单相桥式相控整流电路的设计开题报告
单相桥式全控整流电路实验报告

竭诚为您提供优质文档/双击可除单相桥式全控整流电路实验报告篇一:实验五单相桥式全控整流电路实验实验五单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。
3.熟悉mcL—05锯齿波触发电路的工作。
二.实验线路及原理参见图4-7。
三.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四.实验设备及仪器1.mcL系列教学实验台主控制屏。
2.mcL—18组件(适合mcL—Ⅱ)或mcL—31组件(适合mcL—Ⅲ)。
3.mcL—33组件或mcL—53组件(适合mcL—Ⅱ、Ⅲ、Ⅴ)4.mcL—05组件或mcL—05A组件5.meL—03三相可调电阻器或自配滑线变阻器。
6.meL—02三相芯式变压器。
7.双踪示波器8.万用表五.注意事项1.本实验中触发可控硅的脉冲来自mcL-05挂箱,故mcL-33(或mcL-53,以下同)的内部脉冲需断x1插座相连的扁平带需拆除,以免造成误触发。
2.电阻Rp的调节需注意。
若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。
3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.mcL-05面板的锯齿波触发脉冲需导线连到mcL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变(:单相桥式全控整流电路实验报告)变压器采用meL-02三相芯式变压器,原边为220V,中压绕组为110V,低压绕组不用。
6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
单相桥式整流电路课程设计报告..

单相桥式整流电路课程设计报告..电力电子课程设计报告一、二、设计任务说明1.设计任务:1)进行设计方案的比较,并选定设计方案;2)完成单元电路的设计和主要元器件说明;3)完成主电路的原理分析,各主要元件的选择;4)驱动电路的设计,保护电路的设计;5)利用仿真软件分析电路的工作过程;2.设计要求:1)单相桥式相控整流的设计要求为:负载为感性负载,L=700mH,R=500Ω2)技术要求:A.电网供电电压为单相220V;B.电网电压波动为5%——10%;C.输出电压为0——100V;三、设计方案的比较单相桥式整流电路有两种方式,一种是单相桥式全控整流电路,一种是单相桥式半控整流电路。
主要方案有三种:方案一:采用单相桥式全控整流电路,电路图如下:对于这个电路,每一个导电回路中有两个晶闸管,即用两个晶闸管同时导通以控制导电的回路,不需要续流二极管,不会出现失控现象,整流效果好,波形稳定。
变压器二次绕组不含直流分量,不会出现变压器直流磁化的问题,变压器利用率高。
方案二:采用单相桥式半控整流电路,电路图如下:相较于单相桥式全控整流电路,对每个导电回路进行控制,只需一个晶闸管,而另一个用二极管代替,这样使电路连接简便,且降低了成本,降低了损耗。
但是若无续流二极管,当α突然增大到180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使d U成为正弦半波,级半周期d U为正弦波,另外半周期d U为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,即失控现象。
因此该电路在实际应用中需要加设续流二极管。
综上所述:单相桥式半控整流电路具有线路简单、调整方便的优点。
但输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。
而单相桥式全控整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。
单相桥式全控整流电路课程设计报告书

课程设计说明书(论文)题目单相桥式全控整流电路课程名称电力电子技术课程设计院(系、部、中心)专业电气工程与自动化(智能建筑电气)班级学生姓名学号设计地点指导教师设计起止时间:2010 年12月27日至2011年1月7日目录任务书 (2)第1章课程设计目的与要求 (5)1.1课程设计目的 (5)1.2课程设计的预备知识 (5)1.3 课程设计要求 (5)第2章课程设计方案的选择 (5)2.1整流电路 (6)2.2元器件的选择 (6)2.2.1晶闸管 (6)2.2.2 可关断晶闸管 (8)第3章主电路的设计 (8)3.1系统总设计框图 (9)3.2系统主体电路原理及说明 (9)3.3原理图的分析 (11)第4章辅助电路的设计 (11)4.1驱动电路的设计 (11)4.1.1触发电路 (12)4.2保护电路的设计 (13)4.2.1 主电路的过电压保护电路设计 (13)4.2.2主电路的过电流保护电路设计 (14)4.2.3电流上升率、电压上升率的抑制保护 (14)第五章元器件和电路参数计算 (15)5.1. 晶闸管的基本特性 (15)5.1.1.静态特性 (15)5.1.2.动态特性 (16)5.2晶闸管基本参数 (17)5.2.1晶闸管的主要参数说明 (17)5.2.2晶闸管的选型 (19)5.2.3变压器的选取 (19)5.3性能指标分析: (19)5.4元器件清单 (20)第六章系统仿真 (20)第七章设计总结 (21)任务书5.课程设计进度安排起止日期工作容12月27日-12月28日12月 28日-12月29日 12月 29日-12月30日1月30日- 1 月31 日1月3日- 1 月 4日1月4日- 1 月 5日1月5 日- 1 月 7日收集资料。
方案论证主电路设计理论计算。
选择器件的具体型号触发电路设计,确定变压器变比及容量总结并撰写说明书6.成绩考核办法教研室审查意见:教研室主任签字:年月日院(系、部、中心)意见:主管领导签字:年月日第1章课程设计目的与要求1.1课程设计目的“电力电子技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。
单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告实验目的:
1.了解单相桥式全控整流电路的原理和工作方式
2.学习使用半导体器件的控制技术
3.掌握实验操作的方法和技巧
实验材料:
1.单相桥式全控整流电路板
2.数字万用表
3.直流电源
4.交流电源
实验步骤:
1.将单相桥式全控整流电路板连接到交流电源上,注意正负极的正确连接。
2.将数字万用表连接到电路板上,测量电路板的交流电压和输出电压。
3.通过控制半导体器件的指令输入,分别实验控制电路板的直流输出电流和电压。
4.通过观察电路板的反馈信号,了解整个控制过程及其影响因素,并优化电路板的性能。
实验结果:
1.我们成功实现了单相桥式全控整流电路的输出,可以实现正负半周期的控制,提高了能量利用效率。
2.通过对控制电流和电压的实验,我们发现电路板的控制灵活性很强,可以满足不同场合的应用要求。
3.通过对反馈信号的观察,我们优化了电路板的输出特性,提高了电路板的效率和稳定性。
实验思考:
1.单相桥式全控整流电路的实际应用很广泛,常见于电动机驱动、电源稳定等领域。
2.电路板的控制比较复杂,需要进一步学习和练习。
3.在实验的过程中,需要注意安全措施,避免因操作不当导致危险发生。
结论:
我们通过对单相桥式全控整流电路的实验,深入了解了其原理和应用,掌握了使用半导体器件进行控制的技术,提高了实验操作的技能。
希望今后能继续深入学习和研究,为提高能源利用效率和电力质量做出更大贡献。
单相桥式全控整流电路实验报告上海理工大学

单相桥式全控整流电路实验报告上海理工大学题目:单相桥式全控整流电路实验报告学校:上海理工大学实验目的:本实验旨在通过搭建单相桥式全控整流电路,研究和掌握全控整流电路的工作原理及其特性。
实验设备:1.单相桥式全控整流电路实验板2.变压器3.直流电源4.示波器5.电阻、电容等辅助元件实验原理:单相桥式全控整流电路是一种常用的电力电子变流器,可以实现交流电的直流化。
该电路由四个可控硅组成的桥式整流电路和一个触发电路组成。
在正半周和负半周的不同工作状态下,通过控制可控硅的导通时间,可以实现对输出电压的控制。
实验步骤:1.将实验设备接线正确连接,确保电路的安全性。
2.调节变压器的输入电压,使其输出适宜的交流电压。
3.打开直流电源,将其正负极分别接入桥式整流电路的两侧。
4.使用示波器测量输出电压的波形,并记录数据。
5.通过调节触发电路的触发角,改变可控硅的导通时间,观察输出电压的变化,并记录数据。
6.反复进行步骤4和步骤5,获得不同工作状态下的输出电压波形和特性。
实验结果:通过实验测量和记录,我们得到了不同触发角下的输出电压波形和特性曲线。
根据曲线分析,我们可以得出单相桥式全控整流电路在不同控制条件下的工作特性,如输出电压的平均值、脉动系数等。
实验结论:通过本次实验,我们深入了解了单相桥式全控整流电路的工作原理和特性。
我们成功地搭建了实验电路,并通过实验数据分析得出了电路的输出特性。
实验结果证明了该电路在不同工作状态下具有可控的输出特性,可广泛应用于交流电的直流化领域。
注意事项:在进行实验过程中,要注意电路的安全性和稳定性。
遵循实验室的操作规范,正确使用实验设备。
实验结束后,注意及时清理实验现场,并关闭相关设备。
单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告单相桥式全控整流电路实验报告引言:单相桥式全控整流电路是电力电子技术中常用的电路之一。
它能够将交流电转换为直流电,并且能够通过控制开关器件的导通角度来实现对输出电压的调节。
本实验旨在通过搭建单相桥式全控整流电路并进行实际操作,来深入了解该电路的工作原理和性能特点。
一、实验装置和原理本实验所使用的实验装置包括变压器、单相桥式全控整流电路、交流电源和直流负载。
变压器的作用是将输入的交流电压降低到适合实验的电压范围,同时也能够提供所需的电流。
单相桥式全控整流电路由四个可控硅组成,通过控制可控硅的导通角度来实现对输出电压的调节。
交流电源提供输入电压,直流负载则用于测量输出电压和电流。
二、实验步骤1. 搭建实验电路:将变压器的输入端接入交流电源,输出端接入单相桥式全控整流电路的输入端,输出端接入直流负载。
注意接线的正确性和稳固性。
2. 调节变压器输出电压:通过旋转变压器的调节旋钮,逐渐调节变压器的输出电压,使其达到实验所需的电压范围。
3. 接通电源:将交流电源的开关打开,此时电路开始供电,但是输出电压为零。
4. 控制可控硅导通角度:通过控制可控硅的触发脉冲,来调节可控硅的导通角度。
当触发脉冲的时间提前时,可控硅的导通角度变大,输出电压也随之增大;当触发脉冲的时间延后时,可控硅的导通角度变小,输出电压也随之减小。
5. 测量输出电压和电流:使用直流电压表和直流电流表来测量输出电压和电流的数值。
根据实验需求,可以调节可控硅的导通角度,来获得不同的输出电压和电流数值。
6. 记录实验数据:将测得的输出电压和电流数值记录下来,并进行整理和分析。
三、实验结果和分析通过实验,我们可以得到不同可控硅导通角度下的输出电压和电流数值。
根据实验数据,我们可以绘制出输出电压和电流随导通角度变化的曲线图。
从曲线图中可以看出,当导通角度增大时,输出电压和电流也随之增大;当导通角度减小时,输出电压和电流也随之减小。
相控桥式整流电路设计

相控整流电路电路设计陈治权,电子0932(台州职业技术学院,台州,318000)摘要本报告描述单相桥式整流全控电路的设计原理和实现方法。
根据全控整流的工作特性,研究设计了由触发器、保护电路等单元电路实现的单相桥式全控整流电路。
通过DJDK-1型电力电子技术集点击控制装置以及MATLAB软件仿真进行对电路调试。
关键词单相桥式全控整流电路触发器保护电路一、引言:近年来,随着科学技术的日益发展,人们对电路的要求也越来越高。
由于在实际中需要可调的直流电源,而整流的相位控方式(即相控整流电路)结构简单、控制方便、性能稳定,得到了人们的广泛应用,不仅应用于一般工业、也广泛用于交通运输、电力系统、通信系统等其他领域。
二、单相桥式半控电路2.1电阻型负载单相半控桥式电路,两只二极管是共阳连接,(如图2-1)总是阴极电位低的二极管导通,因此,在电源u2正半周一定是VD4正偏,在u2负半周一定是VD3正偏,所以,在电源正半周是,触发晶闸管VT1导通,二极管VD4正偏导通,电流由a端经VT1和负载Rd及VD4,回电源b端,若忽略两管的正向导通压降,则负载上得到的直流输出电压就是电源电压,在电源负半周,触发器VT2导通,电源由b端经VT2和负载Rd及VD3,会电源a端输出仍是ud=u2 图2-12.2 电路的计算(1) 控制角控制角是指从晶闸管开始承受正向电压,到其加上触发脉冲的这一段时间所对应的电角度。
(2) 导通角T θ导通角是指改变触发脉冲出现的时刻。
(3)移相范围移相范围是指一个周期内触发脉冲的移相范围,他决定了输出电压的变化范围。
直流输出电压平均值Ud 为d U =⎰πωωπa t td sin 22)2/1()(U =)cos 1(2/22απ+U =2cos 145.02α+U 直流输出电流的平均值Id 为2cos 145.02d d d α+==R U R U I 负载上得到的电压有效值U 和电流有效值I 分别为παπαπ42sin 22+-=U U παπαπ42sin 2-d d+=R U I 晶闸管可能承受的正反向峰值电压为2TM U 2=U功率因素ϑπαπαπϑ42sin 2-cos += 当α=0度时ϑcos 最大为0.707,α越大,ϑcos 越小三、单相桥式全控整流电路3.1 电感性负载在电源u2正半周时,在相当于α角时刻给VT1,VT4同时加触发脉冲,则VT1,VT4会导通,输出电压ud=u2,至电源过零点变负时,由于电感自感电动势会使VT1和VT4继续导通,所以出现负电压的输出,直到负半周相当于α角的时刻,给VT2,VT3同时加触发脉冲,VT2,VT3被触发导通。
单相桥式全控整流电路实验报告

竭诚为您提供优质文档/双击可除单相桥式全控整流电路实验报告篇一:实验五单相桥式全控整流电路实验实验五单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。
3.熟悉mcL—05锯齿波触发电路的工作。
二.实验线路及原理参见图4-7。
三.实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四.实验设备及仪器1.mcL系列教学实验台主控制屏。
2.mcL—18组件(适合mcL—Ⅱ)或mcL—31组件(适合mcL—Ⅲ)。
3.mcL—33组件或mcL—53组件(适合mcL—Ⅱ、Ⅲ、Ⅴ)4.mcL—05组件或mcL—05A组件5.meL—03三相可调电阻器或自配滑线变阻器。
6.meL—02三相芯式变压器。
7.双踪示波器8.万用表五.注意事项1.本实验中触发可控硅的脉冲来自mcL-05挂箱,故mcL-33(或mcL-53,以下同)的内部脉冲需断x1插座相连的扁平带需拆除,以免造成误触发。
2.电阻Rp的调节需注意。
若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。
3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.mcL-05面板的锯齿波触发脉冲需导线连到mcL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变(:单相桥式全控整流电路实验报告)变压器采用meL-02三相芯式变压器,原边为220V,中压绕组为110V,低压绕组不用。
6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
单相桥式全控整流电路实验报告

一、实验目的1. 理解单相桥式全控整流电路的工作原理。
2. 掌握单相桥式全控整流电路的搭建方法。
3. 分析单相桥式全控整流电路在不同负载条件下的性能。
4. 学习使用示波器等实验仪器进行电路测试。
二、实验原理单相桥式全控整流电路由四个晶闸管(VT1、VT2、VT3、VT4)和负载组成。
当交流电源电压为正半周时,晶闸管VT1和VT4导通,电流从电源正极流向负载;当交流电源电压为负半周时,晶闸管VT2和VT3导通,电流从电源负极流向负载。
通过调节晶闸管的触发角,可以控制输出电压的大小。
三、实验器材1. 单相桥式全控整流电路实验装置2. 晶闸管模块3. 负载电阻4. 负载电感5. 电源6. 示波器7. 万用表8. 交流电源9. 接线板四、实验步骤1. 搭建单相桥式全控整流电路,确保电路连接正确。
2. 使用示波器观察交流电源电压波形。
3. 调节晶闸管的触发角,观察输出电压波形。
4. 测试不同负载条件下的输出电压和电流。
5. 记录实验数据,进行分析。
五、实验结果与分析1. 观察到当晶闸管的触发角为0度时,输出电压为0;当触发角为180度时,输出电压为交流电源电压的峰值。
2. 当负载为电阻时,输出电压和电流的波形基本一致,且电压和电流的平均值随触发角的增大而减小。
3. 当负载为电感时,输出电压和电流的波形存在相位差,且电流的峰值滞后于电压的峰值。
4. 当负载为电阻-电感时,输出电压和电流的波形与电阻负载相似,但电流的峰值滞后于电压的峰值。
六、实验结论1. 单相桥式全控整流电路可以将交流电转换为直流电,且输出电压大小可调。
2. 不同负载条件下,输出电压和电流的波形存在差异。
3. 通过调节晶闸管的触发角,可以控制输出电压的大小。
七、心得体会1. 通过本次实验,加深了对单相桥式全控整流电路工作原理的理解。
2. 学会了使用示波器等实验仪器进行电路测试。
3. 了解了不同负载条件下电路性能的变化。
八、注意事项1. 在搭建电路时,注意晶闸管的正确连接。
单相桥式全控整流电路的仿真设计实验报告

单相桥式全控整流电路的仿真设计实验报告大家好,今天给大家带来一个关于单相桥式全控整流电路的仿真设计实验报告。
这个电路虽然听起来复杂,但其实你一旦弄明白了其中的奥妙,也能理解它是怎么回事,跟小孩子玩拼图差不多,一步步拼凑,最后就能看出完整的画面。
今天咱们就一起走一遍这个过程,看看怎么把这些看似枯燥的电子元器件变成有趣的设计。
什么是单相桥式全控整流电路呢?嗯,说白了,就是用来把交流电转化为直流电的东西。
你想啊,咱们日常生活中的电器,大部分都需要直流电才能运行,比如电视、手机啥的。
但是,咱们家里的电压大多数是交流电(不管你信不信,99%的电力公司给你的是交流电),所以呢,咱们得用点儿办法,把交流电转化成直流电,才能驱动这些电器。
而这时候,单相桥式全控整流电路就登场了,正好能完成这个任务。
这个电路的名字可真长,听起来像是某个数学公式,不过仔细想想也没那么复杂。
它就是由四个二极管组成的桥式电路,再加上一些可控硅,组成的“全控”整流电路。
说白了,它的工作原理就是把交流电信号经过整流后变成直流电,再通过控制元件来调节输出电流的大小。
这种“全控”让电流能按照我们需要的方式流动,就像一个听话的电流小伙伴,指挥它去哪儿,怎么走,简直太棒了。
接下来说说仿真设计。
在实际的电路设计中,很多时候都需要先用仿真软件来模拟一下电路的工作效果。
这就像是先画草图,再去做最后的画作一样,能帮我们发现一些潜在的问题,避免在实际制作时“出师未捷身先死”。
仿真设计不但能让我们直观地看到电路的运行情况,还能让我们实时调试,看到不同的参数对电路效果的影响。
就好像你拿着遥控器试着调节电视音量,直接看到效果一样。
咱们的实验用的是Matlab/Simulink这个软件。
Simulink的界面就像是一个虚拟的电路板,里面有各种各样的模块和电路元件,你只要用鼠标点点点,连起来,就能完成一个完整的电路设计。
而且它特别好用,电路搭建完成后,直接点击仿真,就能看到电路的工作状态。
单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告一、实验目的1、熟悉单相桥式全控整流电路的工作原理。
2、掌握单相桥式全控整流电路在不同负载情况下的输出特性。
3、学会使用示波器等仪器观测电路中的电压、电流波形。
二、实验原理单相桥式全控整流电路由四个晶闸管组成,其电路图如下图所示:插入电路图在电源电压的正半周,晶闸管 VT1 和 VT4 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经 VT1、负载、VT4 流回电源的负端,负载上得到正电压;在电源电压的负半周,晶闸管 VT2 和VT3 承受正向电压,在触发脉冲的作用下导通,电流从电源的正端经VT2、负载、VT3 流回电源的负端,负载上得到负电压。
通过控制触发角α的大小,可以改变输出直流电压的平均值。
三、实验设备1、电力电子实验台2、示波器3、万用表4、电阻负载、电感负载四、实验内容及步骤(一)电阻负载实验1、按电路图连接好实验线路,将触发角α调至 0°。
2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。
3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。
(二)电感负载实验1、按电路图连接好实验线路,将触发角α调至 0°。
2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。
3、逐渐增大触发角α,分别测量α=30°、60°、90°、120°、150°时的 Ud 和 U2,并记录相应的电压波形。
(三)反电动势负载实验1、按电路图连接好实验线路,将触发角α调至 0°。
2、合上电源,用示波器观测负载两端的电压波形和晶闸管两端的电压波形,记录输出直流电压 Ud 和交流输入电压 U2 的数值。
单相桥式全控整流电路的设计..

单相桥式全控整流电路的设计..————————————————————————————————作者:————————————————————————————————日期:1 设计课题任务及总体方案介绍1.1 设计课题任务课题:单相桥式全控整流电路设计(阻感性负载)任务:单相桥式全控整流电路的设计要求为:1电网供电电压为单相交流220V/50Hz;2变压器二次侧电压为100V;3输出电压连续可调,为0~100V;4移相范围:0º~90º;5输出功率:500W。
1.2 设计课题总体方案介绍1.2.1 方案的选择我们知道,单相整流器的电路形式是各种各样的,整流的结构也是比较多的。
因此在做设计之前我们主要考虑了以下二种方案:方案一:单相桥式全控整流电路电路简图如下:图1.1 单相桥式全控整流电路对每个导电回路进行控制,相对于全控桥而言少了一个控制器件,用二极管代替,有利于降低损耗!如果不加续流二极管,当α突然增大至180°或出发脉冲丢失时,由于电感储能不经变压器二次绕组释放,只是消耗在负载电阻上,会U成为正弦半波,即发生一个晶闸管导通而两个二极管轮流导通的情况,这使d半周期为正弦,另外半周期为零,其平均值保持稳定,相当于单相半波不可控整流电路时的波形,即为失控。
所以必须加续流二极管,以免发生失控现象。
方案:单相全波可控整流电路:电路简图如下:图1.2 单相桥式全控整流电路此电路变压器是带中心抽头的,结构比较复杂,只要用2个可控器件,单相全波只用2个晶闸管,比单相全控桥少2个,因此少了一个管压降,相应地,门极驱动电路也少2个,但是晶闸管承受的最大电压是单相全控桥的2倍。
不存在直流磁化的问题,适用于输出低压的场合作用。
但是绕组及铁心对铜、铁等材料的消耗比单相全控桥多,在当今世界上有色金属有限的情况下,这是很不利的,所以我们也放弃了这个方案。
单相半控整流电路的优点是:线路简单、调整方便。
单相桥式全控整流电路实验报告

单相桥式全控整流电路实验报告侧桥式全控整流电路实验一共分为六个部分:一、实验原理侧桥式全控整流电路是一种典型的三相整流电路,它由3个外接N次管、3个可控硅三端管和6个二极管组成。
它采用特别的电路构造,使正位及负位电源自动交互切换,从而实现整流控制。
其基本电路如下图所示:二、实验操作1、起先把实验台接上实验装置,并电源供应上图中所示的侧桥式全控整流电路原理图,然后旋转DR1的调节旋钮,微调V值到19V,等待V值稳定;2、逐步调节DR2的调节旋钮,观察负载电压和A,B,C相电压的变化,当DR2的值调节到670V时,就达到了单相整流的状态;3、关闭DR2的电源,再调节DR1的调节旋钮改变V值,记录下每次调节V值时,正负载电压及三相电压各线电压,其结果如表1所示;4、断开DR1的电源,以UI测量此时正负载桥的电压,记录下数据,其结果如表2所示sc翡翠三、实验结果实验中可观察到整流桥正负三相有所改变、正负电流不断交替互变,说明侧桥式全控整流电路能够有效控制和调整整流桥电压。
四、实验解释由实验结果可见,当DR2值调整至670V时,负载电压为2.6V,A,B,C相电压每相相等且都为520V,这说明侧桥全控整流电路已经达到了三相单相整流的状态。
另外从实验结果来看,当DR1的调节电流不断变化时,负载电压和三相电压也发生了变化。
这是因为当DR1三端添加调节电流时,三端电流机构不断发生变化,电容C1通过对桥9,12对管的电压发生控制,从而引起三相电压的变化,这样就可以实现对整流桥的有效控制。
五、总结本次实验确认了侧桥式全控整流电路能够有效控制和调整整流桥电压。
通过实践,我们更加深入地了解了三相整流器的工作原理和控制原理。
表1V值正负载电压三相电压(A) 三相电压(B) 三相电压(C)18v 36v 270V 540V 270V 19v 39v 520V 520V 520V 20v 41V 780V 270V 780V 表2正负载桥电压3.2V。
单相桥式全控整流电路课程设计报告书

目录前言 (2)第1章课程设计的任务书 (3)1.1 主要任务 (3)1.2 总体要求 (3)第2章方案选择 (4)2.1 主电路的论证 (4)2.2 触发电路的要求与选择 (4)2.3保护电路的选择 (7)第3章电路设计 (12)3.1主电路设计 (12)3.2 触发电路的设计……………………………………………………………1 33.3 保护电路的设计……………………………………………………………1 33.4 电路参数的计算 (15)第4章小结 (17)参考文献 (18)前言电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管)对电能进行变换和控制的技术。
电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。
通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现电能使用最佳化。
电力电子技术分为电力电子器件制造技术和变流技术(整流,逆变,斩波,变频,变相等)两个分支。
变流技术也称为电力电子技术的应用技术,它包括用电力电子器件构成各种电力变换电路和对这些电路进行控制的技术,以与由这些电路构成电力电子装置和电力电子系统的技术。
变流技术是电力电子技术的核心,变流技术的理论基础是电路理论。
整流电路是电力电子电路的一种,将交流电变为直流电,应用十分广泛,电路形式多种多样。
按组成器件可分为不可控、半控、全控三种;按电路结构可分为桥式和零式电路;按交流输入相数分为单相电路和多相电路。
这次课程设计我们设计的是单相桥式全控整流电路,与单相半波可控整流电路相比,桥式全控的电源利用率高一些,应用围更广。
第1章课程设计的任务书1.1课程设计的主要任务“电力电子技术”课程设计是在教学与试验的基础上,对课程所学理论知识的深化和提高。
因此,通过电力电子的课程设计达到以下几个目的1)培养综合应用所学知识,并初步设计出具有电压可调功能的直流电源系统的能力。
单相桥式整流电路课程设计报告

电力电子课程设计报告目录一、设计任务说明 (3)二、设计方案的比较 (4)三、单元电路的设计和主要元器件说明 (6)四、主电路的原理分析 (9)五、各主要元器件的选择: (12)六、驱动电路设计 (14)七、保护电路 (16)八、元器件清单 (21)九、设计总结 (22)十、参考文献 (23)一、设计任务说明1.设计任务:1)进行设计方案的比较,并选定设计方案;2)完成单元电路的设计和主要元器件说明;3)完成主电路的原理分析,各主要元件的选择;4)驱动电路的设计,保护电路的设计;5)利用仿真软件分析电路的工作过程;2.设计要求:1)单相桥式相控整流的设计要求为:负载为感性负载, L=700mH,R=500Ω2)技术要求:A. 电网供电电压为单相220V;B. 电网电压波动为5%—— 10%;C.输出电压为0—— 100V;二、设计方案的比较单相桥式整流电路有两种方式,一种是单相桥式全控整流电路,一种是单相桥式半控整流电路。
主要方案有三种:方案一:采用单相桥式全控整流电路,电路图如下:对于这个电路,每一个导电回路中有两个晶闸管,即用两个晶闸管同时导通以控制导电的回路,不需要续流二极管,不会出现失控现象,整流效果好,波形稳定。
变压器二次绕组不含直流分量,不会出现变压器直流磁化的问题,变压器利用率高。
方案二:采用单相桥式半控整流电路,电路图如下:相较于单相桥式全控整流电路,对每个导电回路进行控制,只需一个晶闸管,而另一个用二极管代替,这样使电路连接简便,且降低了成本,降低了损耗。
但是若无续流二极管,当α 突然增大到180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使Ud 成为正弦半波,级半周期Ud 为正弦波,另外半周期Ud 为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,即失控现象。
因此该电路在实际应用中需要加设续流二极管。
综上所述:单相桥式半控整流电路具有线路简单、调整方便的优点。
单相整流电路开题报告

单相整流电路开题报告单相整流电路开题报告一、引言单相整流电路是电力系统中常见的一种电路形式,广泛应用于各种电子设备和工业领域。
本报告旨在对单相整流电路进行深入研究和分析,探讨其原理、特点以及在实际应用中的问题和解决方案。
二、背景单相整流电路是将交流电转化为直流电的一种电路,其主要由变压器、整流器和滤波器组成。
在电力系统中,交流电是主要的电力传输方式,但很多电子设备和电动机需要直流电才能正常工作。
因此,单相整流电路的研究和应用具有重要的意义。
三、原理单相整流电路的原理基于电子元件的导通和截止特性。
在正半周,电流通过整流器的二极管流向负载,而在负半周,电流经过滤波器回路流向负载。
通过这种方式,交流电被转化为直流电供应给负载。
四、特点1. 高效性:单相整流电路能够将交流电高效转化为直流电,减少能量的损耗。
2. 稳定性:通过滤波器的设计和优化,单相整流电路能够提供稳定的直流输出电压。
3. 简单性:相较于其他类型的整流电路,单相整流电路的结构相对简单,易于实施和维护。
五、问题与挑战在实际应用中,单相整流电路也存在一些问题和挑战,主要包括:1. 电压波动:当输入交流电的电压波动较大时,可能会导致输出直流电压的波动,影响负载的正常工作。
2. 电流谐波:整流过程中产生的电流谐波可能会对电力系统和其他设备造成干扰。
3. 效率低下:由于整流过程中存在能量损耗,单相整流电路的效率相对较低。
六、解决方案为了解决单相整流电路存在的问题和挑战,可以采取以下一些解决方案:1. 控制电压波动:通过增加电压稳定器或采用反馈控制技术,可以有效控制输入电压的波动,从而减少输出直流电压的波动。
2. 抑制电流谐波:采用滤波电路或谐波补偿技术,可以有效抑制整流过程中产生的电流谐波,降低对其他设备的干扰。
3. 提高效率:通过优化整流器的设计和选择高效的电子元件,可以提高单相整流电路的效率,减少能量损耗。
七、结论单相整流电路作为一种常见的电力转换电路,在电子设备和工业领域中具有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[15].崔士杰,汪建华.基于MATLAB的单相全控整流电路功率因数测定[J].武汉工程大学学报,2010
[16].黄发忠,于孝廷.三相桥式全控整流电路中的谐波分析[J].山东科学,2005
[17].孙江,张石,郭永贞.可控整流电路实验采用集成触发电路的改革.电气电子教学学报,1999
2.设计方案包括:(1)确定单相桥式相控整流电路的设计思路(2)根据电路的设计思路和实际需要选定相应的电子元器件及元器件参数的确定(3)进行电路的实际设计(4)对设计的电路进行分析研究
四、课题研究进度安排
1.2010年10月17日(第六周末)学生选题;根据论文(设计)题目,查阅相关文献,进行初步研究,撰写论文(设计)任务书、开题报告
二、文献综述
1.理论的渊源及演进过程
在电力电子技术中,单相桥式整流电路是大多数电器电源的重要组成部分,它的作用是将交流电转换成直流电,然后供给其它电路,使其整个电路正常工作,它的性能是否稳定、功率因数是否高,输出是否可调,直接关系到整个电器工作好坏的情况。最开始采用的是单相半波整流,由于它的输出电压低且脉动大,电能利用率又低,然后改进为单相全波整流,又由于全波整流电路需要中心抽头变压器,使电路复杂化,后来又改进为单相桥式整流电路,由于它具有电路简单,输出直流电较高,得以广泛运用,但是后来又发现单相桥式整流电路输出电压一旦固定,输出也就固定,有的电器又需要输出电压可调,如直流电动机的调压调速,同步电机励磁、电焊等场合往往需要电压大小可调的直流电源。用桥式相控整流电路就很困难,所以对于把单相桥式整流电路改进为输出可调是研究的一个大课题。而利用晶闸管的单向可控导电性,控制其控制角能把交流电能变成大小可调的直流电能,以满足各种直流负载的要求,因此就形成这种被称为单相桥式相控整流电路的整流电路。
三、课题研究内容与方法
(一)研究内容
1.理解和掌握单相桥式相控整流电路的工作原理
2.理解和掌握单相桥式相控整流电路的电路结构
3.对单相桥式整流电路的不同负载性质下形成的不同的电路结构和不同的工作情况进行比较和分析
4.对于单相桥式相控整流电路存在的不足,采取一定的措施进行优化创新
(二)研究方法
1.首先通过网络和图书馆查阅课题相关的资料,对资料进行整理、分析和研究,结合实际需要提出设计方案。
2.国内外对本课题的研究现状
随着科学技术的迅猛发展,各种电器对整流电路的要求也越来越高。提高整流电路的输入功率、输出电压的稳定性,扩大整流电路的功能显得十分必要。不论是在我国还是在外国都希望整流电路输出电压高且可调。面临这一问题专家们对单相桥式整流电路作了许多的改进,同时也得到了很好的效果。例如有的专家用晶闸管来代替普通二极管来实现输出电压可调,这一改进起到了输出可调的效果。目前世界上一些发达国家在电力电子技术方面的研究已经比较成熟了,例如,外国人已发明的CuK电路、Buck电路和BOOsk电路都已经编入我国和世界专业教科书中。而我国龚秋声先生在1983年发明的龚氏桥全可控整流电路在AD/DA变换技术中创出了一条全新的最基础变换电路。
创新点:针对“最大输出电流点和最佳功率因数点只能在最高输出电压点上、允许输出的最大直流电流和功率因数都是随输出电压的降低而减少”这一问题,本人设想提出的改进方法是在单相桥式整流电路的次级绕组中增加一个中心抽头,在这个抽头与一个直流输出端之间连接一个整流管或可控整流器件,经过这样改进的电路,它具有其最大允许输出直流电流在50%最高输出电压点上,从而其铜耗比未改进电路降低75%以上;并且其最大值是未改进电路输出电流的2倍以上,在设计整流变压器时可比未改进的电路降低设计容量30%左右,从而可节省大量铜和铁;同时其电压和电流的调节控制精度可比未改进的电路提高一倍等优点。
长江师范学院
本科毕业论文(设计)开题报告
课题名称:单相桥式相控整流电路的设计
姓名:
学号:
专业年级:
指导教师:
教务处制
一、课题意义
理论意义
整流电路尤其是单相桥式相控整流电路是电力电子技术中最为重要,也是应用得最为广泛的电路,单相桥式相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到各种小容量的直流电能,是目前获得小容量直流电能的主要方法,得到了广泛应用。
2.2010年12月5日(第十三周末)开题报告
3.2010年12月6日至2011年3月22日,完成电路总体设计
4..2011年3月23日至2011年5月13日,检查分析,撰写毕业设计论文
5.2011年5月14日(第九周末)毕业设计(论文)答辩
五、主要参考文献目录
[1].浣喜明,姚为正编著.电力电子技术[M].北京:高等教育出版社,2004.8
4.本人对所查文献的评述
通过各种途径对相关内容进行了查询,了解到在直流电动机的调速、同步电机的励磁、电焊等场合往往需要电压大小可调的直流电源。而利用晶闸管的单向可控导电性,控制其控制角就能把交流电能变成大小可调的直流电能,以满足各种直流负载的需要,因此就形成了这种被称为相控整流电路的整流电路。相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大、中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛的应用。相控整流电路的电路类型很多,按照输入交流电源的相数不同可分为单相、三相和多项整流电路;按照电路中组成的电力电子器件控制特性不同可分为不可控、半控和全控整流电路;按照整流电路的结构形式不同,有可分为半波、全波和桥式整流电路等类型。另外,整流输出端所接负载的性质也对整流电路的输出电压和电流有很大的影响,常见的负载有电阻性负载、电感性负载和反电势负载等几种。而在实际中,与其他类型的整流电路相比,单相桥式相控整流电路应用最广泛,主要是由于单相桥式相控整流电路与其他整流电路电路相比存在着许多的优越性,例如,与半波整流电路相比,单相桥式相控整流电路在电阻性负载下,输出电压平均值Ud是半波整流电路的2倍,在相同的负载功率下,流过晶闸管的平均电流减小一半,功率因数提高了 倍。单相桥式相控整流电路在电感性负载下,具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器的利用高的优点。然而值得注意的是,单相桥式相控整流电路也还存在着一些不足,如:最大输出电流点和最佳功率因数点只能在最高输出电压点上、允许输出的最大直流电流和功率因数都是随输出电压的降低而减少;单相桥式相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因数很低等,这些问题都需要采取措施进行进一步改进。
[2].周志敏,周继海,纪爱华编著.电工电子实用电路[M].北京:电子工业出版社,2005.4
[3].徐以荣,冷增详.电力电子技术基础[M].南京:东南大学出版社,1999.11
[4].陈坚编著.电力电子学—电(第二版)力电子变幻和控[5].浣喜明,姚为正编著.电力电子技术(第二版)[M].北京:高等教育出版社,2004.11
现实意义
随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,因此单相桥式相控整流电路得到了广泛应用,不仅应用于一般工业,也广泛应用于交通运输、电力系统、通信系统、能源系统等其他领域。因此对单相桥式相控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用。
[6].王云亮主编.电力电子技术[M].北京:电子工业出版社,2004.8
[7].陈坚主编.电力电子技术及应用[M].北京:中国电力出版社,2005
[8].李传琦编.电力电子技术计算机仿真实验[M].北京:电子工业出版社,2006.2
[9].龙志文主编.电力电子技术[M].北京:机械工业出版社,2005.7
[10].龚秋声.龚氏桥全可控整流电路[J].洪都科技,2004
[11].范承志,王宇峰,林小蛾.单相整流电路输入正弦电流的控制方法[J].电工电子技术杂志,2001
[12].赵妮娜.单相半控桥整流电路的改进[J].科技信息
[13].黄发忠,于孝迁.单相桥式全控整流电路中的谐波分析[J].山东师范大学学报,2006
3.有待解决的问题
1.最大输出电流点和最佳功率因数点只能在最高输出电压点上、允许输出的最大直流电流和功率因数都是随输出电压的降低而减少
2.当单相桥式相控电流的负载为电感性负载时,在大电感负载情况下,当触发角α接近π/2时,输出电压的平均值接近于零,负载上得不到应有的电压
3.单相桥式相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因数很低