行测—行程问题题型全汇总

合集下载

公考行程题型归纳

公考行程题型归纳

公考行程题型归纳一、行程问题概述行程问题是公务员考试中的重要题型之一,主要考查考生对运动学知识的理解和应用能力。

行程问题涉及到的知识点包括路程、速度、时间等,通过不同的组合和变化,形成多种复杂的题型。

二、基础行程模型基础行程模型是行程问题的基本模型,包括直线行程和曲线行程两种。

直线行程模型涉及到的知识点包括速度、时间和距离之间的关系,即速度=距离/时间。

曲线行程模型涉及到圆周运动和匀速圆周运动等知识点。

三、相对速度问题相对速度问题是行程问题中的难点之一,主要考查考生对相对速度概念的理解和应用能力。

在相对速度问题中,需要考虑两个物体之间的相对速度,即一个物体相对于另一个物体的速度。

这种题型需要考生对速度的合成和分解有深入的理解。

四、相遇与追及问题相遇与追及问题是行程问题中的常见题型之一,主要考查考生对运动学规律的理解和应用能力。

在相遇与追及问题中,两个物体在同一直线上运动,一个物体追赶另一个物体,或者两个物体在某一地点相遇。

这种题型需要考生对追及和相遇的条件有深入的理解。

五、环形跑道问题环形跑道问题是行程问题中的另一种常见题型,主要考查考生对环形运动规律的理解和应用能力。

在环形跑道问题中,两个或多个物体在圆形跑道上运动,它们可能迎面相遇,也可能背向而行。

这种题型需要考生对环形跑道的运动规律有深入的理解。

六、多次往返问题多次往返问题是行程问题中的一种复杂题型,主要考查考生对往返运动规律的理解和应用能力。

在多次往返问题中,两个物体在同一直线上运动,一个物体从起点出发,经过多次往返运动后回到起点。

这种题型需要考生对往返运动的规律有深入的理解。

七、火车过桥问题火车过桥问题是行程问题中的另一种特殊题型,主要考查考生对火车过桥运动规律的理解和应用能力。

在火车过桥问题中,火车从桥的一端驶向另一端,同时桥上的路灯或其他物体也在移动。

这种题型需要考生对火车过桥的运动规律有深入的理解。

八、时间与距离计算时间与距离计算是行程问题的核心知识点之一,主要考查考生对时间和距离计算方法的理解和应用能力。

行程问题 九大题型 与 五大方法 附行程问题典型例题

行程问题 九大题型 与 五大方法  附行程问题典型例题

行程问题“九大题型”与“五大方法”。

很多学生对行程问题的题型不太清楚,对行程问题的常用解法也不了解,那么我给大家归纳一下。

1、九大题型:⑴简单相遇追及问题;⑵多人相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸火车过桥问题;⑹流水行船问题;⑺发车问题;⑻接送问题;⑼时钟问题。

2、五大方法:⑴公式法:包括行程基本公式、相遇公式、追及公式、流水行程公式、火车过桥公式,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式,而且有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件。

⑵图示法:在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具。

示意图包括线段图、折线图,还包括列表。

图图示法即画出行程的大概过程,重点在折返、相遇、追及的地点。

另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法。

ps:画图的习惯一定要培养起来,图形是最有利于我们分析运动过程的,可以说图画对了,意味着题也差不过做对了30%!⑶比例法:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值。

更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题。

ps:运用比例知识解决复杂的行程问题经常考,而且要考都不简单。

⑷分段法:在非匀速即分段变速的行程问题中,公式不能直接适用。

这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来。

⑸方程法:在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解。

ps:方程法尤其适用于在重要的考试中,可以节省很多时间。

行程问题公式目录基本概念行程问题是研究物体运动的。

基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇时间×速度和=相遇路程相遇问题(直线)甲的路程-乙的路程=总路程相遇问题(环形)甲的路程+乙的路程=环形周长追及问题追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间追及问题(环形)快的路程-慢的路程=曲线的周长流水问题顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷2船速:(顺水速度+逆水速度)÷2解题关键船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。

公务员行测——行程问题

公务员行测——行程问题

我辛苦整理的行测行程问题(自己总结整理得很不容易,希望版主加诚信) 1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。

问他走后一半路程用了多少分钟?分析:解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是80-37.5=42.5分钟解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37.5分钟,后一半路程时间是4 0+(40-37.5)=42.5分钟答:他走后一半路程用了42.5分钟。

2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。

小明上学走两条路所用的时间一样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90。

设走平路的速度是2,则下坡速度是3。

走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60走与上坡同样距离的平路时用时间90/2=45因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。

解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)= 3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/ 2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。

3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。

2019国考行测:数量关系之行程问题

2019国考行测:数量关系之行程问题

2019国考行测:数量关系之行程问题无论是国考还是省考,在行测的数量关系题型中,最愿意考的一个题型就是行程问题,所以接下来中公教育专家就给大家总结一下行程问题的几种题型和常用方法。

(1)基本公式路程=速度×时间(S=v×t)(2)正反比S一定,v与t成反比;v一定,s与t成正比;例题:甲乙两轿车从A地驶往90公里外的B地,两车速度比为5:6,甲车上午10点半出发,乙车10点40分出发,最终乙车比甲车早2分钟到达B地。

问两车时速相差多少千米/小时?A.10B.15C.12D.20答案:B。

(3)相遇追及问题相遇:S路程和=(V1+V2)×t追及:S路程差=(V1-V2)×t例题:一支600米长的队伍行军,队尾的通讯员要与最前面的连长联系,他用3分钟跑步追上了连长,又在队伍休息的时间以同样的速度跑回了队尾,用了2分24秒,如果队伍和通讯员均匀速前进,则通讯员在行军时从最前面跑步回到队尾需要多长时间?A.48秒B.1分钟C.1分48秒D.2分钟答案:D。

(4)直线异地多次相遇(8)流水行船问题V顺=V船+ V水V逆=V船- V水例题:某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花了8小时,水速每小时3千米。

则这船从乙地返回甲地需要几小时?A.12B.11C.10D.9答案:A(9)牛吃草问题追及型:(N1-x)×t1=(N2-x)×t2=(N3-x)×t3相遇型:(N1+x)×t1=(N2+x)×t2=(N3+x)×t3极值型:求x例题1:某招聘会在入场前若干分钟就开始排队,每分钟来的求职人数一样多,从开始入场到等候入场的队伍消失,同时开4个入口需30分钟,同时开5个入口需20分钟。

如果同时打开6个入口,需多少分钟?A.8B.10C.12D.15答案:D中公教育专家认为,行程问题虽然题型较多,但是大家如果掌握题型特征和不同题型的解题思路,就会很快地选出答案。

行程问题7大经典题型总结

行程问题7大经典题型总结

行程问题7大经典题型归纳总结拓展简单地将行程问题分类:(1)直线上的相遇、追及问题(含多次往返类型的相遇、追及)(2)火车过人、过桥和错车问题(3)多个对象间的行程问题(4)环形问题与时钟问题(5)流水、行船问题(6)变速问题一些习惯性的解题方法:(1)利用设数法、设份数处理(2)利用速度变化情况进行分段处理(3)利用和差倍分以及比例关系,将形程过程进行对比分拆(4)利用方程法求解1. 直线上的相遇与追及直线上的相遇、追及是行程问题中最基本的两类问题,这两类问题的解决可以说是绝大多数行程问题解决的基础例题1. 甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?例题2. 两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?2. 火车过人、过桥与错车问题在火车问题中,速度和时间并没有什么需要特殊处理的地方,特殊的地方是路程。

因为此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关下面教你一招——以静制动法解决火车过桥问题。

呵呵~~这种类型的题目,看起来复杂,眼花缭乱,其实我们可以以静制动,只看火车头或火车尾在整个行程中的路程。

而当有多个变量(火车过人、两辆火车齐头并进,齐尾并进等)时可以把其中一个变量看做静止,只需要研究另一个变量的行程以及二者的速度和或速度差,就可以轻松求解、屡试不爽。

例题3. 一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。

已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。

求列车与货车从相遇到离开所用的时间。

例题4. 某解放军队伍长450米,以每秒1.5米的速度行进。

一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?(这道题超级经典~)例题5 有2列火车同时同方向齐头行进,12秒钟后快车超过慢车,已知快车每秒行驶18米,慢车每秒行10米,求快车车身长度多少米?如果这两列火车车尾相齐,同时同方向行进,则9秒钟后快车超过慢车,那么慢车车身长度是多少米。

公务员考试行测技巧:数量关系之行程问题汇总

公务员考试行测技巧:数量关系之行程问题汇总

公务员考试行测技巧:数量关系之行程问题汇总近年来国考行测数量关系中的行程问题层出不穷、花样百出,例如相遇追及、队伍行程、流水行船、往返相遇等等一系列行程问题,让许多考生很是头疼。

不要怕,今天拯救你,给大家汇总了数量关系当中的行程问题的公式,通过归纳、整理、例题让各位各位考生更加清晰的掌握这些公式,从而解决实际问题。

行程问题(1)火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)(2) 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间(3)队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间(4)流水行船问题公式:顺速=船速+水速,逆速=船速-水速(5)往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2)左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N 次追上相遇,路程差=(2N-1)×全程同一点出发:第N次迎面相遇,路程和=2N×全程;第N次追上相遇,路程差=2N×全程以上就是数量关系之行程问题的汇总,接下来给大家分享一道例题,来帮助大家巩固!【真题演练】小张和小王两人错过末班公交车,小王以60米/分钟的速度步行回家,与此同时小张以80米/分钟的速度沿反方向回家。

3分钟后小张发现小王的身份证在自己包里,于是立即调头以180米/分钟的速度跑步追小王,但每跑1分钟休息1分钟,那么从两人分开到小张追上小王需要多长时间?(追上时,小王还没到家)A.14分钟B.20分钟C.17分钟D.11分钟【正确答案】A【解析】根据题意,两人分开3分钟后相距(80 + 60)x3 = 420米,此时小张开始追小王,每2分钟追180 - 60 x 2 = 60米,经过5次(10分钟)追赶,可以追上60 x 5 = 300米,最后还剩420 - 300= 120米,只需120/(180 - 60) = 1分钟,则追赶总时间为10 + 1 = 11分钟。

公考行程问题经典例题

公考行程问题经典例题

公考行程问题经典例题大家都知道,公考的行程问题可真是一个大坑,特别是对于那些初次接触的人来说,简直就像是打破了“无敌”神话。

你有没有过这种经历?早晨一睁眼,脑袋里全是要做的事情,整个人恍若隔世似的,完全不清楚该从哪里开始。

于是,脑袋一热,就决定抓起行程表,一通乱填,搞得自己最后不仅没节奏,反倒更糊涂了。

来来来,咱们一起聊聊这些行程问题,看看怎么能少走点弯路。

行程问题嘛,顾名思义,就是按照给定的条件,安排一系列的活动,最后算出来每一个活动的具体开始和结束时间。

但听起来简单,做起来就有点“坑”。

比如,有这么一道经典题目:你得为一名公务员考试的考生安排几场面试,每场面试之间至少有1小时的空隙,而且不同面试的顺序是固定的。

怎么样?是不是看着就有点眼花缭乱了?这可不仅仅是计算问题,还是大脑的一场运动。

怎么安排才最合理,能让每一场面试都准时开始并结束,不掉链子,才能给考生最好的体验,免得等候过长或者错过了什么。

咱们从最基础的情况讲起,假设一开始给你一堆活动,每个活动都有开始和结束时间,目标是安排它们,确保所有活动按顺序进行,也就是最简单的排程问题。

这时候有一个重点:你得搞清楚时间的“界限”。

什么意思?就是说,一旦你把时间界限搞清楚了,安排起活动来简直就像炒菜一样,一气呵成,根本不拖泥带水。

比方说,给定几个活动,每个活动的时间限制不一样,你得先找出那个最早可以开始的活动,然后再按照顺序安排后面的活动,不能打乱它们的顺序,否则一切白费。

所以啊,最重要的一步,便是弄清楚每个活动的开始时间和结束时间。

接下来咱们得说说“空档”的问题。

很多题目里,都会提到各个活动之间必须有间隔,比如说必须至少有1小时的空隙。

这样一来,你就得时刻记得计算活动结束后的间隔时间,尤其是那些“紧巴巴”的安排,差之毫厘,失之千里。

想象一下,活动A刚好结束了,你是不是应该给活动B留下足够的空档?这时候,眼睛一大亮,你才突然发现,空档的时间可以调剂着用来整理心情,喝点水,调整一下状态,毕竟考生也不是机器,需要一些喘息的空间。

公务员行测考试数量关系:行程问题详解

公务员行测考试数量关系:行程问题详解

行程问题是国家公务员考试中数学运算的常考题型之一,涉及最多的是相遇问题与追及问题。

专家提醒各位考生,在复习数学运算的过程中,应重点掌握行程问题中的几种题型和解题方法。

一、行程问题知识要点(一)行程问题中的三量行程问题研究的是物体运动中速度、时间、路程三者之间的关系。

这三个量之间的基本关系式如下:路程=速度×时间;时间=路程÷速度;速度=路程÷时间。

上述三个公式可称为行程问题的核心公式,大部分的行程问题都可通过找出速度、时间、路程三量中的两个已知量后利用核心公式求解。

(二)行程问题中的比例关系时间相等,路程比=速度比;速度相等,路程比=时间比;路程一定,速度与时间成反比。

二、行程问题的主要题型(一)平均速度问题平均速度问题公式:(二)相遇问题1.相遇问题的特征(1)两人(物体)从不同地点出发作相向运动;(2)在一定时间内,两人(物体)相遇。

与基本的行程问题相比,专家认为,相遇问题涉及两个或多个运动物体,过程较为复杂。

一般借助线段图来理清出发时间、出发地点等基本量,进而利用行程问题核心公式解题。

2.相遇问题公式公式中的相遇路程指同时出发的两人所走的路程之和。

如果不是同时运动,要转化为标准的同时出发、相向运动的问题来套用相遇问题公式。

(三)追及问题1.追及问题的特征(1)两个运动物体同地不同时(或同时不同地)出发做同向运动。

后面的比前面的速度快。

(2)在一定时间内,后面的追上前面的。

与相遇问题类似,专家建议考生可通过线段图来理清追及问题的运动关系。

2.追及问题公式在追及问题中,我们把开始追及时两者的距离称为追及路程,大速度减小速度称为速度差。

由此得出追及问题的公式:(四)多次相遇问题相遇问题的复杂形式是多次相遇问题,多次相遇问题按照运动路线不同分为直线多次相遇和环形多次相遇两类。

多次相遇问题重要结论:1.从两地同时出发的直线多次相遇问题中,第n次相遇时,路程和等于第一次相遇时路程和的(2n-1)倍;每个人走的路程等于他第一次相遇时所走路程的(2n-1)倍。

公务员考试数学运算之行程问题专题

公务员考试数学运算之行程问题专题

五、特殊的思维方法。
整体的思维方法 例 1C、D 两地间的公路长 96 千米,小张骑自行车自 C 往 D,小王骑摩托车 自 D 往 C,他们同时出发,经过 80 分两人相遇,小王到 C 地后马上折回,在第 一次相遇后 40 分追上小张,小王到 D 地后马上折回,问再过多少时间小张与小 王再相遇?
在一条马路上小明骑车与小光同向而行小明骑车速度是小光速度的倍每隔10分有一辆公共汽车超过小光每隔20分有一辆公共汽车超过小明如果公共汽车从始发站每次间隔同样的时间发一辆车那么相邻两车间隔多少630千米40千米小时
公务员考试数学运算之行程问题专题
QQ 群: 214066327
行程问题的“三原色”路程、速度、时间。问题千变万化,归根结底就是这 三者之间的变化。行测问题细分来看有四大类:一是相遇问题;二是追及问题; 三是流水问题;四是相关问题。 1、相遇问题: 相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路,行车 还是物体的移动,总是要涉及到三个量--------路程、速度、时间。相遇问题的 核心就是速度和。 路程、速度、时间三者之间的数量关系,不仅可以表示成: 路程= 速度×时间,还可以变形成下两个关系式:速度= 路程÷时间, 时间= 路 程÷速度. 一般的相遇问题: 甲从 A 地到 B 地,乙从 B 地到 A 地,然后两人在 A 地到 B 地之的 某处相遇,实质上是甲,乙两人一起了 AB 这段路程,如果两人同时出发,那有: (1) 甲走的路程+乙走的路程= 全程 (2) 全程= (甲的速度+乙的速度) ×相遇时间= 速度和×相遇时间 例 1:甲、乙两人分别从 A、B 两地同时出发,相向而行。如果两人都按原定速度 行进,那么 4 小时相遇;现在两人都比原计划每小时少走 1 千米,那么 5 小时相 遇。A、B 两地相距多少千米? 【分析】可以想象,如果甲、乙两人以现在的速度(比原计划每小时少走 1 千米)仍然走 4 小时,那么他们不能相遇,而是相隔一段路。这段路的长度是多 少呢?就是两人 4 小时一共比原来少行的路。由于以现在的速度行走,他们 5 小时相遇,换句话说,再行 1 小时,他们恰好共同行完这段相隔的路。这样,就 能求出他们现在的速度和了。 【解】1×4×2÷(5-4)×5=40(千米) 这道题属于相遇问题,它的基本关系式是:速度和×时间=(相隔的)路程。 但只有符合“同时出发,相向而行,经过相同时间相遇”这样的特点才能运用上 面的关系式。但在实际问题中、两人可能在不同的时间出发,或因题目的其他条

2018国考行测技巧:行程问题的常见题型

2018国考行测技巧:行程问题的常见题型

2018国考行测技巧:行程问题的常见题型
一、基础知识
(一)行程问题的基本关系式
路程=速度×时间
(二)正反比关系定义
若A B=固定值,则A与B成反比关系

,则A与B成正比关系
(三)正反比在行程问题中的具体运用
时间一定:路程与速度成正比关系
速度一定:路程与时间成正比关系
路程一定:速度与时间成反比关系
二、模拟练习
例题1:甲乙二人都是从M地向P地行驶,已知甲乙二人速度之比为6:5的关系,问甲乙二人行走MP长度所用的时间之比为多少?
中公解析:根据当路程一定的时候,速度与时间成反比关系,速度之比为6:5,则时间之比为5:6的关系.(路程一定,速度和时间成反比)
例题2:甲乙丙三人都是从M地向P地行驶,已知甲乙丙三人速度之比为1:2:3的关系,问甲乙丙三人行走MP长度所用的时间之比为多少?
中公解析:根据当路程一定的时候,速度与时间成反比关系,速度之比为1:2:3,则时间之比为。

(路程一定可以设为1。

路程除以速度等于时间)
例3:两名运动员进行110米栏赛跑,结果甲领先乙11米到达终点。

同样乙与丙进行110栏赛跑,结果乙领先丙11米到达终点。

如果让甲与丙进行110米栏赛跑,那么甲到终点时,丙跑了多少米?
A.88
B.89
C.90
D.91
中公解析:此题需要进行比例的统一,甲乙的速度比为110:(110-11),乙丙的速度比为110:(110-11),所以进行比例的统一得到甲乙丙速度比为100:90:81。

化简得到1:0.9:0.81.也就是所甲跑完了全程,丙仅跑了全程的0.81。

所以甲到达终点时,丙跑了110×0.81=89米。

公务员考试行测一般行程问题、工程问题公式总结

公务员考试行测一般行程问题、工程问题公式总结

公务员考试行测一般行程问题、工程问题公式总结平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。

【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。

这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。

【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。

【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。

【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。

(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。

【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效,工作总量÷工效=工时。

(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。

(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。

特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。

行政职业能力倾向测验——行程问题

行政职业能力倾向测验——行程问题

行程问题这一章我们主要讲授的是行程问题。

行程问题可以大概分为简单问题、相遇问题、追及问题和综合问题。

其中还有一些典型题型,如:行船问题、错车问题、时钟问题等。

这章题目常用方法有:公式法、比例法、分段法、图示法、方程等。

下面介绍本章要用的基本知识点。

1.常用公式①速度*时间=路程;路程/速度=时间;路程/时间=速度.②速度和*时间=路程和③速度差*时间=路程差2.常用比例关系.①速度相同,时间比等于路程比②时间相同,速度比等于路程比③路程相同,速度比等于时间的反比[例1]一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了17,问:回来用了多少时间?答案:3.5小时[例2]A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?答案:8千米/小时[例3]汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回甲地,求该车的平均速度。

答案:57.6千米[例4]一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆汽车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?答案:60千米/小时[例5]甲、乙两班进行越野行军比赛,甲班以每小时4.5千米的速度走了路程的一半,又以每小时5.5千米的速度走完了另一半,乙班用一半时间以每小时4.5千米的速度行进,另一半时间以每小时5.5千米的速度行进。

问:甲、乙两班谁将获胜?答案:乙班获胜[例6]一架飞机所带的燃料最多可以用6小时,飞机去时顺风,时速1500千米,回来时逆风,时速为1200千米,这架飞机最多飞出多远就需往回飞?答案:4000千米[例7]已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列车火车完全在桥上的时间为80秒,求火车的速度和长度。

行程问题7大经典题型归纳总结拓展

行程问题7大经典题型归纳总结拓展

行程问题7大经典题型归纳总结拓展引言行程问题是数学中常见的问题之一,主要研究物体在不同速度、时间、距离条件下的运动情况。

本文将对行程问题中的7大经典题型进行归纳总结,并进行拓展分析。

题型一:相遇问题定义相遇问题是指两个或多个物体从不同地点出发,以不同的速度相向而行,最终在某一点相遇的问题。

公式设A、B两点相距( d ),甲从A点出发,速度为( v_a );乙从B点出发,速度为( v_b )。

若甲乙相遇于C点,则相遇时间为( t ),有:[ t = \frac{d}{v_a + v_b} ]拓展可以拓展到多物体相遇问题,考虑物体间的速度差和相对运动。

题型二:追及问题定义追及问题是指一个物体追赶另一个物体,两者以不同速度运动,最终追上的问题。

公式设甲从A点出发,速度为( v_a );乙从B点出发,速度为( v_b ),甲追上乙所需时间为( t ),则:[ t = \frac{d}{v_a - v_b} ]拓展考虑追及过程中的加速、减速情况,以及追及的临界条件。

题型三:往返问题定义往返问题是指物体在两点间来回运动,可能涉及速度变化的问题。

公式设A、B两点相距( d ),物体速度为( v ),往返一次所需时间为( t ),则:[ t = \frac{2d}{v} ]拓展考虑物体在往返过程中速度的变化,以及往返次数与时间的关系。

题型四:流水行船问题定义流水行船问题是指船只在有水流的河流中航行,需要考虑船速与水流速度的问题。

公式设船在静水中的速度为( v_s ),水流速度为( v_r ),船顺流而下的速度为( v_{up} ),逆流而上的速度为( v_{down} ),则:[ v_{up} = v_s + v_r ][ v_{down} = v_s - v_r ]拓展考虑船只在不同水流速度下的航行策略,以及如何最优化航行时间。

题型五:环形跑道问题定义环形跑道问题是指物体在环形跑道上运动,可能涉及速度和圈数的问题。

行政职业能力测试——数量关系题型总结 (2)行程问题

行政职业能力测试——数量关系题型总结 (2)行程问题

行政职业能力测试——数量关系题型总结行程问题一、基本类型(1)基本公式:路程=时间X速度(S=V x T)(2)相遇追及问题。

相遇距离S=(v1+v2)X 相遇时间T追及距离S=(v1+v2)X追击时间T(3)环形运动问题环形周长S=(v1+v2)X反向运动时间T环形周长S=(v1-v2)X 同乡运动时间T(4)多次相遇问题同起点单边型多次相遇问题路程和2nS=(v1+v2)X t两边出发两边型多次相遇问题路程和(2n-1)S=(v1+v2)X t(注意:n为相遇次数,代求量。

S一般已知,同起点的第一次相遇发生在速度快的一方到达目的地后折返相遇)(5)流水行船问题顺流S= (v船+v水)*顺流时间t逆流S= (v船—v水)*逆流时间t(6)等距离平均速度V=(2V往V返)/(V往+V返)二、解题方法:方程法、图示法、赋值法、比例法。

(1)基本行程问题1、匀速运动型,常用方法:方程法&比例法破题点:关于时间、路程、速度的等量关系。

2、变速运动型:(整个过程速度不完全相同,每段的运动量是匀速的)破题点:找到题干中相等的量总路程=分段路程之和总时间=分段时间之和3、间歇运动型:(有一段或多段时间物体是静止的,即没有运动)需要注意的实际运动时间是什么破题点:路程=实际运动的时间*速度可带入选项排除法解题!(2)相遇追及问题1、单次直线型相遇;甲乙同时从A、B两点分别出发。

相遇时,其距离S,也就是AB两地之间的距离S=甲乙的速度和乘以时间。

2、单次直线型追击:甲乙都从A出发,速度慢的一方先出发,速度快的后出发,然后追上,则等量关系为:在速度快的一方出发时,速度慢的一方已经先出发走了S,S=速度差乘以速度快的一方走的时间,也就是速度快的一方追赶用的时间。

3、多次直线型相遇两地距离S=(v1+v2)X t除以(2n-1),n为相遇次数即:相遇次数n=S除以(v1+v2)X t4、环形相遇问题:甲乙从同一点同时出发,环形周长S=(v1+v2)X t若甲乙有相隔距离,则用周长减去相隔距离若不是同时出发,则时间一般考虑后出发的,先出发的一方时间另行计算出先出发的距离。

公务员考试行测数学运算之行程问题解答

公务员考试行测数学运算之行程问题解答

公务员考试行测数学运算之行程问题解答行程问题1、相遇问题:【知识要点】甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间相遇问题的核心是“速度和”问题。

【经典例题】1、甲、乙两车从A、B两地同时出发,相向而行,如果甲车提前一段时间出发,那么两车将提前30分相遇。

已知甲车速度是60千米/时,乙车速度是40千米/时,那么,甲车提前了多少分出发()分钟。

A. 30B. 40C. 50D. 60解析:【答案】C,本题涉及相遇问题。

方法1、方程法:设两车一起走完A、B两地所用时间为x,甲提前了y时,则有, (60+40)x=60[y+(x-30)]+40(x-30), y=50方法2、甲提前走的路程=甲、乙共同走30分钟的路程,那么提前走的时间为,30(60+40)/60=502、甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。

如果二人每小时各多行1千米,那么他们相遇的地点距前次相遇点1千米。

又知甲的速度比乙的速度快,乙原来的速度为()A.3千米/时B.4千米/时C.5千米/时D.6千米/时解析:【答案】B。

原来两人速度和为60÷6=10千米/时,现在两人相遇时间为60÷(10+2)=5小时,采用方程法:设原来乙的速度为X千米/时,因乙的速度较慢,则5(X+1)=6X+1,解得X=4。

注意:在解决这种问题的时候一定要先判断谁的速度快。

方法2、提速后5小时比原来的5小时多走了5千米,比原来的6小时多走了1千米,可知原来1小时刚好走了5-1=4千米。

2.二次相遇问题:【知识要点】甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

则有第二次相遇时走的路程是第一次相遇时走的路程的两倍。

事业单位职业能力测试:事业单位数量关系之行程问题

事业单位职业能力测试:事业单位数量关系之行程问题

事业单位职业能力测试:事业单位数量关系之行程问题行测考试中,数量关系是其中最为复杂的一部分,数量关系的行程问题则是数量关系部分的重点、难点,一直让考生困扰。

行程问题一般包括普通行程问题、相遇追及问题、多次相遇问题、流水行船问题、牛吃草问题、时钟问题,下面先为考生梳理普通行程问题和相遇追及问题。

1.普通行程问题例题:甲地到乙地,步行比骑车速度慢75%,骑车比公交慢50%,如果一个人坐公交从甲地到乙地并且步行返回,共用1个半小时,问:骑车从甲地到乙地多长时间?A.10分钟B.20 分钟C.30分钟D.40分钟答案:B。

解析:通过题干得到三种方式的速度比关系:步行:骑车:公交=1:4:8,当路程一定时,时间与速度成反比关系,三种时间比为:8:2:1,一个半小时即90分钟代表比例中的8+1=9份,则2份时间代表20分钟。

小结:对于普通行程问题,考生需要掌握行程的基本公式:路程=速度×时间,速度=路程÷时间,时间=路程÷速度;以及各种正反比关系:如路程一定,时间与速度成反比关系。

速度一定,路程与时间成正比关系。

时间一定,路程与速度成正比关系。

2.相遇追及问题例题:A、B两地间有条公路,甲从A地出发步行到B地,乙骑摩托车从B地同时出发,不停顿的往返于A、B两地之间。

80分钟后他们第一次相遇,又过20分钟乙第一次超越甲。

则甲乙速度之比为( )。

A.1:8B.8:1C.1:9D.9:1答案:C。

解析:如下图,从出发经过80分钟,甲乙做相遇运动,即S=(V甲+V乙)×80,从出发经过100分钟,乙比甲多走了AB的全程,即S=(V乙-V甲)×100,两式联立80V 甲+80V乙=100V乙-100V甲,180V甲=20V乙,V甲:V乙=1:9。

小结:对于相遇追及问题,考生需要掌握相遇和追及的基本公式(相遇:路程之和=速度和×相遇时间;追及:路程之差=速度差×追及时间),并且审清题目中主体的运动轨迹,可以通过画图帮助了解。

国考行测备考:行程问题

国考行测备考:行程问题

国考行测备考:行程问题国家公务员考试的《行测职业能力测验》包括五大部分内容:言语理解与表达、数量关系、判断推理、常识判断和资料分析,主要考察考生是否具有从事公务员职业必须具备的基本素质和潜在能力。

行测作为半壁江山,不得不花大量的时间进行复习,所以其中的数量关系,行测考试的猛虎,基本没有之一;行程问题,数量关系的核心,当然只是之一。

相遇问题,行程问题中常考类型。

一、直线一次相遇【例1】张阳和刘芳家相距1026米,刘芳从家中出发,张阳带着小狗也从家出发,和刘芳相向而行。

张阳每分钟走54米,刘芳每分钟走60米,小狗每分钟跑70米。

当小狗和刘芳相遇后,立即返回跑向张阳,遇到张阳后,又立即返回跑向刘芳。

小狗这样跑来跑去,一直到二人相遇,这只小狗共跑了多少米?( )A.630B.700C.840D.960解析:两个人相约在某亭,可料其中一人喜爱宠物狗,奈何对方便投其所好,带只来见。

正在沉浸于二人交接过程,此刻你该醒了,做题啦!问题所问为小狗跑程,有速度70米/分钟,则找到小狗跑时便可。

原来是两个人从开始到相遇所用时间,即t=S/(V1+V2)=1026/(54+60)=9min,则小狗共跑了70×9=630米,A当选。

二、直线多次相遇【例2】a大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a.b两校之间,现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇,问a.b两校相距多少米( )A.1140米B.980米C.840米D.760米华图小编说:两个人整个相遇再相遇过程图如下:得到从开始到第二次相遇总共走的路程为3S,其中S为a、b之间距离。

3S=(85+105)×12,得到S=760米,D当选。

一起思考这样一个问题,如果两人第二次相遇后没有停止,继续往前走,到达两地后又折返,会发生三次相遇……如果n次相遇呢,公式如何?在演草纸上画画,原来会得到:(2n-1)S=(V1+V2)t,其中,S为两地距离,t为二人从开始到第n次相遇的时间,n为相遇次数。

数学运算必考

数学运算必考

数学运算行程问题专项辅导(行测必考题型)一、基本知识点:1、基本公式:距离=速度×时间2、相遇追及问题:相遇距离=(大速度+小速度)×相遇时间追及距离=(大速度-小速度)×追及时间3、环形运动问题:环形周长=(大速度+小速度)×相向运动的两人两次相遇的时间间隔环形周长=(大速度-小速度)×同向运动的两人两次相遇的时间间隔4、流水行船问题:顺流路程=顺流速度×顺流时间=(船速+水速)×顺流时间逆流路程=逆流速度×逆流时间=(船速-水速)×逆流时间5、电梯运动问题:能看到的电梯级数=(人速+电梯速度)×沿电梯运动方向运动所需时间能看到的电梯级数=(人速-电梯速度)×逆电梯运动方向运动所需时间6、钟面问题(此类问题很多可以转化为追及问题)(1)假设时钟一圈是12格,则时针每小时转1格,分针每小时转12格。

(2)钟面上每两格之间为30°,时针与分针成某个角度一般都有对称的两种情况。

(3)时针与分针一昼夜重合22次,垂直44次,成180°也是22次。

二、例题和解题思路1、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?解析:先画示意图:可以看到它们到第二次相遇时共走了3个AB全程。

当甲、乙两车共同走完一个AB全程时,乙车走了64千米,因此,我们可以理解为乙车一共走了3个64千米,再由上图可知:乙车一共走过的路程减去一个48千米后,正好等于一个AB全程。

①AB间的距离是64×3-48=192-48=144(千米).②两次相遇点的距离为144—48-64=32(千米).2、甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时.在出发4小时后,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?解析:甲的速度为乙的2倍,因此,乙走4小时的路,甲只要2小时就可以了,因此,甲走100千米所需的时间为(4—1+4÷2)=5小时.这样就可求出甲的速度.甲的速度为:100÷(4-1+4÷2)=10O÷5=20(千米/小时).乙的速度为:20÷2=10(千米/小时).3、在一条直的公路上,甲、乙两个地点相距600米,张明每小时行4公里,李强每小时行5公里.8点整,张李二人分别从甲、乙两地同时出发相向而行,1分钟后他们都调头反向而行,再经过3分钟,他们又调头相向而行,依次按照1,3,5,…(连续奇数)分钟数调头行走,那么张、李二人相遇时是8点几分?解析无论相向还是反向,张李二人每分钟都共走4000÷60+5000÷60=150(米).如果两人一直相向而行,那么从出发经过600÷150=4(分钟)两人相遇.画图可知:在16分钟(=1+3+5+7)之内两人不会相遇.在这16分钟之内,他们相向走了6分钟(=1+5),反向走了10分钟(=3+7),此时两人相距600+[150×(3+7-1-5)]=1200米,因此,再相向行走,经过1200÷150=8(分钟)就可以相遇.所以是600+150×(3+7-1-5)=1200(米)1200÷(4000÷60+5000÷60)=8(分钟)1+3+5+7+8=24(分钟)两人相遇时是8点24分.4、姐弟俩出游,弟弟先走一步,每分钟走40米,走80米后姐姐去追他。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行测—行程问题题型全汇总
中公教育黄思林老师:行程问题是考过行测的人最怕遇到的,因为行程问题变化形式非常多,题型也多种多样,要完全做对不是一件容易的事。

针对此问题,中公教育专家们总结出了行程问题里面会考到的大部分题型,希望能帮助到广大考生。

一、相遇问题
1.一次相遇
例1.甲、乙二人同时从相距54千米的A、B两地同时相向而行,甲的速度为4千米/时,乙的速度为5千米/时。

问:假设甲乙相遇地点为C,则CB相距多少千米?这一段路程和甲乙第一次相遇时乙走过的路程是什么关系?
中公解析:CB为30千米,即为到第一次相遇时乙走过的路程。

甲再一次回到C点是从B到的C,故甲走过的路程实际上是一个全程加上CB,即54+30=84(千米);甲乙再一次相遇的时候,两人走过的路程和为3倍的全程,每个人所走过的路程也是他第一次相遇时走过的路程的3倍,则甲走过的路程是24×3=72(千米)(甲第一次相遇时走过的路程为4×6=24千米)。

2.多次相遇
例2.甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,则AB两地相距多少千米?
中公解析:根据“多次相遇中的2倍关系”原理,可知甲从第一次相遇之后到第二次相遇走了6×2=12千米,在整个时间段内甲走了6+12=18千米。

因为甲是到达B地之后返回,相遇地点距离B地3千米,因此AB两地间的距离是18-3=15千米。

3.环行相遇问题
例题3.甲、乙两人同时从A点背向出发,沿400米环形跑道行走,甲每分钟走80米,乙每分钟走50米,两人至少经过多少分钟才能在A点相遇?【2011-事业单位】
A.10
B.12
C.13
D.40
中公解析:甲、乙要在A点相遇,则甲、乙行走的路程必是400的整数倍,而甲乙的速度和是130米/分钟,设所需时间为t,则有130t必然是400的倍数,排除A、B、C三项,选择D。

若正面求解:甲走一圈需400÷80=5分钟;乙走一圈需400÷50=8分钟,取5和8的最小公倍数,即40分钟。

二、追及问题
1.两者追及问题
例4.高速公路上行驶的汽车A的速度是100公里每小时,汽车B的速度是每小时120公里,此刻汽车A在汽车B前方80公里处,汽车A中途加油停车10分钟后继续向前行驶。

那么从两车相距80公里处开始,汽车B至少要多长时间可以追上汽车A?
A.2小时
B.3小时10分
C.3小时50分
D.4小时10分
中公解析:汽车AB间的追及距离为80公里,当A车加油停车时两者的速度差为120
公里每小时,当A车行驶时两者速度差为120-100=20公里每小时。

A车加油的10分钟B车
追上120×=20公里。

剩下80-20=60公里,B车追上用时为60÷20=3小时。

故汽车B 至少要3小时10分钟可以追上汽车A。

备考:相遇问题里面有多次相遇,那么追及里面的多次追及有没有,如果有是怎么样的情况?
1.环形追及问题
例5.甲乙分别在环形跑道的直径上同时同向出发,环形跑道周长为60米,甲得速度为60米/分,乙的速度为70米/分,那么乙要多少分钟才能第二次追上甲?
中公解析:甲乙为追及问题,甲乙的速度差为10米/分,环形周长为60米,所以第一次追上的追及路程为30米,所以用了3分钟,第二次追上甲追及路程为一个环形跑道的周长,即需要用6分钟,那么总共用了9分钟。

三、流水行船问题
例6.一客船往返于A、B两地,已知A、B相距36千米,客船一往一返分别需要2小时和3小时,假设水流速度保持不变,求水流速度及船速分别是多少千米/小时?
A.5,13
B.4,14
C.3,15
D.2,16
中公解析:设水速为x千米/小时,船的静水速度是y千米/小时,则有下面两个方程:
,,解得:x=3,y=15
备考:商场里面的扶梯问题;人在风中行走…等也属于流水行船问题。

四、牛吃草问题
例7.有一牧场长满牧草,每天牧草匀速生长,这片牧场可供10头牛吃20天,15头牛吃10天,问可供25头牛吃多少天?
A.8
B.6
C.5
D.4
中公解析:此题为典型的牛吃草问题。

设一头牛一天吃草量为1,牧草的生长速度为x,牧场可供25头牛吃t天。

根据题意可得(10-x)×20=(15-x)×10=(25-x)×t,由第一个等式解得x=5,代入x解得t=5天,故选择C。

备考:池塘抽水问题;森林砍树问题...也都属于牛吃草问题。

五、时钟问题
例8.四点半钟后,时针与分针第一次成直线的时刻为( )。

A.4点40分
B.4点45分
C.4点54 分
D.4点57分
中公解析:时针一小时走30度,每分钟走0.5度;分针1分钟走6度。

四点半时,时针与分针的夹角是45度,则第一次成直线需要(180-45)÷(6-0.5)=24又分,即4点54又
分时第一次成直线。

备考:时钟问题里面还常常考一个钟坏了,经过多少时间,坏钟实际时间等。

六、接送问题
例9.AB两个连队同时分别从两个营地出发前往一个目的地进行演习,A连有卡车可以转载正好一个连的人员,为了让两个连队的士兵同时尽快到达目的地,A连士兵坐车出发一定时间后下车让卡车回去接B连的士兵,两营的士兵恰好同时到达目的地,已知营地与目的地之间的距离为32千米,士兵行军速度为8千米/小时,卡车行驶速度为40千米/小时,求两营士兵到达目的地一共要多少时间?
中公解析:由于卡车的速度为士兵行军速度的5倍,因此卡车折回时已走的路程是B
连士兵遇到卡车时已走路程的3倍,而卡车折回所走的路程是B连士兵遇到卡车时已走路程的2倍,卡车接到B连士兵后,还要行走3倍B连士兵遇到卡车时已走路程的才能追上A
连士兵,此时他们已经到达了目的地,因此总路程相当于4倍B连士兵遇到卡车时已走路程,所以B连士兵遇到卡车时已走路程为8千米,而卡车的总行程为(3+2+3)×8=64,这一段路,卡车行驶了64/40=1.6小时,即1小时36分钟也是两营士兵到达目的地所花的时间。

备考:这是车速固定,人速不同的情况。

那么如果人速不同,或者车速不同的时候又应该怎么去中公解析?
中公教育黄思林老师:在此只是对行程问题的题型做了一个总括,属于概括性的东西。

有关行程问题更多详细精彩的讲解,考生们可以通过中公的精讲班和网校视频公开课进行深入了解。

最新招考公告、备考资料就在辽宁事业单位考试网
/liaoning/。

相关文档
最新文档