数列缩放法
数列型不等式放缩技巧九法
![数列型不等式放缩技巧九法](https://img.taocdn.com/s3/m/376a991676c66137ee0619b7.png)
数列型不等式的放缩技巧九法证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下九种:一 利用重要不等式放缩1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n 求证.2)1(2)1(2+<<+n S n n n解析 此数列的通项为.,,2,1,)1(n k k k a k =+=2121)1(+=++<+<k k k k k k ,)21(11∑∑==+<<∴nk n nk k S k ,即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2b a ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S n k n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a na a a a a a n n n nn n22111111++≤++≤≤++ 其中,3,2=n 等的各式及其变式公式均可供选用。
例 2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f (02年全国联赛山东预赛题) 简析 )2211()()1()0(22114111414)(⨯->++⇒≠∙->+-=+=n f f x x f xx x x.2121)21211(41)2211()2211(112-+=+++-=⨯-++⨯-++-n n n n n例3 求证),1(221321N n n n C C C C n n nnnn∈>⋅>++++- .简析 不等式左边=++++nn n n n C C C C 32112222112-++++=-n nn n n 122221-⋅⋅⋅⋅⋅> =212-⋅n n ,故原结论成立.2.利用有用结论例4 求证.12)1211()511)(311)(11(+>-++++n n简析 本题可以利用的有用结论主要有:法1 利用假分数的一个性质)0,0(>>>++>m a b ma mb a b 可得>-⋅⋅122563412n n =+⋅⋅n n 212674523 )12(212654321+⋅-⋅⋅n nn⇒12)122563412(2+>-⋅⋅n n n 即.12)1211()511)(311)(11(+>-++++n n法 2 利用贝努利不等式)0,1,2,(1)1(≠->≥∈+>+*x x n N n nx x n 的一个特例12121)1211(2-⋅+>-+k k (此处121,2-==k x n )得 =-+∏⇒-+>-+=)1211(121212111k k k k n k .1212121+=-+∏=n k k n k注:例4是1985年上海高考试题,以此题为主干添“枝”加“叶”而编拟成1998年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。
数列中的放缩法
![数列中的放缩法](https://img.taocdn.com/s3/m/01f45affa32d7375a517809a.png)
i1 ai bi 6 2 2 3 3 4
5 1 12 2(n 1)
1 1 ) n n 1
5 . (n 2)
12
当n 1时,有 1 5 也成立. 6 12
练习:
已知数列
{an} 中
an
2n 2n 1
n
, 求证: ai (ai 1) 3 .
i 1
ai (ai
1)
(2i
2i 1)(2i
1 32
1 n2
7 4
(n N)
变式3
求证:1
1 22
1 32
1 n2
5 3
(n N)
例2 (2013广东文19第(3)问)
求证: 1 1 1
1
1 (n N)
13 35 5 7
(2n 1)(2n 1) 2
分析 左边可用裂项相消法求和,先求和再放缩.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
(1 3
1) 5
(
n
1 1
n
1 1)
1 1 1 (1 1 1 1 ) 1 1 1 (1 1) 5 (n 3)
4 2 2 3 n n 1
4 22 3 3
当n = 1, 2时,不等式显然也成立.
变式3
求证:1
1 22
1 32
1 n2
5 3
(n N)
分析 变式3的结论比变式2更强,要达目的,须将
1 32
1 7 n2 4
(n N)
分析 变式2的结论比变式1强,要达目的,须将
变式1放缩的“度”进行修正,如何修正?
思路一 将变式1的通项从第三项才开始放缩.
1 n2
数列放缩法技巧全总结
![数列放缩法技巧全总结](https://img.taocdn.com/s3/m/9ae8db7ab207e87101f69e3143323968001cf458.png)
数列放缩法技巧全总结引言数列放缩法(Sequence Squeezing Method)是指在解决数学问题时,通过限制或放缩数列的取值范围,从而简化问题的求解过程。
数列放缩法是数学竞赛和高等数学中常见的一种技巧,本文将总结数列放缩法常用的技巧和应用场景。
1. 加减不等式放缩法加减不等式放缩法是通过对等式进行加减操作,使得所得不等式比原来的不等式更易于求解。
常见的加减不等式放缩技巧有如下几个:1.1. 约束条件加减法设原不等式为A<B,通过针对不等式的约束条件进行加减操作,将原不等式放缩为C<D。
常见的约束条件包括正整数、正实数等。
1.2. 平方项加减法对于不等式中的平方项,可以通过改变平方项的系数进行加减操作,从而得到一个更易于处理的不等式。
例如,对于a2+b2<2ab,可以将不等式变换为(a−b)2>0,从而得到更容易求解的形式。
1.3. 倒数项加减法对于不等式中的倒数项,可以通过改变倒数项的系数进行加减操作,从而放缩不等式。
例如,在2ab<a2+b2中,可以将不等式变换为$\\frac{1}{a}+\\frac{1}{b} > \\frac{2}{a+b}$,从而得到更容易处理的形式。
2. 乘除不等式放缩法乘除不等式放缩法是通过对等式进行乘除操作,使得所得不等式比原来的不等式更易于求解。
常见的乘除不等式放缩技巧有如下几个:2.1. 约束条件乘除法设原不等式为A<B,通过针对不等式的约束条件进行乘除操作,将原不等式放缩为C<D。
常见的约束条件包括正整数、正实数等。
2.2. 平方项乘除法对于不等式中的平方项,可以通过改变平方项的系数进行乘除操作,从而得到一个更易于处理的不等式。
例如,在a2+b2<2ab中,可以将不等式变换为a2−2ab+b2<0,从而得到更容易求解的形式。
2.3. 倒数项乘除法对于不等式中的倒数项,可以通过改变倒数项的系数进行乘除操作,从而放缩不等式。
数列求和中常见放缩方法和技巧含答案
![数列求和中常见放缩方法和技巧含答案](https://img.taocdn.com/s3/m/2848ea35360cba1aa911da1f.png)
数列求和中常见放缩方法和技巧一、放缩法常见公式: (1)()()111112-<<+n n n n n(2)()12122112--=-+<+=<++n n n n n n n n n (3)()()211++<+<n n n n n (4)122+>n n(二项式定理)(5)1+>x e x,1ln -<x x (常见不等式)常见不等式: 1、均值不等式; 2、三角不等式; 3、糖水不等式; 4、柯西不等式; 5、绝对值不等式;若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。
例4. 已知n ∈N*,求n 2n131211<…++++。
2==<=,则()()()11122123221n n n++<+-+-++--1<<例5. 已知*N n ∈且)1n (n 3221a n +++⨯+⨯= ,求证:2)1(2)1(2+<<+n a n n n 对所有正整数n 都成立。
证明:因为n n n n =>+2)1(,所以2)1n (n n 21a n +=+++> , 又2)1()1(+<+n n n n , 所以2)1n (21n 225232)1n (n 232221a 2n +=++++=++++++< ,综合知结论成立。
例6、求证:2222111171234n ++++< 证明:21111(1)1n n n n n<=--- 222221111*********1()().1232231424n n n n ∴++++<++-++-=+-<- 此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
nn n 1211)1ln(113121+++<+<++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例6. 已知函数1212)(+-=x x x f ,证明:对于*N n ∈且3≥n 都有1)(+>n n n f 。
放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)
![放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)](https://img.taocdn.com/s3/m/55e42f43e418964bcf84b9d528ea81c758f52e45.png)
47
3n 2
04、分类放缩
15.求证:1 1 1
23
1 2n 1
n 2
.
16.在平面直角坐标系 xoy 中, y 轴正半轴上的点列An 与曲线 y 2x x 0 上的点列Bn 满足
OAn
OBn
1 n
,直线
An Bn
在
x
轴上的截距为
an
.点
Bn
的横坐标为
bn
,
n N
.
(1)证明 an > an1 >4, n N ;
1 a2n
7n 11 36 .
05、迭代放缩
19.已知 xn1
xn xn
4 1
,
x1
1 ,求证:当
n
2
时,
n i 1
xi 2
2 21n .
20.设
Sn
sin1! 21
sin 2! 22
sin n! 2n
,求证:对任意的正整数
k,若
k≥n
恒有:|Sn+k-Sn|<
1 n
.
06、借助数列递推关系
21.求证: 1 13 135 135 (2n 1) 2n 2 1 .
2 24 246
246 2n
22.求证: 1 13 135 135 (2n 1) 2n 1 1
2 24 246
2 46 2n
(一)、经典试题
01、裂项放缩
1.(1)求
n k 1
4k
2 2 1
的值;
(2)求证:
n k 1
1 k2
5 3
.
2.求证:1
1 32
1 52
数列中的放缩法解题策略
![数列中的放缩法解题策略](https://img.taocdn.com/s3/m/031a475ef01dc281e53af0d6.png)
数列中的放缩法解题策略1、明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。
2、放缩的项数:有时从第一项开始,有时从第三项,有时第三项,等等,即不一定是对全部项进行放缩。
3、放缩法的常见技巧及常见的放缩式:(1)根式的放缩:;=<<= (2)在分式中放大或缩小分子或分母:2111(2)(1)(1)k k k k k k <<≥+-; 211111()1211k k k <=---+2k ;11n n n n -<+;212221n n n n +>-; >31n 1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦(3)应用基本不等式放缩:222n n n n ++>=+; 4、把握放缩的尺度、精度的控制5、典型问题(一) 放缩为可求和型(1) 等差数列型1、证明:2)2()1(32212)1(+<+⨯+⨯+⨯<+n n n n n n )(*∈N n(2) 等比数列型1、证明:44371211211212<+++++n )(*∈N n (3)裂项相消型1、证明:2121122<++n)(*∈N n 变式:调整放缩度 证明:35121122<++n )(*∈N n 2、证明: 23)12(151311222<-++++n )(*∈N n 变式:调整放缩度 证明:45)12(151311222<-++++n )(*∈N n3、证明:45121133<++n)(*∈N n 4、证明:351211211212<-+-+-n )(*∈N n 5、已知121+<n b n ,求证:11221-+<+++n b b b n(4)错位相减法型1、证明:222221212<+++++nn n )(*∈N n(二) 放缩为可求积型1、证明:1212124321+<-⨯⨯⨯n n n )(*∈N n 2、证明:1212674523+<-⨯⨯⨯n n n )(*∈N n 综合应用:1、正项数列{}n a 前n 项和为n S ,满足)1(21nn n a a S +=, (1)求n a ,(2)求10021111S S S S +++=的整数部分 2、已知数列{}n a 的前n 项和为n S ,且满足111,20(2)2n n n a a S S n -=+=≥。
解决数列放缩问题的六大技巧
![解决数列放缩问题的六大技巧](https://img.taocdn.com/s3/m/0dfef5ba690203d8ce2f0066f5335a8102d2661d.png)
解决数列放缩问题的六大技巧本篇主要目标是聚焦于数列放缩,常见的方法有六种,具体我将在文中以实例详细说明.类型1.利用单调性放缩例1.已知数列{}n a 满足11a =,131n n a a +=+(1)设12n n b a =+,证明:{}n b 是等比数列,并求{}n b 的通项公式;(2)证明:12211113nb b b ≤+++< .解析:(1)∵131n n a a +=+,则111322n n a a +⎛⎫+=+ ⎪⎝⎭,即13n n b b +=,又∵111322b a =+=,所以{}n b 是首项为32,公比为3的等比数列,∴32n n b =,故{}n b 的通项公式为32nn b =.(2)由(1)知123n n b =,即1n b ⎧⎫⎨⎩⎭是首项为23,公比为13的等比数列,∴121221133111222111333313nnnn b b b ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦+++=+++==- ⎪⎝⎭- ,又∵数列113n⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调递增,∴11111133n⎛⎫⎛⎫-≤-< ⎪ ⎪⎝⎭⎝⎭,故12211113nb b b ≤+++< .类型2.先求和再放缩先求和再放松实质上是一类很常见的题目,这类放缩实质在考察数列求和,放缩的结果也很松,下面通过两个例子简单说明即可,分别是利用裂项相消求和与错位相减求和后放缩.例2.记n S 为数列{}n a 的前n 项和,已知11=a ,{}n n S a 是公差为13的等差数列.(1)求{}n a 得通项公式;(2)证明:121112+++< na a a .解析:(1)111==S a ,所以111=S a ,所以{}n n S a 是首项为1,公差为13的等差数列,所以121(1)33+=+-⋅=n n S n n a ,所以23+=n n n S a .当2n 时,112133--++=-=-n n n n n n n a S S a a ,所以1(1)(1)--=+n n n a n a ,即111-+=-n n a n a n (2n );累积法可得:(1)2+=n n n a (2n ),又11=a 满足该式,所以{}n a 得通项公式为(1)2+=n n n a .(2)121111112[]1223(1)+++=+++⨯⨯+ n a a a n n 111112(1)2231=-+-++-+ n n 12(1)21=-<+n .注:111111().n n n n a a d a a ++=-,则:1223111111111......()n n n a a a a a a d a a ++⇒+++=-.可以看到,裂项后一定可以得到一个估计.例3.已知等比数列{}()n a n N*∈为递增数列,且236324,522==+aa a a a .(1)求数列{}n a 的通项公式;(2)设()42n nn b n N a *-=∈,数列{}n b 的前n 项和为n S ,证明:6n S <.解析:(1)由题意,()2251123111522a q a q a q a q a q⎧=⎪⎨=+⎪⎩,解得11212a q ⎧=⎪⎪⎨⎪=⎪⎩或122a q =⎧⎨=⎩,因为等比数列{}()n a n *∈N 为递增数列,所以122a q =⎧⎨=⎩,所以1222n nn a -=⨯=.(2)由(1)知数列{}n b 的前n 项和为:0111322212n n n S -=++-+ ①,112123212122223n n n n n S --=++-++ ②,两式相减可得:1112111112121232212312222211122212n n n n n n n n n S --⎛⎫=+⎛⎫- ⎪--+⎝⎭=+=+++-⎝-⎪⎭-- ,所以12362n n n S -+=-,又因为*n N ∈,所以12302n n -+>,所以123662n n n S -+=-<.类型3.先放缩通项再求和(公众号:凌晨讲数学)这一类是数列放缩问题的常考类型,相较于类型2而言,这一部分对放缩对象的处理需要一定的技巧,因而对很多学生来说具有挑战性,是数列放缩中的难点.此节中,我将分为如下几个点展开:第一,将通项放缩为可裂项的结构,然后裂项求和;第二,将通项放缩为等比结构(等差比结构)然后错位相减求和,总之,处理的基本原则就是将不可求和放缩成可求和再求和放缩.当然,下面的这些常见的裂项公式与放缩公式需要注意.1.常见的裂项公式:(公众号:凌晨讲数学)例如:n n n n n )1(11)1(12-<<+或者12112-+<<++n n nn n 等2.一个重要的指数恒等式:n 次方差公式123221()().n n n n n n n a b a b a a b a b ab b ------=-+++++ 这样的话,可得:1)(-->-n nnab a b a ,就放缩出一个等比数列.3.糖水不等式:设0,0>>>c m n ,则cn cm n m ++<.下面来看上面这些基本的放缩结构的应用.例4.(2013年广东)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N .(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有1211174n a a a +++< .解析:(2)当2n ≥时,32112233n n S na n n n +=---,()()()()321122111133n n S n a n n n -=-------两式相减得()()()2112213312133n n n a na n a n n n +=----+---整理得()()111n n n a na n n ++=-+,即111n n a a n n +-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111n a n n n =+-⨯=,所以2n a n =.(公众号:凌晨讲数学)(3)当1n =时,11714a =<;当2n =时,12111571444a a +=+=<;当3n ≥时,()21111111n a n n n n n=<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-<,综上,对一切正整数n ,有1211174n a a a +++<下面我们再看将通项放缩成等比(等差比数列)再求和完成放缩证明.例5.(2014全国2卷)已知数列{}n a 满足1a =1,131n n a a +=+.(1)证明{}12n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112na a a ++<…+.解析:(1)证明:由131n n a a +=+得1113()22n n a a ++=+,又11322a +=,所以1{}2n a +是首项为32,公比为3的等比数列,1322n n a +=,因此{}n a 的通项公式为312n n a -=(2)由(1)知1231nn a =-,因为当1n ≥时,13123n n --≥⨯,所以1113123n n -≤-⨯于是12-112311-1111111313311-13332321-3n n n n a a a a ++++<++++==< (.所以123111132n a a a a ++++< .注:此处13123nn --≥⨯便是利用了重要的恒等式:n 次方差公式:123221()().n n n n n n n a b a b a a b a b ab b ------=-+++++ 当然,利用糖水不等式亦可放缩:13133132-=<-n n n ,请读者自行尝试.类型4.基于递推结构的放缩1.nnn a a a +=+11型:取倒数加配方法.例6.(2021浙江卷)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则()A.100332S <<B.10034S <<C.100942S <<D.100952S <<解析:由211111124n n n a a a ++⎛⎫==+-⎪⎪⎭2111122n a +⎛⎫∴<++⎪⎪⎭12<根据累加法可得,11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++.一方面:252111)1(41002>⇒+-+>+>S n n n a n .另一方面113n n a n a n ++∴≤+,由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<.故选:A.2.二次递推型:r qa pa a n n n ++=+21.12121211+++++=-⇒+=-⇒++=n n n n n nn n n nn a a r pa a qa r pa qa a r qa pa a ,然后裂项即可完成放缩,我们以2015浙江卷为例予以说明.例7.(2015浙江卷)已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112nn a a +≤≤(n ∈*N );(2)设数列{}2n a 的n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).分析:=-⇒=-++n n n n n a a a a a 11121211[1,2]1n n n n n na a a a a a +==∈--,累加,则可证得.解析:(1)由题意得210n n n a a a +-=-≤,即1n n a a +≤,故12n a ≤.由11(1)n n n a a a --=-得1211(1)(1)...(1)0n n n a a a a a --=--->,由102n a <≤得211[1,2]1n n n n n n a a a a a a +==∈--,即112n n a a +≤≤.(2)由题意得21n n n a a a +=-,所以11n n S a a +=-①,由1111n n n n a a a a ++-=和112n n a a +≤≤得11112n n a a +≤-≤所以11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②由①②得:*11()2(2)2(1)n S n N n n n ≤≤∈++.类型5.数列中的恒成立例8.已知数列{}n a 中,11a =,满足()*1221N n n a a n n +=+-∈.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,若不等式240nn S λ⋅++>对任意正整数n 恒成立,求实数λ的取值范围.解析:(1)()()1211221n n a n a n ++++=++,所以{}21n a n ++是以12114a +⨯+=为首项,公比为2的等比数列,所以1121422n n n a n -+++=⨯=,所以1221n n a n +=--.(2)()()()231122325221n n n S a a a n +⎡⎤=+++=-+-++-+⎣⎦()()23122235721n n +=+++-+++++ ()()222212321122242n n n n n n +-++=--=---,若240nn S λ⋅++>对于*N n ∀∈恒成立,即22222440n n n n λ+⋅+---+>,可得22222nn n n λ+⋅>+-即2242nn n λ+>-对于任意正整数n 恒成立,所以2max242n n n λ⎡⎤+>-⎢⎥⎣⎦,令()242n nn n b +=-,则21132n n n n b b ++--=,所以1234b b b b <>>>⋯,可得()222max222422n b b +⨯==-=-,所以2λ>-,所以λ的取值范围为()2,-+∞.类型6.利用导数产生数列放缩1.由不等式1ln -≤x x 可得:+∈<+<+N n nn n ,1)11ln(11.例9.(2017全国3卷)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1(1)222n m ++⋅⋅⋅+<,求m 的最小值.解析:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->,令112n x =+得11ln(1)22n n +<,从而221111111ln(1ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<.故2111(1)(1)(1)222n e ++⋅⋅⋅+<,而23111(1)(1)(1)2222+++>,所以m 的最小值为3.2,.两个正数a 和b 的对数平均定义:(),(,)ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均与算术平均、几何平均的大小关系:(,)2a bL a b +≤≤(此式记为对数平均不等式,取等条件:当且仅当a b =时,等号成立.进一步,在不等式左端结合均值不等式可得:当0b a >>时211ln ln b a b a a b->-+,即111ln ln ()2b a b a a b-<+-.令,1a n b n ==+,则111ln(1)ln ()21n n n n +-<++,所以111ln(1)ln (21n n n n +-<++①.(,)L a b<1ln ln ln 2ln (1)a ab x x x b x ⇔-⇔⇔<->其中,接下来令t =2>11(1)n ln n >+,1(n ln n+>②.例10.已知函数(1)()ln(1)1x x f x x xλ+=+-+.(1)若0x ≥时,()0f x ≤,求λ的最小值;(2)设数列{}n a 的通项111123n a n =++++ ,证明:21ln 24n n a a n-+>.解析:(1)综上可知,λ的最小值时12.(2)由上述不等式①,所以111ln(1)ln (21n n n n +-<++,111ln(2)ln(1)()212n n n n +-+<+++,111ln(3)ln(2)(223n n n n +-+<+++…,111ln 2ln(21)(2212n n n n--<+-.将以上各不等式左右两边相加得:1122221ln 2ln (2123212n n n n n n n n-<+++++++++- ,即111211ln 22123214n n n n n n<+++++++++- ,故11211ln 212324n n n n n +++++>+++ ,即21ln 24n n a a n-+>.例12.已知函数()ax x f x xe e =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设*n N ∈(1)ln n ++⋯+>+.1()n ln n+>,进一步求和可得:11231((...(1)12nnk k k n ln ln ln n k n==++>=⨯⨯⨯=+∑,...(1)ln n ++.。
高中数列放缩法技巧
![高中数列放缩法技巧](https://img.taocdn.com/s3/m/468741210a4e767f5acfa1c7aa00b52acec79c53.png)
高中数列放缩法技巧
高中数列放缩法是一种用于求解数列问题的技巧。
通过适当的方法对数列进行放缩,可以简化问题的求解过程,提高解题效率。
在高中数学中,数列是一个非常重要的概念。
通过研究数列的性质和规律,可以帮助学生培养数学思维和分析问题的能力。
数列放缩法的基本思想是通过一系列变换将原始数列转化为一个更
加简单或者更加易于处理的数列,从而使问题的求解变得更加容易。
下面介绍几种常用的数列放缩方法:
1. 数列的倍数放缩:如果一个数列的每一项都乘以一个相同的常数,那么这个数列的性质和规律不会改变。
这种放缩方法常用于求解具有明显倍数关系的数列问题,可以通过放缩将数列转化为一个等比数列,从而更加方便地求解。
2. 数列的平移放缩:如果一个数列的每一项都加上或者减去一个相
同的常数,那么这个数列的性质和规律不会改变。
这种放缩方法常用于求解具有明显递推关系的数列问题,可以通过放缩将数列转化为一个等差数列,从而更加方便地求解。
3. 数列的递推放缩:如果一个数列的每一项都是前一项的某个函数,
那么这个数列的性质和规律不会改变。
这种放缩方法常用于求解具有复杂递推关系的数列问题,可以通过放缩将数列转化为一个递推公式,从而更加方便地求解。
除了以上几种基本的放缩方法,还可以根据具体问题的特点进行其他类型的放缩。
数列放缩法在高中数学中有着广泛的应用,可以帮助学生解决各种数列问题,提高数学分析和推理能力。
总之,高中数列放缩法是一种重要的解题技巧,通过适当的放缩方法可以简化数列问题的求解过程,提高解题效率。
掌握数列放缩法对于高中数学的学习和应试都具有重要的意义。
数列中的放缩法有哪些基本思路,今天总结一下
![数列中的放缩法有哪些基本思路,今天总结一下](https://img.taocdn.com/s3/m/3957d0c44128915f804d2b160b4e767f5acf8025.png)
数列中的求通项公式和求前n项和的方法固然是非常重要的,对于那些内容,其实都是每个同学必须要掌握的基础性方法内容,但对于水平较高的同学来说,除了非常熟练的掌握那些内容之外,还要掌握其他更深层次的知识内容,其中比较重要的一个,就是数列的放缩法。
综合来看,数列中常见的放缩技巧有:
(1)舍掉(或加进)一些项。
(2)在分式中放大或缩小分子或分母。
(3)应用基本不等式放缩(例如均值不等式)。
(4)应用函数的单调性进行放缩。
(5)根据题目条件(如试题第一问)进行放缩。
(6)构造等比数列进行放缩。
(7)构造裂项条件(裂项相消)进行放缩。
(8)利用错位相减(转换成能使用错位相减的形式)进行放缩。
放缩同时要注意:
(1)放缩的方向要一致。
(2)放与缩要适度,不可幅度过大或过小。
(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。
(4)用放缩法证明极其简单,然而,用放缩法证数列型不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。
所以对放缩法,只需要掌握常见的做法措施,不宜深入探求其道理。
更多重要章节的总结内容,请参阅红宝书,高中数学必备宝典,全国唯一指定购书地址:
特别提示:9月21号以后凡不能正常进入书店下单购买的客户,请添加客服进行咨询购买。
(完整版)高三数学数列放缩法
![(完整版)高三数学数列放缩法](https://img.taocdn.com/s3/m/5359b7a0bd64783e08122b81.png)
数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.一.先求和后放缩例1.正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:解:(1)由已知得,时,,作差得:,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以(2),所以注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和.二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列的前项和为,且.(1) 求证:;(2)求证:解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得∴所以,,所以(2)因为,所以,所以;2.放缩后成等比数列,再求和例3.(1)设a,n∈N*,a≥2,证明:;(2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<.解:(1)当n为奇数时,a n≥a,于是,.当n为偶数时,a-1≥1,且a n≥a2,于是.(2)∵,,,∴公比.∴..∴.3.放缩后为差比数列,再求和例4.已知数列满足:,.求证:证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.4.放缩后为裂项相消,再求和例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数.记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j(1)求a4、a5,并写出a n的表达式;(2)令,证明,n=1,2,….(2)因为,所以.又因为,所以=.综上,.注:常用放缩的结论:(1)(2).在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如例2要证明的结论、为等差数列求和结果的类型,则把通项放缩为等差数列,再求和即可;如例3要证明的结论为等比数列求和结果的类型,则把通项放缩为等比数列,再求和即可;如例4要证明的结论为差比数列求和结果的类型,则把通项放缩为差比数列,再求和即可;如例5要证明的结论为裂项相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.虽然证明与数列和有关的不等式问题是高中数学中比较困难的问题,但是我们通过仔细分析它的条件与要证明的结论之间的内在关系,先确定能不能直接求和,若不能直接求和则要考虑把通项朝什么方向进行放缩.如果我们平时能多观测要证明结论的特征与数列求和之间的关系,则仍然容易找到解决这类问题的突破口.。
数列的缩放技巧
![数列的缩放技巧](https://img.taocdn.com/s3/m/e1b93b05590216fc700abb68a98271fe910eaf29.png)
数列的缩放技巧
对一个数列进行缩放,可以通过以下技巧实现:
1. 加法缩放:将每个数都加上一个常数,可以使数列整体上移或下移。
例如,数列{1, 2, 3}经过加法缩放变为{3, 4, 5}。
2. 乘法缩放:将每个数都乘上一个常数,可以使数列整体伸缩。
例如,数列{1, 2, 3}经过乘法缩放变为{2, 4, 6}。
3. 线性缩放:对数列进行加法缩放和乘法缩放的组合操作。
例如,数列{1, 2, 3}经过线性缩放(加法缩放:加2,乘法缩放:乘3)变为{5, 8, 11}。
4. 指数缩放:将数列中的每个数都进行指数运算,可以使数列整体变化更加剧烈。
例如,数列{1, 2, 3}经过指数缩放(指数为2)变为{1, 4, 9}。
需要注意的是,缩放只改变数列中各个数的值,并不改变数列的顺序和长度。
高考数学难点---数列放缩法技巧总结
![高考数学难点---数列放缩法技巧总结](https://img.taocdn.com/s3/m/fc48c3eefab069dc5022013f.png)
高考数学备考之一 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n nn k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk技巧积累:(1)⎪⎭⎫⎝⎛+--=-<=1211212144441222n n n n n(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r r rn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21≥---=--=--<--=--n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n (15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n (4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合n n n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n kn k 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n 当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6nn n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ , 所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m mm m k k k m k k-+<+<--+++111)1()1()1(, 即等价于11)11(11,)11(11++-<+-+<++m m kk m k km 而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,n nn a a a T +++= 212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++= 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nnT⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++cause ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---n例 例11.例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x , 所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知11111,(1).2n n a a a n n +==+++证明2n a e <.解析:n n n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+nnn a n n a )2111(21⇒++++≤+nn an n a ln )2111ln(ln 1nn n n a 211ln 2+++≤。
2022年高考数学放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)
![2022年高考数学放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)](https://img.taocdn.com/s3/m/55e42f43e418964bcf84b9d528ea81c758f52e45.png)
n
21 3 2
n(n 1)
(5)
2n
1 (2n
1)
1 2n 1
1 2n
(6) 1 n 2 n n 2
(7) 2( n 1 n) 1 2( n n 1) n
(8)
2 2n
1
1 2n
3
1 2n
1
(2n 1) 2n1
1 (2n 3) 2n
(9)
k(n
1 1
k)
n
1 1
k
1 k
34.已知数列 an 的首项
a1
3 5
,
an1
3an 2an 1
,
n
1、
2
、
.
(1)证明:对任意的
x
0
,
an
1 1 x
1
1 x2
2 3n
x
,n
1、2
、
;
(2)证明: a1 a2
an
n2 . n 1
12、经典题目方法探究
35.已知函数 f (x) ln(1 x) x .若 f (x) 在区间[0, n](n N*) 上的最小值为 bn ,令 an ln(1 n) bn .求
(Ⅰ)①求证:函数 g(x) f (x) 在 (0, ) 上是增函数;
x
①当 x1 0,x2 0 时,证明: f x1 f x2 f x1 x2 ;
(Ⅱ)已知不等式 ln(x 1) x 在 x 1且 x 0 时恒成立,求证:
1
22
ln
22
1 32
ln
32
1 42
ln
an 1, ai 0 (i 1, 2
n) ,求证: a12 a22 a1 a2 a2 a3
数列的放缩法总结
![数列的放缩法总结](https://img.taocdn.com/s3/m/49b1ceefd05abe23482fb4daa58da0116c171f39.png)
数列的放缩法总结数列的放缩法是一种常用的证明方法,它可以通过对数列进行放缩,从而得到一些有用的结论,进而证明某个定理或命题。
下面是数列的放缩法的详细总结:1. 什么是数列的放缩法?数列的放缩法是一种通过对数列进行放缩,从而得到一些有用的结论,进而证明某个定理或命题的方法。
它通常是通过对数列的每一项进行某种变换,使得变换后的数列具有一些特殊的性质,然后利用这些性质来证明定理或命题。
2. 数列的放缩法的基本思想是什么?数列的放缩法的基本思想是通过对数列的每一项进行某种变换,使得变换后的数列具有一些特殊的性质,然后利用这些性质来证明定理或命题。
这种变换通常是通过对数列的每一项进行乘法或加法变换,从而得到一个新的数列。
3. 数列的放缩法的具体步骤是什么?数列的放缩法的具体步骤如下:(1)确定要证明的定理或命题。
(2)对数列的每一项进行某种变换,使得变换后的数列具有一些特殊的性质。
(3)利用这些特殊的性质来证明定理或命题。
4. 数列的放缩法的常用技巧有哪些?数列的放缩法的常用技巧有以下几种:(1)利用数学归纳法。
(2)利用柯西-施瓦茨不等式。
(3)利用阿贝尔变换。
(4)利用柯西定理。
(5)利用特殊的数列性质,如单调性、凸性等。
5. 数列的放缩法的应用范围有哪些?数列的放缩法可以应用于各种数学领域,如代数、几何、概率等。
它可以用于证明各种定理和命题,如不等式、极限、级数等。
在数学竞赛中,数列的放缩法也是一种常用的证明方法。
总之,数列的放缩法是一种常用的证明方法,它可以通过对数列进行放缩,从而得到一些有用的结论,进而证明某个定理或命题。
在实际应用中,需要根据具体情况选择合适的技巧和方法。
数列放缩法常用公式
![数列放缩法常用公式](https://img.taocdn.com/s3/m/01e5bd2ba517866fb84ae45c3b3567ec112ddc76.png)
数列放缩法常用公式数列放缩法在数学学习中可是个有点小“狡猾”但又超级实用的技巧。
咱们今天就来好好聊聊它常用的那些公式。
先来说说为啥要学数列放缩法。
记得我之前给一个学生讲题,那是一道关于数列求和证明不等式的题目。
这孩子看着题目抓耳挠腮半天,愣是没思路。
我就提示他可以试试数列放缩法,结果他一脸懵,根本不知道这是啥。
后来我给他详细讲解了之后,他恍然大悟,那种“原来如此”的表情我到现在都还记得。
咱们正式开始说说常用公式。
首先是一个比较基础的,当 \(n\geq 2\) 时,\(\frac{1}{n^2} < \frac{1}{(n - 1)n}\) 。
这个公式看起来简单,用起来可巧妙着呢!比如说,要求 \(S_n = \sum_{k=2}^{n} \frac{1}{k^2}\)的范围,咱们就可以利用这个放缩,把每一项都放缩成 \(\frac{1}{(k - 1)k}\) ,然后通过裂项相消来求和,从而得到 \(S_n\) 的范围。
再比如,\(\frac{1}{2^n} < \frac{1}{2^{n - 1}}\) 。
这个公式在处理等比数列相关的放缩问题时经常用到。
想象一下,有一道题让你证明一个数列和小于某个值,而这个数列里包含了以 \(2\) 为底数的指数项,这时候就可以利用这个放缩来简化计算。
还有一个很有用的,\(\frac{1}{\sqrt{n}} > \frac{2}{\sqrt{n} + \sqrt{n + 1}}\) 。
这个公式的证明也不难,通过分母有理化就能看出来。
在一些需要把根式形式进行放缩的题目中,它就派上大用场啦。
接下来咱们通过一道例题来感受一下这些公式的威力。
题目是这样的:证明 \(S_n = \sum_{k=1}^{n} \frac{1}{k^2} < 2\) 。
第一步,我们先把 \(S_n\) 写出来:\(S_n = 1 + \frac{1}{2^2} +\frac{1}{3^2} + \cdots + \frac{1}{n^2}\) 。
高考数学:数列放缩法
![高考数学:数列放缩法](https://img.taocdn.com/s3/m/ef34b4dc32d4b14e852458fb770bf78a65293a9b.png)
⾼考数学:数列放缩法
数列放缩法需要把握两⽅⾯:
⼀、放缩⽅向
数列放缩的⽅向包含两层意思:
1.放缩成什么形式?
2.放⼤呢还是缩⼩呢?
第2个问题看题⽬要求即可.
对于第1个问题,⾼中阶段,数列放缩主要有两个⽅向.
1.朝等⽐数列去放缩,即把数列放缩为等⽐数列.
看这样⼀个例题:
从解答过程能够看出,本题需要放⼤,原数列⽆法求和,放⼤之后为等⽐数列,顺利实现求和.
2.朝裂项相消去放缩,即把数列放缩为能够采⽤裂项相消法求和的形式.
看这个例题:
数列⽆法求和,需要放缩,⽽且需要放⼤.
注意:为保证n-1有意义,n从2开始取值.
⼆、放缩的度
看个例题,体会放缩的“度”:
先分析通项,貌似能够朝裂项相消去放缩.
从上式结论看出,我们没有达到题⽬的要求,放的过⼤了.
为此,我们需要重新放⼤⼀次,这⼀次要往回收⼀些.
⼩结:
1.根据不等式符号决定放⼤还是放⼩;
2.常⽤的放缩⽅向:朝等⽐放缩和朝裂项相消法放缩;
3.放缩“度”的调节⽅法:不同形式放缩.。
数列中的放缩技巧
![数列中的放缩技巧](https://img.taocdn.com/s3/m/710bfd5eb307e87101f69640.png)
5 , 2
11.证明:
n
1 2 3 2 3 2 1 2 2 2 3
n 2. 2 n
n
n n n ,错位相减求和,即可证明。 2 n 2
2n ,证明: a1 a1 1 a2 a2 1 2n 1 方法一:(放大为等比数列) n2
12.已知 an
②立方型:
1 1 1 1 1 ; 3 n n 1 n n 1 2 n 1 n n n 1
③根式型:
2
n 1 n
2 n 1 n
1 n
2 n n 1
2
n n 1 .
常见裂项: ①分式裂项: 1 11 1 ; nn k k n n k
n2
,失败,可以试着再多保留几项,但难算
1 11 1 1 2 an 23 3
1 1 1 1 5 1 n 1 1 3 2 3 1 4 3
,成功
7. 已知 an
2
n ,证明: a1a3 a5 n 1
2 2 2
a2 n 1
1 . 2n 1
1
1 1 22 32
1 1 1 5 2 2 . 2 2 3 n 3 方法一:多保留几项,好想但是难算; 1 1 4 1 1 2 2 方法二: 2 , 1 n 4n 1 2n 1 2n 1 n2 4 1 1 1 1 1 1 1 1 5 2 5 1 1 2 2 2 1 2 ; 2 3 n 2n 1 2n 1 3 2 n 1 3 3 5 5 7
数列放缩法
![数列放缩法](https://img.taocdn.com/s3/m/c8204a207dd184254b35eefdc8d376eeaeaa1734.png)
数列放缩法数列放缩法是一种常见的数学证明方法,它通常用于证明不等式。
该方法的基本思想是利用已知的不等式将目标不等式转化为一个更容易证明的不等式。
这种方法在数学竞赛和研究中被广泛使用,因为它可以使证明更加简单和直观。
一般来说,数列放缩法可以分为两种类型:基于平均值不等式(AM-GM不等式)的放缩和基于柯西-施瓦茨不等式(Cauchy-Schwarz 不等式)的放缩。
这两种方法都有其独特的优点和适用范围,可以根据具体问题的特点选择合适的方法。
基于平均值不等式的放缩方法通常适用于求证一些简单的不等式,例如求证a+b>=2√ab。
该方法的基本思想是利用AM-GM不等式将目标不等式转化为一个更容易证明的形式。
例如,对于上述不等式,我们可以将其转化为(a+b)/2>=√ab,然后应用AM-GM不等式即可得到证明。
基于柯西-施瓦茨不等式的放缩方法通常适用于求证一些复杂的不等式,例如求证(a+b+c)^2>=3(ab+bc+ca)。
该方法的基本思想是利用柯西-施瓦茨不等式将目标不等式转化为一个更容易证明的形式。
例如,对于上述不等式,我们可以将其转化为(a^2+b^2+c^2)(1+1+1)>= (a+b+c)^2,然后应用柯西-施瓦茨不等式即可得到证明。
除了AM-GM和柯西-施瓦茨不等式外,数列放缩法还可以使用其他的不等式,例如夹逼准则、均值不等式等。
这些不等式都有其独特的优点和适用范围,可以根据具体问题的特点选择合适的方法。
值得注意的是,数列放缩法虽然可以使证明更加简单和直观,但也存在一些限制和注意事项。
首先,该方法只适用于证明不等式,不能用于证明其他类型的数学问题。
其次,该方法需要掌握一定的数学知识和技巧,否则容易出现错误。
最后,该方法只能在特定的条件下使用,不能滥用。
综上所述,数列放缩法是一种常见的数学证明方法,它可以使证明更加简单和直观。
该方法可以分为基于平均值不等式的放缩和基于柯西-施瓦茨不等式的放缩两种类型,还可以使用其他的不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放缩法证明“数列+不等式”问题的两条途径
数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。
用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。
1、 先放缩再求和
例1 (05年湖北理)已知不等式],[log 2
1131212n n >+++ 其中n 为不大于2的整数,][log 2n 表示不超过n 2log 的最大整数。
设数列{}n a 的各项为正且满足111),0(--+≤>=n n n a n na a b b a )4,3,2( =n ,证明:]
[log 222n b b a n +<, 5,4,3=n 分析:由条件11--+≤
n n n a n na a 得:n a a n n 1111+≥- n
a a n n 1111≥-∴- )2(≥n
1111
21-≥---n a a n n ……
2
11112≥-a a 以上各式两边分别相加得:
2
1111111++-+≥- n n a a n 2
111111++-++≥∴ n n b a n ][log 2
112n b +> )3(≥n =b
n b 2][log 22+ ∴ ][log 222n b b a n +<
)3(≥n 本题由题设条件直接进行放缩,然后求和,命题即得以证明。
例2 (04全国三)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n
(1)写出数列}{n a 的前三项1a ,2a ,3a ;
(2)求数列}{n a 的通项公式;
(3)证明:对任意的整数4>m ,有8
711154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;
⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1)
化简得:1122(1)n n n a a --=+-
2)1(2)1(11---=---n n n n a a ,]32)
1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以3
21+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n n n a ∴22[2(1)]3
n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3
n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。
而左边=232451113111[]221212(1)m m m a a a -+++=+++
-+--,如果我们把上式中的分母中的1±去掉,就可利用等比数列的前n 项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:32322121121121+>++-, 43432121121121+<-++,因此,可将1212-保留,再将后面的项两两组合后放缩,即可求和。
这里需要对m 进行分类讨论,(1)当m 为偶数)4(>m 时,
m a a a 11154+++ )11()11(11654m
m a a a a a +++++=- )212121(2321243-++++<
m )2
11(4123214--⨯+=m 8321+<87=
(2)当m 是奇数)4(>m 时,1+m 为偶数,
8711111111165454<+++++<++++m m m a a a a a a a a 所以对任意整数4>m ,有m a a a 11154+++ 87<。
本题的关键是并项后进行适当的放缩。
2、 先求和再放缩
例3(武汉市模拟)定义数列如下:*+∈+-==N n a a a a n n n ,1,22
11
证明:(1)对于*∈N n 恒有n n a a >+1成立。
(2)当*∈>N n n 且2,有11211+=-+a a a a a n n n 成立。
(3)111121
12006
212006<+++<-a a a 。
分析:(1)用数学归纳法易证。
(2)由12
1+-=+n n n a a a 得: )1(11-=-+n n n a a a
)1(111-=-∴--n n n a a a
… …
)1(1112-=-a a a
以上各式两边分别相乘得:
)1(111211-=--+a a a a a a n n n ,又21=a 11211+=∴-+a a a a a n n n
(3)要证不等式111121
12006
212006<+++<-a a a , 可先设法求和:2006
21111a a a +++ ,再进行适当的放缩。
)1(11-=-+n n n a a a
n
n n a a a 11111
1--=-∴+
1
11111---=∴+n n n a a a 2006
21111a a a +++∴ )1111()1111()1111(
200720063221---++---+---=a a a a a a 1
11120071---=a a 2006
2111a a a -=1< 又2006200612006212=>a a a a
20062006212
1111->-∴a a a ∴原不等式得证。
本题的关键是根据题设条件裂项求和。