SHT30参考程序
大型分析仪器仿真软件ISTS3.0操作技巧介绍说明
大型分析仪器仿真软件ISTS3.0 仿真培训系统操作说明书北京东方仿真软件技术有限公司2008年8月一、培训软件启动和主要模块 (3)二、实验操作说明 (9)1、开机操作 (9)2、分析标准样品 (14)3、分析待测样品 (17)4、数据处理界面 (19)5、实验完成 (20)一、培训软件启动和主要模块在正确安装完成后,在界面上有该软件的启动快捷方式。
双击该图标,启动软件运行。
软件运行后,进入如下界面(见图2),输入姓名、学号和机器号后,还需输入教师站IP地址。
点“单机练习”或“局域网模式”启动软件。
进入工艺选择,如图3。
(图2)(图3)然后进入“培训项目”界面,气相色谱技能大赛里面的“给定物质定性定量分析”。
(见图4),点击左上角的“启动项目”。
进入导航界面。
(见图5)(图4)进入导航页面,主要包括“主界面(即导航页面)”“操作界面”“试题说明”。
(图5)操作界面(图6)试题说明(图7)二.实验操作说明点击界面中左下角功能钮“操作界面”,直接进入实验操作。
主界面如图6。
学员做气相色谱仿真实验“给定物质定性定量分析”,可按以下步骤操作(对此软件有一定程度的熟悉后,并不需要严格按以下步骤操作,学员完全可以根据对所学知识的理解,进行些创造性的操作)。
下面说明部分只以一个实验的完整操作讲解,其他实验灵活运用,操作方法类似。
(图8) 1、开机操作(1)点击色谱仪,打开色谱仪柱温箱门,检查色谱柱是否安装。
选择色功能钮色谱仪载气设置进样设置谱柱类型。
(2)设定载气流量:点击“气体钢瓶”上,弹出“气体设置”窗口。
回答问题“氢气钢瓶的瓶身颜色”。
根据需要开载气到一定流量,在载气输入框中写入50(可自行设计载气流量)。
点击“确定”。
如下图(3)点击色谱仪,打开色谱仪电源,(4)点击“电脑屏幕”,打开“分析控制”界面,设定柱温、进样口温度和检测器。
然后“发送方法”。
“进样口温度”:点击“设置”。
温度设为:230~240℃。
SHT30中文资料
SHT30温湿度传感器部分翻译资料3 Pin Assignment3、引脚分配The SHT3x-DIS comes in a tiny 8-pin DFN package see Table 6.SHT3x-DIS 是一个8位的DFN小包,见表63.1 Power Pins (VDD, VSS)3.1、电源引脚(VDD, VSS)The electrical specifications of the SHT3x-DIS are shown in Table 3. The power supply pins must be decoupled with a 100 nF capacitor that shall be placed as close to the sensor as possible – see Figure 11 for a typical application circuit.SHT3x-DIS的电气参数如表3所示。
电源引脚必须与一个100nF的电容器尽可能地隔离,以便尽可能靠近传感器——请参见典型应用电路图11。
3.2 Serial Clock and Serial Data (SCL, SDA)3.2、串行时钟和串行数据(SCL,SDA)SCL is used to synchronize the communication between microcontroller and the sensor. The clock frequency can be freely chosen between 0 to 1000 kHz. Commands with clock stretching according to I2C Standard 11 are supported.SCL用于同步微控制器和传感器之间的通信。
时钟频率可以在0到1000千赫之间自由选择。
支持按I2C标准11进行时钟扩展的命令。
基于单片机SHT温湿度传感器检测程序
基于51单片机SHT11温湿度传感器检测程序(含电路图)下面是原理图:F面是SHT11与MCU连接的典型电路:下面是源代码:#include <reg52.h>#include <intrins.h>/********************************************************宏定义********************************************************/ #define uint unsigned int#define uchar unsigned char#define noACK 0#define ACK 1#define STATUS_REG_W 0x06#define STATUS_REG_R 0x07#define MEASURE_TEMP 0x03#define MEASURE_HUMI 0x05#define RESET 0x1eenum?{TEMP,HUMI};typedef?union?//定义共用同类型(unsigned?int?i;float?f;} value;/******************************************************** 位定义********************************************************/ sbit lcdrs=P2八0;sbit lcdrw=P2」;sbit lcden=P2八2;sbit SCK = P「0;sbit DATA = P11;/******************************************************** 变量定义********************************************************/ uchar table2[]=〃SHT11 温湿度检测〃; uchar table3[]=〃温度为:℃";uchar table4[]=〃湿度为:〃;uchar table5[]=〃.〃;uchar wendu[6];uchar shidu[6];/******************************************************** 1ms延时函数********************************************************/ void?delay(int?z)(int?x,y;for(x=z;x>0;x--)for(y=125;y>0;y--);)/******************************************************** 50us延时函数********************************************************/ void?delay_50us(uint t)(uint j;for(;t>0;t--)for(j=19;j>0;j--);)/******************************************************** 50ms延时函数********************************************************/ void?delay_50ms(uint t)(uint j;for(;t>0;t--)for(j=6245;j>0;j--);)/******************************************************** 12864液晶写指令********************************************************/ void?write_12864com(uchar com)(lcdrs=0;delay_50us(1);P0=com;lcden=1;delay_50us(10);lcden=0;delay_50us(2);)/******************************************************** 12864液晶写数据********************************************************/ void?write_dat(uchar dat)(lcdrs=1;lcdrw=0;delay_50us(1);P0=dat;lcden=1;delay_50us(10);lcden=0;delay_50us(2);)/******************************************************** 12864液晶初始化********************************************************/ void?init128641cd(void)(delay_50ms(2);write_12864com(0x30);delay_50us(4);write_12864com(0x30);delay_50us(4);write_12864com(0x0f);delay_50us(4);write_12864com(0x01);delay_50us(240);write_12864com(0x06);delay_50us(10);write_12864com(0x0c);delay_50us(10);)/******************************************************** 12864液晶显示函数********************************************************/ void?display1(void)(uchar i;write_12864com(0x80);for(i=0;i<18;i++)(write_dat(table2[i]);delay_50us(1);))/******************************************************** 12864液晶显示函数********************************************************/ void?display2(void)(uchar i;write_12864com(0x90);for(i=0;i<18;i++)(write_dat(table3[i]);delay_50us(1);))/******************************************************** 12864液晶显示函数********************************************************/ void?display3(void)(uchar i;write_12864com(0x88);for(i=0;i<8;i++)(write_dat(table4[i]);delay_50us(1);))/******************************************************** 12864液晶显示函数********************************************************/ void?displaywendu(void)(uchar i;write_12864com(0x94);for(i=0;i<3;i++)(write_dat(wendu[i]);delay_50us(1);)for(i=0;i<1;i++)(write_dat(table5[i]);delay_50us(1);)for(i=4;i<5;i++)(write_dat(wendu[i]);delay_50us(1);))/******************************************************** 12864液晶显示函数********************************************************/ void?displayshidu(void)(uchar i;write_12864com(0x8C);for(i=0;i<3;i++)(write_dat(shidu[i]);delay_50us(1);)for(i=0;i<1;i++)(write_dat(table5[i]);delay_50us(1);)for(i=4;i<5;i++)(write_dat(shidu[i]);delay_50us(1);))/******************************************************** SHT11写字节程序********************************************************/char?s_write_byte(unsigned?char?value)(unsigned?char?i,error=0;for?(i=0x80;i>0;i>>=1)?//高位为 1,循环右移(if?(i&value) DATA=1;?//和要发送的数相与,结果为发送的位 else?DATA=0; SCK=1;_nop_();_nop_();_nop_();?//延时 3usSCK=0;)DATA=1;?//释放数据线SCK=1;error=DATA;?//检查应答信号,确认通讯正常_nop_();_nop_();_nop_();SCK=0;DATA=1;return?error;?//error=1 通讯错误)/******************************************************** SHT11读字节程序********************************************************/char?s_read_byte(unsigned?char?ack)(unsigned?char?i,val=0;DATA=1;?//释放数据线for(i=0x80;i>0;i>>=1)?//高位为 1,循环右移(SCK=1;if(DATA) val=(val|i);?//读一位数据线的值SCK=0;)DATA=!ack;?SCK=1;_nop_();_nop_();_nop_();?//延时 3usSCK=0;_nop_();_nop_();_nop_();DATA=1;?//释放数据线return?val;)/********************************************************SHT11启动传输********************************************************/void?s_transstart(void)(DATA=1; SCK=0;?//准备_nop_();SCK=1;_nop_();DATA=0;_nop_();SCK=0;_nop_();_nop_();_nop_();SCK=1;_nop_();DATA=1;_nop_();SCK=0;)/********************************************************SHT11连接复位********************************************************/void?s_connectionreset(void)(unsigned?char?i;DATA=1; SCK=0;?//准备for(i=0;i<9;i++)?//DATA保持高,SCK时钟触发9次,发送启动传输,通迅即复位(SCK=1;SCK=0;)s_transstart();?//启动传输)/******************************************************** SHT11温湿度检测********************************************************/char?s_measure(unsigned?char?*p_value, unsigned?char?*p_checksum, unsigned?charmode)(unsigned error=0;unsigned?int?i;s_transstart();?//启动传输switch(mode)?〃选择发送命令 (case?TEMP : error+=s_write_byte(MEASURE_TEMP);?break;?〃测量温度case?HUMI : error+=s_write_byte(MEASURE_HUMI);?break;?〃测量湿度default?:?break;)for?(i=0;i<65535;i++)?if(DATA==0)?break;?〃等待测量结束if(DATA) error+=1;?//如果长时间数据线没有拉低,说明测量错误 *(p_value) =s_read_byte(ACK);?//读第一个字节,高字节(MSB)*(p_value+1)=s_read_byte(ACK);?//读第二个字节,低字节(LSB) *p_checksum =s_read_byte(noACK);?//read CRC 校验码 return?error;?// error=1 通讯错误)/********************************************************SHT11温湿度值标度变换及温度补偿********************************************************/void?calc_sth10(float?*p_humidity ,float?*p_temperature) (const?float?C1=-4.0;?// 12位湿度精度修正公式const?float?C2=+0.0405;?// 12 位湿度精度修正公式const?float?C3=-0.0000028;?// 12 位湿度精度修正公式 const?float?T1=+0.01;?// 14位温度精度5V条件修正公式 const?float?T2=+0.00008;?// 14位温度精度5V条件修正公式float?rh=*p_humidity;?// rh: 12 位湿度float?t=*p_temperature;?// t: 14 位温度 float?rh_lin;?// rh_lin: 湿度linear 值 float?rh_true;?// rh_true: 湿度 ture 值 float?t_C;?// t_C :温度℃t_C=t*0.01 - 40;?//补偿温度rh_lin=C3*rh*rh + C2*rh + C1;?//相对湿度非线性补偿rh_true=(t_C-25)*(T1+T2*rh)+rh_lin;?//相对湿度对于温度依赖性补偿if(rh_true>100)rh_true=100;?//湿度最大修正if(rh_true<0.1)rh_true=0.1;?//湿度最小修正*p_temperature=t_C;?//返回温度结果*p_humidity=rh_true;?//返回湿度结果)/********************************************************主函数********************************************************/ void?main(void)(unsigned?int?temp,humi;value humi_val,temp_val;?//定义两个共同体,一个用于湿度,一个用于温度unsigned?char?error;?//用于检验是否出现错误unsigned?char?checksum;?//CRCinit12864lcd();display1();display2();display3();s_connectionreset();?//启动连接复位while(1)(error=0;?//初始化error=0,即没有错误error+=s_measure((unsigned?char*)&temp_val.i,&checksum,TEMP);?//温度测量error+=s_measure((unsigned?char*)&humi_val.i,&checksum,HUMI);?//湿度测量if(error!=0) s_connectionreset();?////如果发生错误,系统复位else{ _humi_val.f=(float)humi_val.i;?//转换为浮点数temp_val.f=(float)temp_val.i;?//转换为浮点数calc_sth10(&humi_val.f,&temp_val.f);?//修正相对湿度及温度temp=temp_val.f*10;humi=humi_val.f*10;wendu[0]=temp/1000+'0';?//温度百位wendu[1]=temp%1000/100+'0';?//温度十位wendu[2]=temp%100/10+'0';//温度个位wendu[3]=0x2E;?//小数点wendu[4]=temp%10+'0';?//温度小数点后第一位displaywendu();shidu[0]=humi/1000+'0';?//湿度百位shidu[1]=humi%1000/100+'0';?//湿度十位shidu[2]=humi%100/10+'0';?//湿度个位shidu[3]=0x2E;?//小数点shidu[4]=humi%10+'0';?//湿度小数点后第一位displayshidu();)delay(800);//等待足够长的时间,以现行下一次转换) )相关手册资料及源码下载地址:。
油库建设标准
中国石化销售企业油库建设标准(试行)2004年12月发布 2005年1月实施中国石化股份有限公司油品销售事业部发布编制说明为规范中国石化销售企业所属成品油库新建、改扩建项目的工程管理,采用先进的工艺设备、控制技术和设计理念,充分发挥油库在销售环节的功能,全面提升油库管理水平,以满足成品油市场全面开放后的需求。
结合行业特点,针对销售企业油库普遍存在的主要问题,在总结“试点油库”经验和《中国石化销售企业油库改造设计导则》试行的基础上,我们编制了《中国石化销售企业油库建设标准》,以指导油库新建、改造过程中所涉及的油库规模、铁路收发油、公路发油、管道收发油工作流程以及油品计量、安全监控系统、供配电系统、安全及环保等系统设计方案的确定。
新建及改造后的油库应达到“布局合理、技术先进、安全可靠、管理方便、绿化美化、本质安全、防止污染、确保油品质量”。
本标准归纳了新建、改扩建成品油库需注意的设计要点和建设过程中需执行的国家、行业相关标准、规范。
在符合国家及行业标准、规范的基础上,应严格按本标准执行。
附图部分包括油库工艺流程图、发油棚建筑效果及发油平台布置图及实景照片等,供各单位参考。
鉴于本标准系初次编制,希望各单位在试行过程中,注意积累资料,总结经验,如发现有需要修改和补充之处,请将意见和资料寄送油品销售事业部发展规划处,以便今后修改时参考。
目录1. 总 则 (1)2. 采用的主要标准、规范 (3)3. 总平面布置及建(构)筑物 (5)3.1总平面布置要求3.2建(构)筑物4. 铁路收发油系统 (8)4.1 一般规定4.2 工艺流程4.3 设备选型及安装要求4.4 电气5. 水路收发油系统 (12)5.1 工艺流程5.2 设备选型及安装要求5.3 配套设施6. 公路发油系统 (14)6.1 一般规定6.2 工艺流程6.3 设备选型及安装要求6.4 电气7. 储油罐区 (16)7.1 轻油罐区布置原则7.2 库容的确定7.3 油罐选型7.4工艺管道7.5电气及防雷防静电7.6油罐及管道防腐8. 消防系统 (20)8.1 泡沫灭火系统8.2 消防给水9. 自控系统 (22)9.1 概述9.2 罐群自动计量系统9.3 公路微机发油系统9.4 安全监控系统10.环保 (27)10.1 含油污水处理10.2 给排水11. 标识 (28)11.1 建(构)筑物11.2 管道表面色和标识11.3 油罐表面色和标识11.4 机泵、阀门及管道附件表面色11.5 其他11.6 油罐编号规定附录-1 油罐计量系统简介附图附图-1 发油台鹤管布置图-2 发油亭建筑效果-3 泵棚及发油台实景效果-4 油罐标识效果-5 试点油库分区示意图1、总则1.1为在中国石化销售企业油库新建和改扩建过程中,统一技术要求,统一建设标准,统一形象标识,突出行业特点,特制定本标准。
温湿度模块DHT22产品手册说明书
温湿度模块DHT22产品手册一、产品概述本产品是采用高稳定性电容式感湿元件作为传感元件,经过微处理器采集处理转化成数字信号输出。
每一个传感器都经过标定校准和测试。
具有长期稳定、可靠性高、精度高、低功耗等特点。
二、尺寸图单位:mm(±0.5)三、产品特点DHT22数字温湿度模块具有以下特点:1、数字输出,IIC协议;2、超低功耗;3、0-100%相对湿度测量范围;4、全标定、温漂校准。
5、使用独立感湿元器件,稳定性好,抗污染能力强四、性能特征相对湿度温度五、电气特性参数条件最小典型最大单位供电电压VDD 2.8 3.3 5.5V 供电电流休眠模式0.2uA 测量模式500uA 采样周期 2.0S低电平输出电压Io<4mA 0250mV 高电平输出电压Rp<25kΩ80%100%VDD 低电平输入电压下降沿0%20%VDD 高电平输入电压上升沿80%100%VDD 输出电流On 4mA 三态门(Off)1020μA表3Io 表示低电平输出电流Rp 代表上拉电阻参数条件最小典型最大单位分辨率0.1%RH 量程范围099.9%RH 精度25℃±3%RH重复性±0.1响应时间1/e(63%)<8S迟滞±0.5漂移典型值<3%RH/r 参数条件最小典型最大单位分辨率0.1℃工作范围-4080℃精度±0.5℃重复性±0.2℃响应时间1/e(63%)1S迟滞±0.1漂移典型值<0.2℃/r图1图2表1表2六、用户指南1、引脚分配引脚名称描述1VDD 电源2.8~5.5V 2SDA 串行数据,双向口3GND 地4SCK 时钟线表4:引脚分配1.1、电源引脚(VDD GND)本产品的供电电压为2.8~5.5V,建议供电电压为3.3V。
1.2、串行数据(SDA)SDA 为数据口,三态结构,SDA 在SCK 时钟下降沿之后改变状态,并仅在SCK 上升沿有效1.3、串行数据(SCK)SCK 用于微处理器与DHT22之间的通讯同步。
sht30课程设计
sht30课程设计一、课程目标知识目标:1. 学生能理解并掌握SHT30传感器的基本原理和工作方式,了解其在环境监测中的应用。
2. 学生能运用所学的SHT30相关知识,分析并解释环境数据,如温度和湿度。
3. 学生了解传感器技术与现实生活的联系,认识到科学技术在解决实际问题中的作用。
技能目标:1. 学生能够独立完成SHT30传感器的组装和调试,具备实际操作能力。
2. 学生通过实践,学会使用SHT30传感器进行数据采集、处理和分析,提高动手操作和问题解决能力。
3. 学生能够运用所学的知识,设计简单的环境监测方案,具备初步的项目策划能力。
情感态度价值观目标:1. 学生对传感器技术产生兴趣,培养主动探究科学问题的精神。
2. 学生在小组合作中,学会沟通与协作,培养团队精神和责任感。
3. 学生通过学习SHT30传感器相关知识,认识到环保的重要性,增强环保意识。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握SHT30传感器相关知识的基础上,能够将其应用于实际环境监测,培养解决实际问题的能力。
同时,注重培养学生的科学素养、团队协作和环保意识,使学生在知识、技能和情感态度价值观等方面得到全面提升。
通过分解课程目标为具体的学习成果,为后续的教学设计和评估提供明确方向。
二、教学内容1. SHT30传感器概述:介绍SHT30传感器的基本原理、结构特点及在环境监测中的应用。
- 教材章节:第三章第二节“温湿度传感器”2. SHT30传感器的工作原理与性能参数:讲解SHT30传感器的工作原理、性能参数及其影响。
- 教材章节:第三章第二节“温湿度传感器”3. SHT30传感器的组装与调试:指导学生进行SHT30传感器的组装、调试及使用方法。
- 教材章节:第三章第三节“传感器的组装与调试”4. 数据采集与处理:教授如何使用SHT30传感器进行环境数据采集、处理和分析。
- 教材章节:第四章第一节“数据采集与处理”5. 环境监测方案设计:引导学生运用所学知识,设计简单的环境监测方案。
石油化工钢结构冷换框架设计规范
4. 1
4.2
4.3
4.4
作用和作用效应......... 计算指标..................................……………….......….........… ·······························2
几何参数…………………………………………………………………………………………… 2
5.3 5 材料…............................…………................….........….....................................
6 荷载和地震作用.......................…………..................…........................…···················5 6. 1 荷载分类…………………………………………………………………………………………… 5 6.2 5 平台活荷载…........……...............................…...................................................
附录 A (资料性附录)框架风荷载近似计算…………………………………………………………… 17
本规范用词说明.......….......…….........………..................…….........….........…………… ·20
附:条文说明........…...........................…..................…...........................….........…… ·21
SHTXX传感器程序
SHT11相关命令#define TEM_TEST 0x03//温度检测命令#define HUM_TEST 0x05//湿度检测命令#define REG_READ 0x07//读寄存器#define REG_WRITE 0x06//写寄存器#define FUNCTION_SET 0x01//设置SHT11的工作精度为8位/湿度12位温度sbit SHT11_DATA=P2^0;sbit SHT11_SCK=P2^2;uchar flag_tempeture=0; //显示温度位置的标志uchar flag_humidity=0; //显示湿度位置的标志uchar code str1[]={ 0x10,0x06,0x09,0x08,0x08,0x09,0x06,0x00};//温度图标uchar code str6_sht11[]="%RH ";uchar code str4_sht11[]="humi=";uchar code str2_sht11[]="temp=";uchar code str7_sht11[]=" ";//清除没不要的显示void Delay(){;;}/void Delay_Ms(uint ms){uint i,j;for(i=ms;i>0;i--)for(j=112;j>0;j--);}void SHT11_Start(){SHT11_SCK=1;SHT11_DATA=1;Delay();SHT11_DATA=0;Delay();SHT11_SCK=0;Delay();SHT11_SCK=1;Delay();SHT11_DATA=1;}void SHT11_Sendbyte(uchar dat) {uchar i;SHT11_SCK=0;Delay();for(i=0;i<8;i++){if(dat&0x80){SHT11_DA TA=1;Delay();}else{SHT11_DA TA=0;Delay();}dat=dat<<1;SHT11_SCK=1;Delay();SHT11_SCK=0;}}void SHT11_Answer(){SHT11_SCK=1;Delay();while(SHT11_DATA==1);SHT11_SCK=0;SHT11_DATA=1;}void SHT11_Test_Finish(){while(SHT11_DATA==1);uchar SHT11_Receivebyte(){uchar i;uchar dat;SHT11_SCK=0;Delay();for(i=0;i<8;i++){SHT11_SCK=1;Delay();dat=dat<<1;if(SHT11_DA TA){dat=dat|0x01;Delay();}else{dat=dat&0xfe;Delay();}SHT11_SCK=0;Delay();}SHT11_DATA=1; //释放数据总线return(dat);}void MCU_Answer(){SHT11_SCK=0;Delay();SHT11_DATA=0;Delay();SHT11_SCK=1;Delay();SHT11_SCK=0;Delay();SHT11_DATA=1; //释放数据总线这条指令非常重要不加的话导致单片机不能读取低8位void SHT11_End(){SHT11_DATA=1;SHT11_SCK=1;Delay();SHT11_SCK=0;Delay();}void SHT11_Write_Register(uchar command ,uchar dat) {SHT11_Start();SHT11_Sendbyte(command);SHT11_Answer();SHT11_Sendbyte(dat);SHT11_Answer();}uchar SHT11_Read_Register(uchar command){uchar dat;SHT11_Start();SHT11_Sendbyte(command);SHT11_Answer();dat=SHT11_Receivebyte();SHT11_End();return(dat);}uint SHT11_Measure(uchar command,uchar time){uint dat=0;uchar data_high,data_low;SHT11_Start();SHT11_Sendbyte(command);SHT11_Answer();Delay_Ms(time);SHT11_Test_Finish();data_high=SHT11_Receivebyte();MCU_Answer();data_low=SHT11_Receivebyte();SHT11_End();dat=(dat|data_high);dat=(dat<<8)|data_low;return(dat);}float SHT11_Convert_Tempeture14bit(uint dat){float tempeture1;tempeture1=-40+0.01*dat;if(tempeture1>100.0){flag_tempeture=1;}else if(tempeture1<0.0){flag_tempeture=1;}else{flag_tempeture=0;}return(tempeture1);}/-----RHtrue=(tempeture-25)*(t1+t2*SOrh)+RHline 公式中的参数:C1=-4,C2=0,0405,C3=-0.0000028t1=0.01,t2=0.00008适用于12位测量精度******************************************/float SHT11_Convert_Humidity12bit(uint dat,float temp){float RHline,RHtrue;RHline=-4+0.0405*dat-0.0000028*dat*dat;RHtrue=(temp-25)*(0.01+0.00008*dat)+RHline;if(RHtrue<10.0){flag_humidity=1;}else{flag_humidity=0;}return(RHtrue);}/****************************************float SHT11_Convert_Tempeture12bit(uint dat){float tempeture1;tempeture1=-40+0.04*dat;if(tempeture1>100.0){flag_tempeture=1;}else{flag_tempeture=0;}return(tempeture1);}*****************************************/(t1+t2*SOrh)+RHline公式中的参数:C1=-4,C2=0,648,C3=-0.00072t1=0.01,t2=0.00128适用于12位测量精度float SHT11_Convert_Humidity8bit(uint dat,float temp) {float RHline,RHtrue;RHline=-4+0.648*dat-0.00072*dat*dat;RHtrue=(temp-25)*(0.01+0.00128*dat)+RHline;if(RHtrue<10.0){flag_humidity=1;}else{flag_humidity=0;}return(RHtrue); }。
温湿度传感器SHT11数据手册(中文)版
3.2 温度
由能隙材料 PTAT (正比于绝对温度) 研发的温度 传感器具有极好的线性。可用如下公式将数字输
数据。检测数据可以先被存储,这样控制器可以继续执 行其它任务在需要时再读出数据。
接着传输 2 个字节的测量数据和 1 个字节的 CRC 奇偶 校验。uC 需要通过下拉 DATA 为低电平,以确认每个 字节。所有的数据从 MSB 开始,右值有效(例如:对 于 12bit 数据,从第 5 个 SCK 时钟起算作 MSB;而对 于 8bit 数据,首字节则无意义)。 用 CRC 数据的确认位,表明通讯结束。如果不使用 CRC-8 校验,控制器可以在测量值 LSB 后,通过保持 确认位 ack 高电平,来中止通讯。 在测量和通讯结束后,SHTxx 自动转入休眠模式。
2.3.2 电量不足 “电量不足”功能可监测到 Vdd 电压低于 2.47V 的 状态。精度为±0.05V。
2.3.3 加热元件 芯片上集成了一个可通断的加热元件。接通后,可将 SHTxx 的温度提高大约 5-15℃(9-27℉)。功耗增加 ~8mA @ 5V。 应用于:
1) 试样参数周期性抽检但非 100% 检测 (2) 由于传感器在 3.3V 校准,对于要求最高精度测量推荐采用 2.4-3.6V 供电 (3) 每秒进行一次 8bit 精度的测量,不加载 OTP (4) 每秒进行一次 12bit 精度的测量
µA
0.3 1.5 µA
0
250 mV
90%
100% Vdd
0
20% Vdd
80%
100% Vdd
1 µA
4 mA
10 20 µA
表 4 SHTxx DC 特性
参数
条件
Min Typ. Ma 单位
SHT30中文资料
SHT30温湿度传感器部分翻译资料3 Pin Assignment3、引脚分配The SHT3x-DIS comes in a tiny 8-pin DFN package see Table 6.SHT3x-DIS 是一个8位的DFN小包,见表63.1 Power Pins (VDD, VSS)3.1、电源引脚(VDD, VSS)The electrical specifications of the SHT3x-DIS are shown in Table 3. The power supply pins must be decoupled with a 100 nF capacitor that shall be placed as close to the sensor as possible – see Figure 11 for a typical application circuit.SHT3x-DIS的电气参数如表3所示。
电源引脚必须与一个100nF的电容器尽可能地隔离,以便尽可能靠近传感器——请参见典型应用电路图11。
3.2 Serial Clock and Serial Data (SCL, SDA)3.2、串行时钟和串行数据(SCL,SDA)SCL is used to synchronize the communication between microcontroller and the sensor. The clock frequency can be freely chosen between 0 to 1000 kHz. Commands with clock stretching according to I2C Standard 11 are supported.SCL用于同步微控制器和传感器之间的通信。
时钟频率可以在0到1000千赫之间自由选择。
支持按I2C标准11进行时钟扩展的命令。
sht30使用手册
sht30使用手册SHT30是一款高精度、数字输出的温湿度传感器,具有响应速度快、抗干扰能力强、精度高等特点。
本文将详细介绍SHT30的使用方法,包括接线方式、工作模式、数据读取等方面,帮助您更好地了解并使用这款传感器。
一、SHT30简介SHT30传感器由意法半导体(STMicroelectronics)公司生产,是一款具有卓越性能的温湿度传感器。
它采用CMOS工艺,集成了温度和湿度传感器的功能,具有低功耗、高性能、高稳定性等特点。
SHT30可以广泛应用于气象、环境、农业、医疗等领域的温湿度测量。
二、SHT30接线方式SHT30传感器具有两线制的I2C接口,只需要连接SDA和SCL两条线即可与微控制器进行通信。
同时,SHT30还有电源正负极(VDD和VSS)和reset(nRESET)引脚,可根据实际需求进行连接。
1. SDA:I2C数据线,需要连接10k上拉电阻。
2. SCL:I2C时钟线,需要连接10k上拉电阻。
3. VDD:电源正极,2.4-5.5V。
4. VSS:电源负极(GND)。
5. nRESET:复位引脚,最低有效脉冲是1us。
三、SHT30工作模式SHT30支持多种工作模式,包括标准模式、快速模式、重复读取模式等。
下面将介绍这几种工作模式。
1. 标准模式:在这种模式下,SHT30每秒输出一次温湿度数据。
该模式适合对温湿度变化较敏感的应用。
2. 快速模式:在这种模式下,SHT30每0.5秒输出一次温湿度数据。
该模式适合对实时性要求较高的应用。
3. 重复读取模式:在这种模式下,SHT30可以连续输出多个温湿度数据,直到指定的数据数量达到为止。
该模式适合需要大量数据处理的应用。
四、SHT30数据读取SHT30传感器通过I2C接口与微控制器进行通信,实现数据的读取。
以下是I2C通信协议的基本步骤:1. 初始化:微控制器向SHT30发送起始信号。
2. 地址发送:微控制器发送SHT30的设备地址(0x44或0x45)。
烧结钕铁硼永磁材料产品技术标准2022
烧结钕铁硼永磁材料1 范围本标准规定了烧结钕铁硼永磁材料分类、技术要求、试验方法、检验规则和标志、包装、运输、贮存。
本标准适用于烧结钕铁硼永磁材料。
2 规范性引用文件下列文件中的条款通过标准的引用而构成本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(包括勘误的内容)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T 2828.1 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划GB/T 3217 永磁(硬磁)材料磁性能试验方法GB/T 9637 电工术语磁性材料与元件GB/T 13560 烧结钕铁硼永磁材料XB/T 903 烧结钕铁硼永磁材料表面电镀层3 术语和定义本标准基本术语和定义应符合GB/T 9637的规定并采用下列定义。
6.1主要磁性能包括永磁材料的剩余感应强度(剩磁)(B r)、磁极化强度矫顽力(内禀矫顽力)(H cj)、磁感应强度矫顽力(磁感矫顽力)(H cb)、最大磁能积((BH)max)、方形度Hk/Kcj。
6.2辅助磁性能包括永磁材料的相对回复磁导率(μrec)、剩余磁感应温度系数(α(B r))、磁极化强度矫顽力温度系数(α(H cJ))、居里温度(T C)。
4 材料分类4.1材料分类和牌号表示方法烧结钕铁硼产品按磁极化强度矫顽力大小分为普通矫顽力(N)、中等矫顽力(M)、高矫顽力(H)、特高矫顽力(SH)、超高矫顽力(UH)、极高矫顽力(EH)六大类产品。
每大类产品按最大磁能积大小划分具体牌号,其中基本牌号由英文字母和阿拉伯数字两部分组成,字母代表产品矫顽力分类,阿拉伯数字代表标称最大磁能积。
在基本牌号的基础上,加上T或者L-…T代表衍生牌号。
4.2基本牌号基本牌号有N25、N28、N30、N33、N35、N38、N40、N42、N45、N48、N50、N52、N54、N56、30M、33M、35M、38M、40M、42M、45M、48M、50M、52M、54M、56M、30H、33H、35H、38H、40H、42H、45H、48H、50H、52H、30SH、33SH、35SH、38SH、40SH、42SH、45SH、48SH、50SH、30UH、33UH、35UH、38UH、40UH、45UH、48UH、30EH、33EH、35EH、38EH、40EH、42EH。
精编【生产管理】年产万吨异丙苯生产设计
【生产管理】年产万吨异丙苯生产设计xxxx年xx月xx日xxxxxxxx集团企业有限公司Please enter your company's name and contentv第1章总论1.1 项目概况本项目是8万吨/年异丙苯生产设计,利用苯和工业级丙烯(含少量丙烷)为原料,生产异丙苯且副产部分二异丙苯。
反应设计在固定床列管式反应器内进行,经普通精馏分离技术进行产物分离,得到高纯度的异丙苯,且对过量的苯加以循环利用,以扩大经济效益。
本项目最大程度地利用了原料,提高了产品纯度,符合国家的产业、能源和环境保护的政策。
1.2 设计依据(1)化工工程设计相关规定(2)国家经济、建筑、环保等相关政策1.3 设计原则本项目本着节约原料和能源、保护环境的前提,生产符合要求的产品且尽可能减少副反应的原则来进行设计,符合国家化工生产的政策。
1.4 设计内容1.4.1基础条件1、原料及其组成(均为mol%):(1)工业级丙烯:纯度≥95%,丙烷≤5%;(2)苯:纯度≥99.5%,苯/丙烯= 7:1 。
2、产品及其规格:异丙苯,纯度≥99.5%(m%)。
3、建议工艺条件:采用UOP法,以磷酸或分子筛作催化剂。
产物主要考虑异丙苯和二异丙苯。
原料中89%的丙烯反应生成异丙苯,3%的丙烯生成二异丙苯。
4、公用工程:(1)热剂用蒸汽:根据生产需要选用不同压力级别的蒸汽。
(2)冷剂用循环冷却水:上水温度可取25℃。
1.4.2 设计内容1、查阅文献,了解设计内容,确定设计基础数据,完成文献综述;2、生产方案确定及工艺流程设计,绘制工艺原则流程图;3、主要设备及全装置的物料衡算,列出物料平衡表等表格,绘制PFD;4、主要设备及全装置的热量衡算(包括热负荷及传热剂用量的计算),列出热量平衡表等表格;5、主要设备的工艺计算和选型,列出各类设备规格表及设备一览表;6、确定自控方案,绘制工艺管道及仪表流程图(PID);7、进行车间及设备布置设计,绘制车间平面布置图及设备平、立面布置图;8、设计总结,编写初步设计说明书。
SHT30中文资料资料
SHT30温湿度传感器部分翻译资料3 Pin Assignment3、引脚分配The SHT3x-DIS comes in a tiny 8-pin DFN package see Table 6.SHT3x-DIS 是一个8位的DFN小包,见表63.1 Power Pins (VDD, VSS)3.1、电源引脚(VDD, VSS)The electrical specifications of the SHT3x-DIS are shown in Table 3. The power supply pins must be decoupled with a 100 nF capacitor that shall be placed as close to the sensor as possible – see Figure 11 for a typical application circuit.SHT3x-DIS的电气参数如表3所示。
电源引脚必须与一个100nF的电容器尽可能地隔离,以便尽可能靠近传感器——请参见典型应用电路图11。
3.2 Serial Clock and Serial Data (SCL, SDA)3.2、串行时钟和串行数据(SCL,SDA)SCL is used to synchronize the communication between microcontroller and the sensor. The clock frequency can be freely chosen between 0 to 1000 kHz. Commands with clock stretching according to I2C Standard 11 are supported.SCL用于同步微控制器和传感器之间的通信。
时钟频率可以在0到1000千赫之间自由选择。
支持按I2C标准11进行时钟扩展的命令。
STM32------SHT30温湿传感器
STM32------SHT30温湿传感器SHT30是盛世瑞出品的低端低价温湿度传感器,利⽤I2C进⾏数据传输,具有两个可选地址,宽电源电压从2.4V到5.5V。
SHT30芯⽚有⼋个引脚:Pin Name Comments1SDA数据引脚,输⼊/输出2ADDR地址引脚,输⼊3ALENT报警引脚,输出;不使⽤时悬空4SCL时钟引脚,输⼊/输出5VDD电源引脚,输⼊6nRESET复位引脚,低电平有效,输⼊7R⽆⽤引脚,接地8VSS接地引脚重复性影响SHT30的测量时间,因此就是影响传感器的能量消耗。
通过改变选择ADDR引脚的电压,实现传感器的地址改变。
默认地址是ADDR连接VSS时( 0X44),可以修改成0X45。
(关于引脚,详情请看数据⼿册)。
SHT30有两中⼯作模式 1.单次数据采集模式 通过不同命令,在重复性(⾼,中,低)和时钟延伸(禁⽌,使能)⽅⾯不同,每个数据包含⼀个16位温度和⼀个16位湿度值(按此顺序)组成。
传输如下所⽰(具体传输过程以数据⼿册为准): (1)STM32发出START,并发出I2C的地址(7位)+读(1)/写(0)标志位,然后等待SHT30的ACK (2)发出命令⾼8位数据,等待SHT30的ACK (3)发出命令低8位数据,等待SHT30的ACK (4)STM32发送STOP停⽌通信。
(5)STM32发出START,并发出I2C的地址(7位)+读(1)/写(0)标志位,然后等待SHT30的ACK (6)传感器将接收读头的接收,并发送两个字节的数据(温度),接着是⼀个字节的CRC校验另外 (7)传感器发送两个字节的数据(相对湿度),然后是⼀个字节的CRC校验和。
每发送8位必须接受到STM32回应的ACK条件传感器才会继续发送数据。
如果传感器在任何字节的数据之后没有接收到ACK,它就不会继续发送数据。
I2C主机可以中⽌读取传输任何数据字节后,发送NACK状态,如果不能在随后的数据感兴趣,例如CRC字节或第⼆测量结果,可以了节省时间。
SHT汇编语言程序
MOV R7,63H
MOV R2,#00H ;/100 也就是 DATA*0.01
MOV R3,#64H
ACALL NDIV1 ;R4R5R6R7/R2R3=R6R7
MOV R7,#41H ;65
CLR C
ACALL NSUB ; T-65 温度-40到+120时减25,此程序中温度0-160
JC RHH1 ; 如果(T-65)小于0,则执行RHH1,结果=RHL-(T-65)*(DATA*0.008+1)
ACALL NSUB ;测量数据与最大值“16000”比较,如果超出范围,定为“16000”
JNC THH1
MOV 62H,R4
MOV 63H,R5
AJMP TJX1
AJMP T0012
RCT12: ACALL RC01 ;将测量数据送到R2,R3
NOP
MOV 74H,R2
MOV 75H,R3
;
MOV R2,74H
MOV R7,7BH
ACALL NSUB ;
MOV R6,64H
MOV R7,65H
ACALL QKUL ;
MOV R4,7CH
MOV R6,64H
MOV R7,65H
ACALL QKUL ;(T-65)*(DATA*0.008+1)
MOV A,R6
MOV R2,A
MOV A,R7
ORG 0040H
MAIN: NOP
CLR SCK ;T
SETB DATAI
ACALL TS1 ; 软件复位,启动传输
SETB DATAI
Sensirion SHT3x-ARP 温湿度传感器IC说明书
Datasheet SHT3x-ARPHumidity and Temperature Sensor IC▪Fully calibrated, linearized, and temperature compensated analog output▪Wide supply voltage range, from 2.4 V to 5.5 V ▪10% to 90% ratiometric analog voltage output▪Typical accuracy of ± 2%RH and ± 0.3°C▪Parallel measurement of temperature and humidity at separate pins▪Tiny 8-Pin DFN packageProduct SummarySHT3x-ARP is the next generation o f Sensirion’s temperature and humidity sensors. It builds on a new CMOSens® sensor chi p that is at the heart of Sensirion’s new humidity and temperature platform. The SHT3x-ARP has increased intelligence, reliability and improved accuracy specifications. Its functionality includes enhanced signal processing, temperature and humidity can be read out at different pins. The DFN package has a footprint of 2.5 x 2.5 mm2 while keeping a height of 0.9 mm. This allows for integration of the SHT3x-ARP into a great variety of applications. Additionally, the wide supply voltage range of 2.4 V to 5.5 V guarantees compatibility with diverse assembly situations. All in all, the SHT3x-ARP incorporates 15 years of knowledge of Sensirion, the leader in the humidity sensor industry.Benefits of Sensirion’s CMOSens® Technology ▪High reliability and long-term stability▪Industry-proven technology with a track record of more than 15 years▪Designed for mass production▪High process capability▪High signal-to-noise ratioContent1Sensor Performance (2)2Specifications (5)3Pin Assignment (7)4Operation and Communication (8)5Packaging (10)6Shipping Package (12)7Quality (12)8Ordering Information (13)9Further Information (13)Figure 1 Functional block diagram of the SHT3x-ARP. The sensor signals for humidity and temperature are factory calibrated, linearized and compensated for temperature and supply voltage dependencies.1 Sensor PerformanceHumidity Sensor SpecificationTable 1 Humidity sensor specificationTemperature Sensor SpecificationTable 2 Temperature sensor specification1 For definition of typical and maximum accuracy tolerance, please refer to the document “Sensirion Humidity Sensor Specification Statement”.2 The stated repeatability is3 times the standard deviation (3σ) of multiple consecutive measurement s at constant ambient conditions. It is a measure for the noise onthe physical sensor output. It is measured with analog circuit and integrated over 1 second. 3 Maximum deviation from the ideal shape (linear curve)4 Specified range refers to the range for which the humidity or temperature sensor specification is guaranteed.5 For details about recommended humidity and temperature operating range, please refer to section 1.1.6 Time for achieving 63% of a humidity step function, valid at 25°C and 1m/s airflow. Humidity response time in the application depends on the design-in of the sensor.7 Typical value for operation in normal RH/T operating range, see section 1.1. Maximum value is < 0.5 %RH/yr. Value may be higher in environments with vaporized solvents, out-gassing tapes, adhesives, packaging materials, etc. For more details please refer to Handling Instructions.8 Temperature response times strongly depends on the design-in of the sensor in the final application. Minimal response time can be achieved when the thermalizedsensor at T1 is placed on a well conducting surface with temperature T2.Humidity Sensor Performance GraphsSHT30SHT31Figure 2 Tolerance of RH at 25°C for SHT30Figure 3 Tolerance of RH at 25°C for SHT31SHT30Figure 4 Typical tolerance of RH over T for SHT30Figure 5 Typical tolerance of RH over T for SHT31Temperature Sensor Performance GraphsFigure 6Temperature accuracy of the SHT30 sensor at VDD= 4.5V…5.5V.Figure 7 Temperature accuracy of the SHT31 sensor at VDD = 4.5V…5.5V.1.1Recommended Operating ConditionThe sensor shows best performance when operated within recommended normal temperature and humidity range of 5 –60 °C and 20 – 80 %RH, respectively. Long term exposure to conditions outside normal range, especially at high humidity, may temporarily offset the RH signal (e.g. +3%RH after 60h at >80%RH). After returning into the normal temperature and humidity range the sensor will slowly come back to calibration state by itself. Prolonged exposure to extreme conditions may accelerate ageing. To ensure stable operation of the humidity sensor, the conditions described in the document “SHTxx_STSxx Assembly of SMD Packages”, section “Storage and Handling Instructions” regarding exposure to volatile organic compounds have to be met. Please note as well that this does apply not only to transportation and manufacturing, but also to operation of the SHT3x-ARP.2Specifications2.1Electrical SpecificationsTable 3 Electrical specifications, typical values are valid for T=25°C, min. & max. values for T=-40°C … 125°C.2.2Timing Specification for the Sensor SystemTable 4 System Timing Specification, valid from -40 °C to 125 °C and 2.4 V to 5.5 V.2.3Absolute Minimum and Maximum RatingsStress levels beyond those listed in Table 5 may cause permanent damage to the device or affect the reliability of the sensor. These are stress ratings only and functional operation of the device at these conditions is not guaranteed. Ratings are only tested each at a time.Table 5 Minimum and maximum ratings; values may only be applied for short time periods.9 According to ANSI/ESDA/JEDEC JS-001-2014; AEC-Q100-00210 According to ANSI/ESD S5.3.1-2009; AEC-Q100-011.3 Pin AssignmentThe SHT3x-ARP comes in a tiny 8-pin DFN package – see Table 6.Table 6 SHT3x-ARP pin assignment (transparent top view). Dashed lines are only visible if viewed from below. The die pad is internally connected to VSS.3.1Power Pins (VDD, VSS)The electrical specifications of the SHT3x-ARP are shown in Table 3. The power supply pins must be decoupled with a 100 nF capacitor that shall be placed as close to the sensor as possible – see Figure 8 for a typical application circuit. 3.2Temperature and Humidity PinThe physical output of temperature and humidity can be read out at separated pins, as shown in Table 6. Data is supplied as ratiometric voltage output. The specification of the analog voltage signal and its conversion to physical values is explained in Section 4.3.3nRESET PinThe nReset pin may be used to generate a reset of the sensor. A minimum pulse duration of 1 µs is required to reliably trigger a reset of the sensor. If not used it is recommended to leave the pin floating or to connect it to VDD with a series resistor of R ≥2 kΩ. In addition, the nRESET pin is internally connected to VDD with a pull up resistor of R = 50 kΩ (typ.).Figure 8 Typical application circuit. Please note that thepositioning of the pins does not reflect the position on thereal sensor. This is shown in Table 6.3.4Die Pad (center pad)The die pad or center pad is visible from below and located in the center of the package. It is electrically connected to VSS. Hence electrical considerations do not impose constraints on the wiring of the die pad. However, due to mechanical reasons it is recommended to solder the center pad to the PCB. For more information on design-in, please refer to the docu ment “SHTxx_STSxx Design Guide”.4Operation and Communication4.1Start-up of the sensorThe sensor starts up after reaching the power-up threshold voltage V POR specified in Table 3. After reaching this threshold voltage the sensor needs the time t PU until the first measurement signal is available as voltage output on the respective output pins. During that time the temperature and humidity pins have an undefined state.4.2Conversion of the Signal OutputThe physical values as measured by the sensor are mapped to a ratiometric voltage output (V T, V RH as 10 to 90% of V DD). Prior to conversion into a voltage signal, the physical values are linearized and compensated for temperature and supply voltage effects by the sensor. Additionally, the voltage output is calibrated for each sensor. Hence the relationship between temperature and humidity and the voltage output is the same for each sensor, within the limits given by the accuracy (Table 1 and Table 2).This allows to describe the relationship between physical values (RH and T) and the voltage output for temperature and humidity (V T, V RH) through a generic linear formula given by equations (1), (2) and (3); its graphical representation can be found in Figure 9 & Figure 10.Figure 9 Relationship between the ratiometric analog voltage output and the measured relative humidity.Figure 10 Relationship between the ratiometric analog voltage output and the measured temperature[]DDT DD T V V V V 66.875 ⋅+--=⋅+-=︒0.81750.817.545 C T 75.218 (2)[]DDT DDT V V V V 88.375 ⋅+--=⋅+-=︒0.83150.831.549 T 75.393F (3)Equations (2) and (3) describe the conversion formulae for the temperature signal in °C and °F.DDRH DDRH V V V V ⋅+-=⋅+-= 0.81000.810 12512.5 RH (1)Equation (1) describes the conversion formula for the RH signal.5PackagingSHT3x-ARP sensors are provided in an open-cavity DFN package. DFN stands for dual flat no leads. The humidity sensor opening is centered on the top side of the package.The sensor chip is made of silicon and is mounted to a lead frame. The latter is made of Cu plated with Ni/Pd/Au. Chip and lead frame are overmolded by an epoxy-based mold compound leaving the central die pad and I/O pins exposed for mechanical and electrical connection. Please note that the side walls of the sensor are diced and therefore these diced lead frame surfaces are not covered with the respective plating.The package (except for the humidity sensor opening) follows JEDEC publication 95, design registration 4.20, small scale plastic quad and dual inline, square and rectangular, No-LEAD packages (with optional thermal enhancements) small scale (QFN/SON), Issue D.01, September 2009.5.1TraceabilityAll SHT3x-ARP sensors are laser marked for easy identification and traceability. The marking on the sensor top side consists of a pin-1 indicator and two lines of text. The top line consists of the pin-1 indicator which is located in the top left corner and the product name. The small letter x stands for the accuracy class. The bottom line consists of 6 letters. The first two digits XY (=AR) describe the output mode. The third letter (A) represents the manufacturing year (4 = 2014, 5 = 2015, etc). The last three digits (BCD) represent an alphanumeric tracking code. That code can be decoded by Sensirion only and allows for tracking on batch level through production, calibration and testing – and will be provided upon justified request.If viewed from below pin 1 is indicated by triangular shaped cut in the otherwise rectangular die pad. The dimensions of the triangular cut are shown in Figure 12 through the labels T1 & T2.Figure 11 Top View of the SHT3x-ARP illustrating the laser marking..5.2 Package OutlineFigure 12 Dimensional drawing of SHT3x-ARP sensor package.Table 7 Package outline5.3 Land PatternFigure 13 shows the land pattern. The land pattern is understood to be the open metal areas on the PCB, onto which the DFN pads are soldered.The solder mask is understood to be the insulating layer on top of the PCB covering the copper traces. It is recommended to design the solder mask as a Non-Solder Mask Defined (NSMD) type. For NSMD pads, the solder mask opening should provide a 60 μm to 75 μm design clearance between any copper pad and solder mask. As the pad pitch is only 0.5 mm we recommend to have one solder mask opening for all 4 I/O pads on one side.For solder paste printing it is recommended to use a laser-cut, stainless steel stencil with electro-polished trapezoidal walls and with 0.1 or 0.125 mm stencil thickness. The length of the stencil apertures for the I/O pads should be the same as the PCB pads. However, the position of the stencil apertures should have an offset of 0.1 mm away from the center of the package. The die pad aperture should cover about 70 – 90 % of the die pad area –thus it should have a size of about 0.9 mm x 1.6 mm.For information on the soldering process and further recommendation on the assembly process please consult the Application Note SHTxx_STSxx_Assembly_of_SMD_Packages, which can be found on the Sensirion webpage.Figure 13 Recommended metal land pattern (left) and stencil apertures (right) for the SHT3x-ARP. The dashed lines represent the outer dimension of the DFN package. The PCB pads (left) and stencil apertures (right) are indicated through the shaded areas.6 Shipping PackageFigure 14 Technical drawing of the packaging tape with sensor orientation in tape. Header tape is to the right and trailer tape to the left on this drawing. Dimensions are given in millimeters.7 QualityQualification of the SHT3x-ARP is performed based on the AEC Q 100 qualification test method.R e c o m m e n d e d L a n d P a tte rn R e c o m m e n d e d S te n c il A p e rtu reN O T E S :1. 10 S P R O C K E T H2. P O C K E T P O S IT A S T R U E P O S IT IO N O F P O C K E T, N O T P O C K E T H O L E3. A 0 A N D B 0 A R E C A L C U L A T E D O N A P L A N E A T A D IS TA N C E "R " A B O V E T H E B O T T O M O F T H E P O C K E TS E C T IO N A - AR 0.2 M A 0.30 ±.0 2.00 ±.05 S E E 0 S E E /-0.17.1Material ContentsThe device is fully RoHS and WEEE compliant, e.g. free of Pb, Cd, and Hg.8Ordering InformationThe SHT3x-ARP can be ordered in tape and reel packaging with different sizes, see Table 8. The reels are sealed into antistatic ESD bags. The document “SHT3x shipping package” that shows the details about the shipping package is available upon request.Table 8 SHT3x-ARP ordering options.9Further InformationFor more in-depth information on the SHT3x-ARP and its application please consult the following documents:Table 9 Documents containing further information relevant for theSHT3x-ARP.Revision HistoryImportant Notices Warning, Personal InjuryDo not use this product as safety or emergency stop devices or in any other application where failure of the product could result in personal injury. Do not use this product for applications other than its intended and authorized use. Before installing, handling, using or servicing this product, please consult the data sheet and application notes. Failure to comply with these instructions could result in death or serious injury.If the Buyer shall purchase or use SENSIRION products for any unintended or unauthorized application, Buyer shall defend, indemnify and hold harmless SENSIRION and its officers, employees, subsidiaries, affiliates and distributors against all claims, costs, damages and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if SENSIRION shall be allegedly negligent with respect to the design or the manufacture of the product.ESD PrecautionsThe inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take customary and statutory ESD precautions when handling this product.See application note “ESD, Latchup and EMC” for more information.WarrantySENSIRION warrants solely to the original purchaser of this product for a period of 12 months (one year) from the date of delivery that this product shall be of the quality, material and workmanship defined in SENSIRION’s published specifications of the product. Within such period, if proven to be defective, SENSIRION shall repair and/or replace this product, in SENSIRION’s discretion, free of charge to the Buyer, provided that:∙notice in writing describing the defects shall be given to SENSIRION within fourteen (14) days after theirappearance; ∙such defects shall be found, to SENSIRION’s reasonable satisfaction, to have arisen from SENSIRION’s faultydesign, material, or workmanship;∙the defective product shall be returned to SENSIRION’s factory at the Buyer’s expense; and∙the warranty period for any repaired or replaced product shall be limited to the unexpired portion of the originalperiod.This warranty does not apply to any equipment which has not been installed and used within the specifications recommended by SENSIRION for the intended and proper use of the equipment. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH HEREIN, SENSIRION MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE PRODUCT. ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSLY EXCLUDED AND DECLINED. SENSIRION is only liable for defects of this product arising under the conditions of operation provided for in the data sheet and proper use of the goods. SENSIRION explicitly disclaims all warranties, express or implied, for any period during which the goods are operated or stored not in accordance with the technical specifications.SENSIRION does not assume any liability arising out of any application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. All operating parameters, including without limitation recommended parameters, must be validated for each customer’s applications by customer’s technical experts. Recommended parameters can and do vary in different applications.SENSIRION reserves the right, without further notice, (i) to change the product specifications and/or the information in this document and (ii) to improve reliability, functions and design of this product.Copyright© 2018, by SENSIRION.CMOSens® is a trademark of SensirionAll rights reservedHeadquarters and SubsidiariesSENSIRION AG Laubisruetistr. 50CH-8712 Staefa ZH Switzerlandphone: +41 44 306 40 00 fax: +41 44 306 40 30 ****************** Sensirion Inc. USAphone: +1 312 690 5858*********************Sensirion Japan Co. Ltd.phone: +81 3 3444 4940*********************www.sensirion.co.jpSensirion Korea Co. Ltd.phone: +82 31 337 7700~3*********************www.sensirion.co.krSensirion China Co. Ltd.phone: +86 755 8252 1501*********************/Sensirion Taiwan Co. Ltd.phone: +41 44 306 40 00******************To find your local representative, please visit /contact。
石化行业SH标准规范
SH/T3020-2013 石油化工仪表供气设计规范SH/T3031-2013 石油化工逆流式机械通风冷却塔结构设计规范SH/T3060-2013 石油化工企业供电系统设计规范SH/T3071-2013 石油化工电气设备抗震鉴定标准SH/T3117-2013 石油化工设计热力工质消耗量计算方法SH/T3122-2013 炼油装置工艺管道流程设计规范SH/T3130-2013 石油化工建筑抗震鉴定标准SH/T3401-2013 石油化工钢制管法兰用非金属平垫片SH/T3402-2013 石油化工钢制管法兰用聚四氟乙烯包覆垫片SH/T3403-2013 石油化工钢制管法兰用金属环垫SH/T3404-2013 石油化工钢制管法兰用紧固件SH/T3406-2013 石油化工钢制管法兰SH/T3407-2013 石油化工钢制管法兰用缠绕式垫片SH/T3517-2013 石油化工钢制管道工程施工技术规程SH3518-2013 石油化工阀门检验与管理规程SH/T3521-2013 石油化工仪表工程施工技术规程SH/T3551-2013 石油化工仪表工程施工质量验收规范SH3009-2013 石油化工可燃性气体排放系统设计规范SH/T3010-2013 石油化工设备和管道绝热工程设计规范SH/T3021-2013 石油化工仪表及管道隔离和吹洗设计规范SH/T3092-2013 石油化工分散控制系统设计规范SH/T3104-2013 石油化工仪表安装设计规范SH/T3126-2013 石油化工仪表及管道伴热和绝热设计规范SH/T3132-2013 石油化工钢筋混凝土水池结构设计规范SH3137-2013 石油化工钢结构防火保护技术规范SH/T3141-2013 石油化工用往复泵工程技术规范SH/T3151-2013 石油化工转子泵工程技术规范SH/T3175-2013 固体工业硫磺储存输送设计规范SH/T3519-2013 乙烯装置离心压缩机机组施工及验收规范SH/T3533-2013 石油化工给水排水管道工程施工及验收规范SH/T3553-2013 石油化工汽轮机施工及验收规范SH/T3554-2013 石油化工钢制管道焊接热处理规范SH/T3613-2013 石油化工非金属管道工程施工技术规程SH/T3017-2013 石油化工生产建筑设计规范SH3076-2013 石油化工建筑物结构设计规范SH3094-2013 石油化工厂区雨水明沟设计规范SH3173-2013 石油化工污水再生利用设计规范SH/T3174-2013 石油化工在线分析仪系统设计规范SH3552-2013 石油化工电气工程施工质量验收规范SH3612-2013 石油化工电气工程施工技术规程SH/T3080-2013 石油化工横流式机械通风冷却塔结构设计规范SH/T3100-2013 石油化工工程测量规范。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
error = I2c_WaitWhileClockStreching(timeout);// wait while clock streching
}
//-----------------------------------------------------------------------------
void I2c_StopCondition(void)
{
SCL_LOW();
DelayMicroSeconds(1);
static etError I2c_WaitWhileClockStreching(uint8_t timeout);
//-----------------------------------------------------------------------------
void DelayMicroSeconds(uint32_t nbrOfUs) /* -- adapt this delay for your uC -- */
DelayMicroSeconds(2);
for(mask = 0x80; mask > 0; mask >>= 1) // shift bit for masking (8 times)
{
SCL_HIGH(); // start clock on SCL-line
// I2C IO-Pins /* -- adapt the defines for your uC -- */
// SDA on port 0, bit 5
#define SDA_LOW() Pin_reset(4, 4) // set SDA to low
DelayMicroSeconds(1);
Pin_set_mode(4, 4, OUTPUT_PP_GP); //SDA
DelayMicroSeconds(20); // wait to see byte package on scope
return error; // return error code
#define ADD_HIGH() Pin_set(4, 3) //I2C address B:0x45.
#define nRESET_LOW() Pin_reset(4, 1)
#define nRESET_HIGH() Pin_set(4, 1)
//-- Static function prototypes -----------------------------------------------
}
//-----------------------------------------------------------------------------
void I2c_Init(void) /* -- adapt the init for your uC -- */
SDA_HIGH(); // release SDA-line
Pin_set_mode(4, 4, INPUT); //SDA
DelayMicroSeconds(1);
SCL_HIGH(); // clk #9 for ack
#define SCL_LOW() Pin_reset(4, 5)
#define SCL_HIGH() Pin_set(4, 5)
#define SCL_READ (Pin_read(4, 5)) // read SCL
#define ADD_LOW() Pin_reset(4, 3)//I2C address A:0x44(default).
//-----------------------------------------------------------------------------
etError I2c_WriteByte(uint8_t txByte)
{
etError error = NO_ERROR;
uint8_t mask;
}
//-----------------------------------------------------------------------------
etError I2c_ReadByte(uint8_t *rxByte, etI2cAck ack, uint8_t timeout)
{
uint32_t i;
for(i = 0; i < nbrOfUs*2; i++)
{
__NOP(); // nop's may be added or removed for timing adjustment
__NOP();
__NOP();
__NOP();
}
SCL_LOW();
SDA_HIGH(); // release SDA-line
DelayMicroSeconds(20); // wait to see byte package on scope
}
Pin_set_mode(4, 4, OUTPUT_PP_GP);//SDA
DelayMicroSeconds(2);
if(ack == ACK)
SDA_LOW(); // send acknowledge if necessary
else
for(mask = 0x80; mask > 0; mask >>= 1)// shift bit for masking (8 times)
{
if((mask & txByte) == 0)SDA_LOW(); // masking txByte, write bit to SDA-Line
DelayMicroSeconds(3); // SCL high time (t_HIGH)
if(SDA_READ)*rxByte |= mask; // read bit
SCL_LOW();
DelayMicroSeconds(1); // data hold time(t_HD;DAT)
DelayMicroSeconds(5); // SCL high time (t_HIGH)
SCL_LOW();
DelayMicroSeconds(1); // data hold time(t_HD;DAT)
}
}
void I2c_AddressSelect(uint8_t i2cAddress)
{
if(i2cAddress==0x44)ADD_LOW(); //add = 0x44
else if(i2cAddress==0x45)ADD_HIGH();
else ADD_LOW();
}
//-- Includes -----------------------------------------------------------------
#include "i2c_hal.h"
//-- Defines ------------------------------------------------------------------
{
Pin_set_mode(4, 1, OUTPUT_PP_GP);//nRESET
Pin_set_mode(4, 3, OUTPUT_PP_GP);//ADD
Pin_set_mode(4, 4, OUTPUT_PP_GP);//SDA
Pin_set_mode(4, 5, OUTPUT_PP_GP);//SCL
SCL_HIGH();
DelayMicroSeconds(1);
SDA_LOW();
DelayMicroSeconds(10); // hold time start condition (t_HD;STA)
SCL_LOW(); Fra bibliotekDelayMicroSeconds(10);
DelayMicroSeconds(1); // data set-up time (t_SU;DAT)
if(SDA_READ) error = ACK_ERROR; // check ack from i2c slave
SCL_LOW();
SDA_HIGH();
DelayMicroSeconds(1); // data set-up time (t_SU;DAT)
SCL_HIGH(); // clk #9 for ack
DelayMicroSeconds(5); // SCL high time (t_HIGH)
nRESET_HIGH();
}
//-----------------------------------------------------------------------------
void I2c_StartCondition(void)
{
SDA_HIGH();
DelayMicroSeconds(1);
return error; // return with no error
{
etError error = NO_ERROR;
uint8_t mask;
*rxByte = 0x00;
SDA_HIGH(); // release SDA-line
Pin_set_mode(4, 4, INPUT);//SDA