人教版初二数学下册矩形的定义

合集下载

矩形的性质与判定2021-2022学年八年级数学下学期重要考点精讲精练(人教版)(解析版)

矩形的性质与判定2021-2022学年八年级数学下学期重要考点精讲精练(人教版)(解析版)

18.2.1矩形的性质与判定矩形的定义:有一个角是直角的平行四边形叫做矩形.注意:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.注意:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分. (2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.题型1:理解矩形的性质1.矩形具有而平行四边形不一定具有的性质是()A.两组对边分别相等B.对角线相等C.两组对边分别平行题型2:利用矩形的性质判定三角形全等2.如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.求证:△ACD≌△EDC.【分析】由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;【解答】证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS);【变式2-1】已知:如图,在矩形ABCD中,E为AD上一点,EF⊥CE,交AB于点F,DE=2,矩形的周长为16,且CE=EF.求AE的长.【分析】由题意可证△AEF≌△ECD,可得AE=CD,由矩形的周长为16,可得2(AE+DE+CD)=16,可求AE的长度.【解答】解:∵四边形ABCD为矩形,∴∠A=∠D=90°∵EF⊥CE∴∠CEF=90°∴∠CED+∠AEF=90°∵∠CED+∠DCE=90°∴∠DCE=∠AEF∵CE=EF,∠A=∠D,∠DCE=∠AEF∴△AEF≌△DCE∴AE=DC由题意可知:2(AE+DE+CD)=16 且DE=2∴2AE=6∴AE=3【变式2-2】如图,在矩形ABCD中,点E是CD边上的中点.求证:AE=BE.【分析】利用矩形的性质证得△ADE≌△BCE后即可证得结论.【解答】证明:∵四边形ABCD是矩形,∴AD=BC,∠D=∠C=90°,∵E为CD边上的中点,∴DE=CE,∴△ADE≌△BCE(SAS),∴AE=BE.题型3:矩形的性质与求角度3.如图,四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DGF等于()A.70°B.60°C.80°D.45°【分析】由矩形的性质可得∠EAG=∠DAB=90°,CD∥AB,即可求解.【解答】解:∵四边形ABCD和四边形AEFG都是矩形.∴∠FGA=∠DAB=90°,CD∥AB,∴∠DGA=∠BAG=20°,∴∠DGF=90°﹣∠DGA=90°﹣20°=70°.故选:A.【变式3-1】用两把完全相同的长方形直尺按如图方式摆放,一把直尺压住射线OB交射线OA于点M,另一把直尺压住射线OA交第一把直尺于点P,作射线OP.若∠BOP=28°,则∠AMP的大小为()A.46°B.52°C.56°D.62°【分析】由长方形直尺可得MP∥OB,再根据作图过程可知OP平分∠AOB,进而可得∠AMP的度数.【解答】解:∵OP平分∠AOB,∴∠MOB=2∠BOP=56°,由长方形直尺可知:MP∥OB,∴∠AMP=∠MOB=56°,故选:C.【变式3-2】如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠E=70°,则∠BAC的度数是()A.40°B.45°C.50°D.60°【分析】连接BD,交AC于O,由矩形的性质得∠ABC=90°,OA=OC=AC,OB=OD=BD,AC =DB,则OA=OB,得∠BAC=∠OBA,再证BE=BD,由等腰三角形的性质得∠BDE=∠E=70°,则∠DBE=50°,即可求解.【解答】解:连接BD,交AC于O,如图:∵四边形ABCD是矩形,∴∠ABC=90°,OA=OC=AC,OB=OD=BD,AC=DB,∴OA=OB,∴∠BAC=∠OBA,∵BE=AC,∴BE=BD,∴∠BDE=∠E=70°,∴∠DBE=180°﹣70°﹣70°=40°,∴∠BAC=∠OBA=90°﹣40°=50°,故选:C.题型4:矩形的性质与求线段4.如图,矩形ABCD中,对角线AC,BD交于点O,若∠AOB=60°,BD=8,则DC长为()A.4B.4C.3D.5【分析】由矩形对角线性质可得AO=BO,又∠AOB=60°,可证△OAB为等边三角形,得DC=AB,即可得解.【解答】解:由矩形对角线相等且互相平分可得AO=BO==4,即△OAB为等腰三角形,又∠AOB=60°,∴△OAB为等边三角形.故AB=BO=4,∴DC=AB=4.故选:B.【变式4-1】如图,矩形ABCD中,AC,BD交于点O,M,N分别为BC,OC的中点,若MN=3,则BD =12.【分析】根据中位线的性质求出BO长度,再依据矩形的性质BD=2BO进行求解.【解答】解:∵M、N分别为BC、OC的中点,∴BO=2MN=6.∵四边形ABCD是矩形,∴BD=2BO=12.故答案为12.【变式4-2】如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长是18.【分析】由矩形的性质得出∠ABC=90°,CD=AB=6,BC=AD=8,由勾股定理求出AC,由直角三角形斜边上的中线性质得出BP,证明PE是△ACD的中位线,由三角形中位线定理得出PE=CD=3,四边形ABPE的周长=AB+BP+PE+AE,即可得出结果.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,CD=AB=6,BC=AD=8,∴AC==10,∴BP=AC=5,∵P是矩形ABCD的对角线AC的中点,E是AD的中点,∴AE=AD=4,PE是△ACD的中位线,∴PE=CD=3,∴四边形ABPE的周长=AB+BP+PE+AE=6+5+3+4=18;故答案为:18.题型5:矩形性质综合5.如图,点P是矩形ABCD的对角线上一点,过点P作EF∥BC,分别交AB,CD于E,F,连接PB,PD,若AE=1,PF=3,则图中阴影部分的面积为()A.3B.6C.9D.12【分析】由矩形的性质可证明S△PEB=S△PFD,即可求解.【解答】解:作PM⊥AD于M,交BC于N.如图:则四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×1×3=,∴S阴=+=3,故选:A.【变式5-1】如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形.(2)若AD=4,AB=2,且MN⊥AC,则DM的长为.【分析】(1)在矩形ABCD中,O为对角线AC的中点,可得AD∥BC,AO=CO,可以证明△AOM≌△CON可得AM=CN,进而证明四边形ANCM为平行四边形;(2)根据MN⊥AC,可得四边形ANCM为菱形;根据AD=4,AB=2,AM=AN=NC=AD﹣DM,即可在Rt△ABN中,根据勾股定理,求出DM的长.【解答】(1)证明:在矩形ABCD中,O为对角线AC的中点,∴AD∥BC,AO=CO,∴∠OAM=∠OCN,∠OMA=∠ONC,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AM=CN,∵AM∥CN,∴四边形ANCM为平行四边形;(2)解:在矩形ABCD中,AD=BC,由(1)知:AM=CN,∴DM=BN,∵四边形ANCM为平行四边形,MN⊥AC,∴平行四边形ANCM为菱形,∴AM=AN=NC=AD﹣DM,在Rt△ABN中,根据勾股定理,得AN2=AB2+BN2,∴(4﹣DM)2=22+DM2,解得DM=.故答案为.【变式5-2】如图,已知矩形ABCD,延长CB至点E,使得BE=BC,对角线AC,BD交于点F,连结EF.(1)求证:四边形AEBD是平行四边形;(2)若BC=4,CD=8,求EF的长.【分析】(1)由矩形的性质可得AD∥BC,AD=BC=BE,可得结论;(2)由矩形的性质可得FB=FC=FD,可证FG是△BCD的中位线,在Rt△EFG中,由勾股定理可求EF的长.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BC=BE,∴AD∥BE,AD=BE,∴四边形AEBD是平行四边形;(2)过点F作FG⊥BC于点G,∵四边形ABCD是矩形,∴FB=FC=FD,∴G是BC的中点,∴FG是△BCD的中位线,∴.在Rt△EFG中,FG=4,EG=6,∴.题型6:直角三角形斜边中线等于斜边的一半6.直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A.6B.6.5C.10D.13【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线的长==6.5.故选:B.【变式6-1】如图,在△AEC、△BED中,∠AEC=∠BED=90°,AC、BD相交于点O,且O是AC、BD 的中点.求证:四边形ABCD是矩形.【分析】连接EO,首先根据O为BD和AC的中点,在Rt△AEC中EO=AC,在Rt△EBD中,EO=BD,进而得到AC=BD,再根据对角线相等的平行四边形是矩形可证出结论.【解答】证明:连接EO,∵O是AC、BD的中点,∴AO=CO,BO=DO,在Rt△EBD中,∵O为BD中点,∴EO=BD,在Rt△AEC中,∵O为AC中点,∴EO=AC,∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.【变式6-2】如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点.(1)求证:△MEF是等腰三角形;(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度数.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得EM=MC=BC,MF=MB=BC,然后根据根据等腰三角形的判定定理即可得到结论;(2)根据等边对等角求出∠ABC=∠MFB,∠ACB=∠MEC,再根据三角形的内角和定理求出∠BMF,∠EMC,然后利用平角等于180°列式计算得出∠EMF.【解答】(1)证明:∵CF⊥AB于F,M为BC的中点,∴ME=BC,同理MF=BC,∴EM=FM,∴△MEF是等腰三角形;(2)解:∵MF=MB,∴∠ABC=∠MFB=50°,同理∠ACB=∠MEC=60°,∴∠BMF=180°﹣50°﹣50°=80°,∠EMC=180°﹣60°﹣60°=60°,∴∠FME=180°﹣80°﹣60°=40°.【变式6-3】如图,BD是△ABC的角平分线,点E在边AB上,且DE∥BC,AE=BE.(1)若BE=5,求DE的长;(2)求证:AB=BC.【分析】(1)根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠BDE=∠DBC,求得∠EBD=∠EDB,根据等腰三角形的判定定理得到DE=BE=5;(2)根据等腰三角形的性质得到∠A=∠ADE,根据三角形的内角和定理得到∠ADB=90°,根据全等三角形的性质即可得到结论.【解答】(1)解:∵BD是△ABC的角平分线,∴∠ABD=∠CBD,∵DE∥BC,∴∠BDE=∠DBC,∴∠EBD=∠EDB,∴DE=BE=5;(2)证明:由(1)知,BE=DE,∵AE=BE,∴∠A=∠ADE,∵∠EBD=∠EDB,∠A+∠ABD+∠ADE+∠BDE=180°,∴∠ADE+∠BDE=×180°=90°,∴∠ADB=90°,∴BD⊥AC,在△ABD与△CBD中,,∴△ABD≌△CBD(SAS),∴AB=BC.矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形(对角线互相平分且相等).3.有三个角是直角的四边形是矩形.注意:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形. 题型7:矩形的判定(三直角)7.已知:如图,在△ABC中,AB=AC,AD是△ABC的中线,AN为△ABC的外角∠CAM的平分线,CE∥AD,交AN于点E.求证:四边形ADCE是矩形.【分析】由在△ABC中,AB=AC,AD是BC边的中线,可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,即可证得:四边形ADCE为矩形.【解答】证明:∵在△ABC中,AB=AC,AD是BC边的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADC=90°,∵AN为△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAE=90°,∵CE∥AD,∴∠AEC=90°,∴四边形ADCE为矩形.【变式7-1】如图,平行四边形ABCD的四个内角的平分线分别相交于点E、F、G、H,求证:四边形EFGH 是矩形.【分析】利用三个内角等于90°的四边形是矩形,即可证明.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵BH,CH分别平分∠ABC与∠BCD,∴∠HBC=∠ABC,∠HCB=∠BCD,∴∠HBC+∠HCB=(∠ABC+∠BCD)=×180°=90°,∴∠H=90°,同理∠HEF=∠F=90°,∴四边形EFGH是矩形.【变式7-2】如图,在平行四边形ABCD中,AE,BF,CN,DM分别是∠DAB,∠ABC,∠BCD,∠CDA 的角平分线,且相交于点O,K,H,G,求证:四边形HGOK是矩形.【分析】首先根据平行四边形的性质可得∠DAB+∠ABC=180°,再根据角平分线的性质可得∠GAB+∠GBA=(∠DAB+∠ABC)=×180°=90°,然后同理可得:∠OKH=90°,∠KHG=90°,∠HGO =90°,根据三个角是直角的四边形是矩形可得四边形GHKL是矩形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∵AE,BF分别平分∠DAB,∠ABC,∴∠GAB+∠GBA=(∠DAB+∠ABC)=×180°=90°.∴∠GOK=90°,同理:∠OKH=90°,∠KHG=90°,∴∠HGO=90°,∴四边形KHGO是矩形.题型8:矩形的判定(平行四边形+一个直角)8.如图,在△ABC中,D,E,F分别是边BC,AB,AC的中点,当∠BAC=90°时,想一想,四边形AEDF是什么特殊的四边形?证明你的结论.【分析】根据三角形的中位线定理得到四边形AEDF的两边分别平行,根据平行四边形的定义,可知四边形AEDF是平行四边形,又∠BAC=90°,根据矩形的定义,可知四边形AEDF是矩形;【解答】解:∵D,E,F分别是边BC,AB,AC的中点,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又∵∠BAC=90°,∴四边形AEDF是矩形;【变式8-1】已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AE平分∠BAC的外角,DE∥AB 交AE于点E.试说明四边形ADCE是矩形.【分析】首先利用外角性质得出∠B=∠ACB=∠F AE=∠EAC,进而得到AE∥CD,即可求出四边形AEDB 是平行四边形,再利用平行四边形的性质求出四边形ADCE是平行四边形,即可求出四边形ADCE是矩形.【解答】证明:如图所示:∵AB=AC,∴∠B=∠ACB,∵AE是∠BAC的外角平分线,∴∠F AE=∠EAC,∵∠B+∠ACB=∠F AE+∠EAC,∴∠B=∠ACB=∠F AE=∠EAC,∴AE∥CD,又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD,又∵AB=AC,AD⊥BC,∴BD=CD,∠ADC=90°,∴AE平行且等于CD,∴四边形ADCE是平行四边形,又∵∠ADC=90°,∴平行四边形ADCE是矩形.即四边形ADCE是矩形.【变式8-2】如图,在四边形ABCD中,AC⊥BD,EF∥AC∥HG,EH∥BD∥FG,求证:四边形EFGH是矩形.【分析】首先根据已知条件“EF∥AC∥HG,EH∥BD∥FG”推知四边形EFGH是平行四边形,然后由AC⊥BD可以证得平行四边形EFGH是矩形.【解答】证明:∵EF∥AC∥HG,EH∥BD∥FG,∴EF∥HG,EH∥FG,∴四边形EFGH是平行四边形,又∵AC⊥BD,∴EF⊥FG,∴四边形EFGH是矩形.题型9:矩形的判定(平行四边形+对角线相等)9.如图,在▱ABCD中对角线AC,BD相交于点O,∠1=∠2,试判断四边形ABCD的形状,并证明你的结论.【分析】先由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分得出AC=2OC,BDE=2OB,再由∠1=∠2,根据等角对等边得出OC=OB,那么AC=BD,根据对角线相等的平行四边形是矩形得出▱ABCD是矩形.【解答】解:四边形ABCD是矩形,理由如下:∵四边形ABCD是平行四边形,∴AC=2OC,BDE=2OB,∵∠1=∠2,∴OC=OB,∴AC=BD,∴▱ABCD是矩形.【变式9-1】如图,已知▱ABCD中,E,F分别在边BC,AD上,且BE=DF,AC,EF相交于O,连接AE,CF.(1)求证:AE=CF;(2)若∠FOC=2∠OCE,求证:四边形AECF是矩形.【分析】(1)只要证明四边形AECF是平行四边形即可解决问题;(2)只要证明AC=EF即可解决问题.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF=CE,AF∥EC,∴四边形AECF是平行四边形,∴AE=CF.(2)∵∠FOC=∠OEC+∠OCE=2∠OCE,∴∠OEC=∠OCE,∴OE=OC,∵四边形AECF是平行四边形,∴OA=OC,OE=OF,∴AC=EF,∴四边形AECF是矩形.【变式9-2】如图,已知平行四边形ABCD,若M,N是BD上两点,且BM=DN,AC=2MO.求证:四边形AMCN是矩形.【分析】由平行四边形的性质可得OA=OC,OB=OD,可得OM=ON,可证四边形AMCN是平行四边形,通过证明MN=AC,可得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵MO=NO,∵AC=2MO,∴MN=AC,∴四边形AMCN是矩形.【变式9-3】如图,在平行四边形ABCD中,对角线AC、BD交于点O.(1)若DE⊥AC于点E,BF⊥AC于点F,求证:AE=CF;(2)若DO=AC,求证:四边形ABCD为矩形.【分析】(1)由平行四边形的性质得出AD=CB,AD∥BC,证明△DEA≌△BFC(AAS),由全等三角形的性质得出AE=CF;(2)根据平行四边形的性质得出OA=OC,OB=OD,由矩形的判定方法解答即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE⊥AC,BF⊥AC,∴∠DEA=∠BFC=90°,在△DEA与△BFC中,,∴△DEA≌△BFC(AAS),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OA=BD,∴OA=OC=OB=OD,∴AC=BD,∴平行四边形ABCD是矩形.题型10:矩形的判定综合10.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠ADE=60°,若AD=3,求DE的长度.【分析】(1)由平行四边形的性质得到DC∥AB,DC=AB,进而得到DF=BE且DF∥BE,根据平行四边形的判定得到四边形DFBE是平行四边形,由DE⊥AB可得结论;(2)根据直角三角形的边角关系可求DE的长度.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵CF=AE,∴DF=BE且DF∥BE,∴四边形DFBE是平行四边形.又∵DE⊥AB,∴∠DEB=90°,∴四边形DFBE是矩形;(2)解:∵∠ADE=60°,DE⊥AB,∴∠DAE=30°,又∵AD=3,∴DE=AD=,【变式10-1】如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,菱形ABCD的周长是4,求菱形ABCD的面积.【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,∵四边形ABCD是菱形,∴AB=AD=CD=BC,∵菱形ABCD的周长是4,∴CD=,∴OC==2,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.【变式10-2】如图,在平行四边形ABCD中,P是AB上一点(不与点A,B重合),CP=CD,过点P作PQ⊥CP,交AD于点Q,连接CQ,∠BPC=∠AQP.(1)求证:四边形ABCD是矩形;(2)当AP=3,AD=9时,求AQ和CQ的长.【分析】(1)证出∠A=90°即可得到结论;(2)由HL证明Rt△CDQ≌Rt△CPQ,得出DQ=PQ,设AQ=x,则DQ=PQ=9﹣x,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,∠BPC=∠AQP,∴∠CPQ=∠A,∵PQ⊥CP,∴∠A=∠CPQ=90°,∴平行四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,∴Rt△CDQ≌Rt△CPQ(HL),∴DQ=PQ,设AQ=x,则DQ=PQ=9﹣x,在Rt△APQ中,AQ2+AP2=PQ2,∴x2+32=(9﹣x)2,解得:x=4,∴AQ的长是4.设CD=AB=CP=y,则PB=y﹣3,在Rt△PCB中,根据勾股定理列方程,求出y=15.在Rt△CDQ中,CQ==5.【变式10-3】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,BE⊥AB,垂足为B,BE=CD,连接CE,DE.(1)求证:四边形CDBE为矩形;(2)若AC=1,∠A=60°,求DE的长.【分析】(1)先求出四边形CDBE是平行四边形,再根据矩形的判定推出即可;(2)求出AB长,再根据勾股定理求出BC,即可求出DE.【解答】(1)证明:∵CD⊥AB,BE⊥AB,∴∠CDB=90°,CD∥BE,∵CD=BE,∴四边形CDBE是平行四边形,∵∠CDB=90°,∴四边形CDBE是矩形;(2)解:∵在Rt△ABC中,∠ACB=90°,AC=1,∠A=60°,∴∠ABC=30°,∴AB=2AC=2,由勾股定理得:BC==,∵四边形CDBE是矩形,∴DE=BC=.word可编辑文档。

2020年春人教版初中数学八年级下册同步课件 第十八章 18.2 18.2.1 第2课时 矩形的判定

2020年春人教版初中数学八年级下册同步课件 第十八章  18.2  18.2.1  第2课时 矩形的判定

下页
3.下列命题中,假命题是( ) A.有一组对角是直角且一组对边平行的四边形是矩形 B.有一组对角是直角且一组对边相等的四边形是矩形 C.有两个内角是直角且一组对边平行的四边形是矩形 D.有两个内角是直角且一组对边相等的四边形是矩形 解析:有一组对角是直角且一组对边平行可得到两组对边平行或四个角均是直角,故四 边形是矩形;有一组对角是直角且一组对边相等可以得到其两组对边平行,四边形是矩 形;有两个内角是直角且一组对边平行的四边形可能是矩形,也可能是直角梯形;有两 个内角是直角且一组对边相等可以得到其两组对边相等,所以该四边形是矩形. 答案:C
返回导航 上页
下页Biblioteka 判定矩形的方法“图示”八年级数学 ·下
返回导航 上页
下页
[学以致用] 如图所示,在▱ABCD中,AC,BD相交于点O,△AOB是等边三 角形,AB=4 cm. (1)判断▱ABCD是否为矩形,说明你的理由; (2)求▱ABCD的面积.
八年级数学 ·下
返回导航 上页
下页
解析:(1)▱ABCD是矩形.理由如下: ∵△AOB是等边三角形,∴OA=OB=AB=4 cm.∵四边形ABCD是平行四边形,∴ AC=2OA,BD=2OB,∴AC=BD,∴平行四边形ABCD是矩形. (2)由(1)知OA=AB=4 cm,AC=2OA=8 cm,∵四边形ABCD是矩形,∴∠ABC= 90°.在Rt△ABC中,由勾股定理得BC= AC2-AB2= 82-42=4 3, ∴▱ABCD的面积是AB×BC=4×4 3=16 3 (cm2).
八年级数学 ·下
返回导航 上页
下页
[核心素养] 1.数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组的4 位同学拟订的方案,其中正确的是( ) A.测量对角线是否互相平分 B.测量两组对边是否分别相等 C.测量一组对角是否都为直角 D.测量三个角是否为直角

人教版初中八年级下册数学课件 《矩形》平行四边形(第1课时矩形的性质)

人教版初中八年级下册数学课件 《矩形》平行四边形(第1课时矩形的性质)

A
D
O
B
C
基础训练 1. 下面性质中,矩形不一定具有的是( D)
A.对角线相等
B.四个角都相等
C.是轴对称图形 D.对角线垂直
2. 过四边形的各个顶点分别作对角线的平行线,若这四条平行 线围成一个矩形,则原四边形一定是( D )
A.对角线相等的四边形 B.对角线互相平分且相等的四边形 C.对角线互垂直平分的四边形 D.对角线垂直的四边形
3.如图,在Rt△ABC中,∠ACB=90°,∠A=30°.点D是 AB的中点,点E为边AC上一点,连接CD,DE,以DE为边在 DE的左侧作等边△DEF,连接BF. 判断△BCD的形状;
温馨提示:矩形的定义有两个要素:
A
D
①四边形是平行四边形
②有一个角是直角,二者缺一不可。
B
C
矩形是特殊的平行四边形,因此它具有平行四边形的所有性质, 但它也有自己独特的性质。
2.矩形的性质(从边、角、对角线三个方面总结)
(1).边:①两组对边分别平行 ② 两组对边分别相等
A
D
几何语言:∵四边形ABCD是矩形
3. 已知矩形的一条对角线与一边的夹角是40°,则两条对 角线所夹锐角的度数为( )D
A.50° B.60° C.70° D.80°
4. 矩形ABCD中,AB=2BC,E在CD上,AE=AB,则∠BAE等于
()
A
A.30° B.45° C.60° D.120°
例2. 如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小 三角形的周长的和是86cm,对角线长是13cm,那么矩形的周长是多少?
B
C
∴AB//CD,AD//BC
AB=CD,AD=BC

矩形—矩形的定义和性质 课件 2022—2023学年人教版数学八年级下册

矩形—矩形的定义和性质 课件   2022—2023学年人教版数学八年级下册
(2)若∠C = 30° ,AB = 5cm,则AC =__1_0__cm, BD = __5___cm.
A D
B
C
课堂练习
1.矩形具有而一般平行四边形不具有的性质是 ( A ) A.对角线相等 B.对边相等 C.对角相等 D.对角线互相平分 2.若直角三角形的两条直角边分别5和12,则斜边上的中线长为 ( C )
问: 请同学们拿出准备好的矩形纸片,折一折,观察并思考. 矩形是不是轴 对称图形?如果是,那么对称轴有几条?
矩形的性质:
对称性: 轴对称图形 .
对称轴: 2条
.
矩形的性质(除了平行四边形性质):
矩形的四个角都是直角.
矩形的对角线相等.

矩形是轴对称图形,有2条对称轴
论 格式:

∵四边形ABCD是矩形
矩形的性质
学习 目标
01
理解矩形 的定义和 与平行四 边形的区 别(重点)
02
掌握矩形 的性质并 会利用它 解决应用 题(难点)
03
掌握直角三 角形中线的 性质并会利 用它解决应 用题(难点)
导入
观察下面图形,长方形在生活中无处不在.
知识点1:矩形的定义
问:观察下面平行四边形内角的变化,你能从中得出矩形的概念吗?
6.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点. (1)若AB=10,AC=8,求四边形AEDF的周长; (2)求证:EF垂直平分AD
解:∵AD是△ABC的高,E、F分别是AB、AC的中点,
∴DE=AE= 1 AB= 1 ×10=5,
2
2
DF=AF= 1 AC= 1 ×8=4,
∴四边形AED2F的周长2 =AE+DE+DF+AF=5+5+4+4=18 .

人教版初中八年级下册数学课件 《矩形》平行四边形(第2课时矩形的判定)

人教版初中八年级下册数学课件 《矩形》平行四边形(第2课时矩形的判定)
人教版八年级数学
矩形 第二课时矩形的判定
课标解读
1.理解矩形的定义,能够利用矩形的定义判定四边形是矩形。 2.掌握矩形的判定定理,并能灵活运用这些判定定理解决问题。 3.通过探索矩形的判定定理,进一步培养视图能力,以及推理论证 能力。
知识梳理 矩形的判定 1.定义法:有一个角是直角的平行四边形是矩形
4
4.八年级(3)班同学要在广场上布置一个矩形的花坛,计划用红花 摆成两条对角线.如果一条对角线用了38盆红花,还需要从花房运来 多少盆红花?为什么?如果一条对角线用了49盆呢?
解:还需要从花房运来38盆“红花”. 因为,矩形的对角线相等,所以另一条对角线也需38盆“红花”.且 不应除去两条对角线的交点,这是因为38盆是偶数,因此对较线的 交点没有摆花盆. 如果一条对角线用了49盆,那么应从花房运来48盆“红花”.因为矩 形的对角线相等,但由于49盆是奇数,因此对角线交点应已摆放花 盆,所以,另一条对角线上的花盆数应少1盆.
3.已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等 边三角形,AB=4cm. (1)这个平行四边形是矩形吗?说明你的理由; (2)求这个平行四边形的面积.
解:(1)是.∵△AOB是等边三角形,
∴AO=BO
1
1
又∵AO=2 AC,BO2= BD.
∴AC=BD.
∴ ABCD是矩形.
(2)S 1 ABCD= 2 3 4 4 16 3 2
已知:如图,∠A=∠B=∠C=90°.
A
D
求证:四边形ABCD是矩形
证明:∵∠A=∠B=∠C=90° ∴∠D=90°
B
C
∴∠A=∠C,∠B=∠D,
∴四边形ABCD是平行四边形 , ∵∠A=90°

人教版八年级下册数学第18章18.2.1矩形的性质(教案)

人教版八年级下册数学第18章18.2.1矩形的性质(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与矩形相关的实际问题,如矩形的对角线在生活中的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和量角器测量矩形的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
人教版八年级下册数学第18章18.2.1矩形的性质(教案)
一、教学内容
人教版八年级下册数学第18章18.2.1《矩形的性质》:
1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
2.矩形的性质:
(1)矩形的四个角都是直角;
(2)矩形的对边相等且平行;
(3)矩形的对角线相等;
(4)矩形是轴对称图形,对边中点连线所在的直线是它的对称轴;
在学生小组讨论环节,我发现学生们对于矩形在实际生活中的应用有很多有趣的想法,这说明他们能够将所学知识应用到实际问题中。但同时,我也注意到有些学生在讨论中偏离了主题,这可能是我引导不够到位,或者是对讨论主题的限定不够明确。
最后,我觉得在课程结束后,应该留出更多的时间让学生提问和解答疑惑。这样不仅能够及时解决他们在学习过程中遇到的问题,还能让我更好地了解学生的学习情况,为下一步的教学做好准备。通过这次教学反思,我会努力改进教学方法,希望在接下来的课程中,能够更好地帮助学生们掌握矩形的知识。
(4)矩形性质与平行四边形性质的联系与区别:学生可能会混淆矩形的性质与平行四边形的性质。
-难点解析:通过对比分析,让学生明确矩形是特殊的平行四边形,并掌握两者的联系与区别。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《矩形的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状类似长方形或正方形的物体?”(举例说明,如桌面、书本等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索矩形的奥重心,该点在矩形内任意移动,矩形形状不变。

人教版八年级数学下册教案:18.2.1矩形的判定

人教版八年级数学下册教案:18.2.1矩形的判定
人教版八年级数学下册教案:18.2.1矩形的判定
一、教学内容
人教版八年级数学下册教案:18.2.1矩形的判定
1.矩形的定义及性质回顾;
2.矩形判定定理一:有三个角是直角的平行四边形是矩形;
3.矩形判定定理二:对角线相等的平行四边形是矩形;
4.矩形判定定理三:有一个角是直角的菱形是矩形;
5.判定矩形的方法在实际问题中的应用;
-逻辑推理能力:在运用矩形判定定理进行证明或解题时,学生需要具备严密的逻辑推理能力,避免推理过程中的错误。
举例:
a)对于矩形判定定理的运用,可以通过以下步骤帮助学生突破难点:
-通过动画或实物演示,让学生直观感受定理的应用过程。
-引导学生通过已知条件逐步推理,理解判定矩形的关键步骤。
-设计不同难度的练习题,让学生在解题过程中巩固和深化对定理的理解。
b)在空间观念的培养方面:
-利用教具或多媒体展示矩形在二维平面上的位置关系,帮助学生建立空间观念。
-通过实际操作,如制作矩形模型,让学生在实际操作中感受矩形的特点。
c)在逻辑推理能力方面:
-教师在讲解过程中要强调推理的逻辑性和严密性,示范正确的推理方法。
-鼓励学生进行小组讨论,通过交流互相启发,提高逻辑推理能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时0分钟)
1.讨论主题:学生将围绕“矩形判定在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-设计具有挑战性的问题,引导学生逐步分析、解决问题,培养批判性思维。

【课件】第2课时+矩形的判定(课件)人教版数学八年级下册

【课件】第2课时+矩形的判定(课件)人教版数学八年级下册

例2:已知,如图.矩形ABCD的对角线 AC、BD相交于点O,且E、F、G、H分 别是AO、BO、CO、DO的中点, 求证:四边形EFGH是矩形.
思考:平行四边形ABCD中,对角线AC、 BD相交于点O,点P是四边形外一点, 且PA⊥PC,PB⊥PD,垂足为P。
求证:四边形ABCD为矩形




练习、已知MN∥PQ,同旁内角的平分线AB、 BC和AD、CD分别相交于点B、D.
(1)猜想AC和BD间的关系是______; (2)试用理由说明你的猜想.
△ABC中,点O是AC边上的一个动点,过点O作直 线MN∥BC, ,设MN交∠BCA的平分线于点E,交∠BCA的外 角平分线于点F.
(1)求证:EO=FO (2)当点O运动到何处时,四边形AECF是矩形?并证明 你的结论.
A
M E
B
O FN
D C
方法1:
有一个角是直角的平行四边形是矩形。
方法2:
对角线相等的平行四边形是矩形 。
(对角线相等且互相平分的四边形是矩形。)
方法3:
有三个角是直角的四边形是矩形 。
18.2.1 矩形(2)
A
D
O
边 矩形对边平行且相等; B
C
角 矩形的四个角都是直角;
对角线 矩形的对角线相等且平分;
直角三角形的性质定理: 直角三角形斜边上的中线等于斜边的一半.
矩形的判断方法:
1、矩形的定义: 有一个角是直角的平行四边形是矩形。
ABCD ∠A=900
四边形ABCD是矩形
你还有其它的判定方法吗?


例3: 如果平行四边形四个内角的平分线能够围成一个四边形,那 么这个四边形是矩形.

人教版八年级数学下册矩形的性质

人教版八年级数学下册矩形的性质
4 3 AB= _____cm
营中寻宝
4.已知△ABC是Rt△,∠ABC=900, BD是斜边AC上的中线
(1)若BD=3㎝ 则AC= 6 ㎝
B A D

C
(2) 若∠C=30°,AB=5㎝,则AC= 10 BD= 5 ㎝.
㎝,
A
D
一、填空
1.矩形的四个角都是 直角 ,对角线 相等 且 互相平分 . B 2.直角三角形两直角边长分别为6cm、8cm,则斜边上的中线长为 A 5cm 3.如图,在矩形ABCD中对角线AC、BD相交于点O,若AB=6cm, ∠BOC= 120 ,则∠ACB= ,AC= 。 12cm 30 ° D 4.若矩形的两条对角线的一个夹角是60 °,且一条对角线与一条短边 的和是12cm ,则此矩形的对角线的长是 。 A 8cm 5.如右图,矩形ABCD沿AE折叠,使点D落在BC边上 15° 。 的F处,如果∠BAF=60 °,则∠DAE= 二、如图,在矩形ABCD中,两条对角线AC、BD相 交于O, ∠ACD=30 °, AB 4 3 ①判断△AOD形状; ②求对角线AC 、BD的长
的平行四边形是矩形 ______。
A C E B D F
G
1
H
2 3 4
求证:矩形的四个角都是直角.
已知:如图,四边形ABCD是矩形
求证:∠A=∠B=∠C=∠D=90°
证明: ∵四边形ABCD是矩形 ∴ ∠A=90° 又 矩形ABCD是平行四边形 ∴ ∠A=∠C
BAΒιβλιοθήκη D∠B = ∠DC
∠A +∠B = 90° ∴ ∠A=∠B=∠C=∠D=90° 即矩形的四个角都是直角
方法小结: 如果矩形两对角 线的夹角是60° 或120°, 则其中必有等边三角形.

18-2-1 矩形(含2个课时)(课件)八年级数学下册同步精品课堂(人教版)

18-2-1 矩形(含2个课时)(课件)八年级数学下册同步精品课堂(人教版)

为F.求证:DF=DC.
A
D
证明:连接DE.
∵AD =AE,∴∠AED =∠ADE.
∵四边形ABCD是矩形,
B
∴AD∥BC,∠C=90°.
ห้องสมุดไป่ตู้
F
C
E
∴∠ADE=∠DEC,
∴∠DEC=∠AED.
又∵DF⊥AE,
∴DF=DC.
典型例题
例题3 如图,将矩形ABCD沿着直线BD折叠,使点C落在C′ 处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.
AB=CD;AD=BC ∠A=∠C;∠B=∠D
对角线互相平分. OA=OC;OB=OD
探究新知
观察平行四边形的变化过程,当它的一个角变为直角时,
会产生什么特殊的图形?
A
D
A
D
B
C
特殊的平行四边形
探究新知
观察平行四边形的变化过程,当它的一个角变为直角时,
会产生什么特殊的图形?
A
D
A
D
B
C
特殊的平行四边形
(1)若AB=10,AC=8,求四边形AEDF的周长;
解:∵AD是△ABC的高,E、F分别是AB、AC的中点,
∴DE=AE= 1 AB= 1 ×10=5,
DF=AF=
2 1
AC=
21
×8=4,
∴四边形AED2F的周长2=AE+DE+DF+AF=5+5+4+4=18 .
典型例题 (2)求证:EF垂直平分AD.
证明:∵DE=AE,DF=AF, ∴E、F在线段AD的垂直平分线上, ∴EF垂直平分AD. 归纳:当已知条件含有线段的中点、直角三角形的条件时, 可联想直角三角形斜边上的中线的性质进行求解.

人教版八年级数学下册教案:18.2.1矩形的判定

人教版八年级数学下册教案:18.2.1矩形的判定
此外,小组讨论环节让我看到了学生们的积极性和团队协作能力。他们在讨论中提出了很多有见地的观点,也学会了倾听和尊重他人的意见。然而,我也发现有些小组在讨论过程中,个别成员的参与度不高。针对这一问题,我打算在后续的教学中,更加注重引导和鼓励全体学生积极参与,确保每个学生都能在讨论中收获知识和经验。
在实践活动方面,我发现学生们在操作过程中对矩形判定方法的运用还不够熟练。这说明我们在实践环节的设计上还有待改进,需要增加更多具有挑战性和趣味性的任务,让学生在实践中不断巩固和提高所学知识。
1.针对学生的个体差异,制定更加个性化的教学策略;
2.加强对抽象概念和难点内容的讲解,通过丰富多样的教学手段帮助学生深入理解;
3.优化小组讨论环节,提高全体学生的参与度;
4.增加实践活动的设计,让学生在实践中熟练掌握矩形判定方法。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了矩形判定的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对矩形判定方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了矩形的判定方法,我发现学生们对这一知识点的掌握程度有所不同。有的学生能够迅速理解并应用判定方法,但也有部分学生在理解上存在一定的困难。这让我意识到,在今后的教学中,我需要更加关注学生的个体差异,采取更为灵活和多样的教学方法。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与矩形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用直尺和量角器来判定一个实际物体(如书本)的形状是否为矩形。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形的性质
教学目标
1. 掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系。

2. 会初步运用矩形的概念和性质来解决有关问题。

3. 渗透运动联系、从量变到质变的观点
教学重点矩形的性质
教学难点矩形的性质的灵活应用
教具准备活动平行四边形教具、课件教学步骤
(体现预习、导入、教学问题设计、内容安排、小结、作业布置等)
一、知识回顾:
平行四边形有哪此性质?(动态课件演示)边:平行四边形的对边相等。

角:平行四边形的对角相等,邻角互补对角线:平行四边形对角线互相平分对称性:中心对称图形
二、新知引入:
让学生举例说说生活中的特殊平行四边形(课件)根据学生的回答,选择其中的矩形来研究。

(学生可能说到长方形、正方形等)
三、新知探究:
1、矩形的定义。

教具和课件演示活动平行四边形的的变化过程,当变化到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)。

思考:为什么不说有两个、三个、四个角是直角呢?
《矩形的性质》教学设计
2、探究矩形的性质:(课件)矩形是特殊的平行四边形(有一个角是直角的平行四边形)所以具有平行四边形的所有性质,课前也作了回顾。

我们是按照边、角、对角线三个元素去描述的。

通过和学生一起逐一探究得到矩形的性质,并让学生口述证明角:矩形的四个角都是直角对角线;矩形的对角线相等
对称性:中心对称和轴对图形。

(动态课件演示)
(并与平行四边形的性质比较)(课件)
3、探究直角三角形斜边上的中线的性质:(课件)
提问:⑴如图,通过以上对矩形性质的探究,你能进一步发现图中有多少个直角三角形吗?有多少个等腰三角形吗?你能发现线段AO、CO、BO、DO 之间的大小关系吗?这四条
线段与AC BD又是什么关系呢?如果只看直角三角形ABC, BO是什么边上的什么线?你
能说说这个结论吗?
⑵通过和学生一起回答上面的问题得到:直角三角形斜边上的中线的性质直角三角形斜边上的
中线等于斜边的一半。

四、学以致用(发给学生堂完成)
1、矩形具有而平行四边行不具有的的性质是()
(A)对角相等(B对角线相等
(C)对角线互相平分(D)对边平行且相等
2、矩形的一条对角线与一边的夹角为40°,则两条对角线相交所成的锐角是()
( A) 20° ( B) 40° ( C) 60 ° ( D) 80°
3、两条直角边的长分别为12 和5,则斜边上的中线长为( )
( A) 26 ( B) 13 ( C) 8。

5 ( D) 6。

5
4、已知:如图,矩形ABCD的两条对角线相交于点O,/ AOB=60°, AB=4cm,则矩形对角线的长为cm
5如果矩形的一条对角线的长为8 cm,两条对角线的一个交角为120°,求矩形的
边长。

(精确到0。

01 cm) (教材后练习题)
6、如图:矩形ABCD的两条对角线相交于点O, CE|| OB交AB的延长线于点E,试证明AC与CE的大小关系。

《矩形的性质》教学设计(2)
五、小结:我的收获: (略:见课件)
教学方法、教学手段、学法指导
一、启发学生从边、角、对角线、对称性四个方面回答。

学生一边回答教师一边通过课件演示。

二、“数学来源生活”思想
三、
1、定义让学生发现, 用自己的理解说。

(启发学生定义矩形:这个图形还是平行四边形吗?还有哪一点很特别呢?)
2、启发学生用类比的方法从边、角、对角线三个方面去探究。

3、让学生通过回答问题,自己发现直角三角形斜边上的中线的性质;从多边形中抽象出三角形来研究。

四、让学生初步用矩形的有关性质解决问题。

相关文档
最新文档