按叠加原理作弯矩图

合集下载

梁的剪力和弯矩剪力图和弯矩图

梁的剪力和弯矩剪力图和弯矩图

2、计算1-1 截面旳内力 FA
3、计算2-2 截面旳内力
M2
F=8kN
FS1
M1 FS1 FA F 7kN M1 FA 2 F (2 1.5) 26kN m
q=12kN/m
FS2
FB
FS2 q 1.5 FB 11kN
M2
FB
1.5 q 1.5 1.5 2
30kN m
2
1
例题
求下图所示简支梁1-1与2-2截面旳剪力和弯矩。
F=8kN
q=12kN/m
A 2m
FA 1.5m
1 1 1.5m
2
B
2
1.5m
3m
FB
解: 1、求支反力
3 M B 0 FA 6 F 4.5 q 3 2 0 FA 15kN
Fy 0 FA FB F q 3 0 FB 29kN
梁任意横截面上旳剪力,等于作用在该截面左边 (或右边)梁上全部横向外力旳代数和。截面左 边向上旳外力(右边向下旳外力)使截面产生正旳 剪力,反之相反。【左上右下为正,反之为负】 梁任意横截面上旳弯矩,等于作用在该截面左 边(或右边)全部外力(涉及外力偶)对该截面 形心之矩旳代数和。截面左边(或右边)向上旳 外力使截面产生正弯矩,反之相反。【左顺右逆 为正,反之为负】
一、梁平面弯曲旳概念
1、平面弯曲旳概念
弯曲变形:作用于杆件上旳外力垂直于杆件旳轴线,使 杆旳轴线由直线变为曲线。
平面弯曲:梁旳外载荷都作用在纵向对称面内时,则梁旳轴 线在纵向对称面内弯曲成一条平面曲线。
q F
Me 纵 向
对称面
B
A
x
y FAy
FBy
以弯曲变形为主旳直杆称为直梁,简称梁。 平面弯曲是弯曲变形旳一种特殊形式。

建筑力学中应用叠加法绘制弯矩图的新探讨

建筑力学中应用叠加法绘制弯矩图的新探讨

建筑力学中应用叠加法绘制弯矩图的新探讨作者:程晶晶来源:《科技资讯》2023年第16期关键词:建筑力学叠加法矩图探讨中图分类号: G64 文献标识码: A 文章编号: 1672-3791(2023)16-0150-04力学的概念起源于古人对自然现象的观察、在自然界生产活动过程中总结的经验。

16—17 世纪,力学开始发展成为一门相对独立、系统的自然科学门类。

建筑力学是建筑行业的基础课程,它旨在帮助学生们更好地理解建筑结构的客观特征,并掌握结构构件的受力特性,从而为建筑设计和施工提供坚实的基础。

通过应用叠加原理,我们可以使用一种全面的、多维度的分析和综合方法。

通过叠加原理,当结构构件处于弹性范围内,受到多种荷载的共同影响,其反应将会以线性方式发展,也就是说,每种荷载的影响都会相当于它们单独施加的力的总和。

在分析问题和解决问题上,是把复杂的研究问题,分解为若干个简单问题,在分析的基础上分别解决各个简单问题,然后将各个简单问题统一到复杂的研究问题上来,使复杂问题得到解决。

叠加法是一种将建筑物的力学和结构紧密联系起来的方法。

1 相关概念概述弯矩图描绘了杆件在不同截面上的弯曲变形情况。

曲线可以被广泛理解,从简单的直线到复杂的曲线,甚至可以被称为普遍的曲线。

弯矩图可以用来描述结构物的弯曲力,它们通常出现在受力部位,不需要标注正负值。

1.1 弯矩图的特征绘制弯矩图时,有两个关键步骤:首先,要准确描绘出曲线的形状,即确定弯矩图的特征;其次,要确定曲线的位置,即在已知曲线的形状和大小的基础上,确定平面曲线的位置,这就要求先确定曲线上任意两点的位置,这两点的位置就是指某两个截面处的弯矩值[1]。

可见,弯矩曲线的绘制过程主要是进行如下两个步骤:(1)确定图形特征和特征值;(2)可以得出某两个截面上的弯矩值。

1.2 绘制方式首先,根据单跨梁的特性和规律,绘制出附属部分的弯矩图,然后再将其延伸至基本部分,以获得更准确的结果。

单跨超静定梁的杆端弯矩和杆端剪力

单跨超静定梁的杆端弯矩和杆端剪力
已知梁的eiea解1选取基本结构原结构是三次超静定梁去掉支座b的固定端约束并代之以相应的多余未知力x1x2和x3得到图1911b2建立力法方程根据原结构支座b处位移为零的11x112x213x31p021x122x223x32p031x132x233x33p03计算系数和自由项分别作基本结构的荷载弯矩图mp图和单位弯矩图m1图m2图m3图如图1911cdef利用图乘法求得力法方程中各系数和自由项分别为11l33ei22lei33lea1221l22ei13310233201pql48ei2pql36ei3p04求多余未知力将以上各系数和自由项代入力法解得3241223123xx0328xx026x0llqleieieillqleieieilea?????212311xxx0212qlql???5作内力图作mmm1x1m2x2m3x3mp计算abmab112ql2上拉mba112ql2上拉m跨中124ql2下拉根据三点竖标连以光滑曲线q相对应m为抛物线得图1911g所示m图
Δ1=δ11X1+δ12X2+δ13X3+Δ1P=0
Δ2=δ21X1+δ22X2+δ23X3+Δ2P=0
b
Δ3=δ31X1+δ32X2+δ33X3+Δ3P=0
式(b)就是由位移条件所建立的求解X1、X2和X3
对于n次超静定结构有n个多余约束,也就是有n 个多余未知力x1,x2,…,xn,且在n个多余约束处 有n个已知的位移条件,故可建立n个方程,例如原 结构在荷载作用下各多余约束处的位移为零时,有
11E 1 I
M 1 2dx1(1ll2l)l3 E I2 3 3E I
1
11q l2 3 q l4
1 P E IM 1 M P d x E I(3 2l l 4 l) 8 E I

区段叠加法作弯矩图

区段叠加法作弯矩图
叠加法作弯矩图 教学目的:
1、掌握叠加原理; 2、会用叠加法作弯矩图; 3、会用区段叠加法作弯矩图
重 点
1、叠加法绘制弯矩图 2、区段叠加法绘制弯矩图。
难 点
区段叠加法绘制弯矩图
叠加原理: 几个载荷共同作用的效果,等于各个载荷单独作用效果之和 “效果”——指载荷引起的反力、内力、应力或变形 “之和”——代数和 叠加原理成立的前提条件:小变形条件
+
1 Fl 8
+
1 Fl 4
6kN 6kN
A
2kN m
B
2kN m
D
C
2m
2m
4
2m
2m
2m
2m
+
+
4
6
4
-
MA A
q
MB B
l A
q
B A
MA
MB B
l
l
+
MA 1/8qL2
+
MB 1/8qL2 MA
+
MB
区段叠加法——用叠加法作某一段梁弯矩图的方法 原理
任意段梁都可以当作简支梁,并可以利用叠加法来作该段梁 的弯矩图
M x M1 x M 2 x
qx2 M x Fx 2
q
B
A F
X
l
叠加法——用叠加原理绘制弯矩图的方法
叠加时,易先画直线形的弯矩图,再叠加曲线形或折线形 的弯矩图 由于剪力图比较好画,重点介绍用叠加法画弯矩图
步骤:
1. 荷载分解 2. 作分解荷载的弯矩图
3. 叠加作荷载共同作用下 的弯矩图
注意:
弯矩图的叠加, 不是两个图形的简单叠加, 而是对应点处纵坐标的相加。

结构力学 叠加法

结构力学 叠加法

2.6叠加法作弯矩图当梁在荷载作用下变形微小,因而在求梁的支反力、剪力、弯矩时可直接代入梁的原始尺寸进行计算,且所得结果与梁上荷载成正比。

在这种情况下,当梁上有几项荷载作用时,由每一项荷载所引起的梁的支反力或内力,将不受其他荷载的影响。

所以在计算梁的某截面上的弯矩时,只需先分别算出各项荷载单独作用时在该截面上引起的弯矩,然后求它们的代数和即得到该截面上的总弯矩。

这种由几个外力共同作用引起的某一参数(内力、位移等)等于每一外力单独作用时引起的该参数值的代数和的方法,称为叠加法。

叠加法的应用很广,它的应用条件是:需要计算的物理量(如支反力、内力以及以后要讨论的应力和变形等)必须是荷载的线性齐次式。

也就是说,该物理量的荷载表达式中既不包含荷载的一次方以上的项,也不包含荷载的零次项。

例题2-9试按叠加原理做例题2-9图(a)所示简支梁的弯矩图。

求梁的极值弯矩和最大弯矩。

解:先将梁上每一项荷载分开(见图(b)、图(c)),分别做出力偶和均布荷载单独作用的弯矩图(见图(d)、图(e))两图的纵坐标具有不同的正负号,在叠加时可把它们画在x 轴同一侧(见图f)。

于是两图共有部分,其正、负纵坐标值互相抵消。

剩下的纵距(见图(f)中阴影线部分)即代表叠加后的弯矩值。

叠加后的弯矩图仍为抛物线。

如将它改画为以水平直线为基线的图,即得通常形式的弯矩图(见图(曲)。

求极值弯矩时,先要确定剪力为零的截面位置。

由平衡方程0Bm =∑可求得支反,剪力方程为Q 即可求出极值弯矩所在截面的位置。

令()0x极值弯矩为由例题2-9图(g)可见,全梁最大弯矩为本例中的极值弯矩并不大于梁的最大值弯矩。

当梁上的荷载较复杂时,也可将梁按荷载情况分段,求出每一段梁两端截面的内力。

这时该段梁的受载情况等效于一受相同荷载的简支梁 (见图2-12(a)、(b))。

因为每一段梁在平面弯曲时的内力,不外是轴力N、剪力Q和弯矩M。

由于轴力N不产生弯矩,故在作弯矩图时可将它略去,剩下的梁端剪力1Q,2Q和梁端弯矩1M、2M,及荷载对梁段的作用,可用图2-12(b)所示的简支梁上相应的荷载来代替(梁段端截面上的剪力可由梁的支反力提供,故图中未画出)。

4.4.5 用区段叠加法作静定梁的内力图解析

4.4.5 用区段叠加法作静定梁的内力图解析

【例 9.11】简支梁受荷载P和q作用如图9.22(a)所示。试用叠加法画梁的弯矩
【解】将作用在梁上的荷载分为P与q两组。 先分别画出P、q单独作用下的弯矩图,如图9.22(b)、(c)所示。然后将这
两个弯矩图的相应纵坐标叠加起来,如图9.22(a)所示,就是简支梁在集中荷 载P和均布荷载q
【例 9.12】外伸梁受荷载作用如图9.23(a)所示,试用叠加法画梁的弯矩图。
用在简支梁上时的弯矩图,为此必须先求出MA 和MB。
区段叠加法画弯矩图的具体步骤如下:
▲ 首先把杆件分成若干段,求出分段点上的弯矩 值,按比例标在杆件相应的点上,然后每两点间 连以直线。
▲ 如果分段杆件的中间没有荷载作用这直线就是 杆件的弯矩图。如果分段杆件的中间还有荷载作用, 那么在直线上还要叠加上荷载单独在相应简支梁上 产生的弯矩图形。
4.4.5 用区段叠加法作 梁的弯矩图
学习目标:学会用叠加法作内力图
叠加法画弯矩图
根据叠加原理来绘制内力图的方法称为叠加法。 用叠加法画弯矩图,绘图时先把作用在梁上的 复杂的荷载分成几组简单的荷载,分别作出各简单 荷载单独作用下的弯矩图,然后将它们相应的纵坐 标叠加,就得到梁在复杂荷载作用下的弯矩图。例 如图9.21(a)、(b)、(c)所示。 用叠加法画弯矩图时,一般先画直线形的弯矩 图,再叠画上曲线形的弯矩图。
图9.23
二、用区段叠加法画弯矩图
对图示简支梁把其 中的AB段取出,其隔 离体如图所示:
把AB隔离体与相 应的简支梁作一对 比:
Fp
q
A
L
q
MA
A
FQAB
q MA
显然两者是完全
A
相同的。
MA
A

材料力学第五章

材料力学第五章
材料力学
Mechanics of Materials 编制:邹思敏 审定:袁海庆
配套教材: 武汉理工大学出版社《材料力学》第三版
(主编 袁海庆)
5
弯曲内力
编制:邹思敏 审定:袁海庆
配套教材: 武汉理工大学出版社《材料力学》第三版 (主编 袁海庆)
5
弯曲内力
5.1 梁的平面弯曲 梁的计算简图 5.2 梁的内力 剪力和弯矩 5.3 剪力方程与弯矩方程 剪力图与弯矩图 5.4 内力与分布荷载间的关系及其应用 5.5 用区段叠加法作梁的弯矩图
y
A
m
n
x B q(x)
x
m n
dx
M(x)+dM(x)
q( x)dx dFQ ( x)
M ( x)
O1
dFQ x q x dx
FQ(x) dx
FQ(x)+dFQ(x) q(x)
5.4.1 剪力、弯矩与分布荷载集度间的关系
对n-n截面形心O1取矩,有
y
A
m
n
m
O1
0 ,
x B q(x)
FQ
二、弯曲内力的正负号规定: 剪力FQ :
FQ dl
+
FQ FQ

FQ
以使脱离体有顺时针旋转趋势为正
二、弯曲内力的正负号规定:
弯矩M:
+
M M

M
M
以使梁下部纤维受拉为正 为了与后续课程结构力学取得一致,规定弯矩 图要画在梁纤维受拉的一面,可以不标正负号。
例5.1 求简支梁C,B截面的内力。
M 直线 (一般为斜直线) 图 特 征
Me
C
利用以上特征

叠加法绘制弯矩图-PPT

叠加法绘制弯矩图-PPT

AX l
B
F
叠加法——用叠加原理绘制弯矩图的方法
叠加时,易先画直线形的弯矩图,再叠加曲线形或折线形 的弯矩图
由于剪力图比较好画,重点介绍用叠加法画弯矩图
步骤: 注意:
1. 荷载分解 2. 作分解荷载的弯矩图
3. 叠加作荷载共同作用下 的弯矩图
弯矩图的叠加, 不是两个图形的简单叠加, 而是对应点处纵坐标的相加。
叠加法绘制弯矩图
重点
1、叠加法绘制弯矩图 2、区段叠加法绘制弯矩图。
难点
区段叠加法绘制弯矩图
叠加原理:
几个载荷共同作用的效果,等于各个载荷单独作用效果之和
“效果”——指载荷引起的反力、内力、应力或变形
“之和”——代数和
叠加原理成立的前提条件:小变形条件
q
MxFxqx2
2
M x M 1 x M 2 x
kN
190 160
kNm
210 280
340
4
-
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
MA A
MA
q
MB
B
lபைடு நூலகம்
q
A
l
+
+
MB
1/8qL2
1/8qL2
MA BA
l
+
MA
MB B
MB
区段叠加法——用叠加法作某一段梁弯矩图的方法 原理
任意段梁都可以当作简支梁,并可以利用叠加法来作该段梁 的弯矩图
梁分一段: A端截面弯矩:M=MA B端截面弯矩:M=MB
各控制面弯矩分别为:
MA=-12KN MD=8KN MB=-4KN
6KN q=2KN/m

材料学 剪力、弯矩与分布荷载集度间的关系

材料学 剪力、弯矩与分布荷载集度间的关系
二、适用条件 (Application condition)
所求参数(内力、应力、位移)必然与荷载满足线性关系. 即在弹性限度内满足胡克定律.
三、步骤 (Procedure)
(1)分别作出各项荷载单独作用下梁的弯矩图; (2)将其相应的纵坐标叠加即可(注意:不是图形的简单拼凑)
例16 悬臂梁受集中荷载 F 和均布荷载 q 共同作用,试按叠加原
在CD和DB段,剪力为负值, 弯矩图为向下倾斜的直线.
FRA F
1
2
A
C
200 1265
23.6
+
1.7
F FRB
3
D
B
115
最大弯矩发生在剪力改变正、负 号的 C截面处.说明剪力图和弯矩图 是正确的.
27
+
例题11 一简支梁受均布荷载作用,其集度 q=100kN/m ,如图 所
示.试用简易法作此梁的剪力图和弯矩图.
40kN·m
+
a 2m
b
cd
2m 2m
a
b
c
d
CD段 剪力图为水平直线 且FS(x) = 0
20kN
(2)作荷载图 AB段 无荷载 在A处有集中力偶
Me= 40kN·m ( ) B 处有集中力.
集中力 F = 20kN () BC段 无荷载 C处有集中力
集中力 F = 20kN ( ) CD段 无荷载
FS(x)
M(x)
M(x)
x
O
x
O
O
x
3. 在集中力作用处剪力图有突变,其突变值 等于集中力的值.弯矩图有转折.
4. 在集中力偶作用处弯矩图有突变,其突 变值等于集中力偶的值,但剪力图无变化.

土木工程力学教案——弯曲内力及扭转时的内力

土木工程力学教案——弯曲内力及扭转时的内力

一、用叠加法画弯矩图(一)、叠加原理由于在小变形条件下,梁的内力、支座反力,应力和变形等参数均与荷载呈线性关系,每一荷载单独作用时引起的某一参数不受其他荷载的影响。

所以,梁在n个荷载共同作用时所引起的某一参数(内力、支座反力、应力和变形等),等于梁在各个荷载单独作用时所引起同一参数的代数和,这种关系称为叠加原理(图9-20)。

=M图图9-20 叠加原理(二)、叠加法画矩图根据叠加原理来绘制梁的内力图的方法称为叠加法。

由于剪力图一般比较简单,因此不用叠加法绘制。

下面只讨论用叠加法作梁的弯矩图。

其方法为,先分别作出梁在每一个荷载单独作用下的弯矩图,然后将各弯矩图中同一截面上的弯矩代数相加,即可得到梁在所有荷载共同作用下的弯矩图。

为了便于应用叠加法绘内力图,在表9-1中给出了梁在在简单荷截作用下的剪力图和弯矩图,可供查用。

【例9-9】试用叠加法画出图9-21所示简支梁的弯矩图。

【解】(1)先将梁上荷载分为集中力偶m和均布荷载q两组。

(2)分别画出m和q单独作用时的弯矩图M1和M2(图9-21b、(a)M图(b)M1图(c)M2图图9-21 例9-9图c),然后将这两个弯矩图相叠加。

叠加时,是将相应截面的纵坐标代数相加。

叠加方法如图9-21a 所示。

先作出直线形的弯矩图M 1(即ab 直线,可用虚线画出),再以ab 为基准线作出曲线形的弯矩图M 2 。

这样,将两个弯矩图相应纵坐标代数相加后,就得到m 和q 共同作用下的最后弯矩图M (图9-21a )。

其控制截面为A 、B 、C 。

即A 截面弯矩为 :m m M -=+-=0A ,B 截面弯矩为 :000B =+=M跨中C 截面弯矩为:282C mql M -= 叠加时宜先画直线形的弯矩图,再叠加上曲线形或折线形的弯矩图。

由上例可知,用叠加法作弯矩图,一般不能直接求出最大弯矩的精确值,若需要确定最大弯矩的精确值,应找出剪力Q =0的截面位置,求出该截面的弯矩,即得到最大弯矩的精确值。

叠加法在绘制弯矩图中的应用

叠加法在绘制弯矩图中的应用

叠加法在绘制弯矩图中的应用作者:詹景元石煜威朱芳振来源:《建材发展导向》2015年第03期摘要:弯矩图是结构力学最为重要和基础的知识点,是后续变形和位移计算的关键内容。

但是现在的大部分教材对于弯矩图的绘制技巧和一些特殊情况的处理方法的介绍并不是很多,只是通过几道例题去将弯矩图的画法展现出来,让学生自己去理解,这便使得不少学生对于弯矩图的绘制感到无从下手。

文章通过对书本上例题的理解分析,总结出叠加法运用在绘制弯矩图中的一些简单的基本理念和分析方法。

关键词:弯矩图;叠加法;静定结构1 叠加法的介绍1.1 叠加法的前提条件材料力学讨论的杆件均满足几个基本假设,其中,小变形假设是指构件在承受荷载作用时,所产生的变形和构件的原始尺寸相比非常微小。

由于变形量微小,我们在研究杆件的支反力、内力、应力、变形等问题时都可以用构件的原始尺寸和形状进行计算,不必考虑构件受荷变形后尺寸变化给计算带来的影响。

同时,采用构件的原始尺寸进行计算所得的支反力、内力、应力、变形均与梁上的荷载保持线性关系。

1.2 叠加法的使用条件叠加法的理论依据就是叠加原理,它不仅可以用来梁的位移,也可用来计算梁的支反力、内力和应力;它不仅可用于梁,也可用于拉(压)杆和其他结构。

一般来说,当构件或结构上同时作用几个荷载时,如果各荷载产生的效果(应力、反力、内力和位移等)互不影响(或影响甚小可忽略不计),则它们所产生的总效果即等于各荷载单独作用时所产生的效果总和(或为代数和,或为矢量和,由所求的物理量的性质而定)。

在土木工程实践中,一般的梁工作时变形很小,由梁上荷载产生的剪力和弯矩与荷载呈线性关系,并且其跨长的改变可以略去不计。

因此当梁上同时受到几个载荷作用时,由每一个载荷所引起的梁的内力将不受其他载荷的影响,满足叠加原理的条件,即可用叠加法来计算梁的内力(包括剪力、弯矩等)。

1.3 叠加法的使用准备梁的内力采用叠加法来求解时,必须要对简单梁承受单个基本荷载时的内力分布比较熟悉,这样叠加计算才会比较简单便捷。

建筑力学:区段叠加法绘制弯矩图

建筑力学:区段叠加法绘制弯矩图
区段叠加法绘制弯矩图
目录
知识回顾 区段叠加法绘制弯矩图 应用举例
知识回顾
分荷载叠加法绘制弯矩图
MA A a
MA
F
b l (a)
MB
B
(1)分别绘出梁MA、MB,和荷载F作用下的弯矩图。 (2)两个弯矩图的竖标叠加,得最终弯矩图。
分荷载叠加法仅适用于荷载较少的情况, 实际绘图时可以直接作出图(d)。
12
12
FB 11 kN( )
(2)计算各控制截面的弯矩
MC 0 MF 0
M A 6 2 12 kN m
M D 66 15 4 2 4 2 8 kN m
M E 2 2 3 11 2 10 kN m M B 2 2 1 4 kN m
2
4
ql 2 2 42
=
=4kN m
MB
应用举例
利用区段叠加法绘制如图所示外伸梁的弯矩图。 6kN 2kN/m 8kN
2kN/m
解:(1)计算支座反力
MB 0, FA 8 610+2 4 6 8 2 2 21 0
FA 15 kN( )
CA
D EB
F
FA
FB
2m 4m
2m 2m 2m
MA(F) 0, 6 2 2 4 2 8 6 FB 8 2 2 9 0
1 叠加原理绘制弯矩图时,有哪些步骤? 2 需在图上标注哪些内容?
谢谢观看
MB
(b)
(仅力偶作用的M 图)
Fab (c) l
(仅F 作用的M 图)
MA
MB
Fab
l (d)
区段叠加 法绘制弯矩图
区段为集中力作用 (1)将两端弯矩MA和MB绘出,并连以直线

结构力学 叠加法

结构力学 叠加法

2.6叠加法作弯矩图当梁在荷载作用下变形微小,因而在求梁的支反力、剪力、弯矩时可直接代入梁的原始尺寸进行计算,且所得结果与梁上荷载成正比。

在这种情况下,当梁上有几项荷载作用时,由每一项荷载所引起的梁的支反力或内力,将不受其他荷载的影响。

所以在计算梁的某截面上的弯矩时,只需先分别算出各项荷载单独作用时在该截面上引起的弯矩,然后求它们的代数和即得到该截面上的总弯矩。

这种由几个外力共同作用引起的某一参数(内力、位移等)等于每一外力单独作用时引起的该参数值的代数和的方法,称为叠加法。

叠加法的应用很广,它的应用条件是:需要计算的物理量(如支反力、内力以及以后要讨论的应力和变形等)必须是荷载的线性齐次式。

也就是说,该物理量的荷载表达式中既不包含荷载的一次方以上的项,也不包含荷载的零次项。

例题2-9试按叠加原理做例题2-9图(a)所示简支梁的弯矩图。

求梁的极值弯矩和最大弯矩。

解:先将梁上每一项荷载分开(见图(b)、图(c)),分别做出力偶和均布荷载单独作用的弯矩图(见图(d)、图(e))两图的纵坐标具有不同的正负号,在叠加时可把它们画在x 轴同一侧(见图f)。

于是两图共有部分,其正、负纵坐标值互相抵消。

剩下的纵距(见图(f)中阴影线部分)即代表叠加后的弯矩值。

叠加后的弯矩图仍为抛物线。

如将它改画为以水平直线为基线的图,即得通常形式的弯矩图(见图(曲)。

求极值弯矩时,先要确定剪力为零的截面位置。

由平衡方程0Bm =∑可求得支反,剪力方程为Q 即可求出极值弯矩所在截面的位置。

令()0x极值弯矩为由例题2-9图(g)可见,全梁最大弯矩为本例中的极值弯矩并不大于梁的最大值弯矩。

当梁上的荷载较复杂时,也可将梁按荷载情况分段,求出每一段梁两端截面的内力。

这时该段梁的受载情况等效于一受相同荷载的简支梁 (见图2-12(a)、(b))。

因为每一段梁在平面弯曲时的内力,不外是轴力N、剪力Q和弯矩M。

由于轴力N不产生弯矩,故在作弯矩图时可将它略去,剩下的梁端剪力1Q,2Q和梁端弯矩1M、2M,及荷载对梁段的作用,可用图2-12(b)所示的简支梁上相应的荷载来代替(梁段端截面上的剪力可由梁的支反力提供,故图中未画出)。

理论力学-叠加法

理论力学-叠加法

2a
(h)
a
1 1 M C ( 291 ) 122 ( 215 ) 131KN m 2 2
绘出叠加后的弯矩图如图 e 所示。
P1
D
P2
A C B
P3
E D
P1
A B
E
a
a
a
a
(f)
a
2a
(e)
E3 P D A B D
P2
A C B E
a
(h)
a
(g)
2a
a
+
P
x q
(c)
x
叠加原理:由几个外力共同作用时所引起的某一参数 (内力,应力,位移),就等于每个外力单独作用时所 引起的该参数值的代数和。 例题4-17 试按叠加原理作图 a 所示简支梁的弯矩图, 设 m
ql ,求梁的极值弯矩和最大弯矩。 8
m q
A
2
x
l
m
m
q
A
q
B
A B A B
x
l
l
l
+
+
D
a
a
(a)
a
a
a
2a
(b)
P2
A C B
E D
P3
A B E
a
(C)
a 例题4-18图
2a
(d)
a
P1
D
A B
P2
E D
A C B
E
a
2a
(g)
a
a
(f)
+
P3
D A B E
M A 291 0 0 291KN m M B 0 0 215 215KN m

国家开放大学《土木工程力学(本)》章节测试参考答案

国家开放大学《土木工程力学(本)》章节测试参考答案

国家开放大学《土木工程力学(本)》章节测试参考答案1.绪论一、选择题1.图示支座形式可简化为(B)A. B. C. D.2.图示支座形式可简化为(D)A. B. C. D.3.刚结点在结构发生变形时的特征是()A.刚结点自身不会转动可任意改变B.结点处各杆端之间的夹角保持不变C.所联结的杆件可绕结点自由转动D.结点处各杆端之间的夹角可任意改变4.()不允许结构在支承处发生任何方向的移动和转动A.固定支座B.定向支座C.活动铰支座D.固定铰支座5.()不允许结构在支承处发生转动,也不能沿垂直于支承的方向移动,但可沿平行于支承的方向滑动A.固定铰支座B.活动铰支座C.固定支座D.定向支座6.()只允许结构在支承处绕铰A转动,而不能发生任何移动A.固定铰支座B.固定支座C.活动铰支座D.定向支座7.()只约束了支承链杆方向的位移,允许结构绕铰转动,也可沿着垂直于链杆的方向移动A.活动铰支座B.定向支座C.固定支座D.固定铰支座8.根据荷载的不同特征,荷载可分类,()是指满布在结构或构件某部分面积上的荷载A.集中荷载B.分布荷载C.恒载D.静力荷载2.平面体系的几何组成分析一、选择题1.三刚片组成几何不变体系的规则是()。

A.三铰三链杆相连,杆不通过铰B.三链杆相连,不平行也不相交于一点C.三铰两两相连,三铰不在一直线上D.一铰一链杆相连,杆不过铰2.在无多余约束的几何不变体系上增加二元体后构成()。

A.有多余约束的几何不变体系B.无多余约束的几何不变体系C.瞬变体系D.可变体系3.对图示平面体系进行几何组成分析,该体系是()。

A.瞬变体系B.无多余约束的几何不变体系C.有一个多余约束的几何不变体系D.几何可变体系4.对图示平面体系进行几何组成分析,该体系是()。

A.有一个多余约束的几何不变体系B.无多余约束的几何不变体系C.瞬变体系D.几何可变体系5.对图示平面体系进行几何组成分析,该体系是()。

A.瞬变体系C.有两个多余约束的几何不变体系D.有一个多余约束的几何不变体系6.对图2-27所示平面体系进行几何组成分析,该体系是()。

土木工程力学(本)力法计算题答案新(往年考题)-----

土木工程力学(本)力法计算题答案新(往年考题)-----

11
1P
x1

EI
M
145 32
M
(kN)
2 1
ds
1M EI
P

d
1 EI
S




1 44 8
2
1 EI
2m
3
1 20 2 10
2

4
1 EI
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

弯曲内力;- 副本

弯曲内力;- 副本

内力分析
1. 外力分析
Fx 0, M A 0, Fy 0
FAx qa, FCy FAy qa/2
2. 建立内力方程
BC 段:
FS1


qa 2
,
M1

qa 2
x1
AB 段:
FS2 qx2 ,
M2

qa 2
a

q 2
x22
FN2

qa 2
3. 画内力图
FS1
F
q
x
A
B
M
F
=
x
A
B
+
M1
q
A
B
x
M2
例: 作下列图示梁的内力图。
F
FL
Fs
x
0
L
0.5F
L
0.5F
L

L
F
Fs1
0.5F
+
x –
L
0.5F
0.5F
FL
Fs2
x

L
0.5F
0.5F
x x x
F FL
0
L
L F
M FL
0.5F
L
FL
L
0.5F
M1
0.5FL 0.5FL
0.5F
L
L
0.5F
M2
0.5FL
x q 0,
( 积分关系FsB=FsA+0)
M
M A 0, M B qa2 ,
1.5qa2 ;
(Fs < 0,所以M图向负方向斜 MB= MA+(-qa a)=0-qa2 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F
x
F, q 作用该截面上的弯矩等于F, q 单独作 用该截面上的弯矩的代数和
q
qx M ( x ) Fx 2
2
x
3
(Internal forces in beams)
F
q
2 ql 6
+
2l/3
2 ql 81
M F ( x ) Fx
+
x l
Fl
F
2
ห้องสมุดไป่ตู้
qx M q ( x) 2
2 ql 6
1
(Internal forces in beams)
三、步骤 (Procedure)
(1)分别作出各项荷载单独作用下梁的弯矩图;
(2)将其相应的纵坐标叠加即可(注意:不是图形的简单拼凑) 例16 悬臂梁受集中荷载 F 和均布荷载 q 共同作用, 试按叠加 原理作此梁的弯矩图. F=ql/3 q
x
F2 F1 F3
a
122
a
a
a
d
a
+
c
d
a
c
b
e
d
a
c
b
5 215
e
b
e 291
(Internal forces in beams)
F1
D a A
F2
C B
F3
E
d
a
c
b
e
291 a a c 131 215 291 a a
122
d
a
d
a
1 1 M C ( 291 ) 122 ( 215 ) 131kN m 2 2
FS (F1 ,F2 , ,Fn ) = FS (F1 ) + FS ( (F2 ) + + FS (Fn )
M (F1 , F2 , , Fn ) M (F1 ) M (F2 ) M (Fn )
二、适用条件 (Application condition)
所求参数(内力、应力、位移)与荷载满足线性关系. 即在 弹性限度内并满足胡克定律时适用.
+
c b e c
d
b
e
b
e
215
6
2 ql 2
x
q
x
4
l/3
(Internal forces in beams)
例题17 图示一外伸梁,a = 425mm , F1
D
a
F2
A C B
F3
E
F1、 F2 、 F3 分别为 685 kN, 575 kN,
506 kN. 试按叠加原理作此梁的弯矩图 ,求梁的最大弯矩.
a
a
a
解:将梁上荷载分开
l
2
(Internal forces in beams)
解: 悬臂梁受集中荷载 F 和均布荷载 q 共同作用,
在距左端为 x 的任一横截面上的弯矩为 F=ql/3
qx M ( x ) Fx 2
2
q
F 单独作用 M F ( x ) Fx q单独作用
x
2
l
qx M q ( x) 2
(Internal forces in beams)
§4-5 按叠加原理作弯矩图 (Drawing bending-moment diagram by superposition method)
一、叠加原理 (Superposition principle)
多个载荷同时作用于结构而引起的内力等于每个载荷单独 作用于结构而引起的内力的代数和.
相关文档
最新文档