散热片计算方法

合集下载

散热器片数计算方法

散热器片数计算方法

散热器片数计算方法(精确计算)散热器(俗称暖气片),是将热媒(热水或蒸汽)的热量传导到室内的一种末端采暖设备,已成为冬季采暖不可缺少的重要组成部分。

散热器计算是确定供暖房间所需散热器的面积和片数。

一、散热器片数计算公式(1)已知散热器传热系数K 和单片散热器面积F散热器片数n 的计算公式如下:[1]式中,Q 为房间的供暖热负荷,W ;K 为散热器传热系数,W/(㎡·℃);F 为单片散热器面积,㎡/片;Δt 为散热器传热温差,℃;β、β、β、β依次为散热器的安装长度修正系数、支管连接方式修正系数、安装形式修正系数、流量修正系数。

散热器的传热温差计算如下:Δt=t – t 式中,t 为散热器里热媒(热水或蒸汽)的平均温度(热媒为热水时,等于供/回水温度的算术平均值),℃;t 为供暖室内计算温度,一般为18℃。

以95/70℃的热水热媒为例,Δt=64.5℃:1234pj npj n(2)已知单片散热器的散热量计算公式ΔQ散热器片数n 的计算公式如下:[2]式中,ΔQ 为单片散热器散热量,W/片。

式中,A 、b 为又实验确定的系数,可要求厂家提供。

以椭四柱813型为例,ΔQ=0.657Δt 。

二、散热器修正系数β、β、β、β[2]表安装长度修正系数β表 支管连接方式修正系数β表 安装形式修正系数β 1.3061234123表 进入散热器的流量修正系数β注:1)流量增加倍数 = 25 /(供水温度 - 回水温度);2)当散热器进出口水温为25℃时的流量,亦称标准流量,上表中流量增加倍数为1 。

三、房间层数位置修正此外,对多层住宅根据多年实践经验,一般多发生上层热下层冷的现象,故在计算散热器片数时,建议在总负荷不变的条件下,将房间热负荷做上层减、下层加的调整,调整百分数一般为5% ~15%,见下表。

表 散热器片数调整百分表(%)四、散热器片数近似问题散热器的片数或长度,应按以下原则取舍:(《09 技术措施》2.3.3条)[3]1)双管系统:热量尾数不超过所需散热量的5%时可舍去,大于或等于5%时应进位;2)单管系统:上游(1/3)、中间(1/3)及下游(1/3)散热器数量计算尾数分别不超过所需散热量的7.5%、5%及2.5%时可舍去,反之应进位;3)铸铁散热器的组装片数,不宜超过下列数值:粗柱型(包括柱翼型):20片细柱型:25片长翼型:7片4举例:某双管系统计算片数为19 .5片,则尾数占比例为0. 5/ 1 9.5 = 0.026 < 5% ,所以尾数应舍去,取19 片。

散热片计算方法范文

散热片计算方法范文

散热片计算方法范文散热片是一种用于增强散热效果的装置,广泛应用于电子设备、发动机、电动机等领域。

散热片的设计与选择关系到设备的稳定性和寿命。

本文将介绍散热片的计算方法。

首先,散热片的散热能力与其材料、尺寸、形状、表面处理等因素相关。

一般来说,散热片的散热能力越大,其温度下降越明显。

常用的散热片材料有铝合金、铜及其合金等。

对于相同面积的散热片而言,铜的散热能力要高于铝。

因此,在选择散热片材料时需要考虑散热性能和成本之间的平衡。

其次,散热片的尺寸也是影响其散热能力的重要因素。

尺寸较大的散热片具有更大的散热表面积,可以提供更大的散热能力。

在实际应用中,散热片的尺寸一般由散热需求来决定。

可以通过计算设备的功率、温度差和散热片的热传导系数等参数来确定所需的散热片尺寸。

然后,散热片的形状也会对其散热能力产生影响。

常见的散热片形状有片状、鳍状和管状等。

片状散热片具有较大的表面积,散热能力相对较强;鳍状散热片则能增加表面积的同时还能增加对流换热的机会;管状散热片适用于需要液体循环冷却的系统。

在选择散热片形状时,需要根据具体应用场景和设计要求来进行选择。

最后,散热片的表面处理也会影响其散热能力。

表面处理可以改变散热片的表面粗糙度、导热系数和吸热能力等特性。

一般常用的表面处理方法有阳极氧化、化学处理和机械抛光等。

这些处理方法可以提高散热片的散热效果,减少表面的污垢和腐蚀,从而保证散热片的稳定性和寿命。

总结起来,散热片的计算方法主要由散热片的材料、尺寸、形状和表面处理等因素决定。

在实际应用中,需要根据设备的散热需求和设计要求来选择合适的散热片。

考虑到散热片的散热能力、成本和可靠性等因素,可以通过计算和实验来优化散热片的设计。

散热与风量的计算

散热与风量的计算

散热与风量的计算风扇总热量=空气比热X空气重量X温差,这里的温差;的,250-80(最加热片的温度)-25(进风空;总功不知道,电器做的总功/=风扇排出的总热;设:半导体发热芯片平均温度T1(工作时的温度上限;求了),散热片平均温度T2,散热片出口处空气温度;简化问题,假设:;1.散热片为热的良导体,达到热平衡时间忽略,则有;2.只考虑热传导,对流和辐射不予考虑;又因风扇总热量=空气比热X空气重量X温差,这里的温差是指,你进风的温度与最终加热片的温度的差值,照你说的,250-80(最加热片的温度)-25(进风空气的温度)=145度,你给的倏件还一样,就是热量不知道,或者电器做的总功不知道,电器做的总功/=风扇排出的总热量知道的话就可以根空气重量=风量/60X空气密度逆推出风量.设:半导体发热芯片平均温度T1(工作时的温度上限,也就是说改芯片能承受的最高温度,取决你的设计要求了),散热片平均温度T2,散热片出口处空气温度T3简化问题,假设:1.散热片为热的良导体,达到热平衡时间忽略,则有T1=T2;2.只考虑热传导,对流和辐射不予考虑。

又因为半导体发出的热量最终用来加热空气,则有:880W=40CFM*空气比热*(T3-38°C)注意单位统一,至于空气的比热用定容的吧。

上式可以求出(实际上也就是估算而已)出口处空气温度T3,根据散热片的散热公式(也是估算),有:P=λ*【(T3+38°C)】*A其中:P为散热功率,λ为散热系数,A为与空气的接触面积,【(T3+38°C)】为温差;其中:λ可以通过对照试验求(好吧,还是估算)出来,这样就能大概估算出需要的散热器面积A了。

.误差来源1:散热器温度和芯片温度肯定不相等,热传导需要时间,而且散热片不同位置的温度也不严格相同,只是处在动态平衡;误差来源2:散热片的散热公式是凭感觉写的。

应该没大错,但肯定很粗糙。

自己修正吧能想到的就这么多了。

散热片的冷却效率计算公式

散热片的冷却效率计算公式

散热片的冷却效率计算公式引言。

在电子设备、汽车引擎、空调系统等各种设备中,散热是一个非常重要的问题。

散热片作为一种常见的散热设备,其冷却效率对设备的稳定运行和寿命有着重要的影响。

因此,研究散热片的冷却效率计算公式对于优化设备的散热设计具有重要意义。

散热片的冷却效率计算公式。

散热片的冷却效率可以通过以下公式进行计算:η = (Q / A) / (T_h T_c)。

其中,η表示散热片的冷却效率,Q表示散热片的散热量,A表示散热片的表面积,T_h表示散热片的热端温度,T_c表示散热片的冷端温度。

散热片的散热量Q可以通过以下公式进行计算:Q = h A (T_h T_c)。

其中,h表示散热系数,A表示散热片的表面积,T_h表示散热片的热端温度,T_c表示散热片的冷端温度。

散热系数h可以通过以下公式进行计算:h = k (T_h T_c) / L。

其中,k表示散热系数的比例系数,T_h表示散热片的热端温度,T_c表示散热片的冷端温度,L表示散热片的厚度。

通过以上公式,我们可以计算出散热片的冷却效率,进而评估散热片的散热性能。

影响散热片冷却效率的因素。

散热片的冷却效率受到多种因素的影响,主要包括散热片的材料、表面积、厚度、热端温度和冷端温度等因素。

首先是散热片的材料。

不同的材料具有不同的导热性能,导热性能好的材料可以提高散热片的冷却效率。

其次是散热片的表面积。

表面积越大,散热片的散热量越大,冷却效率也会相应提高。

再次是散热片的厚度。

厚度越大,散热片的导热性能越好,冷却效率也会相应提高。

此外,热端温度和冷端温度也是影响散热片冷却效率的重要因素。

温差越大,散热片的散热量越大,冷却效率也会相应提高。

优化散热片的冷却效率。

为了提高散热片的冷却效率,我们可以从以下几个方面进行优化:首先是选择合适的散热片材料。

导热性能好的材料可以提高散热片的冷却效率。

其次是增大散热片的表面积。

通过增大散热片的表面积,可以提高散热片的散热量,进而提高冷却效率。

散热片散热面积计算

散热片散热面积计算

散热片作为强化传热的重要技术之一,广泛地应用于提高固体壁面的传热速率。

比如飞机、空调、电子元件、机动车辆的散热器、船用散热器等[1]。

对散热片强化传热的研究引起国内外众多学者的关注,如对散热片自然对流的研究[2-7],对散热片强制对流的研究[8-12 ]。

前人对散热片的研究大致可分为两类:其一,采用实验的手段,在一定范围内改变散热片组的结构尺寸和操作参数,比较其传热性能,从而得出散热片组最优的结构尺寸和最优的操作参数;其二,采用数学方法,对某一具体情况推导出偏微分方程,简化其边界条件,求其数值解。

本文深入分析散热片组间流体的流动特性及传热特性,总结各种因素对传热的影响,采用最优化技术及先进的计算机软件技术,对自然对流情况下矩形散热片组的散热过程进行了优化研究,并设计典型实验,检验优化结果。

2 散热片散热过程分析散热片多用于强化发热表面向空气散热的情况,故本文以与空气接触的散热片为研究对象。

由于散热片表面温度(一般不超过250 C )不高,散热片组对空气的辐射换热量采用式(1) 计算可知,它所占比例小于总散热量的3%。

因此,散热片表面与周围环境之间的散热主要是对流传热。

式(1)中的F为辐射角系数,本文散热片组的辐射角系数由G N ELLISON [13]介绍的方法求得。

(1)散热片传热是一个比较复杂的物理过程,对此过程,国内外学者进行了深入的实验研究,他们的工作主要着重于传热系数大小、传热系数与流体流速以及流道的几何形状等因素的内在联系。

在实验研究中得到了许多适用于具体实验条件的准数关联式。

这些结果对传热过程的了解和散热片的设计有重要的意义。

在自然对流条件下,散热片组的结构参数(散热片的间距、高度、厚度 )是散热片散热的主要影响因素,散热片组的结构见文献[ 14]。

2.1 间距对散热片散热的影响描述流体与固体间对流传热的基本方程式为:Q=hA AT (2)从上式可以看出,通过提高传热系数h,增大传热面积来强化流体与散热片表面间的对流传热效果。

散热片计算方法

散热片计算方法

散热片计算方法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(散热片计算方法)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为散热片计算方法的全部内容。

征热传导过程的物理量在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律:Q=K·A·(T1-T2)/L (1)式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m)。

(T1—T2)为温度差。

热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A (2)对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系.对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下:Z=(T1—T2)/(Q/A)=R·A (3)表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件。

导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量。

芯片工作温度的计算如图4的热传导过程中,总热阻R为:R=R1+R2+R3 (4)式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻.导热材料的热阻R2为: R2=Z/A (5)式中:Z为导热材料的热阻抗,A为传热面积。

散热器面积及片数的计算方法

散热器面积及片数的计算方法

工程一:室内热水供暖工程施工模块三:散热器施工安装单元2 散热器的计算1-3-2-1散热器面积及片数的计算方法1.计算散热器的散热面积供暖房间的散热器向房间供应热量以补偿房间的热损失。

根据热平衡原理,散热器的散热量应等于房间的供暖设计热负荷。

散热器散热面积的计算公式为321)(βββn pj t t K QF -=(2-1-2)式中 F ——散热器的散热面积(m 2);Q ——散热器的散热量(W );K ——散热器的传热系数[W/(m 2·℃)]; t pj ——散热器内热媒平均温度(℃); t n ——供暖室内计算温度(℃); β1——散热器组装片数修正系数; β2——散热器连接形式修正系数; β3——散热器安装形式修正系数。

2.确定散热器的传热系数K散热器的传热系数K 是表示当散热器内热媒平均温度t pj 与室内空气温度t n 的差为1℃时,每1 m 2散热面积单位时间放出的热量。

选用散热器时希望散热器的传热系数越大越好。

影响散热器传热系数的最主要因素是散热器内热媒平均温度与室内空气温度的差值Δt pj 。

另外散热器的材质、几何尺寸、结构形式、表面喷涂、热媒种类、温度、流量、室内空气温度、散热器的安装方式、片数等条件都将影响传热系数的大小。

因而无法用理论推导求出各种散热器的传热系数值,只能通过实验方法确定。

国际化规范组织(ISO )规定:确定散热器的传热系数 K 值的实验,应在一个长×宽×高为(4±0.2)m ×(4±0.2)m ×(2.8±0.2)m 的封闭小室内,保证室温恒定下进行,散热器应无遮挡,敞开设置。

通过实验方法可得到散热器传热系数公式K=a (Δt pj )b =a (t pj -t n )b(2-1-3)式中 K ——在实验条件下,散热器的传热系数[W/(m 2·℃)]; a 、b ——由实验确定的系数,取决于散热器的类型和安装方式; Δt pj ——散热器内热媒与室内空气的平均温差,Δt pj =t pj –t n 。

机动车辆散热器的散热量计算和散热面积确定方法分析

机动车辆散热器的散热量计算和散热面积确定方法分析

机动车辆散热器的散热量计算和散热面积确定方法分析随着机动车辆的迅猛发展,散热器在汽车冷却系统中起着至关重要的作用。

散热器的设计和性能直接影响着发动机的工作效率和寿命。

因此,对于散热器的散热量计算和散热面积的确定方法进行分析是非常必要的。

一、散热量的计算方法1. 热负荷法计算散热量热负荷法是一种基于散热器接收单位面积热量的能力来计算散热量的方法。

该方法通过测量发动机在给定工况下产生的热量,并将其除以散热器可接受的最大热负荷,以得出所需的散热面积。

2. 温度差法计算散热量温度差法是一种基于冷却介质进出口温度差异来计算散热量的方法。

该方法通过测量冷却液在进入和离开散热器前后的温度差异,并结合冷却液的流量来计算散热量。

3. 水力法计算散热量水力法是一种基于冷却液在散热器内的流动状况来计算散热量的方法。

该方法通过测量冷却液在散热器内的流速和压降,并结合冷却液的流量来计算散热量。

二、散热面积的确定方法1. 经验公式法确定散热面积经验公式法是一种基于经验公式来确定散热面积的方法。

这些经验公式是根据大量实验和观测数据得出的,并可以根据不同的发动机和散热器类型进行调整。

使用经验公式法时,需要考虑到散热器的形状、材料以及工作条件等因素。

2. 数值模拟法确定散热面积数值模拟法是一种基于计算机模拟的方法来确定散热面积的方法。

通过建立散热器的数学模型,并利用计算流体力学(CFD)方法进行模拟计算,可以得到散热器的散热性能和效果。

数值模拟法可以提供更准确和可靠的散热面积确定结果。

3. 实验测试法确定散热面积实验测试法是一种通过实际测试和观测来确定散热面积的方法。

通过在实验室或测试场上进行不同工况下的散热器测试,并结合实际工况下的温度和压力数据,可以得到散热器的散热面积。

三、散热器性能的改进方法除了散热量计算和散热面积确定方法的分析之外,还可以通过以下方法来改进散热器的性能:1. 材料优化:选择导热性能好、耐腐蚀性强的材料可以提高散热器的散热效果。

热管散热器散热计算公式

热管散热器散热计算公式

热管散热器散热计算公式热管散热器是一种高效的散热设备,它通过热管的热传导和散热片的散热来实现散热效果。

在工程实践中,我们需要通过一定的计算来确定热管散热器的散热效果,以确保设备正常运行。

本文将介绍热管散热器的散热计算公式,并对其进行详细的讲解。

热管散热器的散热计算公式可以分为两部分,热管的热传导计算和散热片的散热计算。

首先我们来看热管的热传导计算。

热管的热传导计算公式如下:Q = kAΔT / L。

其中,Q为热管的传热量,单位为瓦特(W);k为热管的导热系数,单位为瓦特/米-摄氏度(W/m·°C);A为热管的横截面积,单位为平方米(m^2);ΔT为热管两端的温度差,单位为摄氏度(°C);L为热管的长度,单位为米(m)。

在实际应用中,热管的导热系数k通常是已知的,可以根据热管的材料和结构参数进行查阅。

热管的横截面积A和长度L也是已知的,可以通过测量得到。

而热管两端的温度差ΔT则需要根据具体的工况和散热需求来确定。

通过这个公式,我们可以计算出热管的传热量,从而评估热管的散热性能。

接下来我们来看散热片的散热计算。

散热片的散热计算公式如下:Q = hAΔT。

其中,Q为散热片的传热量,单位为瓦特(W);h为散热片的对流换热系数,单位为瓦特/平方米-摄氏度(W/m^2·°C);A为散热片的表面积,单位为平方米(m^2);ΔT为散热片表面和环境的温度差,单位为摄氏度(°C)。

在实际应用中,散热片的表面积A是已知的,可以通过测量得到。

散热片的对流换热系数h通常需要根据具体的工况和散热片的形状来确定,可以通过经验公式或者计算流体力学模拟得到。

而散热片表面和环境的温度差ΔT也需要根据具体的工况和散热需求来确定。

通过这个公式,我们可以计算出散热片的传热量,从而评估散热片的散热性能。

综合考虑热管和散热片的散热计算公式,我们可以得到整个热管散热器的散热量。

在实际应用中,我们还需要考虑热管和散热片的布局和组合方式,以及热管散热器的整体热阻等因素。

散热片设计计算公式

散热片设计计算公式

散热片设计计算公式
散热片是一种用于散热的重要元件,广泛应用于电子设备和机械设备中。

它的设计计算公式是根据散热片的尺寸、材料和工作条件来确定的。

在设计散热片时,需要考虑到散热片的导热性能、散热面积和散热效率等因素。

散热片的导热性能是影响散热效果的重要因素之一。

导热性能通常用散热片的导热系数来衡量,导热系数越大,散热片的散热效果就越好。

导热系数可以通过实验测试或者参考材料手册来获取。

在设计散热片时,需要选择导热性能较好的材料,以提高散热片的导热性能。

散热片的散热面积也是影响散热效果的重要因素。

散热面积越大,散热片能够散热的表面积就越大,散热效果也就越好。

在设计散热片时,需要根据散热要求和设备尺寸等因素来确定散热片的尺寸。

通常情况下,散热片的外形可以选择矩形、方形、圆形等形状,根据实际应用情况来确定。

散热片的散热效率也是需要考虑的因素之一。

散热效率可以通过散热片的设计参数来计算,常见的计算公式如下:
散热效率 = 散热量 / 输入功率
其中,散热量是指散热片从热源吸收的热量,输入功率是指散热片
所消耗的功率。

散热效率越高,散热片的散热效果就越好。

在设计散热片时,需要根据实际情况来选择合适的计算公式,并考虑到散热片的材料、尺寸和工作条件等因素。

散热片的设计计算公式是根据散热片的导热性能、散热面积和散热效率等因素来确定的。

在设计散热片时,需要综合考虑这些因素,并选择合适的材料和尺寸,以提高散热片的散热效果。

通过合理设计和计算,可以使散热片达到更好的散热效果,保证设备的正常运行。

散热与风量的计算

散热与风量的计算

散热与风量的计算风扇总热量=空气比热X空气重量X温差,这里的温差;的,250-80(最加热片的温度)-25(进风空;总功不知道,电器做的总功/4.2=风扇排出的总热;设:半导体发热芯片平均温度T1(工作时的温度上限;求了),散热片平均温度T2,散热片出口处空气温度;简化问题,假设:;1.散热片为热的良导体,达到热平衡时间忽略,则有;2.只考虑热传导,对流和辐射不予考虑;又因风扇总热量=空气比热X空气重量X温差,这里的温差是指,你进风的温度与最终加热片的温度的差值,照你说的,空气密.1.2.P=λ*【T2-0.5(T3+38°C)】*A其中:P为散热功率,λ为散热系数,A为与空气的接触面积,【T2-0.5(T3+38°C)】为温差;其中:λ可以通过对照试验求(好吧,还是估算)出来,这样就能大概估算出需要的散热器面积A了。

P.S.误差来源1:散热器温度和芯片温度肯定不相等,热传导需要时间,而且散热片不同位置的温度也不严格相同,只是处在动态平衡;误差来源2:散热片的散热公式是凭感觉写的。

应该没大错,但肯定很粗糙。

自己修正吧能想到的就这么多了。

轴流风机风量散热器的信息讲解2011-06-0217:06位就是为折扣。

防爆风机所以说不同的散热器,厂商会根据需要配合适当风量、风压的风扇,而并不是单一追求大风量或者高风压的风扇。

风扇转速是指风扇扇叶每分钟旋转的次数,单位是rpm。

风扇转速由电机内线圈的匝数、工作电压、风扇扇叶的数量、倾角、高度、直径和轴承系统共同决定。

转速和风扇质量没有必然的联系。

风扇的转速可以通过内部的转速信号进行测量,也可以通过外部进行测量(外部测量是用其它仪器看风扇转的有多快,内部测量则直接可以到BIOS里看,也可以通过软件看。

内部测量相对来说误差大一些)。

?因为随着环境温度的变化,有时需要不同转速风扇来满足需求。

一些厂商特意设计出可调节风扇转速的散热器,分手动和自动两种。

散热片的片数计算

散热片的片数计算

暖气片散热片的片数计算
新型金旗舰暖气片在出售的时候都按“片”或“组”论价,同时又标着“W”(散热量),许多消费者不知道自己房子到底需要买多少片或组暖气才合适,也不知道居室到底需要多少“W”才能暖和。

购买时,要具体计算后才能知道购买量。

购买暖气首先要与供暖房屋的面积相匹配,而鉴于不同品牌暖气的散热量又不近相同,所以,选购暖气之前应该进行科学的计算。

暖气片十大品牌金旗舰暖气片,一线明星代言,暖通O2O第一品牌。

下面就为您介绍暖气计算的三种方法:即一算面积、二算瓦数(W)、三算片数。

1、算面积:分别计算自己卧室、起居室、厨房、卫生间等的面积,将其作为进一步测算的基础数据。

2、算瓦数(W):这一过程相对复杂,以下简要提供给消费者一组民用建筑供暖单位面积热指标测算的参考数据。

一般家庭住宅可以按每平方米45~70W来计算。

购买暖气时,用居室面积乘以每平方米的“W”就是该房间需要的供热量。

一般情况下,出售的暖气都标着“W”。

由于实际生活中变化差异较大,在估算时,应考虑楼房或平房、顶层或底层、端头或中间、北房或南房、城里或城外、墙体保温性等因素。

有一个简单的办法,在计算出暖气片数后,可再适当加上10~20%,作为富裕量,以免暖气热量不够。

3、算片数:实际上,瓦数算出来以后就可以换算出暖气的片数进而计算出组数,实际暖气并不都是可以拆分组合的,尤其是卫浴型
暖气,一般都是整体造型的居多,消费者根据面积选择其适用的款式就可以了。

散热与风量的计算

散热与风量的计算

散热与风量的计算风扇总热量=空气比热X空气重量X温差,这里的温差;的,250-80(最加热片的温度)-25(进风空;总功不知道,电器做的总功/4.2=风扇排出的总热;设:半导体发热芯片平均温度T1(工作时的温度上限;求了),散热片平均温度T2,散热片出口处空气温度;简化问题,假设:;1.散热片为热的良导体,达到热平衡时间忽略,则有;2.只考虑热传导,对流和辐射不予考虑;又因风扇总热量=空气比热X空气重量X温差,这里的温差是指,你进风的温度与最终加热片的温度的差值,照你说的,250-80(最加热片的温度)-25(进风空气的温度)=145度,你给的倏件还一样,就是热量不知道,或者电器做的总功不知道,电器做的总功/4.2=风扇排出的总热量知道的话就可以根空气重量=风量/60X空气密度逆推出风量.设:半导体发热芯片平均温度T1(工作时的温度上限,也就是说改芯片能承受的最高温度,取决你的设计要求了),散热片平均温度T2,散热片出口处空气温度T3简化问题,假设:1.散热片为热的良导体,达到热平衡时间忽略,则有T1=T2;2.只考虑热传导,对流和辐射不予考虑。

又因为半导体发出的热量最终用来加热空气,则有:880W=40CFM*空气比热*(T3-38°C)注意单位统一,至于空气的比热用定容的吧。

上式可以求出(实际上也就是估算而已)出口处空气温度T3,根据散热片的散热公式(也是估算),有:P=λ*【T2-0.5(T3+38°C)】*A【T2-0.5(T3+38°C)】其中:P为散热功率,λ为散热系数,A为与空气的接触面积,为温差;其中:λ可以通过对照试验求(好吧,还是估算)出来,这样就能大概估算出需要的散热器面积A了。

P.S.误差来源1:散热器温度和芯片温度肯定不相等,热传导需要时间,而且散热片不同位置的温度也不严格相同,只是处在动态平衡;误差来源2:散热片的散热公式是凭感觉写的。

应该没大错,但肯定很粗糙。

散热片怎么计算

散热片怎么计算

散热片怎么计算有个朋友曾问到78XX散热片怎么计算。

我找不到那地方了,在这里说说看法,供参考。

散热片计算很麻烦的,而且是半经验性的,或说是人家的实测结果。

基本的计算方法是:1, 最大总热阻θja=(器件芯的最高允许温度TJ -最高环境温度TA )/ 最大耗散功率对硅半导体,TJ可高到125℃,但一般不应取那么高,温度太高会降低可靠性和寿命最高环境温度TA 是使用中机箱内的温度,比气温会高。

最大耗散功率见器件手册。

2. 总热阻θj a=芯到壳的热阻θjc +壳到散热片的θcs +散热片到环境的θsa其中,θjc在大功率器件的DateSheet中都有,例如3---5θcs对TO220封装,用2左右,对TO3封装,用3左右,加导热硅脂后,该值会小一点,加云母绝缘后,该值会大一点。

(续)散热片到环境的热阻θsa跟散热片的材料、表面积、厚度都有关系,作为参考,给出一组数据例子。

对于厚2mm的铝板,表面积(平方厘米)和热阻(℃/W)的对应关系是:500 ~~ 2.0, 250 ~~ 2.9, 100 ~~ 4.0, 50 ~~ 5.2, 25 ~~ 6.5中间的数据可以估计了。

对于TO220,不加散热片时,热阻θsa约60--70 ℃/W。

可以看出,当表面积够大到一定程度后,一味的增大表面积,作用已经不大了。

据称,厚度从2 mm 加到4 mm后,热阻只降到0.9倍,而不是0.5倍。

可见一味的加厚作用不大。

表面黑化,θsa会小一点,注意,表面积是指的铝板二面的面积之和,但紧贴电路板的面积不应该计入。

对于型材做的散热片,按表面积算出的θsa应该打点折扣……说到底,散热片的计算没有很严格的方法,也不必要严格计算。

实际中,是按理论做个估算,然后满功率试试看,试验时间足够长后,根据器件表面温度,再对散热片做必要的更改。

散热与风量的计算

散热与风量的计算

散热与风量的计算风扇总热量=空气比热X空气重量X温差,这里的温差;的,250-80(最加热片的温度)-25(进风空;总功不知道,电器做的总功/4.2=风扇排出的总热;设:半导体发热芯片平均温度T1(工作时的温度上限;求了),散热片平均温度T2,散热片出口处空气温度;简化问题,假设:;1.散热片为热的良导体,达到热平衡时间忽略,则有;2.只考虑热传导,对流和辐射不予考虑;又因风扇总热量=空气比热X空气重量X温差,这里的温差是指,你进风的温度与最终加热片的温度的差值,照你说的,250-80(最加热片的温度)-25(进风空气的温度)=145度,你给的倏件还一样,就是热量不知道,或者电器做的总功不知道,电器做的总功/4.2=风扇排出的总热量知道的话就可以根空气重量=风量/60X空气密度逆推出风量.设:半导体发热芯片平均温度T1(工作时的温度上限,也就是说改芯片能承受的最高温度,取决你的设计要求了),散热片平均温度T2,散热片出口处空气温度T3简化问题,假设:1.散热片为热的良导体,达到热平衡时间忽略,则有T1=T2;2.只考虑热传导,对流和辐射不予考虑。

又因为半导体发出的热量最终用来加热空气,则有:880W=40CFM*空气比热*(T3-38°C)注意单位统一,至于空气的比热用定容的吧。

上式可以求出(实际上也就是估算而已)出口处空气温度T3,根据散热片的散热公式(也是估算),有:P=λ*【T2-0.5(T3+38°C)】*A【T2-0.5(T3+38°C)】其中:P为散热功率,λ为散热系数,A为与空气的接触面积,为温差;其中:λ可以通过对照试验求(好吧,还是估算)出来,这样就能大概估算出需要的散热器面积A了。

P.S.误差来源1:散热器温度和芯片温度肯定不相等,热传导需要时间,而且散热片不同位置的温度也不严格相同,只是处在动态平衡;误差来源2:散热片的散热公式是凭感觉写的。

应该没大错,但肯定很粗糙。

散热器的散热量计算公式

散热器的散热量计算公式

散热器的散热量计算公式散热器是一种用于散热的设备,广泛应用于电子设备、汽车发动机、工业设备等领域。

散热器的效果好坏取决于其散热量的大小。

散热器的散热量计算公式是通过计算散热器的表面积、传热系数和温度差来得到的。

散热器的表面积是散热器散热的关键因素之一。

表面积越大,散热器与周围环境的接触面积就越大,从而增加了散热器的散热效果。

散热器的表面积可以通过测量散热器的尺寸来得到,一般以平方米为单位。

传热系数是指散热器材料与空气之间传热的能力。

传热系数越大,散热器的散热效果就越好。

传热系数可以通过散热器材料的热导率来得到。

热导率是指材料在单位温度梯度下传热的能力,一般以瓦特/米·开尔文为单位。

温度差是指散热器表面温度与周围环境温度之间的差值。

温度差越大,散热器的散热效果就越好。

温度差可以通过测量散热器表面和周围环境的温度来得到,一般以摄氏度为单位。

根据以上三个因素,散热器的散热量可以通过以下公式来计算:散热量 = 表面积× 传热系数× 温度差其中,散热量以瓦特为单位。

散热器的散热量计算公式可以帮助工程师们在设计散热器时选择合适的尺寸、材料和工艺,以达到所需的散热效果。

通过增加散热器的表面积、提高传热系数和增大温度差,可以增加散热器的散热量,从而提高散热器的效果。

散热器的散热量计算公式在实际应用中非常重要。

在电子设备中,如计算机、手机等,散热器的散热量计算公式可以帮助工程师们设计合适的散热结构,以保证设备的正常运行。

在汽车发动机中,散热器的散热量计算公式可以帮助工程师们选择合适的散热器尺寸和材料,以保证发动机的散热效果,提高发动机的工作效率和寿命。

散热器的散热量计算公式是通过计算散热器的表面积、传热系数和温度差来得到的。

散热器的散热量计算公式可以帮助工程师们在设计散热器时选择合适的尺寸、材料和工艺,以达到所需的散热效果。

散热器的散热量计算公式在电子设备、汽车发动机等领域的应用非常广泛,对保证设备的正常运行和提高工作效率具有重要意义。

如何计算散热片的尺寸

如何计算散热片的尺寸

如何计算散热片尺寸一、7805设计事例设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W。

按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出。

二、正确的设计方法是:首先确定最高的环境温度,比如60℃,查出民品7805的最高结温Tj(max)=125℃,那么允许的温升是65℃。

要求的热阻是65℃/2.45W=26℃/W。

再查7805的热阻,TO-220封装的热阻θJA=54℃/W,TO-3封装(也就是大家说的“铁壳”)的热阻θJA=39℃/W,均高于要求值,都不能使用(虽然达不到热保护点,但是超指标使用还是不对的),所以不论那种封装都必须加散热片。

资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻。

计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W。

其实这个值非常大,只要是个散热片即可满足。

三、散热片尺寸设计散热片计算很麻烦的,而且是半经验性的,或说是人家的实测结果。

基本的计算方法是:1.最大总热阻θja = ( 器件芯的最高允许温度TJ - 最高环境温度 TA ) / 最大耗散功率其中,对硅半导体,TJ可高到125℃,但一般不应取那么高,温度太高会降低可靠性和寿命最高环境温度TA 是使用中机箱内的温度,比气温会高。

最大耗散功率见器件手册。

2.总热阻θja=芯到壳的热阻θjc +壳到散热片的 θcs + 散热片到环境的 θsa其中,θjc在大功率器件的DateSheet中都有,例如 3---5θcs 对TO220封装,用2左右,对TO3封装,用3左右,加导热硅脂后,该值会小一点,加云母绝缘后,该值会大一点。

散热片到环境的热阻 θsa 跟散热片的材料、表面积、厚度都有关系,作为参考,给出一组数据例子。

a.对于厚2mm的铝板,表面积(平方厘米)和热阻(℃/W)的对应关系是:序号 表面积(平方厘米) 热阻(℃/W)1 500 2.02 250 2.93 100 44 50 5.25 25 6.5中间的数据可以估计了。

散热片热阻计算

散热片热阻计算

散热片热阻计算散热片热阻是指散热片在散热过程中阻碍热量传递的程度。

散热片是一种用于散热的设备,通常由金属制成,具有较好的导热性能。

在电子设备、汽车发动机、空调等各种应用中,散热片起着重要的散热作用。

散热片的热阻是指单位面积上热量通过散热片的难度,其计算公式为:热阻 = 温度差 / 热流率热阻越小,热量传递越顺畅,散热效果越好。

散热片的热阻主要由以下几个因素决定:1. 散热片材料的导热性能:散热片通常采用导热性能较好的金属材料,如铝、铜等。

这些金属具有较高的热导率,能够快速传导热量,从而降低热阻。

2. 散热片的结构形式:散热片的结构形式也会影响其热阻。

散热片通常采用片状或翅片状的结构,增加了散热面积,提高了热量的散发能力。

同时,翅片的设计也会影响热阻的大小,合理的翅片结构能够增加热量的传导效率。

3. 散热片与散热介质之间的接触热阻:散热片通常需要与散热介质(如风扇、散热鳍片等)接触,将热量传递给散热介质。

接触热阻取决于接触面的平整度、接触面积、接触介质的导热性能等因素。

为了减小接触热阻,通常需要采取一些措施,如增加接触面积、使用导热硅脂等。

4. 散热片的尺寸和形状:散热片的尺寸和形状也会影响热阻。

一般来说,散热片的尺寸越大,散热面积越大,热量传递能力越强,热阻越小。

同时,散热片的形状也会影响热量的传导效率,如翅片的形状和密度等。

在实际应用中,为了降低散热片的热阻,可以采取以下措施:1. 选择导热性能好的材料:选择导热性能好的金属材料,如铝、铜等,能够提高散热片的热传导能力,降低热阻。

2. 设计合理的翅片结构:合理设计翅片的形状和密度,增加散热面积,提高热量的散发能力。

3. 优化散热片与散热介质的接触:采取一些措施,如增加接触面积、使用导热硅脂等,减小散热片与散热介质之间的接触热阻。

4. 增大散热片的尺寸:增大散热片的尺寸,增加散热面积,提高热量的传导效率。

散热片的热阻是影响散热效果的重要指标。

通过选择合适的材料、合理设计翅片结构、优化散热片与散热介质的接触方式以及增大散热片的尺寸等措施,可以有效降低散热片的热阻,提高散热效果,确保设备的正常运行和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

征热传导过程的物理量
在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律:
Q=K·A·(T1-T2)/L (1)
式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m).(T1-T2)为温度差.
热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为:
R=(T1-T2)/Q=L/K·A (2)
对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系.
对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下:
Z=(T1-T2)/(Q/A)=R·A (3)
表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件.导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量.
芯片工作温度的计算
如图4的热传导过程中,总热阻R为:
R=R1+R2+R3 (4)
式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻.导热材料的热阻R2为:
R2=Z/A (5)
式中:Z为导热材料的热阻抗,A为传热面积.芯片的工作温度T2为:
T2=T1+P×R (6)
式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻.芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2.
实例
下面通过一个实例来计算芯片的工作温度.芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃.导热材料理论热阻R4为:
R4=Z/A=5.8 (℃·cm2/W)/ 5(cm2)=1.16℃/W (7)
由于导热材料同芯片和散热器之间不可能达到100%的结合,会存在一些空气间隙,因此导热材料的实际热阻要大于理论热阻.假定导热材料同芯片和散热器之间的结合面积为总面积的60%,则实际热阻R3为:
R3=R4/60%=1.93℃/W (8)
总热阻R为:
R=R1+R2+R3=5.18℃/W (9)
芯片的工作温度T2为:
T2=T1+P×R=50℃+(5W× 5.18℃/W)=75.9℃(10)
可见,芯片的实际工作温度75.9℃小于芯片的最高工作温度90℃,处于安全工作状态.
如果芯片的实际工作温度大于最高工作温度,那就需要重新选择散热性能更好的散热器,增加散热面积,或者选择导热效果更优异的导热材料,提高整体散热效果,从而保持芯片的实际工作温度在允许范围以内(作者:方科)转载。

相关文档
最新文档