大学物理振动
大物知识点总结振动
大物知识点总结振动振动是物体周围环境引起的周期性的运动。
它是自然界中普遍存在的物理现象,了解振动现象对于理解物质的性质和物理规律具有重要意义。
振动现象广泛存在于自然界和人类生活中,如大地的地震、声波的传播、机械振动、弹性体的振动等等。
本文将介绍大物知识点中与振动相关的内容,并做相应总结。
一、简谐振动简谐振动是指体系对于某个平衡位置附近作微幅振动,其回复力正比于位移的现象。
它是最基本的振动形式,也是在自然界中广泛存在的振动。
简谐振动的重要特征包括振幅、周期、频率、角频率、相位等。
简谐振动的数学描述是通过简谐振动的运动方程来完成的,对于弹簧振子来说,它的运动方程是x = Acos(ωt + φ),其中x为位移,A为振幅,ω为角频率,t为时间,φ为相位。
利用这个方程,我们可以得到简谐振动的各种运动参数,如速度、加速度、动能、势能以及总机械能。
对于简谐振动系统,我们可以利用牛顿第二定律与胡克定律来进行分析。
牛顿第二定律可以得出振动体的加速度与回复力的关系,而胡克定律则是描述了挠性介质的回复力与位移的关系。
利用这两个定律,我们可以得到简谐振动的运动参数和系统的动力学性质。
二、受迫振动和共振在实际中,许多振动都是在外力的驱动下进行的,这种振动被称为受迫振动。
受迫振动是振动中的另一个重要现象,它包括了临界阻尼和过阻尼等多种振动状态。
受迫振动系统的特点是具有固有振动频率以及外力频率,当外力频率与系统的固有振动频率相近时,就会出现共振现象。
共振是指系统受到外力作用后,振幅或能量急剧增大的现象。
共振现象在实际工程中有着重要应用,如建筑结构的抗震设计、桥梁的结构设计等。
三、波的传播波是另一种重要的振动形式,它在自然界和人类生活中都有着广泛的应用。
波的传播包括机械波、电磁波、物质波等多种形式,它的传播速度和传播方式与特定介质的性质密切相关。
波的传播是通过介质中的微小振动来实现的,振动的传递使得能量和信息得以传播。
在波的传播中,我们可以通过波动方程来描述波的传播规律,如弦上的横波传播可以通过波动方程来描述,光波的传播也可以通过麦克斯韦方程来描述。
《大学物理》第14章 振动
a = - 2A cos (t + ) = 2A cos (t + + )
加速度超前位移 amax = 2A = (k/m)A
上页 下页 返回 退出
相位和初相
相位 (t 0 ) :决定简谐运动状态的物理量。
其中v为物体 m 距平衡位置 x 处的速度。 忽略摩擦,总机械能 E 保持不变。随着 物体来回振动,势能和动能交替变化。
上页 下页 返回 退出
§ 14-3简谐振动的能量
在x = A 和 x = - A处,v = 0,
E = m(0)2/2 + kA2/2 = kA2/2 (14-10a) 简谐振子的总机械能正比于振幅的平方。
dx/dt = - A sin (t + ) d2x/dt2 = - 2 A cos (t + ) = - 2 x
0 = d2x/dt2 + (k/m) x = - 2 x + (k/m) x
(k/m - 2) x = 0 只有当 (k/m - 2) = 0 时,x不为零。因此
a = - (410 m/s2) cos(1650t). (c) 在t = 1.0010-3 s 时刻
x = A cos t
= (1.510-4 m) cos[(1650 rad/s)(1.0010-3 s)]
= (1.510-4 m) cos(1.650 rad/s) = -1.210-5 m.
上页 下页 返回 退出
§ 14-1 弹簧的振动
例题 14-1 汽车弹簧。当一个质量为200公斤的 一家四口步入一辆总质量为1200公斤的汽车 里,汽车的弹簧压缩了3厘米。(a) 假设汽车 里的弹簧可视为单个弹簧,弹簧劲度系数为 多少? (b) 如果承载了300公斤而不是200公 斤,则汽车将下降多少厘米?
大学物理振动的基本概念与波动定律
大学物理振动的基本概念与波动定律振动与波动是大学物理中重要的概念和定律,它们在自然界和工程领域中都有广泛的应用。
本文将从振动的基本概念入手,介绍振动的特点和相应的数学表达方式,然后探讨波动的基本特性和波动定律。
一、振动的基本概念振动是物体周期性的来回运动,其特点包括周期性、频率、振幅和相位等。
振动可以分为简谐振动和非简谐振动两种形式。
1. 简谐振动简谐振动是指物体受到一个恢复力作用,且恢复力与位移成正比的振动。
其运动满足胡克定律,即恢复力与位移的方向相反、大小与位移成正比。
简谐振动的数学描述为:x = A sin(ωt + φ),其中,A为振幅,ω为角频率,t为时间,φ为初相位。
2. 非简谐振动非简谐振动是指受到恢复力作用的振动,但恢复力与位移的关系不满足简谐振动的条件。
非简谐振动的运动规律通常无法用简洁的数学公式描述,需要通过实验或数值模拟等手段进行研究。
二、振动的特点和数学表达方式振动具有周期性和频率的特点,可以用物体的运动方程、受力分析和力的势能等方式进行数学表达。
1. 运动方程振动的运动方程描述了物体的位置随时间的变化规律。
在简谐振动中,位置随时间的变化可以通过正弦函数来表示,即x = A sin(ωt + φ)。
该方程揭示了振动位置与时间的关系。
2. 受力分析振动的实现需要有恢复力的作用,恢复力可以来自弹性力、重力或其他约束力。
通过对物体所受到的力进行分析,可以帮助我们理解振动的原因和性质。
3. 势能与能量转换振动过程中,物体在振动周期内会由动能转为势能,再由势能转回动能。
这种能量转换与物体的振动特性密切相关,通过势能和能量的变化可以更深入地理解振动的机制。
三、波动的基本特性和波动定律波动是一种能量传播的方式,其特点包括波长、频率、波速和干涉等。
波动可以分为机械波和电磁波两种形式。
1. 机械波机械波是需要介质作为媒介传播的波动,典型的机械波包括水波、声波等。
机械波传播的速度与介质的性质有关。
大学物理 振动
P
A
M
第三象限
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
P
A
第三象限 M
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
P
A
第三象限
M
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
P
第三象限
A
M
第一象限
x
第四象限
注意:旋转矢量在第3象限 速度V〉0
第二象限
第三象限
第一象限
P
A
x
M
第四象限
注意:旋转矢量在第4象限 速度V〉0
第二象限
第三象限
第一象限
P
A
x
M
第四象限
注意:旋转矢量在第4象限 速度V〉0
第二象限
第三象限
第一象限
A
M Px
第四象限
注意:旋转矢量在第4象限 速度V〉0
第二象限
第三象限
第一象限
A
M Px
第四象限
第二象限 第三象限
t=t
51
一、同方向同频率的简谐振动的合成
1、解析法
x1=A1cos( t+ 1) x2=A2cos( t+ 2)
合振动 :
x x1 x2 A1 cos( t 1) A2 cos( t 2 )
(A1 cos1 A2 cos2) cos t (A1 sin1 A2 sin2)sin t
Acos
d 2t l
令 g l 2 则有:
d 2 2 0
大学物理课件-振动
t 0
(2)0 是t =0時刻的位相,即初位相(0—2之間取值)
用分析法確定特殊情況下的位相:
❖ t=0 時,x0=A, v0=0.
x0 v0
Acos0 A sin 0
A
0
0 0
X 0 X0=+A
1
❖ t=0時, x0=0, v0<0 v
X
0
❖ t=0時, x0=-A, v0=0
X
-A 0
2
2
O
Ek t
結論:
(1) 振子在振動過程中,動能和勢能分別隨時間 變化,但任一時刻總機械能保持不變。
(2) 動能和勢能的變化頻率是彈簧振子振動頻 率的兩倍。 (3)頻率一定時,諧振動的總能量與振幅的平方 成正比。(適合於任何諧振系統)
彈性勢能
Ep
1 2
kx 2
Ek E Ep
Ep
E
Ek
Ep
A
O Ax
§10-2 簡諧運動的合成
10-2-1 簡諧運動的合成 1. 兩個同方向、同頻率的簡諧運動的合成
某一質點在直線上同時參與兩個獨立的同頻率的簡 諧運動,其振動運算式分別表示為:
x1 A1 cos( t 1 ) x2 A2 cos( t 2 )
A A1 A2
x x1 x2
x A cos( t )
結論:
合運動仍為簡諧運動。
A2
A
2
1
A1
x2 x1
x
x
A A12 A22 2 A1 A2 cos( 2 1)
A2
A
tg 1 A1 sin 1 A2 sin 2 A1 cos 1 A2 cos 2
2
1
大学物理振动
4.1 简谐振动
一.简谐振动
一物理量随时间的变 化规律遵从余弦函数 关系,则称该物理量 作简谐振动。
表达式 x(t)=Acos( t+)
特点 (1)等幅振动 (2)周期振动 x(t)=x(t+T )
-A 0 A
X
表达式 x(t)=Acos( t+)
二. 描述简谐振动的特征量 1. 振幅 A: 即最大位移:x=±A 2. 角频率 (圆频率)ω (弧度/秒:rad/s) 3. 周期T 和频率 v ∵ ωT=2π ∴ T=2π/ω (s) (完成一次全振动所需的时间) 而 v = 1/T =ω/2π (Hz)
a
d2x d t2
2 Acos(
t
0)
2 Acos(
t
0
)
x、 v 、a
2A
A v
A
x
0
-A
- A
- 2A v > 0
<0
a<0 减速
<0 加速
<0 >0 减速
a
T t
>0 >0 加速
解题方法
由初始条件求解振幅和初位相:
设 t =0 时,振动位移:x = x0
振动速度:v = v0
x Acos( t ) xo Acos
谐振系统的总机械能:
E Ek Ep
1 m 2 A2 sin 2 ( t ) 1 kA2 cos2 ( t )
2
2
E
1 2
kA2
1 2m2 A2来自1 2mvm 2
x Acos t
X
Ep
Ek
E 1 kA2
2
X
结论:
大学物理知识点总结:振动及波动
利用超声波的能量作用于人体组织,产生热效应、机械效应等,达到治疗目的,如超声碎石、超声刀 等。
地震监测和预测中振动分析
地震波监测
通过监测地震波在地球内部的传播情况和变化特征,研究地震的发生机制和震源性质。
振动传感器应用
在地震易发区域布置振动传感器,实时监测地面振动情况,为地震预警和应急救援提供 数据支持。
图像
简谐振动的图像是正弦或余弦曲线,表示了物体的位移随时间的变化关系。
能量守恒原理在简谐振动中应用
能量守恒
在简谐振动中,系统的机械能(动能 和势能之和)保持不变。
应用
利用能量守恒原理可以求解简谐振动 的振幅、角频率等物理量。
阻尼振动、受迫振动和共振现象
阻尼振动
当物体受到阻力作用时,其振动会逐渐减弱,直至停止。 这种振动称为阻尼振动。
惠更斯原理在波动传播中应用
01
惠更斯原理指出,波在传播过程中,每一点都可以看作是新的 波源,发出子波。
02
惠更斯原理可以解释波的反射、折射等现象,并推导出斯涅尔
定律等波动传播规律。
在实际应用中,惠更斯原理被为波动现象的研究提供了重要的理论基础。
04
干涉、衍射和偏振现象
误差分析
分析实验过程中可能出现的误差来源,如仪 器误差、操作误差等;对误差进行定量评估 ,了解误差对实验结果的影响程度;提出减 小误差的方法和措施,提高实验精度和可靠
性。
感谢您的观看
THANKS
实例
钟摆的摆动、琴弦的振动、地震波的传播等 。
振动量描述参数
振幅
描述振动大小的物理量,表示物体离开平衡 位置的最大距离。
频率
描述振动快慢的物理量,表示单位时间内振 动的次数。
大学物理 振动
2
E Ek Ep
2
k /m
kA A (振幅的动力学意义)
2 2
1 2
x, v
简谐振动能量图
xt
0
x A cos t
o
T
能量
t
E
Ep
v t v A sin t
1 2
1 2 kA cos
2 2
kA
2
t
2
o
T
T
3T
4
2
4
T
t
Ek
1 2
4
常数 A 和 的确定(公式法)
x A cos( t ) v A sin( t )
初始条件 t 0
x x0
v v0
x 0 A cos
A
x
2 0
v0
2 2
v 0 A sin
tan
v0
x0
振动系统的三要素中,周期由系统本身性质决定, 振幅和初相由初始条件决定.
k ( x x 0 ) mgx c
2
mva I k ( x x 0 ) v mgv 0
mva I kxv 0 v a mva I kxv 0 R R
x k m I R
2
FT
R
FT
x0
O
FT
x
x 0
(
2
k m I R
例2 定滑轮半径为 R,转动惯量为 I ,一长度不变 的轻绳一端与固定的劲度系数为k的轻弹簧相连,另 一端与质量为 m 的物体相连,绳子与滑轮间无相对 滑动,忽略轮轴摩擦。现将物体从平衡位置拉下一小 段距离后释放,证明物体作谐振动并求其振动周期
大学物理第九章振动
⼤学物理第九章振动第9章振动本章要点:1. 简谐振动的定义及描述⽅法.2. 简谐振动的能量3. 简谐振动的合成物体在⼀定位置附近作周期性的往返运动,如钟摆的摆动,⼼脏的跳动,⽓缸活塞的往复运动,以及微风中树枝的摇曳等,这些都是振动。
振动是⼀种普遍⽽⼜特殊的运动形式,它的特殊性表现在作振动的物体总在某个位置附近,局限在⼀定的空间范围内往返运动,故这种振动⼜被称为机械振动。
除机械振动外,⾃然界中还存在着各式各样的振动。
今⽇的物理学中,振动已不再局限于机械运动的范畴,如交流电中电流和电压的周期性变化,电磁波通过的空间内,任意点电场强度和磁场强度的周期性变化,⽆线电接收天线中,电流强度的受迫振荡等,都属于振动的范畴。
⼴义地说,凡描述物质运动状态的物理量,在某个数值附近作周期性变化,都叫振动。
9.1 简谐振动9.1.1 简谐振动实例在振动中,最简单最基本的是简谐振动,⼀切复杂的振动都可以看作是由若⼲个简谐振动合成的结果。
在忽略阻⼒的情况下,弹簧振⼦的⼩幅度振动以及单摆的⼩⾓度振动都是简谐振动。
1. 弹簧振⼦质量为m的物体系于⼀端固定的轻弹簧(弹簧的质量相对于物体来说可以忽略不计)的⾃由端,这样的弹簧和物体系统就称为弹簧振⼦。
如将弹簧振⼦⽔平放置,如图9-1所⽰,当弹簧为原长时,物体所受的合⼒为零,处于平衡状态,此时物体所在的位置O就是其平衡位置。
在弹簧的弹性限度内,如果把物体从平衡位置向右拉开后释放,这时由于弹簧被拉长,产⽣了指向平衡位置的弹性⼒,在弹性⼒的作⽤下,物体便向左运动。
当通过平衡位置时,物体所受到的弹性⼒减⼩到零,由于物体的惯性,它将继续向左运动,致使弹簧被压缩。
弹簧因被压缩⽽出现向右的指向平衡位置的弹性⼒,该弹性⼒将阻碍物体向左运动,使物体的运动速度减⼩直到为零。
之后物体⼜将在弹性⼒的作⽤下向右运动。
在忽略⼀切阻⼒的情况下,物体便会以平衡位置O为中⼼,在与O点等距离的两边作往复运动。
图中,取物体的平衡位置O为坐标原点,物体的运动轨迹为x轴,向右为正⽅向。
大学物理(振动学)
)
(t 1
)
t
t
c) 利用位相差比较两个同方向、同频率简谐振动的步调
x1=A1cos(ωt+1) x2=A2cos(ωt+2)
2
1
当△ =±2kπ (k=0,1,2,…) 两振动步调一致,同相
当△ =±(2k+1)π (k=0,1,2,…) 两振动步调相反,反相
d) 位相也可以用来比较不同物理量的步调
转的矢量 A,在x 轴上的投 (或振动曲线)能画出振
影正好描述了一个简谐振动 幅矢量的位置,从而确定该 时刻位相
15
例1:
t
时刻
1
:
x1
A/
2 , 10t 方法:t时刻2
:
x2
0 , 2
0
(a) 取ox轴(沿振动方向)
1
1.
A 2
2
. o
3
2
3 2
Ax
(b)作参考圆:以o为圆心,振幅
A为半径作一圆周
定
判义
义
据式
式 x Acos(t )
6
二点说明
(1)特征方程成立的条件: 坐标原点取在平衡位置 (2)证明一种振动是简谐振动的一般步骤
a)确定研究对象,找平衡位置 b)建立以平衡位置为原点的坐标系 c)进行受力分析
d)利用牛顿定律或转动定律写出物体在任一位置 的动力学方程
e)根据判据判断该振动是否为简谐振动
m
T f
M
mg
sJddint22,Jgl mMl2,0lm gddt22
g 0 cos( t 0 )
l
f mg sin mg
a
l
l
d 2
大学物理机械振动课件
03 阻尼振动
阻尼振动的定义与特点
定义
阻尼振动是指振动系统受到阻力 作用,使得振动能量逐渐减少的
振动过程。
特点
随着时间的推移,振幅逐渐减小, 频率逐渐降低,直至振动停止。
阻尼力
阻尼振动过程中,系统受到的阻力 称为阻尼力,它与振动速度成正比, 方向与振动速度方向相反。
阻尼振动的描述方法
微分方程
阻尼振动的运动方程通常表示为二阶常微分方程,形式为 `m * d²x/dt² + c * dx/dt + k * x = 0`,其中 m、c、k 分别为质量、
振动压路机
利用共振原理来提高压实效果。
振动输送机
利用共振来输送物料,提高输送效率。
受迫振动与共振的能量转换
能量转换过程
外界周期性力对系统做正 功,系统动能增加;阻尼 使系统能量耗散,系统势 能减小。
转换关系
在振动过程中,外界对系 统的总能量输入等于系统 动能和势能的变化之和。
影响因素
阻尼系数、驱动力频率、 物体固有频率等。
能量耗散途径
阻尼振动的能量耗散途径 主要包括与周围介质之间 的摩擦、空气阻力、内部 摩擦等。
能量耗散的意义
阻尼振动的能量耗散有助 于减小系统振幅,避免因 过大振幅导致的结构破坏 或噪声污染等问题。
04 受迫振动与共振
受迫振动的定义与特点
定义:在外来周期性力的持 续作用下,物体发生的振动
称为受迫振动。
确定各简谐振动的振幅、相位差和频 率,在复平面内绘制振动相量,通过 旋转和位移操作找到合成振动的相量 表示。
振动合成的能量法
描述
能量法是通过分析各简谐振动的能量分布和转化,来研究振 动合成过程中的能量传递和平衡。
大学物理振动归纳总结
大学物理振动归纳总结振动是物理学中一个重要的概念,指的是物体相对静止位置周围的周期性运动。
在大学物理中,学生们学习了振动的基本原理、振动的类型和特性以及振动在实际应用中的重要性。
本文将对大学物理学习中的振动内容进行归纳总结,以帮助读者更好地理解和掌握这一领域的知识。
一、振动的基本概念振动是指物体围绕平衡位置来回运动的现象。
它具有以下基本特征:1. 平衡位置:物体在振动中的位置称为平衡位置,当物体不受外力作用时停留在该位置。
2. 振幅:振动物体离开平衡位置最大的距离称为振幅,用符号A表示。
3. 周期:振动物体从一个极端位置到另一个极端位置所经历的时间称为周期,用符号T表示。
4. 频率:振动物体每秒钟完成的周期数称为频率,用符号f表示,单位是赫兹(Hz)。
二、简谐振动简谐振动是最基本的振动形式,具有以下特点:1. 恢复力与位移成正比:简谐振动的特点是恢复力与位移成正比,且恢复力的方向与位移方向相反。
2. 线性势能场:简谐振动的位能与振动物体的位移成正比。
3. 几何意义:简谐振动可以用圆周运动来解释,振动物体的位置可以看作是绕圆心做匀速圆周运动的点的投影。
三、振动的参数和公式1. 振动的周期和频率:周期T与频率f之间满足关系:T=1/f。
2. 振动的角频率和频率:角频率ω与频率f之间满足关系:ω=2πf。
3. 振动的位移公式:对于简谐振动,位移x可以表示为:x = A *sin(ωt + φ),其中A表示振幅,ω表示角频率,t表示时间,φ表示初相位。
4. 振动的速度公式:振动物体的速度v可以表示为:v = -Aω *cos(ωt + φ)。
5. 振动的加速度公式:振动物体的加速度a可以表示为:a = -Aω² * sin(ωt + φ)。
四、受迫振动受迫振动是在有外界驱动力的情况下发生的振动。
其特点是振动的频率等于外界驱动力的频率,导致振动物体发生共振现象。
1. 共振现象:当外力频率等于振动物体的固有频率时,振动物体受到的外力最大,称为共振现象。
振动学基础-大学物理
2
A cos (t
)
7
8
特征量:
x 位移
A 振幅
广义:振动的物理量 最大位移 由初始条件决定 表征了系统的能量
9
x Acos t
圆频率 角频率
频率
2π
T 周期 T 1
系统的周期性 固有的性质 称固有频率…
t 相位 位相
初相位
初位相
取决于时间零点的选择
10
小结
S. H. V. 的判据
= /4 = /2 = 3/4
P··Q
= = 5/4 = 3/2 = 7/4
(-3/4) (-/2) (-/4)
35
§3 平面简谐波 一 机械波产生的条件 1 机械波的基本概念
一、波的产生 二、横波和纵波 三、波长 波的周期和频率 波速
36
一、机械波的产生 1、机械波——机械振动在弹性介质(固体、液 体和气体)内的传播
45
因 t' x u
yP (t)
A cos
t
x u
0
波线上任一点的质点任一瞬时的位移由上式给出, 此即所求的沿x 轴方向前进的平面简谐波的波动方程。
如果波沿x轴负方向传播,则相应的波动方程为:
yP (t)
A c os
t
x u
0
利用关系式 2 T 和 2 ,并uT概括波的两种可能的
y
hSg mg
船在任一位置时,以水面为坐标原点,竖直 向下的坐标轴为y 轴,船的位移用y 表示。
12
船的位移为y 时船所受合力为:
f (h y)Sg mg ySg
船在竖直方向作简谐振动,其角频率和周期为:
Sg
m
因 m Sh,
大学物理学 机械振动
大学物理学中的机械振动是指物体在受到外力作用后,产生周期性的来回振动运动的现象。
以下是关于机械振动的一些基本概念和内容:
1. 振动的基本特征
-周期性:振动是一个周期性的过程,即物体在围绕平衡位置来回振动。
-频率:振动的频率指的是单位时间内振动的周期数,通常用赫兹(Hz)表示。
-振幅:振动的振幅是物体从平衡位置最大偏离的距离。
2. 单自由度振动系统
-弹簧振子:是一种经典的单自由度振动系统,由弹簧和质点组成,受到弹簧的恢复力驱使质点振动。
-简谐振动:在没有阻尼和外力干扰的情况下,弹簧振子的振动是简谐的,即振动周期固定,频率与系统的固有频率相关。
3. 振动的参数和描述
-角频率:振动描述中常用的参数之一,表示振动的快慢程度,与频率之间有一定的关系。
-相位:描述振动状态的参数,表示振动的相对位置或状态。
-能量:振动系统具有动能和势能,能量在振动过程中不断转换,影响着振动的特性。
4. 阻尼振动和受迫振动
-阻尼振动:在振动系统中存在阻尼,会导致振动逐渐减弱,最终趋于稳定。
-受迫振动:当振动系统受到外力周期性作用时,会产生受迫振动,其频率与外力频率相同或有关。
5. 振动的应用
-工程领域:振动理论在工程领域有着广泛的应用,如建筑结构的抗震设计、机械系统的振动分析等。
-科学研究:振动理论也在物理学、工程学、生物学等领域中发挥重要作用,帮助解释和研究各种现象和问题。
以上是关于大学物理学中机械振动的一些基本内容和相关概念,希望能帮助您更好地理解这一领域的知识。
大学物理六振动
x
m
dx dt
0
式中
2 0
k m
系统固有频率
令
2m
称阻尼因子
阻尼振动方程为
d2 dt
x
2
2
dx dt
02
x
0
解 x A0et cos(t )
其中
2 0
2
第40页/共62页
2 0
2
三种阻尼振动
x
欠阻尼: 0
1.解析表达式 x Acos( t )
2.曲线描述
x
可知t 时刻质点
位置及速度方向
A
t
o
t
T
第5页/共62页
3.旋转矢量描述
用匀速圆周运动 几何地描述 简谐振动
t
逆时针转
t
A t0
-A
ox A x
矢量端点在x轴上的投影式 x Acos(t )
第6页/共62页
A
t
t=0
A
t+
o
x
x = A cos( t + )
物体做简谐振动
x0
mg kx0
o
x Acos( t ) Acos( k t )
x
m
x
思考:光滑斜面上的弹簧振子(k+m)平衡位置在何处?
是否简谐振动?若是,其w=?
第19页/共62页
3.单摆:无阻尼小角度摆动,摆长为l
平衡位置:摆球受合外力矩为零处(θ=0处)
任q角处:M合 J J m l2
第27页/共62页
3.一质点做简谐振动,其振动方程为
x
6.0
102
cos(
1 3
t
大学物理机械振动
已知:A =12 cm , T = 2 s , 2π π s1
T
x 0.12cos t
初始条件: t = 0 时, x0 = 0.06 m , v0 > 0
0.06 =0.12 cos
y
1 cos π
2
3
v0 Asin 0
第6章 机 械 振 动
振动: 任何一个物理量随时间的周期性变化
机械振动:物体在某一中心位置附近来回往复运动。
例如一切发声体、心脏、海浪起伏、地震以及晶体中原子的振动
任何复杂的振动都可以 看做是由若干个简单而 又基本的振动的合成。 这种简单而又基本的振 动形式称为简谐运动。
6.1 简谐振动
6.1.1 弹簧振子:
而是具有向右的初速度 v0 0.30m s,1 求其运动方程.
解
A'
x02
v02
2
0.0707m
tan' v0 1 x0
o π 4 x
' π 或 3π
44
A'
因为 v0 0 ,由旋转矢量图可知 ' π 4
x Acos(t ) (0.0707m) cos[(6.0s1)t π ]
y
d 2
dt 2
D JZ
0
令 02
D JZ
d 2
dt 2
0x2
0
m cos(0t )
➢ 结论: 在扭转角不太大时,扭摆的运动是谐振动.
周期和角频率为:T 2 JZ
D
0
D JZ
例 . 一轻弹簧的下端挂一重物,上端固定在支架上,
弹簧伸长量l=9.8cm。如果给物体一个向下的瞬时冲击
力,使它具有 1m s1 的向下的速度,它就上下振动起 来。试证明物体是作简谐振动,并写出其振动方程式。
大学物理第五章机械振动
A0 B C
提交
例题2. 弹簧振子放在光滑的水平面上,已知k=1.60N/m,m=0.4kg.
试就下列两种情形分别求运动方程. (1)将物体从平衡位置向右移到
x=0.10m处后释放; (2)将物体从平衡位置向右移到x=0.10m处后并给
物体以向左的速度0.20m/s.
解: k m 1.6 0.4 2rad s1
k
m
(1) t 0, x0 0.10m, v0 0
o
x
A
x02
v02
2
x0 0.10m
cos x0 1
A
0
x 0.1cos2t (m)
(2)
t
0,
x0
0.10m,
v0
0.20m/s
cos
x0
1
A
x02
v02
2
0.1
2m
A2
sin v0 0
A
x 0.1 2 cos(2t ) (m)
设弹簧振子在任一时刻 t 的位移为x,速度为v,则
振动系统所具有的弹性势能Ep和动能Ek分别为:
Ep
1 kx2 2
x Acos( t )
Ep
1 2
kA2
cos2 (
t
)
Ek
1 2
mv2
v A sin( t )
Ek
1 2
m 2 A2
sin2 (
t
)
2 k /m
1 kA2 sin2 ( t )
大加速度为 4.0 ms-2. 求:(1) 振动的周期;(2) 通过平衡位置的动
能;(3) 总能量;(4) 物体在何处其动能和势能相等?
解: (1) amax A 2
大学物理(振动波动学知识点总结)
波密媒质 界面处存在半波损失)
1)相干条件:频率相同、振动方向相同、相位差恒定
2)加强与减弱的条件: 干涉加强:
2k
20
( k 0 ,1 , 2 ,...)
若 10
r 2 r1 k
( k 0 ,1 , 2 ,...)
干涉减弱:
( 2 k 1 )
y
2
2 /2
2
4
t(s)
由 t 0, 所以y
2 cos ; 得 π 2 t π 3 );
0
0, 所 以 1, y
π 3
; (t - x) π 3
2 cos(
(2)u
T
2 cos[
π 2
]
[例2] 一平面简谐波在 t = 0 时刻的波形图,设此简谐波的频率 为250Hz,且此时质点P 的运动方向向下 , 200 m 。 求:1)该波的波动方程; 2)在距O点为100m处质点的振动方程与振动速度表达式。 y(m ) 解:1)由题意知: 2 500 2A /2
3 2
t T
2
) cos 2
t T
2
7 / 12
)
6
cos( 2
t T
2
2 A
cos( 2
)
3 A sin 2 t ( SI )
例5. 设入射波的表达式为 y
1
A cos 2 (
x
yA 0 vA 0 yB A vB 0
A
A
u
o
大学物理(工科) 机械振动基础
2
0
方程的解:
0 cos(ω t )
当 较大时,如何处理分析?
(3)相位的意义:
x(t) Acos(ω t ) v Asin(t ) a 2 Acos( t )
相位已知则振动状态已知,相位没改变 2 振动重复一次.
相位 2 范围内变化,状态不重复.
x
A
= 2
O
t
-A
4. 由初始条件求振幅和初相位
2
2
振幅
随 t 缓变
随 t 快变
当 2 1 时 , 2 1 2 + 1。
合振动 x 可看作是振幅缓变的近似简谐振动。
3. 拍的现象 x1
x1 Acos1t
t
x2 Acos2t
x2
t
x x1 x2
x
t
x
x1
x2
2 A cos(
2
1)t
2
cos(
2
1)t
2
拍频 单位时间内合振动振幅强弱变化的次数,即
1 2
kx2
1 2
kA2
cos2 (
t
)
O
x
3. 机械能
E
Ek
Ep
1 2
kA2
(简谐振动系统机械能守恒)
例 物理摆 如图所示, 设刚体对轴的转 动惯量为J.
设 t = 0 时摆角向右最大为 0.
求 振动周期和振动方程.
解 M mghsin J
mgh sin 0
J
5时,sin
mgh 0
质点由A 到 B,历时 2 s;再经 2 s,
又通过B点
=+
A
O
质点由 B 再回到B 点,则 + 被 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动方程: x 0.12 cos( t )
3
15
振动方程: x 0.12 cos( t )
3
2、t=0.5s时,质点的位置、速度和加速度
v dx 0.12 sin( t ) 0.189 m / s
t 0.5
dt t0.5
3 t0.5
a dv 0.12 2 cos( t ) 0.103 m / S 2
0 x -A
Tt
已知曲线
A、T、0
已知 A、T、0 曲线
7
3. 旋转矢量法
A
t=t
四. 相位差
t=0
t+0
0
A
· 0 x
x
x = A cos( t + 0)
=( 2 t+ 2)-(1 t+ 1)
对两同频率的谐振动 = 2- 1 初相差
• 同相和反相: 当 = 2k , ( k =0,1,2,…),
9
超前、落后以< 的相位角来判断
x
A1
A2
0
- A2
x1 x2
2= 0 1= -π/2
T
t
2 超前于1
-A1
五.简谐振动的速度、加速度
1.速度
v
dx dt
A sin( t
0)
v(t)
A cos(
t
0
2
)
10
• 速度也是简谐振动 v 比 x 超前 /2
2. 加速度 也是简谐振动,a 比 x 超前
dt t0.5 t 0.5
3 t0.5
16
振动方程: x 0.12 cos( t )
3
3、如果在某时刻质点位于x=-0.6cm,且向X 轴负方 向运动,求从该位置回到平衡位置所需的时间。
设在某一时刻 t1, x = -0.06 m
代入振动方程: 0.06 0.12cos( t 3) 1
两振动步调相同,称同相
8
当 = (2k+1) , ( k =0,1,2,…),
两振动步调相反 , 称反相 。
A1
A2 0 - A2
x2 x1
x
同相
A1
T
A2
t0
- A2
x1
反相
T
t x2
-A1
-A1
• 超前和落 后若 = 2- 1>0, 则 x2比x1较早达到正最大,
称 x2 比 x1 超前 (或 x1 比 x2 落后)。
例题1 一质点沿X轴作简谐振动,振幅为12cm,周期 为2s。当t=0时, 位移为6cm,且向X轴正方向运动。求 1、振动方程;2、t=0.5s 时,质点的位置、速度和加 速度;3、如果在某时刻质点位于x=-0.6cm,且向X 轴
负方向运动,求从该位置回到平衡位置所需的时间。
解: 设简谐振动表达式为 x = A cos (t+ )
3
4.1 简谐振动
一.简谐振动
一物理量随时间的变 化规律遵从余弦函数 关系,则称该物理量 作简谐振动。
表达式 x(t)=Acos( t+)
特点 (1)等幅振动 (2)周期振动 x(t)=x(t+T )
-A 0 A
X
4
表达式 x(t)=Acos( t+)
二. 描述简谐振动的特征量 1. 振幅 A: 即最大位移:x=±A 2. 角频率 (圆频率)ω (弧度/秒:rad/s) 3. 周期T 和频率 v ∵ ωT=2π ∴ T=2π/ω (s) (完成一次全振动所需的时间) 而 v = 1/T =ω/2π (Hz)
1
1
Y
sin( t ) 0 1
t 1 3
3
X
- 3
19
A 2 Acos( t ) 2
-A
t 2 2 3
v2 A sin( t 2) 0
sin( t )< 0 2
t 2 2 3 ( t 1) ( t 2 )
( 2 )
a
d2x d t2
2 Acos(
t
0)
2 Acos(
t
0
)
x、 v 、a
2A
A v
A
x
0
-A
- A
- 2A v > 0
<0
a<0 减速
<0 加速
<0 >0 减速
a
T t
>0 >0 加速
11
解题方法
由初始条件求解振幅和初位相:
设 t =0 时,振动位移:x = x0
振动速度:v = v0
x Acos( t ) xo A cos
(单位时间内完成全振动的次数)
5
4. 相位
(1) ( t +0 )是 t 时刻的相位 (2) 0 是t =0时刻的相位 ——初相
6
三. 简谐振动的描述方法
1. 解析法 由 x = Acos( t+0 )
已知表达式 A、T、0 已知A、T、0 表达式
2. 曲线法
m
x A
0 = /2
0 x0 = 0
第四章 振动
1
振动是一种普遍的运动形式。如: 机械振动 电磁振动
其特点是: (1)有平衡点;(2)具有重复性(周期性)
广义振动:任一物理量(如位移、电 流等)
在某一数值附近反复变化。
振动分类
受迫振动 自由振动 阻尼自由振动
无阻尼自由振动
无阻尼自由非谐振动
无阻尼自由谐振动
(简谐振动) 2
简谐振动是最简单、最基本 的振动形式,一切复杂的振动 都可由简谐振动合成。
cos( t 3) 1
1
2
t 2 或 - 2
13 3
3
y
2 3
t1
3
2
3
t1 1s
-2 3 x
17
3、如果在某时刻质点位于x=-0.6cm,且向X 轴负 方向运动,求从该位置回到平衡位置所需的时间。
t1
3
2
3
t1 1s
t2
3
3
2
t2
11 6
s
Y
2 3
11 5
t t2 t1 6 1 6 s 3π/2 t2
已知: A=12cm , T=2s , 2 s 1
T x=0.12 cos (t + )
初始条件: t = 0 时, x0 = 0.06m , v0 > 0
14
0.06 =0.12 cos
Y
1 cos
2
3
3
X
v A sin 0 0
- 3
sin 0
3
当t=0时, 位移为6cm, 且向X轴正方向运动。
X
18
例题2 两质点作同方向、同频率的简谐振动,振幅
相等。当质点1在 x1=A/2 处,且向左运动时,另一个 质点2在 x2= -A/2 处,且向右运动。求这两个质点的
位相差。
-A
解:
x1
Acos( t
) 1
-A/2
o
A/2 A
A
2
A cos(
t
) 1
t
1
3
v A sin( t ) 0
v A sin( t ) vo A sin
xo
x2
A cos
v2 o
A(2 sin 2
vo Asin
cos 2 ) A2
o
2
12
xo A cos
vo Asin
x2
v2 o
A(2 sin2 cos 2 ) A2
o
2
A
x0 2
v0
2
tan vo xo
13