基于单片机的频率计数器(1)

合集下载

【精编完整版】基于单片机的数字频率计的设计毕业论文

【精编完整版】基于单片机的数字频率计的设计毕业论文

目录1频率计的概要和发展动态 (1)2 单片机介绍 (1)2.1单片机的简介和发展 (1)2.2 AT89C51的原理 (2)2.2.1主要特性 (3)2.2.2管脚说明 (3)2.2.3振荡器特性 (4)2.2.4芯片擦除 (4)3 仿真软件protuse的介绍 (5)4系统模块设计 (6)5硬件部分 (6)5.1整形电路 (6)5.2控制电路 (7)5.3显示电路 (8)5.3.1 LCD1602引脚 (8)5.3.2 LCD1602的指令介绍 (8)5.4总体电路图 (9)6仿真结果 (11)6.1仿真结果 (11)6.2结果分析 (11)7 结论 (11)8参考文献 (12)附录 (12)1 keil C51软件介绍 (12)2 程序流程图 (13)3系统源程序 (14)1频率计的概要和发展动态在电子技术中,频率作为基本的参数之一,它与许多电参量的测量方案、测量结果密切相关,因此,频率的测量十分的重要。

在许多情况下,要对信号的频率进行精确测量,就要用到数字频率计。

数字频率计作为一种基础测量仪器,它被用来测量信号(方波、正弦波、锯齿波等)频率,并且用十进制显示测量结果。

它具有测量精度高、测量省时、使用方便等特点。

随着微电子技术和计算机技术的不断发展,单片机被广泛应用到大规模集成电路中,使得设计具有很高的性价比和可靠性。

所以,以单片机为核心的简易数字频率计设计,改善了传统的频率计的不足,充分体现了新一代数字频率计的优越性。

2 单片机介绍2.1单片机的简介和发展单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。

单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。

通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和IO接口电路等。

因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。

单片机经过1、2、3、3代的发展,正朝着多功能、高性能、低电压、低功耗、低价格、大存储容量、强IO功能及较好的结构兼容性方向发展。

基于单片机的数字频率计设计

基于单片机的数字频率计设计

基于单片机的数字频率计设计摘要本方案主要以单片机为核心,主要分为时基电路,逻辑控制电路,放大整形电路,闸门电路,计数电路,锁存电路,译码显示电路七大部分,设计以单片机为核心,被测信号先进入信号放大电路进行放大,再被送到波形整形电路整形,把被测的正弦波或者三角波整形为方波。

利用单片机的计数器和定时器的功能对被测信号进行计数。

编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示。

本设计以89C51单片机为核心,应用单片机的算术运算和控制功能并采用LED 数码显示管将所测频率显示出来。

系统简单可靠、操作简易,能基本满足一般情况下的需要。

既保证了系统的测频精度,又使系统具有较好的实时性。

本频率计设计简洁,便于携带,扩展能力强,适用范围广。

[关键词]单片机:运算;频率计;LED数码管AbstractThe program mainly microcontroller as the core, are divided into time-base circuit, the logic control circuit, amplifier shaping circuit, the gate circuit, the counting circuit, latch circuit, decoding circuit most of the seven shows, design a microcontroller as the core, the measured signal the first amplifier to amplify the incoming signal, and then was sent to the waveform shaping circuit surgery, the measured sine wave or triangle wave shaping as a square wave. Counter and timer microchip features of the signal count. Write the corresponding program can automatically adjust the measurement range of SCM, and the frequency of the measured data to the display circuit displays.The design of the 89C51 microcontroller core, microcontroller applications and control functions and arithmetic operations with LED digital display tube to the measured frequency is displayed. System is simple, reliable, easy to operate and can basically meet the general needs. Both to ensure the accuracy of the system frequency measurement, but also the system has good real-time. The frequency meter design is simple and easy to carry, expansion capability, wide application.[Key words] microcontroller, operation, frequency meter, LED digital tube目录摘要 (1)概述........................................ 错误!未定义书签。

基于单片机的频率计设计

基于单片机的频率计设计

基于单片机的频率计设计1. 1 系统组成频率计由单片机89C51 、信号予处理电路、串行通信电路、测量数据显示电路和系统软件所组成,其中信号予处理电路包含待测信号放大、波形变换、波形整形和分频电路。

系统软件包括测量初始化模块、显示模块、信号频率测量模块、量程自动转换模块、信号周期测量模块、定时器中断服务模块、浮点数格式化模块、浮点数算术运算模块、浮点数到BCD 码转换模块。

1. 2 处理方法本频率计的设计以AT89C51 单片机为核心,利用它内部的定时/ 计数器完成待测信号周期/ 频率的测量。

单片机AT89C51 内部具有2 个16 位定时/ 计数器,定时/ 计数器的工作可以由编程来实现定时、计数和产生计数溢出中断要求的功能。

设计综合考虑了频率测量精度和测量反应时间的要求。

例如当要求频率测量结果为3 位有效数字,这时如果待测信号的频率为1Hz ,则计数闸门宽度必须大于1000s。

为了兼顾频率测量精度和测量反应时间的要求,把测量工作分为两种方法。

当待测信号的频率大于100Hz 时,定时/ 计数器构成为计数器,以机器周期为基准,由软件产生计数闸门,这时要满足频率测量结果为3 位有效数字,则计数闸门宽度大于1s 即可。

2. 1 信号予处理电路频率计信号予处理电路如图3 所示,它由四级电路构成。

第一级为零偏置放大器,当输入信号为零或者为负电压时,三极管截止,输出高电平;当输入信号为正电压时,三极管导通,输出电压随着输入电压的上升而下降。

零偏置放大器把如正弦波样的正负交替波形变换成单向脉冲,这使得频率计既可以测量任意方波信号的频率,也可以测量正弦波信号的频率。

3. 1 数据处理过程在频率计开始工作,或者完成一次频率测量,系统软件都进行测量初始化。

测量初始化模块设置堆栈指针(SP) 、工作寄存器、中断控制和定时/ 计数器的工作方式。

定时/ 计数器的工作首先被设置为计数器方式, 即用来测量信号频率。

在对定时/ 计数器的计数寄存器清0 后,置运行控制位TR 为1 ,启动对待测信号的计数。

基于单片机简易频率计设计

基于单片机简易频率计设计

基于单片机简易频率计设计一、前言频率计是一种测量电信号频率的仪器,其应用广泛。

本文将介绍如何基于单片机设计一个简易的频率计。

二、设计思路本次设计采用单片机作为核心控制芯片,通过捕获输入信号的上升沿和下降沿来计算出信号的周期,从而得到信号的频率。

具体实现过程如下:1. 选择合适的单片机选择一款适合本次设计要求的单片机,需要考虑其性能、价格、易用性等因素。

常见的单片机有STC89C52、AT89C51等。

2. 硬件电路设计硬件电路主要包括输入端口、捕获定时器模块、显示模块等。

其中输入端口需要接收待测信号,捕获定时器模块用于捕获信号上升沿和下降沿的时间,显示模块则用于显示测得的频率值。

3. 软件程序设计软件程序主要包括初始化程序、捕获中断服务函数和主函数等。

其中初始化程序用于设置捕获定时器模块和显示模块参数,捕获中断服务函数则是实现对输入信号上升沿和下降沿时间的捕获与计算,主函数则用于控制程序流程和显示结果。

三、硬件设计1. 输入端口设计输入端口需要接收待测信号,一般采用BNC接头。

由于输入信号可能存在较高的电压和噪声,因此需要加入滤波电路以保证输入信号的稳定性。

2. 捕获定时器模块设计捕获定时器模块是本次设计的核心部分,其主要功能是捕获输入信号的上升沿和下降沿时间,并通过计算得到信号周期和频率值。

常见的捕获定时器模块有16位定时器/计数器、32位定时器/计数器等。

在本次设计中,我们选择了16位定时器/计数器。

3. 显示模块设计显示模块主要用于显示测得的频率值。

常见的显示模块有LED数码管、LCD液晶屏等。

在本次设计中,我们选择了LCD液晶屏。

四、软件程序设计1. 初始化程序初始化程序主要包括设置捕获定时器模块参数、设置LCD液晶屏参数等。

2. 捕获中断服务函数捕获中断服务函数是实现对输入信号上升沿和下降沿时间的捕获与计算,其具体实现过程如下:(1)当捕获定时器模块捕获到输入信号上升沿时,记录当前时间值。

基于单片机的频率计设计开题报告

基于单片机的频率计设计开题报告
单片机的选用
方案一:单片机AT89C52
AT89C52单片机与Intel公司的80C52在引脚排列、硬件组成、工作特点和指令系统等方面兼容。其主要工作特性是:片内程序存储器内含8KB的Flash程序存储器,可擦写寿命为1000次;片内数据存储器内含256字节的RAM;具有32根可编程I/O口线;具有3个可编程定时器;中断系统是具有8个中断源、6个中断矢量、2个级优先权的中断结构;串行口是具有一个全双工的可编程串行通信口;具有一个数据指针DPTR;低功耗工作模式有空闲模式和掉电模式;具有可编程的3级程序锁定位;AT89C52工作电源电压为5(1+0.2)V,且典型值为5V;AT89C52最高工作频率为24MHz。
综上所述,两者基本功能相同,同样的晶振频率,STC89C52的速度比AT89C52快,同时STC89C52下载程序方面,直接串口就可以下载,AT89C52需要使用专用的编程器。后者比较流行,前者已经停产了。所以选择方案二的单片机。
液晶显示选用
方案一:数码管显示
数码管是一类显示屏,通过对其不同的管脚输入相对的电流,会使其发亮,从而显示出数字能够显示时间、日期等所有可用数字表示的参数。由于它的价格便宜使用简单,在电器特别是家电领域应用极为广泛,空调、热水器、冰箱等等。绝大多数热水器用的都是数码管,其他家电也用液晶屏与荧光屏。由于发光二极管的余辉效应及人的视觉暂留现象,实际上尽管数码管不是同时点亮,但只要扫描的速度很快,给人的印象就是稳定的显示数据,不会有感觉到闪烁,动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗低。
论文题目
基于单片机的频率计设计
一、选题背景和意义
本论文主要研究用单片机来设计的频率计。因为在电子技术中,频率的测量十分重要,这就要求频率计要不断的提高其测量的精度和速度。在科技以日新月异的速度向前发展,经济全球一体化的社会中,简洁、高效、经济成为人们办事的一大宗旨。在电子技术中这一点表现的尤为突出,人们在设计电路时,都趋向于用竟可能少的硬件来实现,并且尽力把以前由硬件实现的功能部分,通过软件来解决。因为软件实现比硬件实现具有易修改的特点,如简单的修改几行源代码就比在印制电路板上改变几条连线要容易的多,故基于微处理器的电路往往比传统的电路设计具有更大的灵活性。

基于AT89C51单片机频率计的设计(含程序)

基于AT89C51单片机频率计的设计(含程序)

AT89C51单片机频率计的设计摘要基于在电子领域内,频率是一种最基本的参数,并与其他许多电参量的测量方案和测量结果都有着十分密切的关系。

由于频率信号抗干扰能力强、易于传输,可以获得较高的测量精度。

因此,频率的测量就显得尤为重要,测频方法的研究越来越受到重视。

频率计作为测量仪器的一种,常称为电子计数器,它的基本功能是测量信号的频率和周期频率计的应用范围很广,它不仅应用于一般的简单仪器测量,而且还广泛应用于教学、科研、高精度仪器测量、工业控制等其它领域。

随着微电子技术和计算机技术的迅速发展,特别是单片机的出现和发展,使传统的电子侧量仪器在原理、功能、精度及自动化水平等方面都发生了巨大的变化,形成一种完全突破传统概念的新一代侧量仪器。

频率计广泛采用了高速集成电路和大规模集成电路,使仪器在小型化、耗电、可靠性等方面都发生了重大的变化。

目前,市场上有各种多功能、高精度、高频率的数字频率计,但价格不菲。

为适应实际工作的需要,本次设计给出了一种较小规模和单片机(AT89C51)相结合的频率计的设计方案,不但切实可行,而且体积小、设计简单、成本低、精度高、可测频带宽,大大降低了设计成本和实现复杂度。

频率计的硬件电路是用Ptotues绘图软件绘制而成,软件部分的单片机控制程序,是以KeilC做为开发工具用汇编语言编写而成,而频率计的实现则是选用Ptotues仿真软件来进行模拟和测试。

关键词:单片机;AT89C51;频率计;汇编语言选题的目的意义数字频率计的主要功能是测量周期信号的频率。

其基本原理就是用闸门计数的方式测量脉冲个数。

频率是单位时间( 1s )内信号发生周期变化的次数。

如果我们能在给定的 1s 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。

数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。

毕业设计-基于单片机的数字频率计设计

毕业设计-基于单片机的数字频率计设计

编号:毕业设计说明书题目:基于单片机的数字频率计设计院(系):电子工程与自动化学院专业:自动化学生姓名:学号:指导教师:职称:教授题目类型:实验研究工程技术研究2012年5月10日摘要在电子技术中,频率是最基本的参数之一,同时也是一个非常重要的参数,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。

数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

它是一种用十进制数字显示被测信号频率的数字测量仪器。

频率测量是电子学测量中最为基本的测量之一。

本文中详细介绍了频率计的仿真及设计过程。

本文设计了一种以单片机STC89C52为核心的数字频率计。

介绍了单片机、放大整形模块、分频模块和LCD1602显示模块等各个模块的组成和工作原理。

测量时,将被测输入信号送给单片机,通过程序控制计数,结果送LCD1602显示频率值。

本次设计是以单片机STC89C52为控制核心,利用它内部的定时/计数器完成待测信号频率的测量。

应用单片机的控制功能和数学运算能力,实现计数功能和频率的换算,最后显示测量的频率值。

本次设计所制作的频率计外围电路简单,大部分功能都通过软件编程实现,利用单片机控制实现频率计的自动换挡功能;用单片机中断控制端口实现频率的测量功能;通过分频电路实现对频率档位的控制。

本次设计的频率计具有测量准确度高,响应速度快,体积小等优点。

实现了1Hz~4MHz范围的频率测量,而且可以实现量程自动切换。

关键词:频率计;单片机;计数器;测量AbstractFrequency measurement is the most basic measurement in electronic field, while also a very important parameter, and with a number of the measurement results of electrical parameters have a very close relationship, so, the measurement of frequency has become more important. The digital frequency meter is an indispensable of measuring instruments in the field of scientific research and production of computers, communications equipment, audio and video. It is a decimal number to display the signal's frequency measuring instruments. The frequency measurement is one of the most basic measurement electronics measurements. Frequency of simulation and design process is described in detail in this article. This paper introduces a microcontroller STC89C52 as the core design of digital frequency meter. Introduced of the composition and working principle of microcontroller, amplifying and shaping module, frequency division module and LCD1602 display module and other modules.The design is based on STC89C52 microcontroller for the control of the core, using its internal timer and counter to complete the test signal frequency measurement. Application control features of the microcontroller and the operational ability of the counting function and frequency conversion, and finally use displays the measured frequency value. The design frequency meter produced peripheral circuits is simple, most of the functions are controlled via software programming, application control features of the microcontroller to achieve the frequency of automatic shift function; frequency measurement functions the microcontroller interrupt control port; control of the frequency of stalls by the divider circuit. The design of the frequency meter is high accuracy, fast response, small size, etc. Achieve100Hz to 4MHz frequency measurements, and can automatically switch the flow to achieve scale.Key words:Frequency meter; microcontroller; counter; measurement目录引言 (1)1 绪论 (2)1.1 频率计概述 (2)1.2 频率计发展现状 (2)1.3 数字频率计的种类 (3)2 总体方案设计 (4)2.1 数字频率计设计内容 (4)2.2 频率测量原理 (4)2.3 总体思路 (5)2.4 具体模块 (5)3 硬件设计 (7)3.1 电路设计的内容和方法 (7)3.1.1 电路设计的步骤 (8)3.2 单片机概述 (8)3.2.1 STC89C52简介 (9)3.2.2 STC89C52RC引脚功能说明 (10)3.2.3 单片机引脚分配 (12)3.3 单片机最小系统 (13)3.3.1 单片机最小系统原理 (13)3.3.2 复位电路及时钟电路 (13)3.4 信号调理及放大整形模块 (14)3.4.1 LM318介绍 (14)3.4.2 1N4733及74LS14介绍 (15)3.5 分频模块 (15)3.5.1 74LS161介绍 (15)3.5.2 74LS153介绍 (16)3.6 LCD显示和键盘 (17)3.6.1 LCD1602简介 (17)3.7 MAX232简介 (20)4 系统软件设计 (22)4.1 软件设计 (22)4.1.1 主程序流程图设计 (22)4.1.2 子程序流程图设计 (22)4.2 Keil和Proteus软件介绍 (25)4.2.1 Keil简介 (25)4.2.2 Proteus简介 (26)4.3 程序编写及仿真图设计 (26)5 调试 (28)5.1 系统调试 (28)5.2 软件调试 (29)5.3 软硬件联合调试 (30)5.4 误差分析 (30)6 总结 (31)谢辞 (32)参考文献 (33)附录 (34)引言频率计是我们在电子电路实验中经常会用到的测量仪器之一,它能将频率用液晶显示器或者数码管直接显示出来,给测试带来很大的方便,使结果更加直接;且频率计还能对其他多种物理量进行测量,如声音的频率、机械振动的频率等,都可以先转变成电信号,然后用频率计来测量。

基于C51单片机的000-999计数器

基于C51单片机的000-999计数器
[1]李任青.单片机原理与应用.江西:南昌大学共青学院工程技术系,2011(1):86-88。
[2]迟忠君.单片机应用技术.北京:北京邮电大学出版社,2016(6):3-5。
三、设计执行过程(请根据以下内容填写对该设计项目用到的理论知识)
1、总体设计框图(画出总体设计框图,并结合设计框图简述工作原理,写不下可另附页)
五、项目结题评审(请根据以下内容做好记录,并提交完整的项目设计报告给老师打分)
1、项目答辩记录(请将老师提的问题和答案记录下来)
问题一:
问题二:
记录人:年月日
2、结题答辩组评审意见(以下由老师填写)
成绩专家组:、年月日
3、项目成绩评定(请将老师提的问题和答案记录下来)
项目教学活页成绩:。
答辩成绩:。
若干
12MHz晶振
1个
0.8mm焊锡
若干
30pF瓷片电容
2个
10uF电解电容
1个
10k电阻
1个
5、焊接图纸和说明(用铅笔或专业软件画出详细的焊接布局设计图,元件引脚标注详细清晰。)
说明:使用ProtellDXP画出pcb布线图,布线图采用双层布线模式,蓝色导线位于底层,红色导线位于顶层。
6、实物效果照片和功能说明(用高清相机拍出实物的效果照片,此页彩色打印,要体现出任务书中的功能效果,图片高清,并附有功能效果的文字说明,可另附页。)
说明:考虑到数码管位置的摆放问题,故将程序的P1和P0对调,P0控制十位数显示,P1口控制百位数显示,其余不变。
四、项目总结(请根据以下内容做工作总结,并提交完整的项目设计报告)
1、学习小结(对学习到的知识点进行总结、归纳)
通过这次000-999计数器的设计,总体来说,我的收获很大。无论是在培养自己的实验动手能力还是在自己独立思考能力方面。在此次点阵设计的过程中,更进一步的熟悉了proteus软件和DXP软件的使用以及加深了对芯片结构的了解和掌握,加强了对c语言的认识,学会了如何拆分数字的百位,十位以及个位,并将其传送到单片机的各个端口,了解了数码管的内部结构,在以后的学习中会有很大的帮助。

基于51单片机数字频率计的设计

基于51单片机数字频率计的设计

基于51单片机数字频率计的设计在电子技术领域中,频率计是一种常见的测试仪器,它可以用来测量信号的频率。

在本文中,我们将通过介绍基于51单片机数字频率计的设计实现来了解它的工作原理和设计流程。

1. 确定设计需求在进行任何项目之前,我们需要明确自己的设计需求。

对于频率计而言,它的主要需求就是准确地测量信号的频率。

因此,我们需要确定我们需要测量的频率范围和精确度。

2. 确定硬件设计在确定了设计需求之后,我们需要确定硬件设计。

对于数字频率计而言,它需要一个计数器来计算信号的脉冲数量。

在本设计中,我们采用74LS90计数器芯片来实现计数功能。

我们还需要一个51单片机来读取计数器的计数值,并将其转换为对应的频率值。

另外,我们还需要硬件板、LCD显示屏、按键等元件来搭建数字频率计的电路结构。

3. 确定软件设计硬件设计完成后,我们需要开发相应的软件来实现我们的需求。

在本设计中,我们使用KEIL C51软件来编写51单片机的程序。

编写软件的主要步骤是读取计数器计数值、计算出对应的频率值、将频率值显示在LCD屏幕上,并实现按键控制。

我们需要将这些步骤按照程序流程依次实现。

4. 进行测试在软件编写完成后,我们需要对数字频率计进行测试,以确保其满足我们的需求。

我们可以使用信号发生器给数字频率计输入不同频率的信号,然后观察LCD屏幕上显示出来的相应频率值是否准确。

如果测试结果不满足我们的需求,则需要对硬件或软件进行优化或调试,直到数字频率计能够正常工作为止。

总之,基于51单片机的数字频率计设计是一个较为简单的电子设计项目。

通过上述步骤的详细介绍,我们了解了数字频率计的设计流程和工作原理,并明确了设计中需要注意的细节和注意事项。

希望能够对大家理解数字频率计的设计过程有所帮助。

基于51单片机的数字频率计设计

基于51单片机的数字频率计设计

基于51单片机的数字频率计一、设计说明1.数字频率计概述数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

它是一种用十进制数字显示被测信号频率的数字测量仪器。

它的基本功能是测量正弦信号,方波信号及其他各种单位时间内变化的物理量。

在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。

本数字频率计将采用定时、计数的方法测量频率,采用一个1602A LCD显示器动态显示6位数。

测量范围从1Hz—10kHz的正弦波、方波、三角波,时基宽度为1us,10us,100us,1ms。

用单片机实现自动测量功能。

基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。

它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量。

2.频率测量仪的设计思路与频率的计算频率测量仪的设计思路主要是:对信号分频,测量一个或几个被测量信号周期中已知标准频率信号的周期个数,进而测量出该信号频率的大小,其原理如右图所示。

若被测量信号的周期为,分频数m1,分频后信号的周期为T,则:T=m1Tx。

由图可知:T=NTo(注:To为标准信号的周期,所以T为分频后信号的周期,则可以算出被测量信号的频率f。

)由于单片机系统的标准频率比较稳定,而是系统标准信号频率的误差,通常情况下很小;而系统的量化误差小于1,所以由式T=NTo可知,频率测量的误差主要取决于N值的大小,N值越大,误差越小,测量的精度越高。

3.设计原理及系统分析基本设计原理:直接用十进制数字显示被测信号频率的一种测量装置。

它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量。

若在一定时间间隔T内测得这个周期性信号的重复变化次数N,则其频率可表示为f=N/T。

其中脉冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等于被测频率fx。

时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则门控电路的输出信号持续时间亦准确地等于1s。

单片机数字频率计代码

单片机数字频率计代码

单片机数字频率计代码以下是一个基于单片机的简单数字频率计的代码示例: c.#include <reg51.h>。

sbit inputPin = P1^0; // 输入信号引脚。

sbit ledPin = P2^0; // LED指示灯引脚。

unsigned int count = 0; // 计数器。

void delay(unsigned int time) {。

unsigned int i, j;for (i = 0; i < time; i++)。

for (j = 0; j < 1275; j++);}。

void main() {。

TMOD = 0x01; // 设置定时器0为工作模式1。

TH0 = 0; // 定时器0高8位清零。

TL0 = 0; // 定时器0低8位清零。

ET0 = 1; // 允许定时器0中断。

EA = 1; // 允许总中断。

TR0 = 1; // 启动定时器0。

while (1) {。

if (inputPin == 1) {。

delay(10); // 延时10ms,防止抖动。

if (inputPin == 1) {。

while (inputPin == 1); // 等待输入信号变为低电平。

count++; // 计数器加1。

}。

}。

}。

}。

void timer0_isr() interrupt 1 {。

TH0 = 0; // 定时器0高8位清零。

TL0 = 0; // 定时器0低8位清零。

ledPin = ~ledPin; // LED指示灯翻转。

}。

这段代码使用了8051系列的单片机,通过计数输入信号的高电平时间来测量频率。

其中,输入信号连接在P1口的第0位,LED指示灯连接在P2口的第0位。

代码中的`delay`函数用于延时,防止输入信号的抖动。

`main`函数中的循环不断检测输入信号的状态,如果检测到输入信号从低电平变为高电平,就开始计数,直到输入信号再次变为低电平。

基于AT89C51单片机的计数器设计

基于AT89C51单片机的计数器设计

基于AT89C51单片机的计数器设计一、引言计数器是数字电路中常用的一种电子仪器,用于计算和记录某一事件的频率、周期和脉冲等。

在数字系统中,计数器可以用来实现频率测量、计时器、分频器和脉冲发生器等功能。

本文将基于AT89C51单片机设计一款简单的计数器,用于演示单片机的基本应用和原理。

二、AT89C51单片机简介AT89C51是由Atmel公司生产的一款8位单片机,采用CMOS工艺制造,具有4KB Flash 存储器、128B RAM和32个I/O端口。

其主要特点包括:8位CPU,时钟经过12个时钟脉冲产生1个机器周期,最大工作频率为24MHz,具有2个16位定时/计数器。

三、设计方案基于AT89C51单片机的计数器设计,我们选用其中的一个16位定时/计数器,并通过编程实现计数功能。

设计方案如下:1.使用定时/计数器模块,设置计数器的初始值为0;2.定时/计数器开始计数,每经过一个时钟周期,计数值加1;3.设计好显示模块,将计数器的值通过数码管或LCD显示出来。

四、硬件设计1.单片机选用AT89C51;2.外部晶振选用11.0592MHz,供单片机工作使用;3.数码管模块,用于显示计数器的值;4.按键模块,用于控制计数器的启停及清零操作。

1.初始化程序,设置好定时/计数器和I/O口的工作状态;2.编写中断服务程序,用于定时/计数器溢出时的处理;3.编写计数器启动、停止及清零的控制程序;4.编写主循环程序,实现计数器的实时显示。

六、程序框图七、程序设计八、实验结果经过硬件和软件的设计与开发,成功实现了基于AT89C51单片机的计数器。

在实验中,通过外部晶振驱动单片机,定时/计数器得到了准确的计数值,并通过数码管显示模块实时显示出来。

按键模块可以实现计数器的启停及清零操作。

实验结果符合设计要求,可以满足基本的计数功能。

九、总结本文基于AT89C51单片机设计了一款简单的计数器,通过硬件和软件的设计和开发,实现了对定时/计数器的使用及控制。

基于AT89C51单片机的频率计设计

基于AT89C51单片机的频率计设计

基于AT89C51单片机的频率计设计频率计是一种测量信号频率的仪器。

在工业自动化、仪器仪表和电子实验等领域广泛应用。

本文将基于AT89C51单片机设计一个简单的频率计。

一、设计原理频率计的工作原理是通过计数单位时间内输入信号的脉冲数量,并将其转化为频率进行显示。

本设计使用AT89C51单片机作为控制核心,采用外部中断引脚INT0作为计数脉冲输入口,通过对计数器的计数值进行处理,最终转化为频率并在LCD1602液晶屏上进行显示。

二、硬件设计硬件电路主要包括AT89C51单片机、LC1602液晶显示屏、脉冲输入引脚INT0,以及供电电路等。

其中,AT89C51单片机的P0口用于与LC1602液晶屏的数据口连接,P2口用于与液晶屏的控制口连接。

脉冲输入引脚INT0连接到外部信号源,通过中断请求实现计数器的计数功能。

液晶显示屏的VDD和VDDA引脚接5V电源,VSS和VSSA引脚接地,RW引脚接地,RS引脚接P2.0,E引脚接P2.1,D0-D7引脚接P0口。

三、软件设计软件设计主要包括初始化设置、中断服务程序、计数器计数和频率转换、液晶屏显示等模块。

1.初始化设置:首先设置P0和P2为输出端口,中断引脚INT0为外部触发下降沿触发中断,计数器为初始值0。

2.中断服务程序:中断服务程序负责处理外部脉冲输入引脚INT0的中断请求。

每当INT0引脚检测到下降沿时,计数器加13.计数和频率转换:在主函数中,通过读取计数器的值并根据单位时间计算频率。

通过AT89C51单片机的定时器模块,我们可以设置一个单位时间进行计数。

在单位时间结束后,将计数器的值除以单位时间得到频率。

4.液晶屏显示:通过P0口向液晶屏的数据口发送频率值,并通过P2口向液晶屏的控制口发送控制信号,完成频率的显示。

四、测试结果将生成的二进制固件烧录到AT89C51单片机中,将脉冲信号输入到INT0引脚,即可在LCD1602液晶显示屏上看到实时的频率值。

毕业设计:基于单片机的频率计设计

毕业设计:基于单片机的频率计设计

毕业设计〔论文〕题目:基于单片机的频率计设计学生姓名:廖承润学号:学部〔系〕:信息学部专业年级:光信1班指导教师:赵真职称或学位:副教授2015年5 月20 日目录目录 (I)摘要....................................................... I II ABSTRACT....................................................... I V 第一章绪论. (1)1.1频率计概述 (1)1.2频率计发展现状及研究概况 (1)1.3本课题研究背景及主要研究意义 (2)数字频率计的种类 (2)第二章数字频率计的结构设计 (4)控制电路 (4)2.2单片机部分 (5)2.3数据显示电路 (6)2.4软件设计流程图 (9)第三章频率测量原理 (10)3.1测量频率的原理 (10)3.2直接测频法 (10)第四章系统设计 (11)4.1功能实现 (11)4.2硬件部分设计 (11)4.2.1 信号放大电路 (11)4.2.2 单片机AT89C52 (12)4.2.3 测量数据显示电路 (13)4.3硬件电路工作过程 (14)4.3.1 直接测频法的工作流程 (15)第五章数字频率计的设计与仿真 (17)电路的设计 (17)电路设计的内容和方法 (17)电路设计的步骤 (18)5.2数字频率计的仿真 (19)第六章减小误差措施及扩展方面 (23)减小误差措施 (23)扩展方面 (23)6.3功能上的完善 (24)6.3.1 增加键盘控制 (24)6.3.2 实现自动量程转换 (24)6.3.3 液晶显示器〔LCD〕进行数据的显示 (24)结论 (25)参考文献 (26)致谢 (27)附录 (28)1硬件设计原理图: (28)2数字频率计测量频率程序: (29)基于单片机的频率计设计摘要本文提出设计数字频率计的方案,重点介绍以单片机AT89C52为控制核心,实现频率测量的数字频率设计。

基于单片机的数字频率计的设计

基于单片机的数字频率计的设计

1前言频率测量是电子学测量中最为基本的测量之一。

由于频率信号抗干扰性强,易于传输,因此可以获得较高的测量精度。

随着数字电子技术的发展,频率测量成为一项越来越普遍的工作,测频原理和测频方法的研究正受到越来越多的关注。

1.1频率计概述数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。

它是一种用十进制数字显示被测信号频率的数字测量仪器。

它的基本功能是测量正弦信号、方波信号及其他各种单位时间内变化的物理量。

在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。

传统的频率计采用测频法测量频率,通常由组合电路和时序电路等大量的硬件电路组成,产品不但体积大,运行速度慢而且测量低频信号不准确。

本次采用单片机技术设计一种数字显示的频率计,测量准确度高,响应速度快,体积小等优点。

1.2频率计发展与应用在我国,单片机已不是一个陌生的名词,它的出现是近代计算机技术的里程碑事件。

单片机作为最为典型的嵌入式系统,它的成功应用推动了嵌入式系统的发展。

单片机已成为电子系统的中最普遍的应用。

单片机作为微型计算机的一个重要分支,其应用范围很广,发展也很快,它已成为在现代电子技术、计算机应用、网络、通信、自动控制与计量测试、数据采集与信号处理等技术中日益普及的一项新兴技术,应用范围十分广泛。

其中以AT89S52为内核的单片机系列目前在世界上生产量最大,派生产品最多,基本可以满足大多数用户的需要。

2 系统总体设计2.1测频的原理测频的原理归结成一句话,就是“在单位时间内对被测信号进行计数”。

被测信号,通过输入通道的放大器放大后,进入整形器加以整形变为矩形波,并送入主门的输入端。

由晶体振荡器产生的基频,按十进制分频得出的分频脉冲,经过基选通门去触发主控电路,再通过主控电路以适当的编码逻辑便得到相应的控制指令,用以控制主门电路选通被测信号所产生的矩形波,至十进制计数电路进行直接计数和显示。

基于单片机的频率计设计

基于单片机的频率计设计

内容摘要本设计采用的是脉冲宽度测量法实现对频率的测量,采用了MCS-51系列的单片机AT89C51和五个硬件电路。

单片机片内有两个独立的16位定时计数器,对被测信号进行分频后送入单片机,由单片机内部时钟12分频的脉冲信号对其测量,将测量的结果,经过运算后通过LED数码管显示出来。

本文设计的频率计就是基于上述设计思路,实现测量的数字化、自动化、智能化。

关键词:数字频率计;频率测量;周期测量;单片机控制目录0 前言 (1)1测量频率的方案及基本原理 (2)1.1数字频率计的测量方案选取 (2)1.2 测量频率的基本原理 (2)2频率计的整体设计思想及设计框图 (4)2.1系统总体设计要求 (4)2.2设计思想 (4)3系统的实现 (5)3. 1 硬件系统的组成 (5)3.2软件系统的设计 (10)4 被测信号的频率范围及其误差分析 (14)4.1 频率运算的基本方法 (14)4.2同步计数计时法 (16)4.3 连续采样的两种方法及其误差分析 (17) (22)4.4所测频率最大值fxmax4.5所测频率最小值f (22)xmin5 结论 (24)参考文献 (25)0 前言频率计是一种基础测量仪器,到目前为止已有30多年的发展史。

一直以来,人们对频率计的特性主要有如下需求:(1)足够宽的频率测量范围;(2)高精度和高分辨率。

精度是指测量的准确程度,即仪器的读数接近实际信号频率的程度,精确度越高测量越准确。

分辨率表明很小的变化都能在仪器上显示出来,高分辨率可快速测出更小的漂移值和不稳定值。

长期以来,人们测量频率的方法有两大种类:直接测量频率法,间接测量频率法。

直接测量就是依据频率的定义对被测信号进行测量,即是单位时间内(通常是一秒)发出的脉冲个数,直接测量频率法在低频误差较大,不能满足设计要求。

间接测量频率法有多种,较常用的是周期测量频率法和脉冲宽度测量法,实际上周期测量和脉冲测量方法基本相同,本论文就是用的脉冲宽度测量法实现对频率的测量,他的特点是测量迅速、灵敏,结构简单,精度高,误差小。

基于51单片机的频率计的设计讲解

基于51单片机的频率计的设计讲解

基于51单片机的频率计的设计讲解频率计是一种测量信号频率的仪器。

基于51单片机的频率计设计能够实现对不同频率信号的测量,具有简单、可靠、价格低廉的优势。

本文将详细介绍基于51单片机的频率计的设计原理、电路设计和程序设计。

设计原理:基于51单片机的频率计的设计原理主要包括输入信号的检测和计数、计数值显示和频率计算。

当外部信号输入到单片机的输入引脚时,单片机通过计数器对输入信号的波形进行计数,计数值与输入信号的频率成正比。

通过将计数值转换为频率值,并在显示屏上显示,即可实现对输入信号频率的测量。

电路设计:输入电路:输入电路主要负责将外部信号通过耦合电容和电阻接入单片机的输入引脚。

在输入电路中,耦合电容的作用是将交流信号的AC分量通过,阻隔直流信号的DC分量。

电阻的作用是限制输入信号的幅值,防止单片机输入引脚的过大电流。

计数电路:计数电路是基于51单片机的频率计的核心部分,主要由计数器和时钟发生器组成。

计数器负责对输入信号的波形进行计数,时钟发生器负责提供计数脉冲。

计数器的选择应根据所需测量范围来确定,通常使用定时器/计数器来实现。

显示电路:显示电路主要由数码管和驱动电路组成。

通过将计数值转换为对应的数字,并将数字数据发送给数码管进行显示。

驱动电路负责控制数码管的亮度和显示方式。

程序设计:输入信号的采样:在程序中,通过定时器/计数器对输入信号进行采样,采样时间根据信号频率来确定。

采样得到的数据存储在特定的寄存器中,以供后续的计数和计算。

计数器的计数:通过对输入信号进行计数,得到计数值。

计数值的大小与输入信号的周期成反比,与输入信号频率成正比。

计数器的计数方式可以是边沿计数或脉冲计数,根据实际需求选择。

频率计算和显示:通过将计数值转换为频率值,并将频率值显示在数码管上。

频率计算可以采用简单的比例关系,如频率=计数值/计数时间。

将频率值转换为对应的数字,并通过驱动电路控制数码管的显示。

总结:基于51单片机的频率计通过对输入信号进行采样、计数、计算和显示,能够实现对不同频率信号的测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第1章频率计数器设计………………………………………………1.1设计内容、要求及目的…………………………………………1.2 基本原理与总体方框图………………………………………第2章硬件系统设计……………………………………………2.1各部分方案及说明………………………………………………2.1.1 单片机部分…………………………………………………2.1.2 状态译码器…………………………………………………2.1.3数据显示电路………………………………………………………第3章软件系统设计……………………………………………3.1 应用系统的程序设计………………………………………………3.1.1 1s定时………………………………………………………………3.1.2 T1计数程序………………………………………………………3.1.3 进制转换………………………………………………………3.1.4 数码显示………………………………………………………3.2 程序调试………………………………………………………………第4章设计总结体会……………………………………………参考文献………………………………………………………………附录………………………………………………………………………………第1章频率计数器设计1.1 设计的内容、要求及目的设计内容:本课题以单片机为核心,设计和制作一个频率计数器,来完成对输入的信号进行频率计数,计数的频率结果通过6位动态数码管显示出来。

要求能够对0-250KHZ的信号频率进行准确计数,计数误差不超过±1HZ。

设计要求:1.设计方案要合理、正确;2.系统硬件设计;3.完成必要元器件选择;4.系统软件设计及调试;5.写出设计报告实验目的本应用系统实验的目的是通过在“单片机原理及应用”课堂上学习的知识,以及查阅资料,培养一种自学的能力。

并且引导一种创新的思维,把学到的知识应用到日常生活当中。

在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。

全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。

1.2 基本原理与总体方框图基本原理频率计数器的主要功能是测量周期信号的频率。

频率是单位时间( 1S )内信号发生周期变化的次数。

如果我们能在给定的 1S 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。

测量过程中定时/计数器T0和T1的工作方式设置,T1是工作在计数状态下,对输入的频率信号进行计数,在本次设计使用的98C51单片机,由于检测一个由“1”到“0”的跳变需要两个机器周期,前一个机器周期测出“1”,后一个周期测出“0”。

故输入时钟信号的最高频率不得超过单片机晶振频率的二十四分之一,最大计数值为f OSC/24,由于f OSC=12MHz,因此:T1的最大计数频率为0.5mHz。

对于频率的概念就是在一秒只数脉冲的个数,即为频率值。

所以T0工作在定时状态下,每定时1秒中到,就停止T0的计数,而从T0的计数单元中读取计数的数值,然后进行数据处理。

送到数码管显示出来。

总体方框图课题设计的是一种以单片机为主控制的频率计。

数字频率计主要由以下几部分组成:定时计数、采集数据、进制转换和数码显示。

本课题主要是以单片机AT89C51 为核心, 通过计数电路, 以及软件程序的编写, 实现脉冲频率的显示。

频率计系统总体框图如下:第2章硬件系统设计此次设计要求制作一频率计系统,需要使用的硬件主要包括51单片机芯片,74LS138译码器和数码管。

另外还是用到排线若干,下载线及电源线。

2.1 各部分方案选定、功能2.1.1 单片机部分本次设计采用了AT89C51 单片机, AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器。

如图2所示:图2 AT89C52引脚图AT89C51拥有五个中断源,当有外部脉冲到来时可实现中断的响应,另外AT89C51拥有定时/ 计数器(T0、T1),可实现定时与计数的功能。

单片机AT89C51的P0、P2的4个8位并行I/O口可进行外部存储设备扩展。

2.1.2 状态译码器(74LS138)图3 74LS138译码器74LS138译码器输出的状态控制数码管的亮与灭,它有6个状态,连接到数码管的位选,达到点亮数码管点亮的要求。

2.1.3 数据显示电路图4 显示电路图数据显示电路由限流电路和7段数码管组成,采用器件LED 显示器。

本设计中采用了六个七段数码管进行数据显示, 将五个数码管串接起来进行显示, 显示数据即是对频率计的测量结果。

系统板上硬件连线:(1)把“单片机系统”中的P0.0-P0.7口连接动态数码的段选ABCDEFGH 端口。

(2)把“单片机系统”中的P2.0-P2.2与译码器74LS138的A、B、C、引脚相连,再把译码器经“非门”与“动态数码显示”区域中的1、2、3、4、5、6端口用6芯排线连接。

(3)把“单片机系统”中的P3.5(T1)端子用导线连接到“频率源”的端子上。

(4) 把P3.2(/INT1)与按键连接。

第3章软件系统设计3.1 应用系统的程序设3.1.1 1s定时采用T0定时50ms,连续循环定时20次即可完成1s定时,用一个计数单元20H存放循环的次数,每一次循环20H单元自减1,当20H单元为零时则1s定时到时。

其程序流程图如图5所示。

图5 1s定时流程图3.1.2 T1计数程序设计中T1采用计数功能,思路是除了计数器T1的TH1和TL1用于计数外,再选用一个计数单元23H,每当计数器T1溢出回零时产生中断,中断程序执行23H单元自增1,这样,当一秒到时时采集的计数数据,23H单元存放的是数据的最高位,TH1存放的是数据的次高位,TL1存放的是数据的最低位。

当然,这里所说的“最高位”“次高位”以及“最低位”都是针对十六进制而言的。

T1计数程序的流程图如图6所示。

图6 T1计数流程图3.1.3 进制转换算法的基本思路是:第一步将最高位的高半字节提出来,除以10,把商存储起来,余数与最高位的低半字节组合成一个字节,再除以10,再存储商,余数以此类推,直到最后一次计算得到的余数即为十进制数的个位;第二步把第一步存储的商组合成一个字节,依次除以10,仍然把每次得到的商存储起来,以此类推最后一次得到的余数即为十进制数的十位;以后也是以此类推得到十进制数的百位、千位……以上算法必须要注意的一个为题是,每次得到的余数与低位的半字节组合成一个字节时,余数必须放在该字节的高半字节,否则计算错误。

该本次频率计系待测的时钟信号的最高频率为460800Hz,对应的十六进制数为70800H,这里就以70800H转换为十进制数为例来说明这种算法。

第一步:用7H除以10,商0H余7H,把商0存储在24H单元,余数7H与下一个字节08H的高半字节0H组合成一个字节70H。

70H除以10,商BH余2H,把商BH存储在25H单元,余数2H与8H组合成一个字节28H。

28H除以10,商4H余0H,把商4H存储在26H单元,余数0H与0H组合成一个字节00H。

00H除以10,商0H余0H,把商0H存储在27H单元,余数0H与0H组合成一个字节00H。

00H除以10,商0H余0H,把商0H存储在28H单元,余数0即为所需十进制数的个位。

第二步:把存储在24H与25H单元的商组合成一个字节0BH。

0BH除以10,同第一步,存储商,余数与下一个商组合成一个字节,再除以10,一次类推得到十进制数的十位0。

第三步:方法同第二步,得到十进制数的百位8。

第四步:方法同第三步,得到十进制数的千位0。

第五步:方法同第四步,得到十进制数的万位6和十万位4。

最后得到了十进制数460800。

3.1.4 数码显示将十进制数转换为相应的LED显示的代码,最容易实现的编程方法就是查表,因数码管最多只需要显示六位,只需要查六次表就可以了,图7是将十进制数对应的LED显示代码存入以60H为首单元的流程图。

图7 十进制数转换为显示代码流程图3.2 程序的调试编写的频率计总体程序编译成HEX文件,写入51单片机内,在观察数码管显示的时候,发现高位的“0”仍然能够显示,而通常十进制的高位的“0”通常是省略的。

为了解决这个问题,需要另外添加一段屏蔽高位的“0”的程序。

具体程序编写如下:PINGBI: MOV 20H,#06HMOV R1,#55HPANDUAN:MOV A,@R1JNZ SCANNUMDEC R1DEC 20HAJMP PANDUAN程序经过调试以后,数码管从高位第一位不为“0”的数开始显示。

参考文献1、《单片机原理与应用》王迎旭等编机械工业出版社2、《51系列单片机设计实例》楼然苗等编北京航空航天大学出版社3、《计算机硬件技术基础实验教程》黄勤等编重庆大学出版社4、《微型计算机接口技术及应用》刘乐善主编华中科技大学出版社5、《单片微型计算机原理及接口技术》陈光东等华中科技大学出版社附录1源程序清单:ADD A,25HMOV B,#0AHDIV ABMOV 24H,A ;存储第一位商MOV A,B M EQU 15N EQU 5ORG 0000HAJMP MAINORG 0003HAJMP CNINT0ORG 000BHAJMP T0INTORG 001BHAJMP T1INTORG 0030HMAIN:MOV SP,#70HMOV IE,#8BH ;开放EA、T1、T0中断MOV TMOD,#51H;初始化程序MOV TH0,#3DHMOV TL0,#71HMOV 20H,#20MOV TH1,#00HMOV TL1,#00HMOV 21H,#00HMOV 22H,#00HMOV 23H,#00HSETB IT0SJMP $CNINT0:SETB TR0SETB TR1RETIT0INT:DJNZ 20H,NEXT1;定时中断服务程序CLR TR1CLR TR0MOV 22H,TH1MOV 21H,TL1AJMP TRANSBDNEXT1:MOV TH0,#3CHMOV TL0,#0B0HEXIT:RETIT1INT:INC 23H;计数中断服务程序RETITRANSBD:MOV SP,#70H;将十六进制数转换成十进制数MOV A,23HMOV B,#0AHDIV ABMOV 24H,A ;存储第一位商MOV A,BMOV 30H,22HANL 30H,#0F0HADD A,30HSWAP AMOV B,#0AHDIV ABMOV 25H,A ;存储第二位商MOV A,BSWAP AADD A,22HMOV B,#0AHDIV ABMOV 26H,A ;存储第三位商MOV A,BMOV 30H,21HANL 30H,#0F0HADD A,30HSWAP AMOV B,#0AHDIV ABMOV 27H,A ;存储第四位商MOV A,BSWAP AANL 21H,#0FHADD A,21HMOV B,#0AHDIV ABMOV 28H,A ;存储第五位商MOV 50H,B ;存储十进制数个位MOV A,24HSWAP ASWAP AADD A,26HMOV B,#0AHDIV ABMOV 25H,A ;存储第二位商MOV A,BSWAP AADD A,27HMOV B,#0AHDIV ABMOV 26H,A ;存储第三位商MOV A,BSWAP AADD A,28HDIV ABMOV 27H,A ;存储第四位商MOV 51H,B ;存储十进制数十位MOV A,24HSWAP AADD A,25HMOV B,#0AHDIV ABMOV 24H,A ;存储第一位商MOV A,BSWAP AADD A,26HMOV B,#0AHDIV ABMOV 25H,A ;存储第二位商MOV A,BSWAP AADD A,27HMOV B,#0AHDIV ABMOV 26H,A ;存储第三位商MOV 52H,B ;存储十进制数百位MOV A,24HSWAP AADD A,25HMOV B,#0AHDIV ABMOV 24H,A ;存储第一位商MOV A,BSWAP AADD A,26HMOV B,#0AHDIV ABMOV 25H,A ;存储第二位商MOV 53H,B ;存储十进制数千位MOV A,24HSWAP AADD A,25HMOV B,#0AHDIV ABMOV 54H,B ;存储十进制数万位MOV 55H,A ;存储十进制数十万位DISPLAY:MOV R0,#60H;对60H-65H清零MOV R1,#06HNEXT2: MOV @R0,#00HINC R0DJNZ R1,NEXT2MOV R0,#50H;将数码管要显示的频率送到60H开头的内存MOV R1,#5FHMOV R2,#06HMOV DPTR,#TABNEXT3: MOV A,@R0MOVC A,@A+DPTRINC R0INC R1MOV @R1,ADJNZ R2,NEXT3PINGBI: MOV 20H,#06HMOV R1,#55HPANDUAN:MOV A,@R1JNZ SCANNUMDEC R1DEC 20HAJMP PANDUANSCANNUM:MOV R0,#60H;将60H开始的数送到数码管显示MOV R1,#00HMOV R2,20HLIGHT: MOV A,@R0MOV P0,AMOV A,R1MOV P2,AINC R0INC R1ACALL DELAYDJNZ R2,LIGHTAJMP SCANNUMDELAY:MOV R5,MWAIT:MOV R6,NWAITT:DJNZ R6,WAITTDEC R5DJNZ R5,WAITRETTAB: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H END附录2设计电路原理图:电气信息学院课程设计评分表指导教师签名:________________日期:________________注:①表中标*号项目是硬件制作或软件编程类课题必填内容;②此表装订在课程设计说明书的最后一页。

相关文档
最新文档