猛进,新材料层出不穷,但到目前为止,在 机械工业中使用最多的材料仍然是金属材料,其主要原因是因为 它具优良的使用性能和加工工艺性能。
F(%)=(6.69-0.77)÷6.69 ×100%=88%
Fe3C(%)=1-88%=12%
主要转变线
GS线-不同含碳量的合金,有奥氏体开始析出铁素 体(冷去时)或铁素体全部溶于奥氏体(加热时 )的转变线,常用A3表示
ES线-碳在奥氏体中的固溶体。常用A cm表示,含 碳量大于0.77%的铁碳合金,自1148°冷至727° 从奥氏体析出渗碳体,称二次渗碳体

金属材料与热处理

金属材料与热处理

金属材料与热处理金属材料是工程领域中使用最广泛的材料之一,其性能的优劣直接影响着工程产品的质量和使用寿命。

而热处理作为一种重要的金属材料加工工艺,对金属材料的性能改善起着至关重要的作用。

本文将从金属材料的特性、热处理的基本原理和常见的热处理工艺等方面进行介绍。

首先,金属材料的性能受到其组织结构的影响。

金属材料的晶粒结构、晶界、位错等微观结构对其力学性能、物理性能和化学性能有着重要的影响。

通过热处理工艺,可以改善金属材料的晶粒结构,消除内部应力,提高材料的硬度、强度和耐磨性,同时还可以改善材料的塑性和韧性。

其次,热处理是通过加热、保温和冷却等工艺对金属材料进行控制加工,以改善其组织结构和性能的工艺。

常见的热处理工艺包括退火、正火、淬火、回火等。

退火是将金属材料加热至一定温度后进行缓慢冷却,以消除材料的内应力、提高材料的塑性和韧性;正火是将金属材料加热至一定温度后进行保温一段时间,再进行空气冷却,以提高材料的硬度和强度;淬火是将金属材料加热至临界温度后迅速冷却,以获得高硬度和高强度;回火是在淬火后将金属材料加热至较低温度后进行保温一段时间,以降低材料的脆性。

最后,热处理工艺的选择需要根据金属材料的具体情况和要求来确定。

不同的金属材料对热处理工艺的要求也不同,因此在进行热处理前需要对金属材料的性能和组织结构进行全面的分析和测试,以确定最合适的热处理工艺。

同时,在进行热处理时需要严格控制加热温度、保温时间和冷却速度等参数,以确保热处理效果。

综上所述,金属材料与热处理是密不可分的关系,热处理工艺的选择和控制对金属材料的性能改善至关重要。

通过合理的热处理工艺,可以使金属材料获得更好的力学性能、物理性能和化学性能,从而满足不同工程产品对材料性能的要求。

希望本文的介绍对大家有所帮助,谢谢阅读!。

金属材料与热处理

金属材料与热处理

金属材料与热处理
金属材料是指由金属元素组成的材料,在工业和日常生活中广泛应用。

金属材料具有良好的导电、导热、强度、延展性和可塑性等特点, 并且可以通过热处理来改变其性质和组织结构。

热处理是指对金属材料进行加热和冷却过程,以改变其组织结构和性能。

热处理可以分为退火、淬火、回火和固溶处理等几种主要方法。

退火是将金属材料加热到一定温度,然后逐渐冷却的过程。

通过退火,可以使金属材料的晶粒长大,同时消除应力和改善塑性。

退火常用于消除冷加工应变、改善材料的韧性和减少材料的硬度。

淬火是将金属材料加热到临界温度,然后迅速冷却的过程。

通过淬火,可以使金属材料形成马氏体等硬质组织,提高金属的硬度和强度。

淬火常用于制造刀具、齿轮等需要高强度和硬
度的零件。

回火是将经过淬火处理的金属材料加热到一定温度,然后冷却的过程。

通过回火,可以减轻材料的脆性和强度,提高材料的韧性和韧化。

回火常用于改善淬火后的组织和性能,使金属
材料同时具有一定的强度和韧性。

固溶处理是将金属材料加热到一定温度,然后迅速冷却的过程。

通过固溶处理,可以将金属中的固溶体变为溶解形态,提高材料的塑性和韧性。

固溶处理常用于改善合金材料的性能和提高
其耐腐蚀性。

总之,热处理是一种重要的金属材料处理方法,可以通过改变金属材料的组织结构和性质,使其具有所需的特定性能。

不同的热处理方法适用于不同的金属和应用领域,但共同的目标是提高金属材料的性能和使用寿命。

金属材料热处理

金属材料热处理

金属材料热处理金属材料热处理是指通过控制金属材料在一定温度下的加热和冷却过程,改变其组织结构和性能的方法。

这种处理方法在金属材料制备和加工过程中起着至关重要的作用。

下面是关于金属材料热处理的一些相关内容的介绍。

1.热处理的目的金属材料热处理的主要目的是改变金属材料的组织结构和性能,使其达到特定的要求。

具体包括以下几个方面:(1)改变金属材料的晶粒尺寸和形态,以调整材料的强度、硬度和韧性等力学性能。

(2)改变金属材料的相组成和比例,以提高材料的耐腐蚀性能和耐磨损性能。

(3)改变金属材料的残余应力状态,以提高材料的机械性能和使用寿命。

(4)改变金属材料的导电性、磁性和热传导性等电磁性能,以满足特定的工程要求。

2.常用的热处理方法金属材料热处理中常用的方法包括退火、正火、淬火和回火等。

其基本原理如下:(1)退火:将金属材料加热到一定温度,在恒温下保温一段时间,然后缓慢冷却,以改善材料的塑性、韧性和可加工性等性能。

(2)正火:将金属材料加热到一定温度,保温一段时间,然后快速冷却,以提高材料的硬度和强度等力学性能。

(3)淬火:将金属材料加热到一定温度,保温一段时间,然后快速冷却,以在材料中形成淬火组织,提高材料的硬度和耐磨性能等。

(4)回火:将淬火后的金属材料再次加热到一定温度,保温一段时间,然后冷却,以消除淬火过程中的残余应力和脆性,并调整材料的力学性能。

3.常见的金属材料与热处理方法的应用各种金属材料的组织结构和性能特点不同,因此在热处理过程中需要选择不同的方法和参数。

以下是一些常见金属材料的热处理方法及其应用:(1)碳钢:通过正火和淬火处理,可以提高碳钢的硬度、强度和耐磨性能,广泛应用于机械加工和制造业。

(2)不锈钢:通过固溶和沉淀硬化处理,可以改善不锈钢的耐腐蚀性能和耐磨损性能,常见于化工和海洋工程。

(3)铝合金:通过固溶处理和时效处理,可以改善铝合金的强度、韧性和耐腐蚀性能,常用于航空和汽车制造业。

金属材料与热处理

金属材料与热处理

金属材料与热处理金属材料是工业生产中常用的材料之一,其具有良好的导电性、导热性和机械性能,因此在各行各业中得到广泛应用。

然而,金属材料的性能在制造过程中往往不能达到最佳状态,这就需要进行热处理。

热处理是对金属材料进行加热或冷却处理,以改变其组织结构和性能的一种工艺。

通过控制材料的加热温度、冷却速率和保温时间等参数,可以使金属材料达到理想的机械性能、延展性和强度等特性。

金属材料的热处理可以分为多种类型,包括退火、淬火、回火等。

其中,退火是指将金属材料加热到一定温度,然后缓慢冷却,以降低硬度、改善延展性和强度等性能。

淬火则是指将金属材料加热到相变温度,然后迅速冷却,以提高硬度和强度等性能。

回火是在淬火后对材料进行再加热处理,以减轻淬火时的残余应力和脆性。

热处理的过程非常关键,不同的热处理工艺对金属材料的性能影响很大。

例如,合理的退火处理可以使金属材料获得较好的塑性和韧性,适用于制造弯曲、拉伸等工艺要求较高的产品;而淬火处理则适用于需要获得较高硬度和强度的零部件。

另外,金属材料的选择也会影响热处理效果。

不同金属材料具有不同的热处理特性和需求,因此需要根据具体情况选择合适的金属材料和热处理工艺。

一些常见的金属材料包括钢铁、铝、铜等,它们各自有不同的机械性能和热处理特点。

总的来说,金属材料与热处理密不可分。

通过合理的热处理工艺,可以改善金属材料的性能,提高产品的质量和使用寿命。

因此,在金属加工和制造领域,热处理是一项重要的工艺,需要专业人员严格控制各项参数,以保证金属材料的优良性能和性价比。

热处理在金属材料加工和制造中起着至关重要的作用,它可以改善金属材料的组织结构和性能,提高其强度、耐磨性、耐腐蚀性等特性,同时也能够消除金属材料制造过程中产生的应力、缩小尺寸误差等问题,从而提高产品的质量和使用寿命。

一种常见的热处理工艺是退火。

退火是指将金属材料加热到其临界温度以上,然后进行缓慢冷却。

通过退火处理,金属材料的晶粒可以重新长大,原来的晶界处的碎屑得到消除;同时,还能消除金属的内应力,提高塑性和韧性。

金属材料与热处理(全)精选全文

金属材料与热处理(全)精选全文

2、常用的细化晶粒的方法:
A、增加过冷度
B、变质处理 C、振动处理。
三、同素异构转变
1、金属在固态下,随温度的改变有一种晶格转变为另一晶格的现象称为 同素异构转变。
2、具有同素异构转变的金属有:铁、钴、钛、锡、锰等。同一金属的同素 异构晶体按其稳定存在的温度,由低温到高温依次用希腊字母α,β,γ, δ等表示。
用HBS(HBW)表示,S表示钢球、W表示硬质合金球 当F、D一定时,布氏硬度与d有关,d越小,布氏硬度值越大,硬度越高。 (2)布氏硬度的表示方法:符号HBS之前的数字为硬度值符号后面按以下顺 序用数字表示条件:1)球体直径;2)试验力;3)试验力保持的时间 (10~15不标注)。
应用范围:主要适于灰铸铁、有色金属、各种软钢等硬度不高的材料。
2、洛氏硬度
(1)测试原理:
采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后即 除主试验力,以测量的压痕深度来计算洛氏硬度值。
表示符号:HR
(2)标尺及其适用范围:
每一标尺用一个字母在洛氏硬度符号HR后面加以注明。常用的洛氏硬度标 尺是A、B、C三种,其中C标尺应用最为广泛。
见表:P21 2-2
§2-2金属的力学性能
学习目的:★了解疲劳强度的概念。 ★ 掌握布氏硬度、洛氏硬度、维氏硬度的概念、硬
度测试及表示的方法。 ★掌握冲击韧性的测定方法。 教学重点与难点 ★布氏硬度、洛氏硬度、维氏硬度的概念、硬度测
试及表示的方法。
§2-2金属的力学性能 教学过程:
复习:强度、塑性的概念及测定的方法。
2、 非晶体:在物质内部,凡原子呈无序堆积状态的(如普通玻璃、松 香、树脂等)。 非晶体的原子则是无规律、无次序地堆积在一起的。

金属材料及其热处理

金属材料及其热处理
㈡ 合金的晶体结构 合金:由两种或两种以上元素组成的具有金属特性的物质。如碳钢、合金钢、铸铁、有色合金。 相:金属或合金中凡成分相同、结构相同,并与其他部分有界面分开的均匀组成部分。 1、固溶体:与组成元素之一的晶体结构相同的固相. ⑴ 置换固溶体:溶质原子占据溶剂晶格结点位置形成的固溶体。多为金属元素之间形成的固溶体。
㈡ 热处理工艺
工艺
目的
加热温度
组织
退火
1.调整硬度,便于切削加工。 2.细化晶粒,为最终热处理作组织准备。
亚共析钢Ac3+30~50℃ 共析钢 Ac1+30~50℃ 过共析钢Ac1+30~50℃
F+P P P球
正火
1.低中碳钢同退火。 2.过工析钢:消除网状二次渗碳体。 3.普通件最终热处理
三、组织
㈠ 纯金属的组织 1、结晶:金属由液态转变为晶体的过程 ⑴ 结晶的条件——过冷:在理论结晶温度以下发生结晶的现象。 过冷度:理论结晶温度与实际结晶温度的差。 ⑵ 结晶的基本过程——晶核形成与晶核长大 形核——自发形核与非自发形核 长大——均匀长大与树枝状长大
⑶ 结晶晶粒度控制方法:①增加过冷度;②变质处理;③机械振动、搅拌 2、纯金属中的固态转变 同素异构转变:物质在固态下晶体结构随温度而发生变化的现象。 固态转变的特点:①形核部位特殊;②过冷倾向大;③伴随着体积变化。
2、冷却时的转变
⑴ 等温转变曲线及产物
650℃
600℃
550℃
350℃
A1
MS
Mf
时间
P
S
T
B上
B下
M
M+A’
A→P
A→S
A→T
A→B上
A→B下

金属材料与热处理总结

金属材料与热处理总结

金属材料与热处理总结金属材料是工程领域中最常用的材料之一,其性能和用途很大程度上取决于其热处理过程。

热处理是通过控制金属材料的温度、时间和冷却速率来改变其内部结构和性能的工艺。

本文将对金属材料的热处理方法和效果进行总结,以期为工程实践提供参考。

首先,我们来谈谈金属材料的热处理方法。

常见的热处理方法包括退火、正火、淬火和回火。

退火是将金属材料加热至一定温度,然后缓慢冷却至室温,以消除内部应力和改善塑性。

正火是将金属材料加热至适当温度,然后在空气中冷却,以提高硬度和强度。

淬火是将金属材料加热至临界温度,然后迅速冷却至室温,以获得高硬度和强度。

回火是将淬火后的金属材料重新加热至适当温度,然后进行缓慢冷却,以降低硬度和提高韧性。

其次,我们来探讨金属材料热处理的效果。

热处理可以显著改变金属材料的组织结构和性能。

通过退火,金属材料的晶粒得以细化,内部应力得以消除,从而提高其塑性和韧性。

通过正火,金属材料的碳化物颗粒得以析出,晶粒得以再结晶,从而提高其硬度和强度。

通过淬火,金属材料的组织得以马氏体化,从而获得极高的硬度和强度。

通过回火,金属材料的马氏体得以转变,内部应力得以释放,从而平衡硬度和韧性。

最后,我们需要注意的是金属材料的热处理过程中需要严格控制温度、时间和冷却速率。

温度过高或时间过长会导致晶粒长大,从而降低金属材料的性能;冷却速率过快会导致金属材料产生裂纹或变形。

因此,在实际工程中,需要根据金属材料的具体成分和要求,合理选择热处理方法和工艺参数,以获得最佳的性能和效果。

总之,金属材料的热处理是工程领域中不可或缺的工艺之一,通过合理的热处理方法和工艺参数,可以显著改善金属材料的性能和用途。

因此,在工程实践中,我们需要深入理解金属材料的热处理原理和方法,灵活运用于实际生产中,以满足不同工程需求。

金属材料及热处理基础知识

金属材料及热处理基础知识
金属材料及热处理基础知识
目录
• 金属材料概述 • 金属材料的热处理 • 金属材料的力学性能 • 金属材料的腐蚀与防护 • 金属材料的选择与应用
01
金属材料概述
金属材料的定义与分类
金属材料的定义
金属材料是指以金属 元素或以金属元素为 主要成分,具有金属 特性的材料统称为金 属材料。
金属材料的分类
区域受到腐蚀的现象。
金属腐蚀的原理与影响因素
总结词
金属腐蚀的原理是金属原子失去电子成为正离子,而环境中的阴离子获得电子成为原子或负离子。影响因素包括 环境因素和金属本身的因素。
详细描述
金属腐蚀的原理是金属原子失去电子成为正离子,而环境中的阴离子获得电子成为原子或负离子。这个过程通常 涉及到电化学反应。影响因素包括环境因素和金属本身的因素。环境因素如湿度、温度、氧气、二氧化碳、污染 物等,而金属本身的因素包括合金成分、微观结构、表面状态等。
详细描述
热处理是金属材料加工过程中的一个重要环节,主要通过控制温度和时间来改变 金属材料的内部结构,从而改善其物理、化学和机械性能。根据不同的加热温度 和冷却方式,热处理可以分为多种类型,如退火、正火、淬火和回火等。
热处理的基本原理
总结词
热处理的基本原理是利用金属在加热和冷却过程中的相变现象,通过控制相变 过程来改变材料的内部组织结构,从而达到改善其性能的目的。
• 详细描述:退火是将金属加热到适当温度后保温一段时间,然后缓慢冷却至室温的过程,主要用于消除内应力、降低硬 度、提高塑性和韧性等。正火是将金属加热到适当温度后保温一段时间,然后空冷至室温的过程,主要用于细化晶粒、 提高强度和韧性等。淬火是将金属加热到适当温度后迅速冷却至室温的过程,主要用于提高金属的硬度和耐磨性等。回 火则是将淬火后的金属加热到适当温度后保温一段时间,然后冷却至室温的过程,主要用于消除淬火产生的内应力、稳 定组织结构和提高韧性等。

金属材料的性能与热处理

金属材料的性能与热处理

金属材料的性能与热处理金属材料是一种重要的结构材料,广泛应用于各个领域。

金属材料的性能对于我们选择适当的材料及工艺具有决定性作用。

热处理是一种重要的金属加工工艺,改变了金属材料的组织结构和物理性质,从而达到改善材料性能的目的。

本文将探讨金属材料的性能与热处理之间的关系。

一、金属材料的性能金属材料的性能可分为物理性能、机械性能、化学性能和加工性能四个方面。

具体如下:1.物理性能金属材料的物理性能是指其热学性质、电学性质、磁学性质等。

其中热学性质包括热导率、热膨胀系数等,电学性质包括电导率、电阻率等,磁学性质包括磁导率、磁饱和度等。

2.机械性能金属材料的机械性能是指其强度、韧性、硬度、延展性、塑性等。

其中强度指材料的抗拉、抗压、抗弯强度,韧性指材料的抗冲击能力,硬度指材料的抗刮削和抗磨损能力,延展性和塑性指材料在受力状况下可以发生变形的能力。

3.化学性能金属材料的化学性能包括其抗氧化性、耐蚀性、化学稳定性等。

4.加工性能金属材料的加工性能指其可塑性、可焊性、可锻性等,也就是其在加工时的工艺性能。

以上四个方面的性能对于金属材料的性能和使用有着重要的意义。

二、热处理对金属材料性能的影响热处理是通过加热、保温和冷却等过程改变材料的组织结构和物理性质。

通常分为退火、正火、淬火、回火等几种类型。

下面我们具体探讨一下热处理对金属材料性能的影响。

1.退火退火是将金属材料加热到一定温度后,缓慢冷却,使其内部结构发生改变,从而提高材料硬度、强度和延展性等力学性能,同时改善材料的加工性能。

退火的过程中,晶粒得到生长,同时金属材料的内部应力逐渐释放,使其成为更具有可塑性和可加工性的材料。

退火可分为完全退火和等温退火两种。

完全退火是指将金属材料加热到一定温度,保温时间足够长,使其完全晶粒长大,达到结构的最稳定状态。

等温退火是指将金属材料加热到一定温度,经过保温一段时间后,再以一定速度冷却,使其得到更细小的晶粒和更为匀称的析出相,从而提高材料的耐热性、耐蚀性及抗疲劳性等。

金属材料与热处理技术

金属材料与热处理技术

金属材料与热处理技术随着工业的发展,金属材料在我们的生活中扮演着越来越重要的角色。

金属材料的性质和用途不同,需要进行不同的热处理技术。

本文将介绍金属材料的分类和热处理技术的基本原理,以及热处理技术在金属材料的应用。

一、金属材料的分类金属材料的分类主要有以下几种:1. 铸造合金:是通过铸造工艺制造出来的金属材料,包括铜合金、铝合金、镁合金等。

铸造合金的特点是成本低,但强度和耐腐蚀性较差。

2. 锻造合金:是通过锻造工艺制造出来的金属材料,包括钢、铁、铜、铝等。

锻造合金的特点是强度高,但成本较高。

3. 粉末冶金材料:是通过粉末冶金工艺制造出来的金属材料,主要包括钨合金、钴合金、铁基合金等。

粉末冶金材料的特点是密度高、强度高、耐磨性好,但成本较高。

4. 金属复合材料:是将两种或两种以上的金属材料组合在一起制造出来的金属材料,主要包括钛合金复合材料、镍基复合材料等。

金属复合材料的特点是强度高、耐腐蚀性好,但成本较高。

二、热处理技术的基本原理热处理技术是指对金属材料进行加热、保温、冷却等处理,以改变其组织和性能的一种工艺。

热处理技术的基本原理是通过控制材料的加热、保温和冷却过程,使其达到理想的组织和性能。

热处理技术主要包括以下几种:1. 固溶处理:是将固溶体中的溶质加热到高温,使其溶解在基体中,然后快速冷却的一种处理方法。

固溶处理可以改善材料的强度、硬度和耐腐蚀性等性能。

2. 淬火处理:是将加热后的材料迅速冷却到室温以下的一种处理方法。

淬火处理可以提高材料的硬度和强度,但会降低其韧性。

3. 淬火回火处理:是将淬火处理后的材料进行加热和保温,然后再进行冷却的一种处理方法。

淬火回火处理可以提高材料的强度和韧性,但会降低其硬度。

4. 热处理强化:是通过加热和保温的方式,使材料的晶粒细化和分布均匀,从而提高其强度和硬度的一种处理方法。

三、热处理技术在金属材料中的应用热处理技术在金属材料中的应用非常广泛。

以下是热处理技术在不同金属材料中的应用:1. 钢材热处理:钢材的热处理主要包括淬火、回火和正火等处理方法。

材料类金属材料与热处理技术专业

材料类金属材料与热处理技术专业
材料类金属材料与 热处理技术专业
目录
01. 专业介绍 02. 专业课程 03. 实践应用 04. 就业前景
1
专业介绍
专业定义
材料类金属材料与热处理技术专业:研究金 属材料的组成、结构、性能及其相互关系, 以及金属材料热处理工艺和方法的专业。
主要课程:金属学、材料科学基础、热处理 原理、金属材料热处理工艺等。
1
材料分类:金 属材料、非金 属材料、复合
材料等
2
金属材料性质: 力学性能、物 理性能、化学
性能等
3
金属材料制备: 冶炼、铸造、 锻造、焊接等
4
金属材料热处 理:淬火、退 火、正火、调
质等
5
金属材料应用: 汽车、航空、 航天、电子等
领域
热处理技术
01
热处理原理:金属 材料在高温、低温 等不同环境下的物
等工作
销售工程师:负责金 属材料和热处理技术
的推广和销售
热处理工程师:从事 金属材料热处理工艺
设计、实施等工作
技术支持工程师:为 客户提供技术支持和
解决方案
质量工程师:负责材 料和产品的质量控制
和改进
职业发展前景
材料工程师:从事材料 研发、设计、生产、检
测等工作
热处理工程师:从事热处 理工艺设计、设备操作、
质量控制等工作
材料销售工程师:从事 材料销售、技术支持、
售后服务等工作
材料检测工程师:从事 材料检测、分析、评估
等工作
材料工艺工程师:从事材 料制备、加工、成型等工
艺设计、优化等工作
感谢您的观看
研究范围:包括金属材料的制备、加工、性 能测试、失效分析等。
培养目标:培养具备金属材料与热处理技术 专业知识和实践能力的高级工程技术人才。

金属材料与热处理(最全)

金属材料与热处理(最全)

热处理的应用与效果
应用
热处理广泛应用于各种金属材料,如钢铁、有色金属、合金 等。通过合理的热处理工艺,可以显著提高金属材料的机械 性能、物理性能和化学性能,满足各种工程应用的需求。
效果
热处理可以改变金属材料的硬度、韧性、强度、耐磨性、耐 腐蚀性等机械性能,提高其抗疲劳性能和抗腐蚀性能,延长 使用寿命。同时,热处理还可以改善金属材料的加工性能和 焊接性能,提高生产效率和产品质量。
04 金属材料与热处理的关系
金属材料的性能与热处理的关系
金属材料的性能
金属材料的性能包括力学性能、物理性能和化学性能等,这些性能在很大程度上取决于 其内部结构和相组成。
热处理对金属材料性能的影响
通过控制加热、保温和冷却等热处理工艺参数,可以改变金属材料的内部结构和相组成,从而显著提 高或改善其各种性能。例如,热处理可以细化金属材料的晶粒,提高其强度和韧性;可以改变金属材
时间,可以改变金属材料内部的相组成。
金属材料的缺陷与热处理的关系
要点一
金属材料的缺陷
要点二
热处理对金属材料缺陷的影响
金属材料的缺陷包括裂纹、气孔、夹杂物和未熔合等,这 些缺陷可能会降低金属材料的性能。
通过适当的热处理工艺,可以减少或消除金属材料的缺陷 ,提高其性能。例如,通过退火处理可以软化金属材料, 减少其内应力,从而减少裂纹的产生;通过固溶处理可以 溶解金属材料中的杂质和气体,提高其纯净度。
03 金属材料的热处理工艺
退火工艺
总结词
退火是热处理工艺中的一种,通过加热和缓慢冷却金属材料,以消除内应力、 提高塑性和韧性,达到改善材料性能的目的。
详细描述
退火工艺通常包括将金属材料加热到再结晶温度以下,保持一段时间,然后缓 慢冷却至室温。退火可以细化晶粒、消除内应力、降低硬度、提高塑性和韧性, 改善金属材料的加工性能和综合力学性能。

金属材料与热处理课程收获

金属材料与热处理课程收获

金属材料与热处理课程收获一、课程简介金属材料与热处理是一门重要的工程材料课程,主要涉及金属材料的性质、组织与热处理技术。

通过学习金属材料与热处理,我收获了以下几个方面的知识和技能。

二、金属材料的性质与分类2.1 金属材料的性质金属材料的性质包括力学性能、热物性、电学性能、磁学性能等。

力学性能是金属材料最基本的性质,包括强度、硬度、韧性、塑性等指标。

通过学习,我对金属材料的力学性能有了更深入的了解。

2.2 金属材料的分类金属材料根据成分和金属晶体结构的不同可以分为纯金属、合金和间晶化合物。

纯金属是由单一金属元素组成的材料,如铜、铁、铝等。

合金是由两种或两种以上金属和非金属元素组成的材料,如钢、铜合金等。

间晶化合物是由金属和非金属元素按照一定比例组成的材料,如硬质合金等。

三、金属材料的组织与性能3.1 金属材料的晶体结构金属材料的晶体结构决定了其性能。

常见的金属晶体结构有体心立方结构、面心立方结构和密排六方结构。

不同的晶体结构会对金属的力学性能产生影响。

3.2 金属材料的晶粒和晶界金属材料的晶粒是由许多晶格排列有序的晶体构成的,而晶粒之间的界面称为晶界。

晶粒和晶界的存在会影响金属的塑性、强度和韧性等性能。

3.3 金属材料的相变金属材料在热处理过程中会发生相变,通过控制相变条件可以改变金属的组织和性能。

常见的金属相变包括固溶处理、时效处理等。

四、金属材料的热处理技术4.1 固溶处理固溶处理是通过加热将合金中的溶质溶解在基体中,然后快速冷却固化,使合金获得一定的固溶固态溶质。

固溶处理能够提高合金的强度和硬度。

4.2 时效处理时效处理是将固溶处理后的合金在一定温度下进行时效保持一段时间,使其产生析出相,并形成一定尺寸和分布的沉淀物。

时效处理可以进一步调控合金的强度和韧性。

4.3 等温处理等温处理是将合金保温到一定温度下,使其达到热平衡状态。

通过等温处理可以改变合金的晶体结构和相组成。

4.4 冷变形处理冷变形处理是在室温下通过加工变形使合金发生塑性变形,从而改变其组织和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Page 3
ASE
1.1 導論
ADVANCED SEMICONDUCTOR ENGINEERING
1 熱處理方法
用金屬材料所製造之模具或者各種零件構件﹐ 用金屬材料所製造之模具或者各種零件構件﹐必須具有預 期的特性。這些特性、 期的特性。這些特性、由於模具或者各種零件構件的使用目的 與使用環境有所不同而異。然而金屬材料之特性﹐ 與使用環境有所不同而異。然而金屬材料之特性﹐主要會受到 化學成份和內容組織的影響而產生各樣式之變化。對相同的金 化學成份和內容組織的影響而產生各樣式之變化。 屬材料來講﹐對它實施朔性加工或者熱處理時﹐ 屬材料來講﹐對它實施朔性加工或者熱處理時﹐通常材料內部 或者表面層的組織會發生變化﹐因此可以改變材料的特性。 或者表面層的組織會發生變化﹐因此可以改變材料的特性。 所謂「熱處理」是指”對材料施以適當之加熱與冷卻﹐ 所謂「熱處理」是指”對材料施以適當之加熱與冷卻﹐而 利用加熱和冷卻的配合來得到所需要的特性為目的之處理而 言”。針對相同材質來說﹐雖然化學成份相同﹐但施以不同熱 針對相同材質來說﹐雖然化學成份相同﹐ 處理時﹐因為可改變其組織﹐所以得到不同的特性﹐例如﹐ 處理時﹐因為可改變其組織﹐所以得到不同的特性﹐例如﹐不 同的機械或者物理性質等。 同的機械或者物理性質等。 Page 4
Page 8
ASE
1.2.4淬 1.2.4.1目 的
ADVANCED SEMICONDUCTOR ENGINEERING
火(Quenching)
利用急冷的方式以阻止波來鐵變態﹐而得到高硬度的麻田散鐵組織﹐這種 使鋼材硬化的熱處理方法﹐可使鋼材硬度增加且變得強化﹐此種方式稱之 淬火(Quenching)。 1.2.4.2淬火方法 a.時間淬火(Time Quenching) 從淬火溫度放入淬火液(水或油)中迅速冷卻﹐經過適當時間後提出再徐冷卻之。 b.加壓淬火(Press Quenching) 齒輪﹑彈簧等淬火時﹐特別忌諱發生淬火變形﹐故可用模具加壓擠入而油淬﹔ 鋸刃﹑安全刮鬍刀等較薄物件則進行夾式淬火(Die Quenching) 。 c.噴射淬火(Spray Quenching) 針對要淬火硬化的部份﹐噴射淬火液而急冷﹐與一般之淬火法相同﹐水冷端 迅速冷卻而成理想淬火﹐其不必硬化的另一端則空冷之。
ASE
2.1 導論 2.2 說明
ADVANCED SEMICONDUCTOR ENGINEERING
2.金屬材料 金屬材料
….....…….………… 13 ….....…….………… 14 ….....…….………… 15 ….....…….………… 16 ….....…….………… 17 ….....…….………… 18 ….....…….………… 19 ….....…….………… 20 ….....…….………… 22 ….....…….………… 23 ….....…….………… 24 Page 3
Page 11
ASE
1.2.7.1目 的
ADVANCED SEMICONDUCTOR ENGINEERING
1.2.7表面硬化(Case Hardening)
所謂表面硬化是以適當的方法把材料的表層(Case)硬 化﹐而材料心部(Core)仍然保有強韌性的處理。經過這 種處理﹐可以改善材料表面的耐磨耗或耐疲勞性﹐而內 部的強韌組織可以補強硬化表面層的脆性﹐對衝擊力發 生抵抗作用。 1.2.7.2方 法 表面硬化法有許多種類﹐可以分為化學的方法與物理的 方法等兩種﹐隨著模具工件之使用目的不同﹐可以選用 適當的方法來達到表面硬化之目的。
2.2.1 SS41(低碳鋼 低碳鋼) 低碳鋼 2.2.2 S45C(構造用中碳鋼 構造用中碳鋼) 構造用中碳鋼 2.2.3 SK2 / SK3(高碳工具鋼 高碳工具鋼) 高碳工具鋼 2.2.4 SKS3(高級鎢合金工具鋼 油鋼 高級鎢合金工具鋼,油鋼 高級鎢合金工具鋼 油鋼) 2.2.5 SUJ(SUJ 1 ~ SUJ 5軸承鋼 軸承鋼) 軸承鋼 2.2.6 SKD11(冷加工模具鋼 冷加工模具鋼) 冷加工模具鋼 2.2.7 SKD61(熱加工模具鋼 熱加工模具鋼) 熱加工模具鋼 2.2.9 SKH10(鎢系高速鋼 鎢系高速鋼) 鎢系高速鋼 2.2.10 SKD51(鉬系高速鋼 鉬系高速鋼) 鉬系高速鋼 2.2.11 SUS(不鏽鋼系 不鏽鋼系) 不鏽鋼系
Page 5
ASE
1.2.2退
ADVANCED SEMICONDUCTOR ENGINEERING
火(Annealing)
將鋼料加熱至適當溫度﹑保持適當時間﹐再以較慢的冷卻速率﹐ 冷卻至常溫的過程﹐稱之為『退 火』。
1.2.2.1目 的 使鋼件變軟﹐以便加工(例如鑄件)。 使晶粒變細﹐以增加強度和韌性。 消除由於冷卻或常溫加工﹐高溫加工時所產生的應力。 減低其溫度﹐增加機械切削性﹐或常溫下之加工性。 除去化學組織的不均勻性。 消除加工時所發生之內應力。 生成所需的顯微結構﹐得到所希望的機械性質或物理性質。
Page 13
ASE
2.2 說明
ADVANCED SEMICONDUCTOR ENGINEERING
2.2.1 SS41(低碳鋼) 普通構造用碳鋼﹐又稱做『軟 鋼』﹐我國CNS規定第2種這類鋼品,記號為
2.2.8 FDAC(日立特殊鋼 熱加工模具鋼)….....…….………… 21 日立特殊鋼,熱加工模具鋼 日立特殊鋼 熱加工模具鋼
ASE
ADVANCED SEMICONDUCTOR ENGINEERING
3.Tool Parts 應用
3.1 SKD 11 3.2 SKD 61 3.3 SKS 3 ….....…….………… 26 ….....…….………… 27 ….....…….………… 28
Aபைடு நூலகம்E
ADVANCED SEMICONDUCTOR ENGINEERING
1.2 名詞解釋
1.2.1熱處理(Heat Treatment) 所謂熱處理﹐就是將鋼料加熱至高溫﹐再予以連續性的冷確﹐隨著冷確 方式之不同而有所別﹐茲將各種冷卻方式分述如下: 1.2.1.1 在爐中冷卻﹐謂之”爐 冷”(Furnace cooling) ﹐冷卻速度極慢﹐ 我們稱之為『退 火』(Annealing) 。 1.2.1.2 在空氣中冷卻﹐謂之”空 冷”(Air cooling) ﹐冷卻速度中庸﹐ 此法謂之『正常化』(Normalizing) 。 1.2.1.3 在油中或水中冷卻﹐謂之”油 冷”(Oil cooling)或”水 冷” (Water cooling) ﹐冷卻速度較快﹐稱之為『淬 火』 (Quenching) 。
Page 6
ASE
ADVANCED SEMICONDUCTOR ENGINEERING
1.2.2.2退火方法 完全退火(Full annealing) 目的在調整結晶組織﹐完全軟化。 等溫退火(Isothermal annealing) 在高於等溫變態曲線鼻端的溫度約650℃下﹐進行等溫處理﹐則可迅速 軟化退火。 消除應力之退火(Stress relieving) 此法是消除冷間加工工作的內部應力而軟化﹐或除去熔接工作的內部 應力而回復韌性或簡少淬火變形之處理。 水退火(Water annealing) 將工件家熱至低於變態點100℃左右(碳鋼為650℃)保持10分鐘﹐ 再放置於水中﹐水冷之。此法目的在於機械加工的軟化程度之迅速法。 光輝退火(Bright annealing) 在保護氣氛或真空下﹐進行退火﹐防止表面高溫氧化及脫碳﹐而保持 其表面光輝狀態。
ASE
ADVANCED SEMICONDUCTOR ENGINEERING
T/F TOOL常用金屬材料與熱處理 簡介
製程工程處 : B/E PROJECT 初版製作者 : 張嘉銘 時間/版次 : 06/13/2001 Rev. :A版 教材學習時間: 2小時
Page 1
ASE
ADVANCED SEMICONDUCTOR ENGINEERING
Page 10
ASE
1.2.6.1目 的
ADVANCED SEMICONDUCTOR ENGINEERING
1.2.6深冷處理(Sub-zero Treatment)
使淬火後殘留的沃斯田鐵繼續變態完成﹐以增加硬度。 1.2.6.2方 法 由於麻田散鐵變態的溫度(MS ﹑MC)隨著含碳量的增加而 下降﹐導致殘留的沃斯田鐵(Retained Austenite)的含 量增加而造成機械強度下降或尺寸的不安定等問題。為 了使殘留的沃斯田鐵的量減少﹐假如把淬火後的鋼(冷 卻至室溫)﹐再繼續冷卻至更低的溫度(例如0℃以下)﹐ 變態就會繼續進行﹐這種熱處理的方法叫做”深冷處理” (Sub-zero Treatment) 。
Page 9
ASE
1.2.5回 1.2.5.1目 的
ADVANCED SEMICONDUCTOR ENGINEERING
火(Tempering)
降低硬度﹑增加韌性。如希望硬度與抗張強度要高﹐則回火溫度就要低﹔如果 希望韌性與伸長率大者﹐則回火溫度要高。原則上﹑只有淬火者才需施行回火﹐ 不過正常化者也可回火。 1.2.5.2回火方法 a.低溫回火(Low Temperature Tempering) 回火溫度100~200℃﹐使麻田散鐵成為問火麻田散鐵組織。適用於高硬度和 耐耗磨性的刀類或量規。 b.高溫回火(High Temperature Tempering) 回火溫度400~650℃﹐使麻田散鐵成為回火吐粒散鐵﹐或回火糙斑鐵組織。 廣用於機械構造用鋼等要求強韌性者。回火溫度﹑其保持時間的設定取決於 所要求的機械性質(即硬度)﹐通常回火溫度高時﹐硬度及強度減少﹐伸長度﹑ 斷面縮減率與衝擊值會些微增加。
Page 12
ASE
2.1導論 導論
ADVANCED SEMICONDUCTOR ENGINEERING
2 金屬材料
工業上所用的碳鋼中,鋼筋、鋼板等的構造用鋼料,大多 工業上所用的碳鋼中,鋼筋、鋼板等的構造用鋼料, 使用在建築。橋樑。船舶、火車車輛和其他一般構造物上, 使用在建築。橋樑。船舶、火車車輛和其他一般構造物上,其 含碳量在0.12~0.2%左右。 含碳量在0.12~0.2%左右。雖然沒對這些構造用碳鋼的成分 0.12 做嚴格的規定,但若P 做嚴格的規定,但若P和S的含量過高時,則材質不良,所以 的含量過高時,則材質不良, P和S的含量不能超過某限量。這些鋼材大多是用鹼性平爐或 的含量不能超過某限量。 轉爐所精煉的。大部分是在軋延狀態或者鍛造狀態使用,而不 轉爐所精煉的。大部分是在軋延狀態或者鍛造狀態使用, 加以熱處理。 加以熱處理。
相关文档
最新文档