中考数学专题复习数学思想方法
中考数学专题复习课件:数学思想方法ppt 通用
此时C(0,2)或C(0,-2). 如图,②当点C位于x轴上时,设C(a,0).
则|- -a|+|a- |=6,即2a=6或-2a=6,
解得a=3或a=-3,
5
5
此时C(-3,0)或C(3,0).
综上所述,点C的坐标是(0,2),(0,-2),(-3,0),(3,0). 答案:(0,2)(0,-2)(-3,0)(3,0)
【解析】(1)当x=0时,
3-1的偶数次方等于1, (2)当x≠0时,只有1x=1和
所以
(
0 =(-2) =1成立. x x
2)
x ①当 -2=1 时,解得x=27. 3 x 此时( -2)x=127=1成立, 3 x 3
-2=±1.
②当 x-2=-1时ຫໍສະໝຸດ 解得x=3.3x 3 此时( -2) =(-1) =-1≠1,不成立. x
专题一 数学思想方法
考点 一
分类讨论思想 分类讨论思想常见的五种类型
1.二次根式中的分类讨论思想:对于二次根式
的化简,往
往需要对字母的取值情况进行分类讨论.当a≥0时, 当a<0时,
2
a2
=a;
=-a.
a2
a 2.方程中的分类讨论思想 :若含有字母系数的方程有实数根
时,要考虑二次项系数是否等于0,进行分类讨论.
3.三角形问题中的分类讨论思想:在直角三角形中,如果没有 指明哪条边是直角边、斜边,这需要分类讨论;在等腰三角形 中,无论边还是顶角与底角不确定或底边与腰不确定的情况下 , 都需要分类讨论;与三角形的高有关的问题,有时要分钝角三 角形、直角三角形、锐角三角形分别讨论解决. 4.相似三角形中的分类讨论思想:如果题目中出现两个三角形
中考数学复习专题讲座五数学思想方法(含详细参考答案)
考点二:转化思想
转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
三、中考考点精讲
考点一:整体思想
整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。例1 10.(2012•德州)已知
A.3 B.,则a+b等于()C.2 D.1
考点:解二元一次方程组。810360
专题:计算题。
分析:①+②得出4a+4b=12,方程的两边都除以4即可得出答案.
解答:解:,
∵①+②得:4a+4b=12,
∴a+b=3.
故选A.
点评:本题考查了解二元一次方程组的应用,关键是检查学生能否运用整体思想求出答案,题目比较典型,是一道比较好的题目.
不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B.
则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).
∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.
中考数学复习的方法和策略
中考数学复习的方法和策略二、着眼“双基”,打好基础,学会运用基础知识是数学考试的重要组成部分,分值比重大,也是解决中、高档题的依据.学好和用好基础知识,在复习中应注意以下几点:1.要明确概念的本质特征2.要牢固掌握定理、公式、法则一是要弄清性质、公式、法则、定理的条件与结论,并会推导证明.二是要能正确运用,不能混淆,不能错用.3.要善于系统整理将若干知识点进行归纳整理,使之形成“知识链”、“知识网”.注重知识的内在联系,挖掘知识的内涵和外延,注重数学思想的归纳及运用.4.基础知识要联系实际,联系生活数学中的很多知识,如:存款问题,电费、水费问题等等,都来源于生活,反过来又为生活服务,充分体现了数学的广泛性及其价值.5.用基础知识探索新问题常见的数学中的开放题,能培养学生熟数学阅读、观察、实验、类比、归纳等综合运用知识的能力.6.要学会一些必要的检查手段.如逆运算检验法;回代检验法;特殊值检验法;经验检验法.7.选择灵活多变的复习方法综合多种教学方法不仅可以促进学生掌握知识,更能培养学生的学习兴趣.讲授、提问、自学、练习、讨论交流等多种复习方式,能让学生从不同的方式中锻炼得会听、会想、会说、会问、会总结,达到复习提高的目的.8.注重复习中的典型例题教学及加强针对性训练在复习过程中,教师要在钻研课标、教材、中考说明及各地中考试题的基础上,精选并研究教学的例、习题,强调对所选题的演变与拓展,以“题链或题网”的形式实施复习教学.A.习题的演变与拓展①条件的弱化与强化.当一个命题成立条件较多时,可考虑减少其中的一两个条件或将其中的条件一般化,并确定相应的命题结论,从而加工概括成新命题拓展应用.②结论的延伸与拓展.③基本图形的变化拓展.结合基本图形所具有的特殊性,可作如平移、旋转、对称等一系列变化④条件结论互逆变换.⑤基本图形的构造与应用.几何综合性问题通常是由若干个基本图形组合而成,因此,学生不仅要具备必要的图形的分解能力,还应具备必要的添加辅助线构造基本图形的技能.B.练习的针对性训练.在进行常规复习的同时,教师应加强针对性训练以提高复习教学的效果.①加强基础知识的诊断性训练.选用典型的例题,重点让学生根据问题条件熟练运用所学知识准确地解决问题.②加强解题速度的限时性训练.选择一些试题,在规定的时间内完成.③加强易错易混知识的辨析性训练.为避免学生在同一知识点上重复犯错,教师在课堂上可专门安排一些相关知识加强训练,以提高学生的分辨能力.④加强综合运用的分析性训练.选择1~2个综合题引导学生分析,寻找解题思路及方法.⑤加强信息型问题中的数学关系的提炼性训练.数学与生活联系十分紧密,遇到这类问题时,教师应重在引导学生如何准确地快速地从其中提炼出相关的数学关系.⑥加强典型问题的指向性训练.有些问题在初中数学中常年必考,教师应对近几年中考试题加以分析、归纳概括,在复习过程中作针对性训练.三、及时反馈弥补复习中的遗漏与不足及时了解复习的效果,可通过课堂上留心观察、课下与学生交谈、批改作业收集、学生提问时分析,了解学生学习情况,改进教学方法有针对性地加以补救.如何进行中考数学复习一、研究《教学大纲》,分析中考试题.《教学大纲》是教学的主要依据,是衡量教学质量的重要标准,当然就是中考命题的依据.尤其值得注意的是,2000年3月,教育部制订并颁发了《九年义务教育全日制初级中学数学教学大纲(试用修订版)》,并于当年九月在全国初中一年级开始执行.中考试题是对《教学大纲》要求的具体化,也是命题专家研究的结晶.例如,《教学大纲》在阐述教学要求和具体要求时分“了解、理解、掌握、灵活运用”4个不同的层次.但如何界定“了解、理解、掌握、灵活运用”,《教学大纲》并未明确指出.只能通过深入研究近年来的中考数学试题才能使之具体化,从而指导我们的复习工作.因此,《教学大纲》和中考试题理所当然对复习有导向作用.只有研究《教学大纲》,同时分析中考试题,才能克服盲目性,增强自觉性,更好地指导考生进行复习.从这个意义上来说,研究《教学大纲》,分析近年来的中考数学试题是非常必要的.二、学习新的《数学课程标准》,渗透新课程理念.课程在学校教育中处于核心地位,教育的目标、价值主要通过课程来体现和实现.我国新一轮基础教育课程改革在世纪之交启动.新课程已于2001年9月在全国38个国家级实验区进行.2002年秋季实验进一步扩大,有近500个县(区)开展实验.新课程强调“人人学有用的数学;人人掌握必需的数学;不同的人学习不同的数学.以创新精神和实践能力的培养为重点”.为配合新课程标准的推广,顺利实现“过渡”.近几年全国各地的中考数学试题,已经渗透了新课程理念.主要表现在加强了对具有时代气息的应用性和探索性问题的考察.因此,认真学习新的《数学课程标准》,在复习中渗透新课程理念,是非常必要的.三、重视基础知识、基本技能的训练.《教学大纲》指出:“初中数学的教学目的是:使学生学好当代社会中每一个公民适应日常生活、参加生产和进一步学习所必需的代数、几何的基础知识与基本技能”.尽管我们一直强调抓基础,但由于近年来中考数学试题的新颖性、灵活性越来越强,因此不少师生总是对抓基础知识不放心,总是把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能的教学.其主要表现在对知识的发生、发展过程揭示不够.教学中急急忙忙将公式、定理推证出来,或草草讲一道例题就通过大量的题目来训练学生.试图通过让学生大量地做题去获取知识.结果是多数学生只会机械地模仿,思维水平较低,将简单问题复杂化,从而造成失分.其实近几年来中考命题事实已明确告诉我们:基础知识、基本技能不仅始终是中考数学试题考查的重点,而且近几年的中考数学试题对基础知识的要求更高、更严了.特别是选择题、填空题主要是考查基础知识和基本技能,但其命题的叙述或选择项往往具有迷惑性,有的选择项就是学生中常见的错误.如果学生在学习中对基础知识不求甚解,就会导致在考试中判断错误.只有基础扎实的考生才能正确地判断.另一方面,由于试题量大,解题速度慢的考生往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能的高低.可见,在切实重视基础知识的落实中同时应重视基本技能的培养.四、认真落实教材.中考复习,时间紧,任务重,但绝不可因此而脱离教材.相反,要抓住教材,在总体上把握教材,明确每一章、节的知识在整体中的地位、作用.多年来,许多师生在中考复习时抛开课本,在大量的复习资料中钻来钻去,试图通过“题海”来完成“覆盖”中考试题的工作,结果是极大地加重了师生的负担.为了扭转这一局面,减轻负担,全面提高教学质量,近年来各地中考数学命题组做了大量艰苦的导向工作,每年的试题都与教材有着密切的联系,有的是直接利用教材中的例题、习题、公式定理的证明作为中考题;有的是将教材中的题目略加修改、变形后作为中考题目;还有的是将教材中的题目合理拼凑、组合作为中考题的.命题者的良苦用心已再清楚不过了.因此,一定要高度重视教材,把主要精力放在教材的落实上,切忌不要刻意追求社会上的偏题、怪题和技巧过强的难题.五、渗透数学思想方法.数学思想方法作为数学知识内容的精髓,是对数学的本质认识,是数学学习的一种指导思想和普遍适用的方法,它是把数学知识的学习和培养能力有机地联系起来,提高个体思维品质和数学能力,从而发展智力的关键所在,也是培养创新人才的基础,更是一个人数学素养的重要内涵之一.对学生进行数学思想方法的灌输是数学教育工作者进行教育改革的一项重要任务.因此,近几年的中考数学试题都注意了对数学思想方法的考查.常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想,统计思想、最优化思想等.这些基本思想方法分散地渗透在初中数学教材的各章节之中,在平时的教学中,教师和学生把主要精力集中于具体的数学内容之中,缺乏对基本的数学思想方法的归纳和总结,在中考前的复习过程中,教师要在传授基础知识的同时,有意识地、恰当地讲解与渗透基本数学思想方法,从而达到传授知识,培养能力的目的,只有这样.考生在中考中才能灵活运用和综合运用所学的知识.六、加强对后进生的转化.多年以来,许多学校为了追求“升学率”,在复习时往往只注意培养有升学希望的学生.忽视了对后进生的转化.在大力实施素质教育的今天,对后进生的转化成了摆在每位教师面前的一项重要任务.只有在复习中做好对后进生的转化工作,才能获得大面积丰收.一般说来,后进生并不是对所学知识一点也不知道,而是知道得不全,不能形成能力.为此,要注意有的放矢、对症下药.在复习时先安排对重要知识点的测试,通过小题,查找漏洞,落实知识点;复习时注意由浅入深,精心设计例习题;强化基本功训练,过好运算关,让后进生在复习中获得成功.中考数学知识点一、重要概念1.数的分类及概念数系表:说明:"分类"的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。
中考数学总复习实用方法总结
中考数学总复习实用方法总结复习能够帮助我们对学过的知识进行更好的巩固,尤其数学知识点具有“多杂难”这样的特点,更需要我们利用有限的时间进行复习。
下面是小编为大家整理的关于中考数学总复习实用方法,希望对您有所帮助!中考数学复习策略一、梳理策略总结梳理,提炼方法。
复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,在准确理解基本概念,掌握公式、法则、定理的实质及其基本运用的基础上,弄清概念之间的联系与区别。
对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。
如方案设计题型中有一类试题,不改变图形面积把一个图形剪拼成另一个指定图形。
总结发现,这类题有三种类型,一类是剪切线的条数不限制进行拼接;一类是剪切线的条数有限制进行拼接;一类是给出若干小图形拼接成固定图形。
梳理了题型就可以进一步探索解题规律。
同时也可以换角度进行思考,如一个任意的三角形可以剪拼成平行四边形或矩形,最少需几条剪切线?联想到任意四边形可以剪拼成哪些特殊图形,任意梯形可以剪拼成哪些特殊图形等。
做题时,要注重发现题与题之间的内在联系,通过比较,发现规律,做到触类旁通。
反思错题,提升能力。
在备考期间,要想降低错误率,除了进行及时修正、全面扎实复习之外,非常关键的一个环节就是反思错题,具体做法是:将已经复习过的内容进行“会诊”,找到最薄弱部分,特别是对月考、模拟试卷出现的错误要进行认真分析,也可以将试卷进行重新剪贴、分类对比,从中发现自己复习中存在的共性问题。
正确分析问题产生的原因,例如,是计算马虎,还是法则使用不当;是审题不仔细,还是对试题中已知条件或所求结论理解有误;是解题思路不对,还是定理应用出错等等,消除某个薄弱环节比做一百道题更重要。
应把这些做错的习题和不懂不会的习题当成再次锻炼自己的机会,找到了问题产生的.原因,也就找到了解题的最佳途径。
事实上,如果考前及时发现问题,并且及时纠正,就会很快地提高数学能力。
数学中考专题17 数学思想方法-转化思想
数学思想方法———转化与化归思想【考向分析】转化思想是数学中非常重要的思想方法,它是平时学习的常用方法,同时也是解决中考综合题的有利武器,一般来说,综合题都有一定的难度,它的解决一定基于我们学过并熟练掌握的基础知识,如何将其转化为自己所熟知的内容就成了解题关键.实际上,所谓的解题不过是将未知转化为已知的过程,即转化是解题时主要的思想方法。
【典型例题】例1 如图所示,已知梯形ABCD 中,AD ∥BC ,BD 平分34,120,===∠∠BC BD A ABC ,求梯形的面积。
例2 如图所示,已知⊙O 是ABC ∆的外接圆,AB 是⊙O 的直径,D 是AB 延长线上的一点,DC AE ⊥,交DC 的延长线于点E ,且AC 平分EAB ∠。
(1)求证:DE 是⊙O 的切线; (2)若524,6==AE AB ,求BD 和BC 的长。
A DCB例3 如图所示,NM 切⊙O 于P ,AB 是⊙O 弦,MN AM ⊥于M ,MN BN ⊥于N ,AB PQ ⊥于Q 。
求证:BN AM PQ ⋅=2。
例4 已知:如图1,在直角坐标系中,⊙1O 经过坐标原点,分别与x 轴正半轴、y 轴正半轴交于点A 、B . (1)若点O 到直线AB 的距离为512,且43tan =∠B ,求线段AB 的长; (2)若点O 到直线AB 的距离为512,过点A 的切线与y 轴交于点C ,过点O 的切线交于D ,过点B 的切线交OD 于点E ,求BECD 11+的值.(3)如图2,若⊙1O 经过点M (2,2),设BOA ∆的内切圆的直径为d ,试判断d+AB 的值是否会发生变化,若不变,求出其值;若变化,求其变化的范围.【随堂练习】1.如图所示,边长为1的正方形OABC 的顶点A 在x 轴的正半轴上,将正方形OABC 绕点O 顺时针旋转30,使点A 落在抛物线()02<=a ax y 的图象上。
(1)求抛物线2ax y =的函数关系式;(2)正方形OABC 继续按顺时针旋转多少度时,点A 再次落在抛物线2ax y =的图象上?并求这个点的坐标;2.如图所示,在ABC Rt ∆中,90=∠C ,以BC 边为直径的⊙O 交AB 于点D ,连接OD 并延长交CA 的延长线于点E ,过点D 作DF ⊥OE 交EC 于点F 。
中考数学备考6种方法复习
中考数学备考6种方法复习中考数学备考6种方法复习一、过滤题目法一张数学练习卷共50道题,学霸首先会浏览整个卷面,过滤掉自己非常熟悉的题目,留下自己不熟悉的题目重点攻克,并且反复练习类似题型,让这类题烂熟于心。
这就是那些经常不写作业,喜欢抄作业的同学,每次考试却拿高分的真正原因。
二、提升效率法如果一道数学题你花了10分钟还没法解决,请直接看答案或请教老师。
再之后花更多的时间来归纳总结,反复练习此类题目,做到融会贯通。
归纳总结才是真正的目的,而不是用一节课的时间自己去做一道不会的题目,浪费时间和精力。
三、高水平重复法如果遇见一道不熟悉的题目,你需要做好几遍甚至更多遍,攻克陌生题,把它们转化为简单题。
久而久之,高水平的重复会让你逐渐地把所有知识点都掌握于心。
四、归纳总结法归纳总结对学数学来说太重要了。
学霸们做一道比较难的数学题10分钟,然后会拿出20分钟来进行归纳总结,书写解题笔记。
这么做无形提高了对解题关键的敏感度,见到此类题目,能迅速做出条件反射,找到解题突破口,这就是高手的必修课,解题联想。
五、会必做对法很多学生在做数学题的时候,容易因粗心大意等原因把分丢在会做的题目上。
考试的时候,一定要练习稳的能力,就是说会做的题,坚决不能丢分,这才是考高分的基础和关键。
六、进入中考模式法各种模拟考试,很难找到中考的感觉。
所以,中考之前一定要做真题,要找到身临其境参加中考的感觉,做多了真题,中考的时候你就没有了那种好奇感,心态平静才能更好地发挥。
中考数学备考策略●回归课本,夯实基础数学的基本概念、定义、公式,数学知识点之间的内在联系,基本的数学解题思路与方法,是复习的重中之重。
回归课本,要先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要稳扎稳打,不要盲目攀高,欲速则不达。
要提高复习效率,必须使自己的思维与老师的思维同步。
而认真完成作业则是达到这一目的的重要途径。
没有认真完成作业就听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而认真完成作业之后,再听老师讲课,就会把重点放在自己还未掌握的内容上,提高学习效率。
数学中考复习思路及设想
中考复习思路及设想我们的中考复习计划分三轮进行,按照基础练习——专项拔高——综合演练的思路进行。
第一轮复习:紧扣考点,强化基础。
复习时间(从开学到4月初), 复习遵循的原则是:以中考说明的考试要求为主线,注重基础知识的梳理。
1、夯实基础。
紧扣课程标准,紧扣考点使每个学生对知识都能达到“理解”和“掌握”的要求,并注意这些知识的内在联系。
例如:方程与不等式的联系,函数与方程,不等式的联系,这些都是中考的热点。
切忌把知识的复习只停留在记忆层面。
其次做相应的习题,进行针对性的训练。
我们选择的是中考火线100天,当时的选择出发点是觉得该书题型紧扣中考,而且题量适中,将来的练习能更充分些。
但在实践中发现,做题时间有限,除了一课时以外,每天课外作业也是十分有限,所以只能有选择的做一些典型练习。
最后根据学生做题情况进行订正处理,培养学生的审题思路、训练学生分析问题解决问题的能力。
所以我校老师一致认为,我们的数学复习不仅要对课本重点知识让学生记住,还要让学生了解知识内在联系,同时还重视培养审题的好习惯,形成解题的方法和能力,而习题课正是培养学生这方面能力的关键。
2、重视基本方法的指导。
中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法待定系数法等操作性较强的数学方法。
在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。
例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。
又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。
3、重视数学基本思想的指导。
数学思想方法包括转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想、方程函数思想,整体思想等,这些思想方法是整个教学的灵魂,掌握正确的数学思想方法,在中考中就能快速、便捷的解决问题。
中考数学复习《整体思想解析》
方法技巧专题三整体思想解析在数学思想中整体思想是最基本、最常用的数学思想。
它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。
运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。
它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。
整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用.一、数与式中的整体思想【例题】(2017广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【同步训练】(2017湖北江汉)已知2a﹣3b=7,则8+6b﹣4a= ﹣6 .【考点】33:代数式求值.【分析】先变形,再整体代入求出即可.【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.二、方程(组)与不等式(组)中的整体思想【例题】先阅读,然后解方程组.解方程组时,可由①得x-y=1, ③然后再将③代入②得4×1-y=5,求得y=-1,从而进一步求得这种方法被称为“整体代入法”, 请用这样的方法解下列方程组解:由①得2x-3y=2, ③把③代入②得,+2y=9,解得y=4,把y=4代入③得,2x-3×4=2,解得x=7,∴原方程组的解为【同步训练】仔细观察下图,认真阅读对话根据对话的内容,试求出饼干和牛奶的标价各是多少元?【考点】一元一次不等式组的应用.【分析】设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,用整体代入的思想求出x的取值,注意为整数且小于10,代入②可求牛奶的价格.【解答】解:设饼干的标价是x元/袋,(x是整数)牛奶的标价是y元/袋,由题意得,由②得y=9.2﹣0.9x③③代入①得x+9.2﹣0.9x>10∴x>8∵x是整数且小于10∴x=9∴把x=9代入③得y=9.2﹣0.9×9=1.1(元)答:饼干的标价是9元/盒,牛奶的标价是1.1元/袋.三、函数与图像中的整体思想【例题】某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求+的值.【考点】平面镶嵌(密铺).【分析】根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.【解答】解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x、y、z,那么这三个多边形的内角和可表示为: ++=360,两边都除以180得:1﹣+1﹣+1﹣=2,两边都除以2得: +=.【点评】本题考查了平面镶嵌(密铺).解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.【同步训练】(2017浙江衢州)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【考点】FH:一次函数的应用;FA:待定系数法求一次函数解析式.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.四、几何与图形中的整体思想:【例题】小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180 B.210 C.360 D.270【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.【同步训练】如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13 .【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【达标检测】1.(2017.江苏宿迁)若a﹣b=2,则代数式5+2a﹣2b的值是9 .【考点】33:代数式求值.【分析】原式后两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,∴原式=5+2(a﹣b)=5+4=9,故答案为:92.已知是方程组的解,则a2﹣b2= 1 .【考点】97:二元一次方程组的解.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.3.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角B.都是锐角C.是一个锐角、一个钝角D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.4.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.已知:在四边形ABCD中, O是对角线BD上任意一点.(如图①)求证:S△OBC •S△OAD=S△OAB•S△OCD;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.【解析】证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,则有:S△AOB=BO•AE,S△COD=DO•CF,S△AOD=DO•AE,S△BOC=BO•CF,∴S△AOB •S△COD=BO•DO•AE•CF,S△AOD •S△BOC=BO•DO•CF•AE,∴S△AOB •S△COD=S△AOD•S△BOC.;(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD •S△BOC=S△AOB•S△DOC,已知:在△ABC中,D为AC上一点,O为BD上一点,求证:S△AOD •S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD =DO•AE,S△BOC=BO•CF,S△OAB =OB•AE,S△DOC=OD•CF,∴S△AOD •S△BOC=OB•OD•AE•CF,S△OAB •S△DOC=BO•OD•AE•CF,∴S△AOD •S△BOC=S△OAB•S△DOC.四个.如图所示:。
中考数学复习知识点归纳总结6篇
中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
中考数学专题复习一分类讨论思想PPT课件
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由
2024年中考数学二轮复习真题演练数学思想方法1
2024年中考数学二轮复习真题演练数学思想方法1数学是一门逻辑思维严密、抽象性强的学科,对学生的思维能力要求较高。
对于2024年中考数学二轮复习,学生需要掌握一定的数学思想方法,以便在考试中能够灵活应用,解决各类数学问题。
首先,做好基础知识的复习是数学思想方法的前提。
在复习中,要对所学的数学知识进行归纳总结,并加以理解和记忆。
中考数学主要考查初中数学的基本知识,包括数与量、代数、几何和统计等方面的内容。
通过做一些相关的练习题,可以查漏补缺,找出自己的不足之处,并针对性地进行针对性的巩固和复习。
其次,数学是一门灵活运用方法的学科,要掌握正确的解题思路和方法。
在解题过程中,可以根据题目所给的条件和要求,采用适当的数学方法和定理,进行分析和推导。
同时,还要注重理论与实际的结合,在解题时要注意提炼问题的关键信息,抓住问题的本质,灵活运用所学的数学知识进行解答。
再次,提高解题能力,培养自己的数学思维能力。
在复习过程中,要多做一些思维训练的题目,培养自己的发散思维和创新思维能力。
同时,可以参加一些数学竞赛和数学夏令营等活动,锻炼自己的解题能力和应试技巧。
此外,还需要培养良好的解题习惯。
在解题过程中,要注重整理思路,条理清晰,不仅能够提高解题的效率,还能够降低错误率。
解题时要注意用文字和符号进行逻辑推理,尽量给出详细的解题步骤和推导过程,以便更好地展示解题思路和方法。
最后,要注重总结和复习巩固。
在复习过程中,要及时总结归纳所学的数学知识和思想方法,形成自己的数学笔记和思维导图。
通过不断的复习和巩固,可以加深对数学知识的理解和掌握,提高解题能力和应试水平。
综上所述,对于2024年中考数学二轮复习,学生需要掌握一定的数学思想方法。
在复习过程中,要做好基础知识的复习,掌握正确的解题思路和方法,提高解题能力,培养良好的解题习惯,并注重总结和复习巩固。
通过努力的学习和不断的练习,相信学生一定能够取得优异的成绩。
数学思想方法(整体思想、转化思想、分类讨论思想
数学思想方法(整体思想、转化思想、分类讨论思想专题知识突破五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点一:整体思想整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
例1 (2014•德州)如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是.思路分析:观察发现,阴影部分的面积等于正三角形ABC的面积减去三个圆心角是60°,半径是2的扇形的面积..考点二:转化思想转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
中考数学复习解题思想方法技巧--第一讲:整体思想
中考数学复习解题思想方法技巧第一讲:整体思想整体思想,就是探究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法。
从整体上去认识问题、思考问题,常常能化繁为简、变难为易。
整体思想的表现形式有:整体代入、整体约减、整体换元、整体合并等。
一、整体代入主体思想:求代数式的值时,通常会遇到各种各样关于未知数的关系式的条件,利用常规方法在这些关系式中求出未知数后再代入求值,其计算往往很复杂,甚至有时求不出具体的数值。
这时往往需要研究问题的条件和结论的整体形式,挖掘式子结构上的特征联系,将已知条件进行恰当变形,或把一些已知关系式作为整体,直接代入求值式中计算,过程简洁明了。
例题精析:m=1+,n=1-,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于()A.-5B.5C.-9D.9点拨提示:如果将m,n的值直接代入,运算量很大。
观察含a的方程中,7m2-14m和m=1+隐约有一定的关系,尝试将m=1+变形为m-1=,再两边平方可得m2-2m+1=2,整理得m2-2m=1;所以7m2-14m=7(m2-2m)=7×1=7。
用类似的处理方法整体可得3n2-6n 的值,整体代入即可求出a的值。
参考答案:Ca是方程x2-2011x+1=0的一个根,试求a2-2010a + 的值。
点拨提示:由已知得a2-2011a+1=0,直接解方程会有2个根,需要分别都代入求值,而且运算很大。
观察a2-2011a+1=0和所求代数式中的a2-2010a部分,隐约有一定的关系,尝试整体变形处理后再代入。
解题过程:由a2-2011a+1=0得a2-2010a=a-1①,即a2+1=2011a②,显然a≠0,两边同除以a得a+=2011③,将①、②、③式代入得:原式=a-1+ =a-1+= a+-1=2011-1=2010同步练习:当时,求多项式(4x3-2007x-2004)2004的值。
中考数学冲刺复习方法建议
中考数学冲刺复习方法建议为了使初三数学复习落到实处,必须制定公道的复习计划,切实可行的复习计划能让复习有条不紊地进行下去,起到事半功倍的成效。
下面是作者为大家整理的关于中考数学冲刺复习方法建议,期望对您有所帮助!中考数学高分复习策略一、重视构建知识网络——宏观掌控数学框架要学会构建知识网络,数学概念是构建知识网络的动身点,也是数学中考考核的重点。
因此,我们要掌控好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类,定义、性质和判定,并会运用这些概念去解决一些问题。
二、重视夯实数学双基——微观掌控知识技能在复习进程中夯实数学基础,要注意知识的不断深化,注意知识之间的内在联系和关系,将新知识及时纳入已有知识体系,逐渐形成和扩充知识结构系统,这样在解题时,就可以由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合信息,寻觅解题途径、优化解题进程。
三、重视强化题组训练——感悟数学思想方法除了做基础训练题、平面几何逐日一题外,还可以做一些综合题,并且养成解题后反思的习惯。
反思自己的思维进程,反思知识点和解题技能,反思多种解法的优劣,反思各种方法的纵横联系。
而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。
逐渐学会视察、实验、分析、料想、归纳、类比、联想等思想方法,主动地发觉问题和提出问题。
四、重视建立“病例档案”——做到万无一失准备一本数学学习“病例卡”,把平时犯的毛病记下来,找出“病因”开出“处方”,并且常常地拿出来看看、想想错在哪里,为何会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。
我们要在教师的指导下做一定数量的数学习题,积存解题体会、总结解题思路、形成解题思想、催生解题灵感、掌控学习方法。
五、重视常用公式技能——做到思维灵敏准确对常常使用的数学公式要知道来龙去脉,要进一步了解其推理进程,并对推导进程中产生的一些可能变化自行探究。
【火线100天】中考数学专题复习 数学思想方法
数学思想方法数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路.因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常用的解题方法与技巧,从而为夺取中考高分搭起灵感和智慧的平台.初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等.由于我们前面各种思想方法均有渗透,故本专题只是侧重如下几个思想方法予以强化.类型之一整体思想例1 (2014·内江)已知1a+12b=3,则代数式254436a ab bab a b-+--的值为 .【思路点拨】要求分式的值,必须要知道分式中所有字母的取值,从条件看无法解决;观察分式的结构发现分子与分母都是m(a+2b)+n(ab)的形式,所以从条件中找出(a+2b)与ab之间的关系,即可解决问题.【解答】∵1a+12b=3,∴22a bab+=3,即a+2b=6ab.∴254436a ab bab a b-+--=225324a b aba b ab+--++()()=125184ab abab ab--+=714abab-=-12.方法归纳:整体思想就是在解决问题时,不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对整体的把握和运用达到解决问题的目的.1.(2014·安徽)已知x2-2x-3=0,则2x2-4x的值为( )A.-6B.6C.-2或6D.-2或302.(2014·乐山)若a=2,a-2b=3,则2a2-4ab的值为 .3.(2014·宿迁)已知实数a,b满足ab=3,a-b=2,则a2b-ab2的值是 .4.( 2014·菏泽)已知x2-4x+1=0,求()214xx---6xx+的值.类型之二分类思想例2 (2013·襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .【思路点拨】从图中看有两个直角,这两个直角都有可能是原直角三角形的直角,分两种情况将原图补充完整,即可求出原直角三角形的斜边长.【解答】如图1,以点B为直角顶点,BD为斜边上的中线,在Rt△ABD中,可得BD∴原直角三角形纸片的斜边EF的长是如图2,以点A为直角顶点,AC为斜边上的中线,在Rt△ABC中,可得AC=∴原直角三角形纸片的斜边EF的长是故填方法归纳:在几何问题中,当图形的形状不完整时,需要根据图形的已知边角及图形特征进行分类画出图形,特别注意涉及等腰三角形与直角三角形的边和角的分类讨论.1.(2014·凉山)已知⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8 cm,则AC的长为()cm或或2.(2014·凉山)已知一个直角三角形的两边的长分别是3和4,则第三边长为 .3.已知点D与点A(8,0),B(0,6),C(3,-3)是一平行四边形的顶点,则D点的坐标为 .4.(2014·株洲调研)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .5.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2 cm,QM=4 cm.动点P从点Q出发,沿射线QN以每秒1 cm的速度向右移动,经过t秒,以点P cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值 (单位:秒).6.(2013·呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(-6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为 .7.(2014·襄阳)在□ABCD中,BC边上的高为4,AB=5,□ABCD的周长等于 .类型之三转化思想例3 (2014·滨州)如图,点C在⊙O的直径AB的延长线上,点D在⊙O上,AD=CD,∠ADC=120°.(1)求证:CD是⊙O的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积.【思路点拨】(1)因为D 点在圆上,连接OD ,证明OD 与CD 垂直即可;(2)连接OD ,将图中不规则的阴影部分面积转化为三角形与扇形的面积之差. 【解答】(1)证明:连接OD.∵AD=CD ,∠ADC=120°,∴∠A=∠C=30°. ∵OA=OD,∴∠ODA=∠A=30°, ∴∠ODC=120°-30°=90°, ∴OD ⊥CD.又∵点D 在⊙O 上,∴CD 是⊙O 的切线. (2)∵∠ODC=90°,OD=2,∠C=30°,∴OC=4,∴S △COD =12OD ·CD=12×2×, S 扇形OCB =2602360π⨯⨯=23π,∴S 阴影=S △OCD -S 扇形OCB 23π. 方法归纳:化归意识是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”、将“陌生”转化为“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有待解决的问题转化为已有明确解决的问题,以便利用已有的结论来解决问题.1.(2014·泰安)如图,半径为2 cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( ) A.(2π-1)cm 2 B.(2π+1)cm 2 C.1 cm 2 D. 2π cm 22.(2013·潍坊)对于实数x,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[410x +]=5,则x 的取值可以是( )A.40B.45C.51D.563.(2014·菏泽调考)将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线段记成a b c d,定义a b c d=ad-bc ,上述记号就叫做二阶行列式,若11x x +- 11xx -+=8,则x= .4.(2014·白银)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 .5.(2014·凉山)如图,圆柱形容器高为18 cm,底面周长为24 cm,在杯内壁离杯底4 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.6.(2014·枣庄)图1所示的正方体木块棱长为6 cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图2的几何体,一只蚂蚁沿着图2的几何体表面从顶点A爬行到顶点B的最短距离为 cm.类型之四数形结合思想例4 (2014·黄州模拟)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1 cm/s,设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5 cm;②当0<t≤5时,y= 25t2;③直线NH的解析式为y=-52t+27;④若△ABE与△QBP相似,则t=294秒.其中正确的结论个数为( )A.4B.3C.2D.1【解答】①根据图2可得,当点P到达点E时点Q到达点C,BC=BE,故①小题正确;②当0<t≤5时,设y=at2,将t=5,y=10代入求得a=25,故②小题正确;③根据题意可得N(7,10),H(11,0),利用待定系数法可以求出一次函数解析式y=-52t+552,故③小题错误;④∵∠A=90°,而点P在运动过程中,∠BPQ≠90°,∠PBQ≠90°,∴△ABE与△QBP相似,Q点在C点处,P点运动到CD边上,∠PQB=90°.此时分△ABE∽△QBP和△ABE∽△QPB两种情况,当△ABE∽△QBP时,则ABQB=AEQP可知QP=154,可得t=294,符合题意;当△ABE∽△QPB时,ABQP=AEQB,可知QP=203>4,不符合题意,应舍去.故④小题正确.因此答案选B.方法归纳:数形结合主要有两种:①由数思形,数形结合,用形解决数的问题;②由形思数,数形结合,用数解决形的问题.1.(2014·菏泽)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别在AC,BC边上,设CD的长为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )2.(2014·内江)若关于x的方程m(x+h)2+k=0(m、h、k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k =0的解为( )A.x1=-6,x2=-1B.x1=0,x2=5C.x1=-3,x2=5D.x1=-6,x2=23.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是( )A.①②③B.①②④C.①③④D.①②③④4.(2014·黄石调考)如图,两个正方形的面积分别为16、9,两阴影部分的面积分别为a,b(a>b),则a-b等于( )A.7B.6C.5D.45.(2014·枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )A.a 2+4 B.2a 2+4a C.3a 2-4a-4 D.4a 2-a-2类型之五 方程、函数思想例5 (2014·泰安调考)将半径为4 cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是 cm.【思路点拨】设圆柱的底面半径为r ,圆柱的侧面积为S ,建立S 与r 之间的函数关系式,利用函数的性质确定S 取最大值时r 的值.【解答】∵将半径为4 cm 的半圆围成一个圆锥,∴圆锥的母线长为4,底面圆的半径为2,高为设圆柱底面圆的半径为r,高为h ,侧面积为S ,根据题意,得2r =,∴h=.∴S=2πr ()π(r-1)2π.∴当r=1时, S 取最大值为.方法归纳:在问题中涉及“最大值”或“最小值”时,一般要运用函数思想去解决问题,解决这里问题的关键是建立两个变量之间的函数关系.1.(2014·安徽)如图,Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( ) A.53 B.52C.4D.52.(2014·武汉)如图,若双曲线y=kx与边长为5的等边△AOB 的边OA ,AB 分别相交于C ,D 两点,且OC=3BD ,则实数k 的值为 .3.(2014·广州)若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为 .4.(2014·鄂州)如图,正方形ABCD边长为1,当M、N分别在BC,CD上,使得△CMN的周长为2,则△AMN的面积的最小值为 .参考答案类型之一整体思想1.B2.123.64.原式=()()()()21464x x x xx x---+-=224244x xx x-+-.∵x2-4x+1=0,∴x2-4x=-1.∴原式=224244x xx x-+-=1241-+-=-23.类型之二分类思想1.C2.53.(5,9)或(11,-9)或(-5,3)4.(3,4)或(2,4)或(8,4)5.t=2或3≤t≤7或t=86.(0,12)或(0,-12)提示:当点C在y轴的上方时,如图,作BD⊥AC于D,与y轴交于点E.∵∠BCA=45°,∴∠CBD=∠BCA=45°,∴BD=CD.∵∠CDE=∠ADB=90°,∠CED=∠BEO,∴∠ECD=∠ABD,∴△CED≌△BAD,∴EC=AB=10.设OE=x,∵∠COA=∠BOE=90°,∴△BEO∽△CAO,∴104x+=6x,x=2或x=-12(舍去),∴OC=OE+CE=2+10=12,∴点C(0,12).当点C 在y 轴的下方时,同理可求得点C(0,-12). 故答案为(0,12)或(0,-12). 7.12或20提示:如图1所示.∵在□ABCD 中,BC 边上的高为4,AB=5,,∴,AB=CD=5,,∴AD=BC=5,∴□ABCD 的周长等于20.如图2所示.∵在□ABCD 中,BC 边上的高为4,AB=5,, ∴EC=AC2-AE2=2,AB=CD=5,BE=AB2-AE2=3, ∴BC=3-2=1,∴□ABCD 的周长等于1+1+5+5=12. 则□ABCD 的周长等于12或20. 故答案为:12或20.类型之三 转化思想1.A2.C3.24.125.206.( 提示:如图所示.△BCD 是等腰直角三角形,△ACD 是等边三角形,在Rt △BCD 中,cm ),∴BE=12,在Rt △ACE 中,(cm ),∴从顶点A 爬行到顶点B 的最短距离为(故答案为:(类型之四 数形结合思想1.A2.B3.B4.A5.C类型之五 方程、函数思想1.C提示:设BN=x,则依据折叠原理可得DN=AN=9-x.又D 为BC 的中点,∴BD=3.在Rt △NBD 中,利用勾股定理,可得BN 2+BD 2=DN 2,则有32+x 2=(9-x)2,解得x=4,即BN=4.故选择C.2.4提示:过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,设OC=3x ,则BD=x ,在Rt △OCE 中,∠COE=60°,则OE=32x ,x ,则点C 坐标为(32x x),在Rt △BDF 中,BD=x ,∠DBF=60°,则BF=12x ,DF=2x ,则点D 的坐标为(5-12x ,2x),将点C 的坐标代入反比例函数解析式可得k=4x 2,将点D 的坐标代入反比例函数解析式可得k=2x 2,x 22,解得x 1=1,x 2=0(舍去),故×12.3.54提示:由根与系数的关系得到:x 1+x 2=-2m ,x 1x 2=m 2+3m-2, 原式化简=3m 2-3m+2=3(m-12)2+54. ∵方程有实数根,∴Δ≥0,m ≤23. 当m=12时,3m 2-3m+2的最小值为54.提示:延长MB至G使GB=DN,连接AG.∴△ADN≌△ABG.∵CN+CM+MN=2,CN+CM+DN+BM=2,∴MN=MG.∴△AMN≌△AMG.要使△AMN的面积的最小,即△AGM的面积最小.∵AB=1,所以MG最小,即MN最小.在Rt△CMN中,周长一定,当△CMN为等腰直角三角形时,斜边MN最小.设CM=x,则,∴∴∴△AMN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思想方法数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路.因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常用的解题方法与技巧,从而为夺取中考高分搭起灵感和智慧的平台.初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等.由于我们前面各种思想方法均有渗透,故本专题只是侧重如下几个思想方法予以强化.类型之一整体思想例1 (2014·内江)已知1a+12b=3,则代数式254436a ab bab a b-+--的值为 .【思路点拨】要求分式的值,必须要知道分式中所有字母的取值,从条件看无法解决;观察分式的结构发现分子与分母都是m(a+2b)+n(ab)的形式,所以从条件中找出(a+2b)与ab之间的关系,即可解决问题.【解答】∵1a+12b=3,∴22a bab+=3,即a+2b=6ab.∴254436a ab bab a b-+--=225324a b aba b ab+--++()()=125184ab abab ab--+=714abab-=-12.方法归纳:整体思想就是在解决问题时,不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对整体的把握和运用达到解决问题的目的.1.(2014·安徽)已知x2-2x-3=0,则2x2-4x的值为( )A.-6B.6C.-2或6D.-2或302.(2014·乐山)若a=2,a-2b=3,则2a2-4ab的值为 .3.(2014·宿迁)已知实数a,b满足ab=3,a-b=2,则a2b-ab2的值是 .4.( 2014·菏泽)已知x2-4x+1=0,求()214xx---6xx+的值.类型之二分类思想例2 (2013·襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .【思路点拨】从图中看有两个直角,这两个直角都有可能是原直角三角形的直角,分两种情况将原图补充完整,即可求出原直角三角形的斜边长.【解答】如图1,以点B为直角顶点,BD为斜边上的中线,在Rt△ABD中,可得BD=13. ∴原直角三角形纸片的斜边EF的长是213;如图2,以点A为直角顶点,AC为斜边上的中线,在Rt△ABC中,可得AC=32.∴原直角三角形纸片的斜边EF的长是62.故填213或62.方法归纳:在几何问题中,当图形的形状不完整时,需要根据图形的已知边角及图形特征进行分类画出图形,特别注意涉及等腰三角形与直角三角形的边和角的分类讨论.1.(2014·凉山)已知⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8 cm,则AC的长为()A.25cmB.45cmC.25cm或45cmD.23cm或43cm2.(2014·凉山)已知一个直角三角形的两边的长分别是3和4,则第三边长为 .3.已知点D与点A(8,0),B(0,6),C(3,-3)是一平行四边形的顶点,则D点的坐标为 .4.(2014·株洲调研)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .5.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM=MB=2 cm ,QM=4 cm.动点P 从点Q 出发,沿射线QN 以每秒1 cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值 (单位:秒).6.(2013·呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(-6,0),点C 是y 轴上的一个动点,当∠BCA=45°时,点C 的坐标为 .7.(2014·襄阳)在□ABCD 中,BC 边上的高为4,AB=5,AC=25,则□ABCD 的周长等于 .类型之三 转化思想例3 (2014·滨州)如图,点C 在⊙O 的直径AB 的延长线上,点D 在⊙O 上,AD=CD,∠ADC=120°.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积.【思路点拨】(1)因为D 点在圆上,连接OD ,证明OD 与CD 垂直即可;(2)连接OD ,将图中不规则的阴影部分面积转化为三角形与扇形的面积之差. 【解答】(1)证明:连接OD.∵AD=CD ,∠ADC=120°,∴∠A=∠C=30°. ∵OA=OD,∴∠ODA=∠A=30°, ∴∠ODC=120°-30°=90°, ∴OD ⊥CD.又∵点D 在⊙O 上,∴CD 是⊙O 的切线. (2)∵∠ODC=90°,OD=2,∠C=30°,∴OC=4,2242-3∴S △COD =12OD ·CD=12×2×33, S 扇形OCB =2602360π⨯⨯=23π,∴S 阴影=S △OCD -S 扇形OCB 323π.方法归纳:化归意识是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”、将“陌生”转化为“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有待解决的问题转化为已有明确解决的问题,以便利用已有的结论来解决问题.1.(2014·泰安)如图,半径为2 cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( ) A.(2π-1)cm 2 B.(2π+1)cm 2 C.1 cm 2 D. 2π cm 22.(2013·潍坊)对于实数x,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[410x +]=5,则x 的取值可以是( ) A.40 B.45 C.51 D.563.(2014·菏泽调考)将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线段记成a b c d,定义a b c d=ad-bc ,上述记号就叫做二阶行列式,若11x x +-11x x -+=8,则x= .4.(2014·白银)如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 .5.(2014·凉山)如图,圆柱形容器高为18 cm ,底面周长为24 cm ,在杯内壁离杯底 4 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到达内壁B 处的最短距离为 cm.6.(2014·枣庄)图1所示的正方体木块棱长为6 cm ,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图2的几何体,一只蚂蚁沿着图2的几何体表面从顶点A 爬行到顶点B的最短距离为 cm.类型之四数形结合思想例4 (2014·黄州模拟)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1 cm/s,设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5 cm;②当0<t≤5时,y= 25t2;③直线NH的解析式为y=-52t+27;④若△ABE与△QBP相似,则t=294秒.其中正确的结论个数为( )A.4B.3C.2D.1【解答】①根据图2可得,当点P到达点E时点Q到达点C,BC=BE,故①小题正确;②当0<t≤5时,设y=at2,将t=5,y=10代入求得a=25,故②小题正确;③根据题意可得N(7,10),H(11,0),利用待定系数法可以求出一次函数解析式y=-52t+552,故③小题错误;④∵∠A=90°,而点P在运动过程中,∠BPQ≠90°,∠PBQ≠90°,∴△ABE与△QBP相似,Q点在C点处,P点运动到CD边上,∠PQB=90°.此时分△ABE∽△QBP和△ABE∽△QPB两种情况,当△ABE∽△QBP时,则ABQB=AEQP可知QP=154,可得t=294,符合题意;当△ABE∽△QPB时,ABQP=AEQB,可知QP=203>4,不符合题意,应舍去.故④小题正确.因此答案选B.方法归纳:数形结合主要有两种:①由数思形,数形结合,用形解决数的问题;②由形思数,数形结合,用数解决形的问题.1.(2014·菏泽)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别在AC,BC边上,设CD的长为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )2.(2014·内江)若关于x的方程m(x+h)2+k=0(m、h、k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解为( )A.x1=-6,x2=-1B.x1=0,x2=5C.x1=-3,x2=5D.x1=-6,x2=23.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是( )A.①②③B.①②④C.①③④D.①②③④4.(2014·黄石调考)如图,两个正方形的面积分别为16、9,两阴影部分的面积分别为a,b(a>b),则a-b等于( )A.7B.6C.5D.45.(2014·枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )A.a 2+4 B.2a 2+4a C.3a 2-4a-4D.4a 2-a-2类型之五 方程、函数思想例5 (2014·泰安调考)将半径为4 cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是 cm.【思路点拨】设圆柱的底面半径为r ,圆柱的侧面积为S ,建立S 与r 之间的函数关系式,利用函数的性质确定S 取最大值时r 的值.【解答】∵将半径为4 cm 的半圆围成一个圆锥, ∴圆锥的母线长为4,底面圆的半径为2,高为23. 设圆柱底面圆的半径为r,高为h ,侧面积为S ,根据题意,得2r =2332h -,∴h=233r -. ∴S=2πr (233r -)=-23π(r-1)2+23π.∴当r=1时, S 取最大值为23π.方法归纳:在问题中涉及“最大值”或“最小值”时,一般要运用函数思想去解决问题,解决这里问题的关键是建立两个变量之间的函数关系.1.(2014·安徽)如图,Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( ) A.53 B.52C.4D.52.(2014·武汉)如图,若双曲线y=kx与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为 .3.(2014·广州)若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为 .4.(2014·鄂州)如图,正方形ABCD边长为1,当M、N分别在BC,CD上,使得△CMN的周长为2,则△AMN的面积的最小值为 .参考答案类型之一整体思想1.B2.123.64.原式=()()()()21464x x x xx x---+-=224244x xx x-+-.∵x2-4x+1=0,∴x2-4x=-1.∴原式=224244x xx x-+-=1241-+-=-23.类型之二分类思想1.C2.5或73.(5,9)或(11,-9)或(-5,3)4.(3,4)或(2,4)或(8,4)5.t=2或3≤t≤7或t=86.(0,12)或(0,-12)提示:当点C在y轴的上方时,如图,作BD⊥AC于D,与y轴交于点E.∵∠BCA=45°,∴∠CBD=∠BCA=45°,∴BD=CD. ∵∠CDE=∠ADB=90°,∠CED=∠BEO, ∴∠ECD=∠ABD,∴△CED ≌△BAD, ∴EC=AB=10.设OE=x ,∵∠COA=∠BOE=90°, ∴△BEO ∽△CAO, ∴104x +=6x ,x=2或x=-12(舍去), ∴OC=OE+CE=2+10=12,∴点C(0,12).当点C 在y 轴的下方时,同理可求得点C(0,-12). 故答案为(0,12)或(0,-12). 7.12或20提示:如图1所示.∵在□ABCD 中,BC 边上的高为4,AB=5,AC=25, ∴EC=22AC AE -=2,AB=CD=5,BE=22AB AE -=3,∴AD=BC=5,∴□ABCD 的周长等于20.如图2所示.∵在□ABCD 中,BC 边上的高为4,AB=5,5, ∴EC=AC2-AE2=2,AB=CD=5,BE=AB2-AE2=3, ∴BC=3-2=1,∴□ABCD 的周长等于1+1+5+5=12. 则□ABCD 的周长等于12或20. 故答案为:12或20.类型之三 转化思想1.A2.C3.24.125.206.(3236 提示:如图所示.△BCD 是等腰直角三角形,△ACD 是等边三角形,在Rt △BCD 中,CD=22BC BD +=62(cm ),∴BE=12CD=32 cm , 在Rt △ACE 中,AE=22AC CE -=36(cm ),∴从顶点A 爬行到顶点B 的最短距离为(3236+)cm. 故答案为:(3236+).类型之四 数形结合思想1.A2.B3.B4.A5.C类型之五 方程、函数思想1.C提示:设BN=x,则依据折叠原理可得DN=AN=9-x.又D 为BC 的中点,∴BD=3.在Rt △NBD 中,利用勾股定理,可得BN 2+BD 2=DN 2,则有32+x 2=(9-x)2,解得x=4,即BN=4.故选择C. 2.93提示:过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,设OC=3x ,则BD=x ,在Rt △OCE 中,∠COE=60°, 则OE=32x ,CE=332x ,则点C 坐标为(32x ,332x), 在Rt △BDF 中,BD=x ,∠DBF=60°,则BF=12x ,DF=32x , 则点D 的坐标为(5-12x ,32x),将点C的坐标代入反比例函数解析式可得k=93x2,将点D的坐标代入反比例函数解析式可得k=53x-3x2,则93x2=53x-3x2,解得x1=1,x2=0(舍去),故k=934×12=934.3.5 4提示:由根与系数的关系得到:x1+x2=-2m,x1x2=m2+3m-2,原式化简=3m2-3m+2=3(m-12)2+54.∵方程有实数根,∴Δ≥0,m≤23.当m=12时,3m2-3m+2的最小值为54.4.2-1提示:延长MB至G使GB=DN,连接AG.∴△ADN≌△ABG.∵CN+CM+MN=2,CN+CM+DN+BM=2,∴MN=MG.∴△AMN≌△AMG.要使△AMN的面积的最小,即△AGM的面积最小.∵AB=1,所以MG最小,即MN最小.在Rt△CMN中,周长一定,当△CMN为等腰直角三角形时,斜边MN最小.设CM=x,则2,∴2∴22∴△AMN2。