九年级数学全等三角形
河北省廊坊市廊坊四中2021年九年级中考复习全等三角形综合(含知识点、练习题、答案、作业)
三角形综合讲义全等综合知识精讲一.全等三角形的断定方法:边角边定理()SAS:两边和它们的夹角对应相等的两个三角形全等.角边角定理()ASA:两角和它们的夹边对应相等的两个三角形全等.边边边定理()SSS:三边对应相等的两个三角形全等.角角边定理()AAS:两个角和其中一个角的对边对应相等的两个三角形全等.斜边、直角边定理()HL:斜边和一条直角边对应相等的两个直角三角形全等.二.全等三角形的应用:1.运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线;2.能通过断定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的根底.1.三.全等三角形辅助线的作法2.1.中点类辅助线作法见到中线(中点),我们可以联想的内容无非是倍长中线或者是与中点有关的一条线段,尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见,常见添加方法如以下图〔AD是∆底边的中线).ABC2.角平分线类辅助线作法有以下三种作辅助线的方式:〔1〕由角平分线上的一点向角的两边作垂线;〔2〕过角平分线上的一点作角平分线的垂线,从而形成等腰三角形;〔3〕OA OB=,这种对称的图形应用得也较为普遍.3.截长补短类辅助线作法截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长〞,就是将三者中最长的那条线段一分为二,使其中的一条线段等于的两条较短线段中的一条,然后证明其中的另一段与的另一条线段相等;所谓“补短〞,就是将一个的较短的线段延长至与另一个的较短的长度相等,然后求出延长后的线段与最长的线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进展求解.三点剖析 一.考点:1.全等三角形的断定2.全等三角形辅助线的作法 二.重难点:1.全等三角形的断定2.全等三角形辅助线的作法 三.易错点:1.在使用断定定理证明两个三角形全等时要注意条件的顺序必须和断定定理要求的一样,对应顶点要对应.2.辅助线只是一个指导方法,出现相关条件或结论时不一定要作辅助线或者是按照模型作辅助线,关键是如何分析题目;3.辅助线不是随意都可以作的,比方“作一条线段等于另外一条线段且与某条线段夹角是多少度〞这种辅助线就不一定能作出来. 1.全等三角形的断定2.全等三角形辅助线的作法 例题讲解一:全等与三角形综合例1.1.1把两个全等的Rt ABC ∆和Rt EFG ∆〔其直角边长均为4〕叠放在一起〔如图①〕,且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合,现将三角板EFG 绕O 点顺时针旋转〔旋转角α满足条件:090α︒<<︒〕,四边形CHGK 是旋转过程中两三角板的重叠局部〔如图②〕〔1〕在上述旋转过程中,BH 与CK 有怎样的数量关系,四边形CHGK 的面积有何变化?证明你发现的结论;〔2〕连接HK ,在上述旋转过程中,设BH=X ,GKH ∆的面积为y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;〔3〕在〔2〕的前提下,是否存在某一位置,使GKH ∆的面积恰好等于ABC ∆面积的516?假设存在,求出此时x 的值;假设不存在,说明理由.【答案】〔1〕面积是4,是一个定值,在旋转中没有变化;理由见解析;〔2〕04x <<;〔3〕存在.【解析】〔1〕在上述旋转过程中,BH =CK ,四边形CHGK 的面积不变证明:连接CG 、KH ,ABC ∆为等腰直角三角形,()O G 为其斜边中点,CG BG ∴=,CG AB ⊥45ACG B ∴∠=∠=︒ BGH ∠与CGK ∠均为旋转角,BGH CGK ∴∠=∠在BGH ∆与CGK ∆中,B KCG BG CG BGH CGK ∠=∠⎧⎪=⎨⎪∠=∠⎩()BGH CGK ASA ∴∆∆≌ BH CK ∴=,BGH CGK S S ∆∆∴=111444222CHG CGK CHG BGH ABC CHGK S S S S S S ∆∆∆∆∆∴=+=+==⨯⨯⨯=四边形〔2〕4AC BC ==,x BH =,4CH x ∴=-,CH x = 由GHK CHK CHGK S S S ∆∆=-四边形得()1442y x x =-- 21242y x x ∴=-+ 由090α︒<<︒,得到max 4BH BC == 04x ∴<<.〔3〕存在;根据题意,得215248216x x -+=⨯ 解这个方程,得11x =,23x =即当11x =或23x =时,GHK ∆的面积均等于ABC ∆的面积的516. 例1.1.2如图1所示,点E 、F 在线段AC 上,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,垂足分别为点E ,F ;DE ,BF 分别在线段AC 的两侧,且AE=CF ,AB=CD ,BD 与AC 相交于点G . 〔1〕求证:EG=GF ;〔2〕假设点E 在F 的右边,如图2时,其余条件不变,上述结论是否成立?请说明理由.〔3〕假设点E 、F 分别在线段CA 的延长线与反向延长线上,其余条件不变,〔1〕中结论是否成立?〔要求:在备用图中画出图形,直接判断,不必说明理由〕 【答案】〔1〕见解析〔2〕成立,见解析〔3〕成立 【解析】〔1〕∵DE ⊥AC ,BF ⊥AC , ∴∠DEG=∠BFE=90°. ∵AE=CF ,∴AE+EF=CF+EF . ∴AF=CE .在Rt △ABF 和Rt △CDE 中, ∴Rt △ABF ≌Rt △CDE 〔HL 〕, ∴BF=DE .在△BFG 和△DEG 中BFG DEG BGF DGE BF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFG ≌△DGE 〔AAS 〕. ∴EG=FG .〔2〕〔1〕中结论仍然成立. 理由如下:∵AE=CF , ∴AE ﹣EF=CF ﹣EF . ∴AF=CE .∵DE ⊥AC ,BF ⊥AC , ∴∠DEG=∠BFE=90°.在Rt △ABF 和Rt △CDE 中AB CD AF CE =⎧⎨=⎩,∴Rt△ABF≌Rt△CDE〔HL〕.∴BF=DE.在△BFG和△DEG中BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFG≌△DGE〔AAS〕.∴EG=FG.〔3〕〔1〕中结论仍然成立.如下图:理由如下:∵AE=CF,∴AE+ACEF=CF+AC.∴AF=CE.∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.在Rt△ABF和Rt△CDE中AB CD AF CE=⎧⎨=⎩,∴Rt△ABF≌Rt△CDE〔HL〕.∴BF=DE.在△BFG和△DEG中BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFG≌△DGE〔AAS〕.∴EG=FG.例1.1.3等腰Rt△ABC中,∠ABC=90°,AB=BC,F为AB上一点,连接CF,过点B作BH⊥CF交CF 于G,交AC于H.〔1〕如图〔1〕,延长BH到点E,连接AE,当∠EAB=90°,AE=1,F为AB的三等分点,且BF<AF 时,求BE的长;〔2〕如图〔2〕,假设F为AB中点,连接FH,求证:BH+FH=CF;【答案】见解析【解析】〔1〕∵BH⊥CF,∠ABC=90°,∴∠ABE+∠CFB=∠CFB+∠BCF=90°,∴∠ABE=∠BCF,在△ABE与△BCF中,90EAB FBCAB BABE BCFC︒∠=∠⎧∠=∠=⎪=⎨⎪⎩,∴△ABE∽△BCF,∴BF=AE=1,∵F为AB的三等分点,且BF<AF,∴AB=3BF=3,∴〔2〕证明:过点A 作AD ⊥AB 交BH 的延长线于点D . ∴∠BAD=∠CBF=90°,∴∠D+∠ABD=∠CFB+∠ABD=90°, ∴∠ABD=∠BCF ,在△ABD 与△BCF 中,DAB FBC D CFBAB BC ∠=∠⎧⎪⎨⎪=∠=⎩∠,∴Rt △BAD ≌Rt △CBF , ∴AD=BF ,BD=CF . ∵F 为AB 的中点, ∴AF=BF , ∴AD=AF ,在△ADH 与△AFH 中,45AD AF AH DAH HAF AH ︒∠=∠==⎧⎪⎨⎪=⎩,∴△AHD ≌△AHF , ∴DH=FH .∵BD=BH+DH=BH+FH , ∴BH+FH=CF ;例:等边ABC ∆中,点O 是边AC ,BC 的垂直平分线的交点,M ,N 分别在直线AC ,BC 上,且60MON ∠=︒.〔1〕如图1,当CM CN =时,M ,N 分别在边AC ,BC 上时,请写出AM 、CN 、MN 三者之间的数量关系;〔2〕如图2,当CM CN ≠时,M ,N 分别在边AC ,BC 上时,〔1〕中的结论是否仍然成 立?假设成立,请你加以证明;假设不成立,请说明理由;【答案】〔1〕AM CN MN =+〔2〕AM CN MN =+〔3〕MN AM CN =+ 【解析】该题考察的是等边三角形的性质和全等三角形的性质和断定. 〔1〕如图1,在AM 上截取AN CN '=,连接ON ',OC ,OA , ∵O 是边AC 和BC 垂直平分线的交点,ABC ∆是等边三角形, ∴OC OA =,O 也是等边三角形三个角的平分线交点, ∵在OCN ∆和OAN ∆'中 OCN OAN ∆∆'≌〔SAS 〕,∴60AON COM ∠'+∠=︒,即NOM N OM ∠=∠', ∵在NOM ∆和'N OM ∆中∴'NOM N OM ∆∆≌〔SAS 〕,∴AM CN MN =+……2分〔2〕如图2,过点O 作OD AC ⊥,OE BC ⊥易得OD OE =,120DOE ∠=︒, 在边AC 上截取'DN NE =,连接'ON , ∴'DON EON ∆∆≌, ……4分 易证'MON MON ∆∆≌……4分 课后作业1ABC ∆,90BAC ∠=︒,等腰直角BDE ∆,90BDE ∠=︒,BD=DE ,点D 在线段AC 上.〔1〕如图1,当30ACB ∠=︒,点E 在BC 上时,试判断AD 与CE 的数量关系,并加以证明;〔2〕如图2,当45ACB ∠=︒,点E 在BC 外时,连接EC\、BD 并延长交于点F ,设ED 与BC 交于点N ,图中是否存在与BN 相等的线段?假设存在,请加以证明.假设不存在,请说明理由. 【答案】见解析.【解析】解:〔1〕2ED AD =.理由是:BDE ∆是等腰直角三角形 ∴45DBE DEB ∠=∠=︒ 又Rt ABC ∆中,30ACB ∠=︒,60ABC ∴∠=︒ 604515ABD ABC DBE ∴∠=∠-∠=︒-︒=︒ 同理60CEP ∠=︒,180180604515PED CEP DEB ∴∠=︒-∠-∠=︒-︒-︒=︒PDE ABD ∴∠=∠ ∴在ABD ∆和PDE ∆中,90DPE A PDE ABD DE BD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ABD PDE AAS ∴∆∆≌AD PE ∴= 又∵Rt PCE ∆中,30C ∠=︒,2CE PE ∴= 2CE AD ∴=. 〔2〕BN EF =,理由是:如图2,过E 作EG AC ⊥,交AC 的延长线于G在ABD ∆和GDE ∆中,90GDE ABD G A DE BD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ABD GDB AAS ∴∆∆≌ AD GE ∴=,DG AB =AB AC =,AC DG ∴= AD DG GE ∴== CGE ∴∆是等腰直角三角形 45GCE ∴∠=︒F DNB ∴∠=∠ 在FDE ∆和NDB ∆中,F DNB FDE NDB DE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩2如图1,在ABC ∆中,ACB ∠是锐角,点D 为射线BC 上的一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .〔1〕假如AB=AC ,90BAC ∠=︒,①当点D 在线段BC 上时〔与点B 不重合〕,如图2,线段CF 、BD 所在直线的位置关系为 ,线段CF 、BD 的数量关系为 ;②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;〔2〕假如AB=AC ,BAC ∠是锐角,点D 在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥〔点C 、F 不重合〕,并说明理由. 【答案】见解析.【解析】证明:〔1〕①正方形ADEF 中,AD=AF ,90BAC DAF ∠=∠=︒ BAD CAF ∴∠=∠ 又AB AC = DAB FAC ∴∆∆≌ CF BD ∴=,B ACF ∠=∠ 90ACB ACF ∴∠+∠=︒ 即CF BD ⊥.②当点D 在BC 的延长线上时①的结论仍成立.由正方形ADEF 得AD=AF ,90DAF ∠=︒ 90BAC ∠=︒ DAF BAC ∴∠=∠ DAB FAC ∴∠=∠ 又AB AC = DAB FAC ∴∆∆≌90BCF ACB ACF ∴∠=∠+∠=︒ 即CF BD ⊥.〔2〕当45ACB ∠=︒时,CF BD ⊥〔如图〕.理由:过点A 作AG AC ⊥交CB 的延长线于点G ,那么90GAC ∠=︒,45ACB ∠=︒,90AGC ACB ∠=︒-∠,904545AGC ∴∠=︒-︒=︒ 45ACB AGC ∴∠=∠=︒,AC AG ∴= DAG FAC ∠=∠〔同角的余角相等〕,AD=AF 即CF BC ⊥.3如图1,将两个完全一样的三角形纸片ABC 和DEC 重合放置,其中90C ∠=︒,30B E ∠=∠=︒. 〔1〕操作发现如图2,固定ABC ∆,使DEC ∆绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是 ;②设BDC ∆的面积为1S ,AEC ∆的面积为2S ,那么1S 与2S 的数量关系是 .〔2〕猜测论证当DEC ∆绕点C 旋转到如图3所示的位置时,小明猜测〔1〕中1S 与2S 的数量关系仍然成立,并尝试分别作出了BDC ∆和AEC ∆中BC 、CE 边上的高,请你证明小明的猜测. 〔3〕拓展探究60ABC ∠=︒,点D 是角平分线上一点,BD=CD=4,DE//ABA 交BC 于点E 〔如图4〕.假设在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请直接写出相应的BF 的长.【答案】见解析.【解析】解:〔1〕①∵DEC ∆绕点C 旋转点D 恰好落在AB 边上,AC CD ∴= 90903060BAC B ∠=︒-∠=︒-︒=︒,ACD ∴∆是等边三角形,60ACD ∴∠=︒ 又60CDE BAC ∠=∠=︒ ACD CDE ∴∠=∠ //DE AC ∴.②30B ∠=︒,90C ∠=︒ 12CD AC AB ∴==BD AD AC ∴== 根据等边三角形的性质,ACD ∆的边AC 、AD 上的高相等 ∴BCD ∆的面积和AEC ∆的面积相等〔等底等高的三角形的面积相等〕,即12S S =〔2〕如图,DEC ∆是由ABC ∆绕点C 旋转得到,BC CE ∴=,AC CD =在ACN ∆和DCM ∆中,90ACN DCM CMD N AC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACN DCM AAS ∴∆∆≌ AN DM ∴=BDC ∴∆的面积和AEC ∆的面积相等〔等底等高的三角形的面积相等〕即12S S =;〔3〕如图,过点D 作DF 1//BE ,易求四边形BE DF 1是菱形,所以BE= DF 1,且BE 、DF 1上的高相等,此时1DCF BDE S S ∆∆=;过点D 作2DF BD ⊥,60ABC ∠=︒,DF 1//BE ,2160F F D ABC ∴∠=∠=︒,∵B F 1=D F 1,11302F BD ABC ∠=∠=︒,290F DB ∠=︒,1260F DF ABC ∴∠=∠=︒ 12DF F ∴∆是等边三角形,12DF DF ∴=BD CD =,60ABC ∠=︒,点D 是角平分线上一点,160302DBC DCB ∴∠=∠=⨯︒=︒12CDF CDF ∴∠=∠ 在1CDF ∆和2CDF ∆中,1212DF DF CDF CDF CD CD =⎧⎪∠=∠⎨⎪=⎩()12CDF CDF SAS ∴∆∆≌∴点F 2也是所求的点,60ABC ∠=︒,点D 是角平分线上的一点,DE //AB 160302DBC BDE ABD ∴∠=∠=∠=⨯︒=︒ 又4BD =故BF.。
初中数学-全等三角形
常见几种构造全等的题型
常见几种构造全等的题型一:倍长中线构造全等
例14、已知:△ABC中,AM是中线.求证:AB+AC>2AM
解析:延长AM至A',使得A'M=AM,连接A'B
很容易得△AMC≌△A'MB,从而A'B=AC
利用三角形三边关系可得AB+A'B>AA'
B
从而得AB+AC>2AM
A
M
C
A'
例3、已知BE=CF,AB=CD, ∠B=∠C.问AF=DE吗? 解析:除了已知条件以外,有重叠边EF=FE,
那么BE+EF=CF+FE,即BF=CE
A BE
D FC
例4、已知AB=AC, ∠1=∠2,AD=AE,问⊿ABD≌⊿ACE.说明理由。
解析:除了已知条件以外,有重叠角∠BAE=∠EAB, C 那么∠1+∠BAE=∠2+∠EAB,即∠CAE=∠BAD
2020/9/15
全等三角形的性质与判定
全等三角形的判定方法:
(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS):三边对应相等的两个三角形全等. (4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.
∴∠EMP=∠PNF=2∠PAE=2∠PBF,∴∠PAE=∠PBF
2020/9/15
课堂总结
1、认识并掌握全等三角形的性质与判定 2、掌握全等三角形的证明思路 3、掌握构造全等来得到相关结论的几种常见题型
人教版九年级中考数学 考点复习 全等三角形 专题练习
人教版九年级中考数学考点复习全等三角形专题练习一.选择题(本大题共10道小题)1. 已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°2. 如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D3. 如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD4. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC5. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F.若∠BCE=65°,则∠CAF的度数为( )A.30°B.25°C.35°D.65°6. 在正方形网格中,∠AOB的位置如图所示,则下列各点中到∠AOB两边距离相等的点是( )A.点QB.点NC.点RD.点M7. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS8. 如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36o.连接AC、BD交于点M,连接OM.下列结论:①∠AMB=36o;②AC=BD;③OM平分∠AOD;④MO平分∠AMD其中正确的结论个数有( )个.A.4B.3C.2D.19. 下面是黑板上出示的尺规作图题需要回答横线上符号代表的内容.如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法:(1)以△为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,○长为半径画弧交EG于点D;(3)以点D为圆心,* 长为半径画弧交前弧于点F;(4)作⊕,则∠DEF即为所求作的角.A.△表示点EB.○表示PQC.*表示EDD.⊕表示射线EF10. 如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二.填空题(本大题共6道小题)11. 如图,点B 、F 、C 、E 在一条直线上,已知FB=CE,AC ∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF.12. 如图,四边形ABCD 中,∠BAC =∠DAC,请补充一个条件 ,使得△ABC ≌△ADC.13. 如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)14. 如图,AC=AD,∠1=∠2,要使ABC AED ≌△△,应添加的条件是______(只需写出一个条件即可)15. 如图,点P 为定角∠AOB 的平分线上的一个定点,点M,N 分别在射线OA,OB 上(都不与点O 重合),且∠MPN 与∠AOB 互补.若∠MPN 绕着点P 转动,那么以下四个结论:①P M =PN 恒成立;②MN 的长不变;③OM+ON 的值不变;④四边形PMON 的面积不变.其中正确的为_____.(填番号)16. 如图,在△ABC 中,AB =AC,点D 在BC 上(不与点B,C 重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是 (写出一个即可).三.解答题(本大题共6道小题)17. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.18. 如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.19. 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20. 如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21. 在Rt△ABC中,∠ACB=90°,CB=CA=22,点D是射线AB上一点,连接CD,在CD右侧作∠DCE =90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.22. 如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.。
初中数学全等三角形
初中数学全等三角形
目录
1. 几何基础知识
1.1 点、线、面的概念
1.2 角的概念
1.3 直线、射线、线段的区别
2. 三角形的性质
2.1 三角形的定义
2.2 三角形的内角和为180°
2.3 等边三角形、等腰三角形、直角三角形的特点
3. 三角形的分类
3.1 依据边长分类
3.2 依据角度分类
4. 三角形的全等性质
4.1 全等三角形的定义
4.2 全等三角形的性质
4.3 证明全等三角形的方法
5. 三角形全等定理
5.1 SSS全等定理
5.2 SAS全等定理
5.3 ASA全等定理
6. 全等三角形的应用
6.1 利用全等三角形证明几何定理
6.2 利用全等三角形解决实际问题
7. 总结与拓展
7.1 总结全等三角形的重要性
7.2 拓展全等三角形的相关知识
以上是目录,接下来将根据目录内容展开写作。
九年级中考数学专题复习-全等三角形专题
全等三角形的判定专题1.如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.2.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.3.已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.4.如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.5.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.6.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.7.如图,已知CA=CD,∠1=∠2(1)请你添加一个条件使△ABC≌△DEC,你添加的条件是;(2)添加条件后请证明△ABC≌△DEC.8.如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.9.如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E 作EF⊥AM,垂足为F,求证:AB=EF.10.如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME ∥BC交AB于点E.求证:△ABC≌△MED.11.如图,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CE于点E.(1)求证:△ACD≌△CBE;(2)已知AD=4,DE=1,求EF的长.12.如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.13.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=°.14.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G,H,若AB=CD,求证:AG=DH.15.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.16.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)求证:△ABC≌△EAF;(2)试判断四边形EFDA的形状,并证明你的结论.17.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.18.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.19.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.20.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.21.如图,在△ABC中,CD是AB边上的中线,F是CD的中点,过点C作AB的平行线交BF的延长线于点E,连接AE.(1)求证:EC=DA;(2)若AC⊥CB,试判断四边形AECD的形状,并证明你的结论.22.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.23.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.24.如图,四边形ABCD、BEFG均为正方形,连接AG、CE.(1)求证:AG=CE;(2)求证:AG⊥CE.25.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.26.如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE.(1)求证:CD是⊙O的切线;(2)若AB=4,BD=3,求CD的长.27.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若DE+EA=8,⊙O的半径为10,求△OAF的面积.。
初三复习专题--全等三角形
•
OA=OC,EA=EC,
•
请阐明∠ A=∠C。
AO C
DB
E
• 分析:欲证明∠A= ∠C,有三条思路,一 是证明△AOD与△COB全等,而由已知条件 不可直接得到,二是连结OE,阐明△AOE与 △COE全等,这条路显而易得, ∠A=∠C, 三是证明 △ABE与△CDE全等,这也是不能 直接证明到的,因此应采用第二条思路。
全等三角形
• 一:考纲规定与命题趋势
• 1. 理解并掌握五种识别三角形全等的办法, 会灵活的对的选择适宜的识别办法判断两 个三角形与否全等。
• 2. 对的运用全等三角形的性质计算三角形 中未知的边或角,逐步培养逻辑推理能力 和形象思维能力。
• 3. 全等三角形的应用是学习几何证明题的 基础,因此它自然是中考必考知识点,同 窗们务必学好它。
• 阐明:在解决几何问题的过程中,有时根 据条件不能较顺利的得到结论,这时添加 必要的辅助线是十分重要的捷径。
• 例3.P是线段AB上一点,△APC与△BPD都是
等边三角形,请你判断:AD与BC相等吗?
试阐明理由。
D
C
AP
B
• 分析:观察图形发现它们所在的三角形全
等,故考虑通过全等来阐明。
• 解:由△APC和△BPD都是等边三角形可知 AP=PC,BP=DP,∠APC=∠BPD=60°,
变化,结论往往仍然成立,解决大同小异,
要善于抓住规律。
A
A
B
l
3
E
12
D
C
E
①
D
1
l
2
B
C
②
• 例9.如图,等边△ABC的边长为a,在BC的 延长线上取点D,使CD=b,在BA的延长线 上取点E,使AE=a+b,证明EC=ED。
数学人教版九年级下册相似三角形与全等三角形的综合
《相似三角形与全等三角形的综合》教学设计
原创:左自金
.定义
________斜边和一条直角边对应成比例,两
图(1)图(2)
为了测量某棵树的高度,小明用长为2 m
15 m,则树的高度为
图(2)
,AC 是⊙O 的直径,
2、问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中的一些物体进行了测量,下面是他们通过测量得到的一些信息:甲组:如图(1),测得一根直立于平地,长为80 cm 的竹竿的影长为60 cm.
乙组:如图(2),测得学校旗杆的影长为900 cm.
丙组:如图(3),测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200 cm,影长为156 cm.
甲、丙两组得到的信息,求景灯灯罩的半径.
可采用等式
如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都ED的延长线交AB于点F.
ACB∽△DCE;(2)EF⊥AB.。
初中数学《全等三角形》教案优秀6篇
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
(人教版初中数学)全等三角形教案
教案科目数学时间学生第13章-全等三角形一.全等图形1.全等图形的概念:能够完全重合的两个图形就是全等图形;2.全等图形的性质:全等多边形的对应边和对应角分别相等;3.全等三角形:三角形是特殊的多边形,因此,全等三角形对应边,对应角分别相等.同样,如果两个三角形的边,角分别对应相等,那么这两个三角形全等.全等的符号是“≌”,读作“全等于”.全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等.例题:如图所示,△ABC≌△DEF,则这两个三角形中相等的边有___________________,相等的角有_______________________________.二.全等三角形判定两个全等三角形能重合到一起,重合的顶点叫对应顶点,重合的边叫做对应边,重合的角叫做对应角.三角形全等的条件:1.三边对应相等的两个三角形全等(可写成“边边边”或“SSS”)如图:在△ABC和△A’B’C’中,AB= A’B’,BC=B’C’,AC=A’C’,可以判定△ABC≌△A’B’C’.我们可以做个实验,用三根木条钉成一个三角形,这个三角形木架的形状和大小就不会改变了.也就是所,三边长度都相等的三角形,形状和大小都是相同的,也就是全等的.例题:如图所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.2.两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)如图:在△ABC和△A’B’C’中,AB= A’B’,∠ABC=∠A’B’C’,BC=B’C’,可以判定△ABC≌△A’B’C’.例题:如图,已知△ABD和△ACE为等边三角形,那么△ADC≌△AEB的根据是()A.SSS B.SAS C.ASAD.AAS例题:已知:如下图,AB=CD,∠A=∠D.求证:∠B=∠C.3.两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)如图:在△ABC和△A’B’C’中,∠B=∠B’,BC=B’C’, ∠C=∠C’可以判定△ABC≌△A’B’C’.例题:如图:D在AB上,E在AC上,AB=AC,∠B=∠C.求证AD=AE.例题:已知:如右图,E在AC上,∠1=∠2,∠3=∠4.求证:BE=DE.4.角边角(ASA)公理推论:有两个角和一角所对边对应相等的两个三角形全等.(简称为“角边角”或“ASA”).如图:在△ABC和△A’B’C’中,∠B=∠B’, ∠C=∠C’,AC=A’C’.可以判定△ABC≌△A’B’C’.例题:已知:如图3-43,∠1=∠2,AD=AE.求证:OB=OC.5.斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边,直角边”或“HL ”) 如图:在Rt △ABC 和Rt △A ’B ’C ’中,∠B=∠B ’=90︒,AB=A ’B ’,AC=A ’C ’.可以判定△ABC ≌△A ’B ’C ’.*实际上,在两个Rt △中,∠B=∠B ’=90︒,AB=A ’B ’,AC=A ’C ’,可以由勾股定理推出 AC =22BC AB +,此处显示了直角三角形的特性.三. 角平分线1. 角平分线定理:在角的平分线上的点到这个角的两边的距离相等. 例题:已知:如图所示,BD 为∠ABC 的平分线,AB=BC,点P 在BD 上,PM ⊥AD 于M,•PN ⊥CD 于N,判断PM 与PN 的关系.2. 角平分线逆定理:到一个角的两边的距离相等的点,在这个角的平分线上. *角平分线定理和角平分线逆定理可以概括为一个命题:“角的平分线是到角的两边的距离相等的所有的点的集合”.练习1:P D A CB M N1.已知:如图3-35,∠1=∠2,∠ABC=∠DCB.求证:AB=DC.2.已知:如图3-36,在△ABC中,AD是BC边上的高,AD=BD,DE=DC,延长BE交AC 于F.求证:BF是△ABC的AC边上的高.3.已知:如图3-37,AB=CD,BE=DF,AE=CF.求证:AO=CO,EO=OF.4.已知:如图3-38,AD,EF,BC相交于O点,且AO=OD,BO=OC,EO=OF.求证:△AEB ≌△DFC.5.已知:如图3-39,∠D=∠E,DN=CN=EM=AM.求证:点B是线段AC的中点.6.已知:如图3-40,AB=CD,∠A=∠D.求证:∠B=∠C.7.已知:如图3-41,AC,BD相交于O点,且AC=BD,AB=CD.求证:OA=OD.8.在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:AD⊥EF.9.已知:如图3-42,AB=DC,AD=BC,O是DB的中点,过O点的直线分别交DA和BC 的延长线于E,F.求证:∠E=∠F.10.已知:如图3-43,∠1=∠2,AD=AE.求证:OB=OC.11.已知:如图3-44,AB=DC,∠ABC=∠DCB.求证:∠BAD=∠CDA.12.已知:如图3-45,E在AC上,∠1=∠2,∠3=∠4.求证:BE=DE.13.已知:如图3-46,AB=CD,AD=BC,AO=OC,EF过O点.求证:OE=OF.14.已知:如图3-47,A,F,C,D在一条直线上,AB=DE,BC=EF,AF=CD.求证:BF=CE.15.已知:如图3-48,D是△ABC的边BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线.求证:AC=2AE.16.已知:如图3-49,AD∥BC,∠1=∠2,∠3=∠4,直线DC过E点交AD于D,交BC于C.求证:AD+BC=AB.17.求证:三角形一边的两个端点到这边上的中线的距离相等.18.已知:如图3-50,AB=DE,直线AE,BD相交于C,∠B+∠D=180°,AF∥DE,交BD 于F.求证:CF=CD.19.如图,已知在△ABC中,AB=BC,∠ABC=90︒,F为AB延长线上一点,点E在BC上,BE=BF,连接AE,EF和CF.(1)求证:AE=CF;(2)若∠CAE=30︒,求∠EFC的度数.20.如图:已知E,F分别是平行四边形ABCD的边BA,DC延长线上的点,且AE=CF,EF交AD,BC于G,H.(1)图形中全等三角形有___对,它们分别是____________________________.(2)请在(1)中选出逆认为全等的三角形中的一对进行证明.21.如图:A,D,F,B在同一直线上,AD=BF,AE=BC,且AE//BC.求证:(1)△AEF≌△BCD;(2)EF//CD22.两个全等的含30︒和60︒角的三角板ADE和三角板ABC如图所示放置,点E,A,C三点在同一直线上,连接BD,取BD中点M,连接ME,MC.试判断:△EMC的形状,并说明理由.练习2:1.如图:已知AB=AD,BO=OD,求证AE=AC.2.如图:已知AB>AC,AD是角平分线,请判断AB-AC和BD-DC3.如图:已知△ABC中,∠ABC=90︒,AB=BC,AE是∠CAB的平分线,CD⊥AE于D.请判断CD与AE的长度关系,并说明理由.4.如图:在△ABC中,AD是BC边上的中线,AB=8,AC=6.求AD的取值范围.5.如图:△ABC是等边三角形,延长BC到D,延长BA到E,使BD=AE,连接DE,CE,观察图形你发现CE和DE相等吗?为什么?6.如图:在△ABC中,AB=2AC,∠BAC=2∠B,那么AC与BC垂直吗?为什么?7.如图:在△ABC 中,AB<AC,AD 是∠BAC 的角平分线,∠B =2∠C,求证: AC =AB+BD.能力提高:1. 如图,四边形ABCD 中, ∠BAD =90,E 是D 上一点,15ABE ∠=,点A,点C 关于BE 对称,且AB =p,AE=m,ED=n,(p,m,n 是正实数),求四边形ABCD 的面积.(用m,n,p 表示).2. 已知,在四边形ABCD 中,∠ABC =∠ADC =90,对角线AC 平分∠BAD,在DA 的延长线上任取一点E,连接EC,作∠ECF =∠12BCD,使CF 与AB 的延长线交于F,连结EF,请画出完整图形,探究:线段BF,EF,ED 之间具有怎样的数量关系,并说明理由.。
初中数学全等三角形公式
初中数学全等三角形公式初中数学全等三角形公式数学是研究数量、结构、变化、空间以及信息等概念的一门学科。
下面是小编为大家收集的初中数学全等三角形公式,欢迎大家分享。
全等三角形的要义:在同一平面内能够完全重合(大小,形状都相等的三角形)的两个三角形称为全等三角形。
全等三角形1全等三角形的对应边、对应角相等2 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等三角形全等的性质:1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
公式要领总结:斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。
初中数学全等三角形公式运用大全三角形具有一定的稳定性,所以我们用这个原理来做脚手架及其他支撑物体。
全等三角形公式运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2.利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。
4.用在实际中,一般我们用全等三角形测相等的距离。
以及相等的角,可以用于工业和军事。
所有学习过的初中数学知识都可以运用到现实的生活中,为我们的生活带来方便。
初中数学正方形定理公式关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。
正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。
最新九年级中考数学专题复习:全等三角形
在△EDM和△FDN中,源自∠EDM ∠FDNDM
DN
,
∠DME ∠DNF
∴△EDM≌△FDN(ASA),
∴DE=DF.
两边及其夹角对 三边对应相等的两
应相等的两个三 个三角形全等.
角形全等.
两角及其夹边对应 相等的两个三角形 全等.
两角及其中一个角 的对边对应相等的 两个三角形全等.
斜边和一条直角边对应相 等的两个直角三角形全等.
模型一、平移模型
知识点3:全等模型
模型展 示
模型特 沿同一直线(BC)平移可得两三角形重合(BE=CF)
证明:∵AD∥BC,∠A=90°,∠1=∠2, ∴∠A=∠B=90°,DE=CE. 在Rt△ADE和Rt△BEC中,
AD DE
BE EC
,
∴Rt△ADE≌Rt△BEC(HL);
模型四、一线三等角模型
知识点3:全等模型
一般通过一线三等角找等角或进行角度转换,证三角形全等时必须还有一组边相等这个条件. 常见基本图形如 下: 1.两个三角形在直线同侧,点P在线段AB上,已知:∠1=∠2=∠3,AP=BD.
模型应用
2. 如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折 叠,使点B落在点E处,AE交CD于点F,连接DE.若矩形ABCD的周 长为18,则△EFC的周长为___9_____.
模型三、一线三垂直模型
知识点3:全等模型
常用三个垂直作条件进行角度等量代换,即同(等)角的余角相等,相等的角就是 对应角,证三角形全等时必须还有一组边相等. 基本图形1 如图①,已知:AB⊥BC,DE⊥CE,AC⊥CD,AB=CE.
锐角一线三等角
钝角一线三等角
结论:△CAP≌△PBD.
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。
初中数学《全等三角形》优质课件
所以AB=DE,AC=DF,BC=EF.
F
它们的对应角分别相等,所以
∠A=∠D,∠B=∠E
∠ACB=∠DFE.
C E
D
试一试4:
先写出全等式,再指出它们的对应边 和对应角
∵△ABC≌△DEC
∴AB=DE,AC=DC, BC=EC
∴∠A=∠D, ∠B=∠E, ∠ACB= ∠DCE.
A
C D
规律四:一对最长的边是对应边 一对最短的边是对应边
E B
试一试5:
先写出全等式,再指出它们的对应边 和对应角
FF FFFFFFA
∵△ABC≌△FDE
∴AB=FD,AC=FE, BC=DE
C EEEEEEEEE ∴∠A=∠F,
∠B=∠D, ∠ACB= ∠FED.
DDDDDDDDD
B
规律五:一对最大的角是对应角 一对最小的角是对应角
1、请指出下列全等三角形的对应边和对应角
形吗?你能把它分成三个全等三角形吗?四个呢?
总结:寻找对应元素的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边,
最小的边是对应边; (5)两个全等三角形最大的角是对应角,
最小的角是对应角;
作业:
1.习题1.1
2.思考: 下图是一个等边三角形,你能把它分成两个全等三角
所以BC=DE.
4、如图,已知ΔABE≌ΔACD,且∠1=∠2, ∠B=∠C,请指出其余的对应边和对应角.
A
分析:由ΔABE≌ΔACD以及
∠1=∠2, ∠B=∠C知:
B
2
D
∠ BAE与∠CAD是对应角,
2023年九年级中考数学复习讲义 三角形及其全等
2023年中考数学复习讲义三角形及其全等第一部分:知识点精准记忆一、三角形的基础知识1.三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边一半.二、全等三角形1.三角形全等的判定定理:(1)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(2)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(3)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(4)角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”);(5)对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.三、线段垂直平分线与角平分线1.线段的轴对称性:线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.2.定义:垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线.注:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.注:对于含有垂直平分线的题目,首先考虑将垂直平分线上的点与线段两端点连接起来.4.角是轴对称图形,角平分线所在的直线是它的对称轴.5.性质:角的平分线上的点到这个角的两边的距离相等.第二部分:考点典例剖析考点一: 三角形的三边关系【例1-1】(2021·广西柳州市·中考真题)若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是________.(写出一个即可)【例1-2】(2021·江苏淮安·中考真题)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是___.考点二: 三角形的内角和外角【例2-1】(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【例2-2】(2021·江苏宿迁市·中考真题)如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°【例2-3】(2021·浙江绍兴市·中考真题)如图,在中,,点D ,E 分別在边AB ,AC 上,,连结CD ,BE .(1)若,求,的度数.(2)写出与之间的关系,并说明理由.考点三:三角形中的重要线段【例3-1】(2022•大庆)下列说法不正确的是( )A .有两个角是锐角的三角形是直角或钝角三角形B .有两条边上的高相等的三角形是等腰三角形C .有两个角互余的三角形是直角三角形D .底和腰相等的等腰三角形是等边三角形ABC 40A ∠=︒BD BC CE ==80ABC ∠=︒BDC ∠ABE ∠BEC ∠BDC∠【例3-2】(2021·江苏泰州市·中考模拟)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是( )A .点B .点C .点D .点【例3-3】如图,在ABC 中,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ;再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ;连结AP 并延长交BC 于点D .则下列说法正确的是( )A .AD BD AB +<B .AD 一定经过ABC 的重心 C .BAD CAD ∠=∠D .AD 一定经过ABC 的外心考点四: 垂直平分线与角平分线的性质 【例4-1】(2021·青海中考真题)如图,在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .7.5B .8C .15D .无法确定【例4-2】在△ABC 中,∠BAC =115°,DE 、FG 分别为AB 、AC 的垂直平分线,则∠EAG 的度数为 A B C D E F G ABC∆D E FGA .50°B .40°C .30°D .25°【例4-3】如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考点五: 全等三角形的性质与判定【例5-1】2020·湖北省直辖县级行政单位·中考真题)如图,已知和都是等腰三角形,,交于点F ,连接,下列结论:①;②;③平分;④.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【例5-2】(2021·陕西中考真题)如图,,,点在上,且.求证:.【例5-3】(2021·广东广州·中考真题)如图,点E 、F 在线段BC 上,,,ABC ADE 90BAC DAE ∠=∠=︒,BD CE AF BD CE =BF CF ⊥AF CAD ∠45AFE ∠=︒//BD AC BD BC =E BC BE AC =D ABC ∠=∠//AB CD A D ∠=∠,证明:.【例5-4】(2021·江苏淮安·中考真题)(知识再现)学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称HL 定理)”是判定直角三角形全等的特有方法.(简单应用)如图(1),在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别在边AC 、AB 上.若CE =BD ,则线段AE 和线段AD 的数量关系是 .(拓展延伸)在△ABC 中,∠BAC =(90°<<180°),AB =AC =m ,点D 在边AC 上. (1)若点E 在边AB 上,且CE =BD ,如图(2)所示,则线段AE 与线段AD 相等吗?如果相等,请给出证明;如果不相等,请说明理由.(2)若点E 在BA 的延长线上,且CE =BD .试探究线段AE 与线段AD 的数量关系(用含有a 、m 的式子表示),并说明理由.【例5-5】(2020·山东烟台市·中考真题)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD ;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.考点六: 三角形全等综合【例6-1】(2022·北京)在ABC 中,90ACB ∠=,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC = BE CF =AE DF=αα(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥; (2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.【例6-2】(2022·山东泰安·中考真题)正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形;(2)求证:2AG CG DG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.第三部分:中考真题一.选择题1.(2022•鄂尔多斯)如图,15AOE ∠=︒,OE 平分AOB ∠,//DE OB 交OA 于点D ,EC OB ⊥,垂足为C .若2EC =,则OD 的长为( )A .2B .23C .4D .43+2.(2022•荆门)数学兴趣小组为测量学校A 与河对岸的科技馆B 之间的距离,在A 的同岸选取点C ,测得30AC =,45A ∠=︒,90C ∠=︒,如图,据此可求得A ,B 之间的距离为( )A .203B .60C .302D .303.(2022•湘西州)如图,在Rt ABC ∆中,90A ∠=︒,M 为BC 的中点,H 为AB 上一点,过点C 作//CG AB ,交HM 的延长线于点G ,若8AC =,6AB =,则四边形ACGH 周长的最小值是( )A .24B .22C .20D .184.(2022•西宁)若长度是4,6,a 的三条线段能组成一个三角形,则a 的值可以是( )A .2B .5C .10D .117.(2022•西宁)如图,60MON ∠=︒,以点O 为圆心,适当长为半径画弧,交OM 于点A ,交ON 于点B ;分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧在MON ∠的内部相交于点P ,画射线OP ;连接AB ,AP ,BP ,过点P 作PE OM ⊥于点E ,PF ON ⊥于点F .则以下结论错误的是( )A .AOB ∆是等边三角形B .PE PF =C .PAE PBF ∆≅∆D .四边形OAPB 是菱形5.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.5-B.4C.7D.86.(2022•大连)如图,在ABC∆中,90ACB∠=︒.分别以点A和点C为圆心,大于12 AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若3AB=,则CD的长是()A.6B.3C.1.5D.1 7.(2022•青海)如图,在Rt ABC∆中,90ACB∠=︒,D是AB的中点,延长CB至点E,使BE BC=,连接DE,F为DE中点,连接BF.若16AC=,12BC=,则BF的长为( )A.5B.4C.6D.88.(2022•张家界)如图,点O是等边三角形ABC内一点,2OA=,1OB=,3OC=,则AOB∆与BOC∆的面积之和为()A 3B3C33D39.(2022•长沙)如图,在ABC∆中,按以下步骤作图:①分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若22AB=AM的长为()A.4B.2C3D2 10.(2022•海南)如图,直线//m n,ABC∆是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若1140∠=︒,则2∠的度数是()A.80︒B.100︒C.120︒D.140︒11.(2022•黑龙江)如图,ABC∆中,AB AC=,AD平分BAC∠与BC相交于点D,点E 是AB的中点,点F是DC的中点,连接EF交AD于点P.若ABC∆的面积是24, 1.5PD=,则PE的长是()A .90ADC ∠=︒B .DE DF =C .AD BC = D .BD CD =12.(2022•广东)下列图形中有稳定性的是( )A .三角形B .平行四边形C .长方形D .正方形13.(2022•贺州)如图,在Rt ABC ∆中,90C ∠=︒,56B ∠=︒,则A ∠的度数为( )A .34︒B .44︒C .124︒D .134︒14.(2022•永州)如图,在Rt ABC ∆中,90ABC ∠=︒,60C ∠=︒,点D 为边AC 的中点,2BD =,则BC 的长为( )A 3B .23C .2D .415.(2022•荆州)如图,直线12//l l ,AB AC =,40BAC ∠=︒,则12∠+∠的度数是( )A .60︒B .70︒C .80︒D .90︒16.(2022•宜昌)如图,在ABC ∆中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD ∆的周长为( )A .25B .22C .19D .1817.(2022•岳阳)如图,已知//l AB ,CD l ⊥于点D ,若40C ∠=︒,则1∠的度数是( )A .30︒B .40︒C .50︒D .60︒18.(2022•台湾)如图,ABC ∆中,D 点在AB 上,E 点在BC 上,DE 为AB 的中垂线.若B C ∠=∠,且90EAC ∠>︒,则根据图中标示的角,判断下列叙述何者正确?( )A .12∠=∠,13∠<∠B .12∠=∠,13∠>∠C .12∠≠∠,13∠<∠D .12∠≠∠,13∠>∠19.(2022•宜宾)如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,//DE AB 交AC 于点E ,//DF AC 交AB 于点F ,那么四边形AEDF 的周长是( )A .5B .10C .15D .2020.(2022•广元)如图,在ABC ∆中,6BC =,8AC =,90C ∠=︒,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .2.5B .2C .3.5D .321.(2022•宜宾)如图,ABC ∆和ADE ∆都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC ∆内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则23CE =+.其中含所有正确结论的选项是( )A .①②④B .①②③C .①③④D .①②③④22.(2022•杭州)如图,CD AB ⊥于点D ,已知ABC ∠是钝角,则( )A .线段CD 是ABC ∆的AC 边上的高线B .线段CD 是ABC ∆的AB 边上的高线C .线段AD 是ABC ∆的BC 边上的高线D .线段AD 是ABC ∆的AC 边上的高线二.填空题1.(2020·辽宁铁岭市·中考真题)如图,在ABC 中,5,8,9===AB AC BC ,以A 为圆心,以适当的长为半径作弧,交AB 于点M ,交AC 于点N ,分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,点F 在AC 边上,AF AB =,连接DF ,则CDF 的周长为___________.2.(2020·辽宁营口市·中考真题)如图,△ABC 为等边三角形,边长为6,AD ⊥BC ,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE +EF 的最小值为_____.3.(2021·辽宁锦州·中考真题)如图,在△ABC 中,AC =4,∠A =60°,∠B =45°,BC 边的垂直平分线DE 交AB 于点D ,连接CD ,则AB 的长为_________________.4题4.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.5.(2020·湖北中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为_____.6.(2021·湖北十堰市·中考真题)如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且3AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是__________.7.如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4= .三.解答题1.(2022铜仁)如图,点C 在BD 上,,,,⊥⊥⊥=AB BD ED BD AC CE AB CD .求证:ABC CDE △≌△.2.(2022福建)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .3.(2022广东)如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.4.(2022大庆)如图,在四边形ABDF 中,点E ,C 为对角线BF 上的两点,,,AB DF AC DE EB CF ===.连接,AE CD .(1)求证:四边形ABDF 是平行四边形;(2)若AE AC =,求证:AB DB =.5.(2022云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .6.(2022梧州)如图,在ABCD 中,E ,G ,H ,F 分别是,,,AB BC CD DA 上的点,且,BE DH AF CG .求证:EF HG =.7.(2022遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:ADE CDG ≌;(2)若2AE BE ==,求BF 的长8.(2022贵阳)如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O ,点F 在DC 上,且MF AD ∥.(1)求证:ABE FMN ≌△△;(2)若8AB =,6AE =,求ON 的长.9.(2022安徽)已知四边形ABCD 中,BC =CD .连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .(1)如图1,若∥DE BC ,求证:四边形BCDE 是菱形;(2)如图2,连接AC ,设BD ,AC 相交于点F ,DE 垂直平分线段AC .(ⅰ)求∠CED 的大小;(ⅱ)若AF =AE ,求证:BE =CF .10.(2022玉林)问题情境:在数学探究活动中,老师给出了如图的图形及下面三个等式:①AB AC = ②DB DC = ③BAD CAD ∠=∠若以其中两个等式作为已知条件,能否得到余下一个等式成立? 解决方案:探究ABD △与ACD △全等.问题解决:(1)当选择①②作为已知条件时,ABD △与ACD △全等吗?_____________(填“全等”或“不全等”),理由是_____________;(2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求ABD ACD △≌△的概率.11.(2022北部湾)已知MON α∠=,点A ,B 分别在射线,OM ON 上运动,6AB =.(1)如图①,若90α=︒,取AB 中点D ,点A ,B 运动时,点D 也随之运动,点A ,B ,D 的对应点分别为,,A B D ''',连接,OD OD '.判断OD 与OD '有什么数量关系?证明你的结论:(2)如图②,若60α=︒,以AB 为斜边在其右侧作等腰直角三角形ABC ,求点O 与点C 的最大距离:(3)如图③,若45α=︒,当点A ,B 运动到什么位置时,AOB 的面积最大?请说明理由,并求出AOB 面积的最大值.。
【初中数学知识点解析】构造全等三角形的五种常用方法
方法4 倍长中线法 4.如应图,在△ABC中,D为BC的中点.
(1)求证:AB+AC>2AD; (2)若AB=5,AC=3,求AD的取值范围.
(1)证明: 延长AD至点E,使DE=AD,连接BE. ∵D为BC的中点, ∴CD=BD. 又∵AD=ED,∠ADC=∠EDB, ∴△ADC≌△EDB. ∴AC=EB. ∵AB+BE>AE, ∴AB+AC>2AD.
∴∠B=∠ADG=90°.
在△ABE与△ADG中,
方法5 截长(补短)法
5.如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=
∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图
中线段BE,EF,FD之间的数量关系并证明.
AB=AD,
∠B=∠ADG=90°,
BE=DG,
要点提示
在进行几何题的证明或计算时,需要在图形中添加一些 辅助线,辅助线能使题目中的条件比较集中,能比较容易找 到一些量之间的关系,使数学问题较轻松地解决.
常见的辅助线作法有:翻折法、构造法、旋转法、倍长中 线法和截长(补短)法,目的都是构造全等三角形.
方法1 翻折法
1.如图,在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D. 求证:∠2=∠1+∠C. 证明:如图,延长AD交BC于点F.(相当于将AB边向下翻
方法3 旋转法
3.如图,在正方形ABCD中,E为BC边上一点,F为CD边上一点, BE+DF=EF,求∠EAF的度数.
∴△ABH≌△ADF. ∴AH=AF,∠BAH=∠DAF. ∴∠BAH+∠BAF=∠DAF+∠BAF, 即∠HAF=∠BAD=90°. ∵BE+DF=EF, ∴BE+BH=EF,即HE=EF. 在△AEH和△AEF中,
九年级数学直角三角形的全等判定1
已知:在△ABC和△AˊBˊCˊ中, ∠ACB=∠AˊCˊBˊ=90°,AB= AˊBˊ, AC= AˊCˊ, 求证:△ABC≌△AˊBˊCˊ
A(A') A A'
C
B C'
B'
B
B' C(C')
知识回顾 判定两个直角三角形全等的判定定理有 哪些?
拓展
在上面的图(2)中,如果∠BAC=30°,ห้องสมุดไป่ตู้那么BC=AB吗?你能证明吗?
A(A') A A'
C
B C'
B'
B
B' C(C')
小结与思考
石器时代哪个sf开的久 / 石器时代哪个sf开的久
wrg41xua
举制度的接班人,非物质文化遗产的传承者啊……等等!这是在吐槽他还是在吐槽我自己啊……“白姑娘怎么了?”张祁渊温柔的一笑,很是理 所当然。“没什么。”慕容凌娢回答的也很利索。明明就是不同时代的人,相差了几百年,代沟宽的简直是遥相呼应的南北极,不……应该是遥 相呼应的太阳和冥王星。思维不同,不相为谋。这个年代的人思维都是这样,根深蒂固,要真得纠结,那被当作奇葩的只能是自己。“其实我这 次是来告别的。以后……可能就不会来了。”“哦……恩?”慕容凌娢再次懵逼。刚才还在谈你的辉煌后宫史,怎么突然要搞离别梗?莫非 是……天哪,我再想什么,一定是良心发现,感觉这样虚度光阴没有意义,所以要金盆洗手……对,一定是这样。“我在去年的秋试(乡试)里中 了举人,马上就要参加会试了。”“明白了。”慕容凌娢点点头,此时此刻她终于理解了张祁渊的用意。寒窗苦读数十年,(虽然不知道是不是边 撩妹边学习)马上就要逆袭了,自然要把之前可能被当作把柄的污点给抹去。“这样很好啊,朝廷需要你这样的人才,(虽然不知道你除了弹琴好 听,还有什么特长)晴朝等着你去找茬(比如说那个没事儿就乱嗑 药的皇帝),历史等着你去改写(清军入关,圆明园的建成及毁灭,WW2……要是 这些都消失,那我们的历史书要少好多页啊!保护树木,从你开始。)”第070章 番外 (光明正大的前情提要)小茉莉被独自放到了一个金光闪闪 的箱子里之后……“听起来好神奇啊!”慕容凌娢继续感叹,她现在听到的东西已完全经超出了她的接受范围,一切都是那么的玄幻,就好像神 话故事一样,“他们给你戴的项链和耳环还在吗?”“我早就扔了。”茉莉说着,幻化出了自己的猫耳朵,拨开上面的黑色绒毛,隐隐还能看出 被利器划伤的痕迹,“但是这些痕迹,还在。百蝶说这些痕迹是自身经历的验证,消除不了。” “等等,百蝶……为什么会客串的你的故事里 去?”“这就说来话长了……”“放心,我可是很有耐心的。”原来百蝶和茉莉那么早就认识了。“我被放到箱子里之后,感觉到一阵颠簸,好 像是漂浮在水面上。那种摇晃的感觉让我头晕恶心,我紧紧抓着箱子底,头脑昏昏沉沉的。不知过了多久,箱子被狠狠扔在地面上,我也从朦胧 中醒来,接下来是一片嘈杂的声音。等到箱子外所有的声音都停止了,我才敢用法术打开箱子,跳了出来。这时我才发现,我被困在了一个封闭 的室内,房间的内壁都是金色的,刻有绚丽的壁画和文字。我向四处看去,房间里还放有许多镶有宝石的箱子,和囚禁我的箱子极其相似。我一 一把它们打开,装的都是金银首饰宝石之类的东西。这是,我才不得不相信,我和这些饰品一起,成为了陪葬品。我用
中考数学一轮复习专题解析—全等三角形判定与性质定理
中考数学一轮复习专题解析—全等三角形判定与性质定理复习目标1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;考点梳理一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等.特别提醒:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等.3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等(ASA);(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL).例1.如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP△AQ.【答案】证明:(1)△BD、CE分别是△ABC的边AC和AB上的高,△△1+△CAE=90°,△2+△CAE=90°.△△1=△2,△在△AQC和△PAB中,△△AQC△△PAB.△ AP=AQ.(2)△ AP=AQ,△QAC=△P,△△PAD+△P=90°,△△PAD+△QAC=90°,即△PAQ=90°.△AP△AQ.二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.例2.如图,已知AD为△ABC的中线,且△1=△2,△3=△4,求证:BE+CF>EF.【答案】证明:延长ED至M,使DM=DE,连接CM,MF,在△BDE和△CDM中,△△BDE△△CDM(SAS).△BE=CM.又△△1=△2,△3=△4 ,△1+△2+△3+△4=180°,△△3+△2=90°,即△EDF=90°,△△FDM=△EDF =90°.在△EDF和△MDF中△△EDF△△MDF(SAS),△EF=MF (全等三角形对应边相等),△在△CMF中,CF+CM>MF(三角形两边之和大于第三边),△BE+CF>EF.三、常见的几种辅助线添加△遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;△遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;△遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;△过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;△截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.例3.如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF. 求证:AC=BF.【答案】证明:延长AD到H,使得DH=AD,连结BH,△ D为BC中点,△ BD=DC,在△ADC和△HDB中,△ △ADC△△HDB(SAS),△ AC=BH, △H=△HAC,△ EA=EF,△ △HAE=△AFE,又△ △BFH=△AFE,△ BH=BF,△ BF=AC.综合训练1.(2022·长沙市雅礼实验中学九年级月考)如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SSA C.ASA D.SAS【答案】C【分析】根据全等三角形的判定方法解答即可.【详解】解:画一个三角形A′B′C′,使△A′=△A,A′B′=AB,△B′=△B,符合全等三角形的判定定理ASA,故选:C.2.(2022·全国九年级专题练习)如图G是△ABC的重心,直线过A点与BC平行.若直线CG分别与AB、交于D、E两点,直线BG与AC交于F点,则△AED 的面积:四边形ADGF的面积=()A.1:2B.2:1C.2:3D.3:2【答案】D【分析】根据重心的概念得出D,F分别是三角形边的中点.若设△ABC的面积是2,则△BCD的面积和△BCF的面积都是1.又因为BG:GF=CG:GD,可求得△CGF 的面积.则四边形ADGF的面积也可求出.根据ASA可以证明△ADE△△BDC,则△ADE的面积是1.则△AED的面积:四边形ADGF的面积可求.【详解】解:设三角形ABC的面积是2,△三角形BCD的面积和三角形BCF的面积都是1,△BG:GF=CG:GD=2,△三角形CGF的面积是13,△四边形ADGF的面积是2−1−13=23,△//l BC,△EAD CBD∠=∠,△,=∠=∠,BD AD ADE BDC△△ADE△△BDC(ASA)△△ADE的面积是1△△AED的面积:四边形ADGF的面积=1:2=3:2.3故选:D.3.(2022·重庆实验外国语学校九年级月考)如图,在正方形ABCD中,210AB=﹐E,F分别为BC,CD的中点,连接AE、BF,AE交BF于点G,将BCF△沿BF△的面积是()翻折得到BPF△,延长FP交BA延长线于点Q,连接QG,则QGFA.25B.25C.20D.15 2【答案】D【分析】由已知可求QF=QB,在Rt△BPQ中,由勾股定理求得QB,可求出S△BQF=25,再证明△ABE△△BCF(SAS),△BGE△△BCF,由此得BF,GE,BG,过点G作GN△AB交AB于N,可证明△ANG△△ABE,再由GA=AE-GE,可求得GN,根据S△QGF=S△BQF-S△BQG即可求解.【详解】解:将BCF△,△沿BF翻折得到BPF∴PF =FC ,△PFB =△CFB ,四边形ABCD 是正方形∴△FPB =90°,CD △AB ,,90AB BC ABE BCF =∠=∠=︒△△CFB =△ABF , △△ABF =△PFB , △QF =QB ,△PF =FC =12CD 12AB =PB =AB 在Rt △BPQ 中,222QB BP PQ =+,△222(QB QB =+,△QB△S△BQF =1252=,△AB =BC ,BE =CF ,△ABE =△BCF =90°, △△ABE △△BCF (SAS ), △△AEB =△BFC , 又△△EBG =△CBF , △△BGE △△BCF ,GE BG BECF BC BF∴==, △CF,BC △BF△GEBG , 过点G 作GN △AB 交AB 于N ,△△GAN=△EAB,△ANG=△ABE=90°,△△ANG△△ABE,△GN GABE EA=△GA=AE-GE =42△GN=4105△S△BQG=12×QB×GN=1510410225⨯⨯=10,△S△QGF=S△BQF-S△BQG=25-10=15,故选:D.4.(2022·四川省宜宾市第二中学校九年级一模)如图,以ABC的三边为边分别作等边ACD△、ABE△、BCF△,则下列结论正确的是()A.EBF DFC≌B.四边形ADFE为矩形C.四边形ADFE为菱形D .当AB AC =,120BAC ∠=︒时,四边形ADFE 是正方形【答案】A【分析】利用SAS 得到△EBF 与△DFC 全等,利用全等三角形对应边相等得到EF =AC ,再由△ADC 为等边三角形得到三边相等,等量代换得到EF =AD ,AE =DF ,利用对边相等的四边形为平行四边形得到AEFD 为平行四边形,若AB =AC ,△BAC =120°,只能得到AEFD 为菱形,不能为正方形,即可得到正确的选项.【详解】解:△△ABE 、△BCF 为等边三角形,△AB =BE =AE ,BC =CF =FB ,△ABE =△CBF =60°,△△ABE −△ABF =△FBC −△ABF ,即△CBA =△FBE ,在△ABC 和△EBF 中,AB EB CBA FBE BC BF =⎧⎪∠=∠⎨⎪=⎩, △△ABC △△EBF (SAS ),△EF =AC ,又△△ADC 为等边三角形,△CD =AD =AC ,△EF =AD =DC ,同理可得△ABC △△DFC ,△DF =AB =AE =DF ,△四边形AEFD 是平行四边形,故B 、C 选项错误;△△FEA =△ADF ,△△FEA +△AEB =△ADF +△ADC ,即△FEB =△CDF ,在△FEB 和△CDF 中,EF DC FEB CDF EB FD =⎧⎪∠=∠⎨⎪=⎩. △△FEB △△CDF (SAS ),故选项A 正确;若AB =AC ,△BAC =120°,则有AE =AD ,△EAD =120°,此时AEFD 为菱形,选项D 错误故选A .5.(2022·重庆实验外国语学校九年级开学考试)如图在四边形ABEC 中,BEC ∠和BAC ∠都是直角,且AB AC =.现将BEC ∆沿BC 翻折,点E 的对应点为E ',BE '与AC 边相交于D 点,恰好BE '是ABC ∠的角平分线,若1CE =,则BD 的长为( )A .1.5B 2C .2D 3【答案】C【分析】 如图,延长CE '和BA 相交于点F ,根据翻折的性质可以证明△BE′C △△BE′F ,可得CF =2,再证明△FCA △△DBA ,可得BD =CF =2.【详解】解:如图,延长CE '和BA 相交于点F ,由翻折可知:90BE C E ∠'=∠=︒,1CE CE '==,BE '是ABC ∠的角平分线,CBE FBE ∴∠'=∠',BE BE '=',∴()BE C BE F ASA '≅',1E F CE ∴'='=,2CF ∴=,90FCA F ∠+∠=︒,90DBA F ∠+∠=︒,FCA DBA ∴∠=∠,90FAC DAB ∠=∠=︒,AB AC =,()FCA DBA ASA ∴≅,2BD CF ∴==.故选:C .6.(2022·长沙市开福区青竹湖湘一外国语学校九年级三模)如图,在Rt ABC 中,90A ∠=︒,利用尺规在BA ,BC 上分别截取BD ,BE ,使BD BE =;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在ABC ∠内交于点F ;作射线BF 交AC于点H.若2HA=,P为BC上一动点,则HP的最小值是()A.12B.2C.1D.无法确定【答案】B【分析】根据作图过程可得BH平分△ABC,当HP△BC时,HP最小,根据角平分线的性质即可得HP的最小值.【详解】解:根据作图过程可知:BH平分△ABC,当HP△BC时,HP最小,△HP=HA=2.故选:B.7.(2022·长沙市雅礼实验中学九年级月考)如图,在Rt ABC中,90C∠=︒,以点A为圆心,适当的长度为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,以大于12MN的长度为半径画弧,两弧交于点O,作射线AO交BC于点D,若54B∠=︒,则CDA∠=______度.【答案】72°利用三角形内角和180°,解得36CAB ∠=︒,由角平分线性质解得18CAD ∠=︒的度数,最后根据三角形外角性质解题即可.【详解】解:90,54C B ∠=︒∠=︒905436CAB ∴∠=︒-︒=︒ AD 平分CAB ∠ 1182CAD DAB CAB ∴∠=∠=∠=︒ 185472CDA DAB B ∴∠=∠+∠=︒+︒=︒故答案为:72.8.(2022·广东深圳市南山外国语学校九年级二模)如图,在平面直角坐标系中,矩形OABC 中,3OA =,6OC =,将ABC 沿对角线AC 翻折,使点B 落在B '处,AB '与y 轴交于点D ,则点D 的坐标为______.【答案】9(0,)4-【分析】设OD m =,则6CD m =-,由题意可以求证AOD CB D '△≌△,从而得到6AD CD m ==-,再根据勾股定理即可求解.解:由题意可知:3OA BC B C '===,6OC AB ==,90B B AOD '∠=∠=∠=︒ 设OD m =,则6CD m =-,又△B DC ADO '∠=∠△()AOD CB D AAS '△≌△△6AD CD m ==-在Rt AOD △中,222AD AO OD =+,即222(6)3m m -=+ 解得:94m =△点D 的坐标为9(0,)4-故答案为9(0,)4-9.(2022·广东实验中学九年级三模)已知,ABC DCB ∠=∠,ACB DBC ∠=∠,求证:ABC DCB △≌△.【答案】证明见解析【分析】由条件△ABC =△DCB ,△ACB =△DBC ,根据ASA 证明△ABC △△DCB 即可.【详解】证明:在△ABC 和△DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABC △△DCB (ASA );10.(2022·厦门市湖滨中学)如图,在△ABE 和△CDF 中,点C 、E 、F 、B 在同一直线上,BF =CE ,若AB △CD ,△A =△D .求证:AB =CD .【答案】见解析【分析】根据平行线的性质可得△B =△C ,根据已知条件可得BE =CD ,结合已知条件△A =△D ,即可证明△ABE △△DCF ,进而即可得证AB =CD .【详解】解:△AB △CD ,△△B =△C .△BF =CE ,△BF +EF =CE +EF ,即BE =CF .△△A =△D ,△B =△C ,BE =CF△△ABE △△DCF (AAS ).△AB =CD .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ ∠ E=∠ C=59º ,AB=DF= 10cm
感悟与反思
通过这节课的学习活动你有哪些收获? 你还有什么困惑?
小结:
1.能够完全重合的两个图形,叫做全等形。 能够完全重合的两个三角形,叫做全等三角形。
2. 翻折、旋转、平移是图形变换的三种基本形 式。图形经过翻折、旋转、平移后,位置发生 了变化 , 但形状、大小不变。 3.全等三角形的对应边相等,对应角相等。
B
C
A
D
E
B C
B C
A
D
A D E △ABC≌△AED
E △ABC≌△ADE
例2、如图,两个三角形是全等三角形。 请说出图中两个全等三角形通过何种运动可 以重合。并写出对应顶点、对应边、对应角。
ABC DEFAB
C
D E
F
△ABC≌△FDE
A
B
C
D E
F
△ABC≌△FDE
练一练
1.如图, △OCA≌△ODB,写出这两个三角形中相等的 边与角。
; 邵阳婚纱照 邵阳婚纱摄影 邵阳摄影工作室 ;
悲剧了,连大妈,奶奶们都能轻易の欺负他丶根汉来到中间の光圈,仔细の看了看这上面の法阵,法阵是壹种看似简单,却极为复杂の封印丶"怪不得要用封印石了丶"根汉在这里等了等,那边の两位主将,这时候走过来了,这两人の修为在初阶大魔神丶"呃,刚刚怎么了。"其中壹人突然拍了拍脑 袋,感觉脑子刚刚好像被人敲了壹下似の丶"没,没怎么呀。"另壹位主将有些奇怪:"你怎么了这是?不会是没休息好吧?""没有啊,咱都快睡了壹天了丶"这位副将很郁闷,扭头看了看四周,并没有发现什么异常丶"是不是宇文副帅壹走,你就心理不安呀丶"另壹位副将说:"别想太多了,现在下面 也没什么事情咱们两人下去就可以了丶""恩,可能是有些没休息好吧,前段时间在下面,咱总感觉有什么东西,在盯着咱似の丶"这位副将也没再多想什么,两人各自取出了封印石,打开了这里の光圈入口,根汉也跟着他们进入了光圈丶壹进入光圈后,这下面の天地,果然是两个世界,与之前上面 の无尽海域截然不同丶虽说这里还只是黑色の通道,可是却能感觉得出来,有很浓郁の灵气,在这条通道当中,不仅如此,这下面の气息十分古朴,似乎好久没有生灵在这里呼吸过了丶"看来这个地方,确实是没什么别の生灵,起码是没有什么人类の,即使之前这里面有大量の军士进入,这通道中 现在还是没有什么人类の气息丶""与这通道中の风有关系,下面の世界壹定很辽阔,要光不然也不会散の这么快。"这个通道中の风很奇怪,根汉感觉有些像是外域の罡风不像是正常の空气,还有灵气也不是这个样子の丶只是外域壹般都没有灵气,都是荒芜贫瘠の气流,不可能会有灵气の而这 些像罡风壹样の风,内部还蕴含了很浓の灵气,确实是很特别丶跟着这两人壹路往下飘,飘了将近小半个时辰,通道下面才终于是焕然壹新,根汉看到了下面の陆地了丶通道の正下方有壹圈白色の光圈,也是壹圈封印,不过因为没有隐藏の功能,所以可以看到这光圈下面の陆地,是壹片苍茫の大 草原丶两个副将下沉到光圈上,取出封印石,很快就开了壹个口子,根汉跟着他们沉了下去丶光圈距离下面の陆地,大概有壹千米の高度,很快根汉就来到了这片神奇の大草原上丶脚壹踩上去,感觉这里の陆地,和外面完全不壹样丶首先是这里の重力,地心引力就不壹样,并没有南风圣城那么重, 壹开始不太适应总感觉掌握不好,好像身子更加飘浮丶脚轻轻壹掂,就容易浮起来丶两位副将倒是比较适应这里,两人直接就向北方飞过去了,根汉升到半空中,看了看北方の情况丶北方那里,还筑起了壹道黑色の巨形城墙,少说也得有数千米高,与北王候城外面の那圈高墙有些相似丶根汉立即 飞过去,没壹会尔就到了这城墙外面了,果然在这片大草原の中间,他们筑起了壹道宽约十万米,高约有两千米の巨形城墙丶正好这壹带,中间好像被拦起来,左右两侧加起来十万米の长度,外面就是壹个内突の地带丶城墙后面,现在还有壹支大军在这里驻扎,就住在城墙の这边丶两位副将来到 这里,也是整顿兵马,慰劳壹下这些军士,让他们打起精神,不要有任何の疏乎丶而根汉呢,则是来到了这堵城墙の上面,站在城墙最顶端,看到了前面の情况丶前面出现了壹片,令人震撼の画面,壹条条像伏龙壹样の山脉,平平整整の趴伏在地面上,壹直向前方延伸丶这些山脉竟然如此の整齐,每 壹条都是平整の山脉,上面の坡度,还有高度都差不多,都像是人为の堆出来の,确实是十分奇特丶山脉延伸向北方,壹条壹条の,最少也有数百条这样の山脉并行向前丶"难道都是龙脉?"根汉也头壹回,看到这样の山势地貌,按理说不可能形成这样の灵脉の丶毕竟这里是山,可不是什么泥雕,山 脉の走势怎么可能完全壹样呢丶"应该是龙脉了,怪不得这些家伙都守在这里,只是这座黑墙有什么用呢?"关于这城墙の作用,根汉也扫过两位副将の元灵,他们也不知道为什么丶当初他们将这下面攻下来之后,便在这里修筑了这片十万米宽の城墙,当时还调进了数以百万计の工匠丶坐在城墙 上,看着前方这壹片苍茫の龙脉,根汉也感觉到了浓厚の苍茫之气丶"这个地方确实是不错,看来要好好の查探壹番了。"根汉缓缓の下来,飘向了前面の这壹片龙脉区,这几百条龙脉绵延向北,最少也有上万里长,确实是极为罕见丶他直接挑了壹条龙脉落了下来,刚刚在半空中还没有察觉有什么 不壹样,可是这脚刚壹落地,根汉の脸色就有些古怪了丶这山体在上面看着灰黑灰黑の,上面也没什么树木,山石也奇形怪状の,可是这壹脚踩下去,下面竟然是软乎乎の山石也是软乎乎の丶"不会吧?"根汉心中闪过了壹个不好の念头,立即小心翼翼の往上飘了几米,刚刚他落脚の地方,果然出现 了壹圈细纹,不过现在正在慢慢の向上浮起,很快就合上了丶只不过刚刚那个位置,显然还有些细微の浮动,有些像是毛发壹样,慢慢の浮起来丶"竟然是活の。"根汉还真没想到,这条龙脉竟然是活の,他又落到了其它の几处,在这龙脉の前前后后都试了试丶整条龙脉向北绵延有二万多里,壹直 到北面那边有壹块极寒之海,这条龙脉都是活の丶壹条两万多里长の龙脉,竟然还是活物,这实在是太罕见了丶更加令人震撼の是,这里の几百条这样の龙脉,全部都是活の,无壹死物丶"很奇怪,灵气很古朴,不像是壹年两年の东西了,甚至都是太古时期の了。""只是为何还会活着,还有气息存 在,怎么可能。"经过了壹番检查,这几百条巨型龙脉,无壹例外全部都是活物,而且看这样子里面趴伏着の,肯定是壹种东西丶根汉想起了那宇文浩元灵中の信息,他们之前与他们交战の奇怪の生灵,肯定也不可能是这么大の东西丶要真是几万里长の巨物出现,他们这些人哪里是对手,根汉到现 在还没有见过,几万里长の生灵の丶也许只有域外の那些生物,可能会有这么大の体格吧,而这里并不像是完全の外域,这里是有陆地の丶根汉查看了半天,也没看出来这到底是什么生物,这种生物以前从来没见过,在众多史料中也难以查到半点痕迹丶"看来那帮人,并不知道这龙脉是活の,只是 有可能吗,他们守在这里也有十几年了,怎么会壹点都没有察觉。"回想起那宇文浩,还有两个副将の元灵中の信息,他们似乎并不知道,这些龙脉都是活物丶可是自己壹脚,踩上去,就能感觉得出来,这东西软乎乎の,可不是正常の山脉明显就是活物丶"不会这些东西,才刚刚苏醒,咱正好遇上了 吧?"根汉觉得有些无语,若真是这样の话,自己の人品还真是有些好得出奇呀丶"可以试试,看看能不能吸收这里面の力量,也许这里面还有壹些奇怪の力量丶"根汉想了想,立即飘到了那边の极寒之海の边缘,来到了其中壹条龙脉の尾部,这样子距离城墙那边就有两万多里之遥了,就算有什么小 动静,那边の人也难以察觉丶挑中了壹个地方,根汉先在那边布下了壹座小型法阵,将自己周围十几里の地方,都给封印了,以防有人接近这里打扰自己丶他撕掉上衣,腹部出现了壹圈金色の光圈,不灭金身决立即驱动,形成了壹个小漩涡,开始吸食四周の五行之力丶"嘶。""嘶嘶嘶。"刚开始几 息功夫,四周壹点反应也没有,可是突然根汉の前方,这条龙脉の内部就飞过来了壹片恐怖の古朴の力量这股力量,直接被根汉吸进了体内丶"好强の力量,这是,这竟然是五行之力!"令根汉眼睛大睁の是,这龙脉内部の奇异生灵内部の力量,竟然是已经融合好了の,五行之力,都不用自己再多加 炼化了丶而且这里面の五行之力の量,远远超出他の想像,才吸了这么壹会尔の功夫,就能顶得上在那些五行极端之地呆上壹天の了丶"想不到这才是咱の大机缘"虽说这是壹场大机缘摆在面前,但是根汉现在却没有过分の激动,这股强大の力量是五行之力不假,但是力量却极为霸道丶根汉才吸 了壹会尔の功夫,就感觉全身似乎都快要被撑开了,腹部の气漩想停下来,却将他给累得气喘嘘嘘の丶"噗。"根汉好不容易将不灭金身决撤掉,却被这股力量给反震得吐血,整个人倒飞出去了几十米丶身子跌在山体上,背后都是软乎乎の,就和吸了水の海绵壹样,根汉脸色煞白立即盘腿坐下,往 嘴里灌了壹口灵酒让自己平静壹下丶"好强の气息,就是魔仙也不可能会有这么强の气息,咱の不灭金身决还是太低了,现在只有三重,每回也只能吸收这么十几息の功夫丶""吸完了就必须要缓壹缓,将吸收到の五行之力,先淬炼壹下自己の不灭金身,用得差不多了,再吸收再淬炼丶"刚刚也就只 吸收了十几息の功夫而已,就顶得上平时の壹天の五行之力の量了,这个速度确实是太快了,而且现在这下面の龙脉中の生灵,还没有什么反应,显然这壹点点の五行之力の量,对它来说只是九牛壹毛丶现在他の不灭金身决还只有第三重,不灭金身の强度也不够,壹次也就只能承受这十几息功夫 吸收到の五行之力丶必须要先将吸收到の五行之力,用来淬炼不灭金身,将五行之力耗后之后,再继续吸收,再继续淬炼丶"有这些龙脉在此,咱可以壹鼓作气,达到不灭金身决の第四重,甚至是第五重,也有可能能达到第六重也不壹定。"看着这壹片苍茫大地,满眼并行の龙脉,根汉心里暗想着, 这还真是送了自己壹场大造化呀丶原本只是来北王候府看壹看の,没想到他们根本没发现最宝贵の东西,就是面前の这几百条平整の龙脉丶根汉没有浪费时间,说做就做,马上就开始淬炼不灭金身丶大概六十