八年级数学上册重难点、做题方法

合集下载

八年级上册数学重难点总结

八年级上册数学重难点总结

八年级上册数学重难点总结一、三角形。

1. 重点。

- 三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边。

这一关系常用于判断三条线段能否组成三角形,以及在已知三角形两边长度时求第三边的取值范围。

例如,已知三角形的两边长分别为3和5,则第三边x的取值范围是2 < x < 8。

- 三角形内角和定理:三角形内角和为180°。

可以利用这个定理求解三角形中未知角的度数。

如在三角形ABC中,已知∠A = 50°,∠B = 60°,则∠C=180° - 50° - 60° = 70°。

- 三角形的角平分线、中线和高的概念及性质。

角平分线将角平分,中线将对边平分,高与对边垂直。

- 等腰三角形的性质与判定。

性质包括两腰相等、两底角相等、三线合一(底边上的高、中线、角平分线重合);判定方法是根据定义(有两边相等的三角形是等腰三角形)或者等角对等边(有两个角相等的三角形是等腰三角形)。

- 等边三角形的性质与判定。

性质有三边相等、三个角都是60°;判定可以根据定义(三边相等的三角形是等边三角形)、三个角都相等的三角形是等边三角形或者有一个角是60°的等腰三角形是等边三角形。

2. 难点。

- 三角形全等的判定。

全等三角形的判定定理有SSS(边边边)、SAS(边角边)、ASA(角边角)、AAS(角角边)、HL(直角、斜边、直角边,适用于直角三角形)。

难点在于准确找出全等的条件,尤其是在复杂图形中,容易混淆条件或者遗漏条件。

例如,在证明两个三角形全等时,可能会误将SSA(边边角)当作全等的判定条件。

- 等腰三角形性质与判定的综合应用。

例如在一些几何证明题中,需要先判定一个三角形是等腰三角形,然后再利用等腰三角形的性质来求解其他问题,这就要求对等腰三角形的判定和性质有深入的理解并且能够灵活运用。

- 利用三角形的相关知识解决实际问题。

青岛版八年级数学上册重难点

青岛版八年级数学上册重难点

青岛版八年级数学上册重难点青岛版数学八年级上册重难点汇总第一章全等三角形1.1全等三角形教学重点:全等三角形的性质。

教学难点:找全等三角形的对应边、对应角。

1.2如何确定三角形的同余教学重点:掌握“边角边”判定两个三角形全等的方法。

教学难点:探究满足“两边一角”对应相等的两个三角形是否全等,如何画出相应的图形。

1.3直尺和量规图纸教学重点:轴对称与轴对称图形的概念及识别。

教学难点:轴对称与轴对称图形的区别和联系。

第二章图形的轴对称性2.2轴对称的基本性质教学重点:了解轴对称的基本性质,绘制轴对称图形,以及关于坐标轴对称点的坐标。

教学难点:在直接坐标系中,会求已知点关于坐标轴的对称点坐标。

2.3轴对称图形教学重点:理解连接对应点的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。

教学难点:能够使用轴对称特性制作对称点、对称图形、对称轴等。

2.4线段的垂直平分线教学重点:掌握直线段垂直平分线的性质。

能够利用直线段垂直平分线的性质来解决简单的实际问题。

教学难点:能够利用直尺和圆规作已知线段的垂直平分线。

能运用线段的垂直平分线的性质解决简单的实际问题。

2.5角平分线的性质教学重点:重点是角平分线的性质。

教学难点:角平分线性质的由来与应用。

2.6等腰三角形教学重点:掌握等腰三角形的性质,等边三角形的性质。

教学难点:等腰三角形性质的探索。

第三章分数3.1分式的基本性质教学重点:分数的定义。

教学难点:分式有意义、值为零的条件的应用。

3.2减少分数教学重点:找到分子分母中的公因式,并利用分式的基本性质约分。

教学难点:分子、分母是多项式的分式的约分。

3.3分数的乘法和除法教学重点:探索分式的乘除法的法则。

教学难点:多项式分子或分母分数的乘法和除法及应用问题。

3.4分式的通分教学重点:确定最简单的公分母。

教学难点:分母是多项式的分式的通分。

3.5分数的加减法教学重点:同分母分数的加减法的法则,进行异分母分式的加减运算。

全等三角形的重难点模型(八大题型)(解析版)—八年级数学上册(浙教版)

全等三角形的重难点模型(八大题型)(解析版)—八年级数学上册(浙教版)

全等三角形的重难点模型(八大题型)【题型01:平移型】【题型02:翻折型】【题型03:旋转型】【题型04:一线三等角型(三类型)】【题型05:手拉手模型(四大类型)】【题型06:半角模型】【题型07:对角互补模型】【题型08:平行+线段中点构造全等模型】【题型1 平移型】【方法技巧】【典例1】如图,点E,C在线段BF上,AB=DE,BE=CF,AC=DF.(1)求证:△ABC≌△DEF;(2)若∠B=45°,∠F=85°,求∠A的度数.【答案】(1)见解析(2)50°【分析】本题考查全等三角形的判定与性质,三角形内角和定理,解题的关键是熟练运用全等三角形的判定.(1)首先根据BE=CF可得BC=EF,即可判定△ABC≌△DEF;(2)首先根据(1)中两三角形全等,可得∠ACB=∠F=85°,在△ABC中根据三角形内角和定理即可求出∠A.【详解】(1)证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,∴在△ABC和△DEF中,AB=DE AC=DF BC=EF,∴△ABC≌△DEF(SSS).(2)解:∵△ABC≌△DEF,∠B=45°,∠F=85°,∴∠ACB=∠F=85°,∴∠A=180°―∠ACB―∠B=50°.【变式1-1】如图、点B、E、C、F在一条直线上AB=DE,AC=DF,BE=CF.(1)求证:∠A=∠D;(2)求证:AC∥DF.【答案】(1)证明见解析(2)证明见解析【分析】本题考查三角形综合,涉及三角形全等的判定与性质、平行线的判定等知识,熟记相关几何判定与性质是解决问题的关键.(1)由题中条件,利用两个三角形全等的判定定理SSS得到△ABC≌△DEF,再由三角形全等的性质即可得证;(2)由(1)中△ABC≌△DEF得到∠ACB=∠F,再由同位角相等两直线平行即可得证.【详解】(1)证明:∵BE=CF,∴BC=FE,在△ABC 和△DEF 中,AB =DE AC =DF BE =CF∴△ABC≌△DEF (SSS),∴∠A =∠D ;(2)证明:由(1)知△ABC≌△DEF ,∴ ∠ACB =∠F ,∴ AC∥DF .【变式1-2】如图,在△ABC 和 △DEF 中,边AC ,DE 交于点H ,AB∥DE ,AB =DE ,BC =EF .(1)若∠B =55°,∠ACB =100°,求∠CHE 的度数;(2)求证:△ABC≌△DEF .【答案】(1)∠CHE =25°;(2)证明见解析.【分析】本题考查了三角形的内角和定理,平行线的性质,全等三角形的判定,熟练掌握知识点的应用是解题的关键.(1)根据三角形内角和定理求出∠A ,再根据平行线的性质得出∠CHE =∠A 即可;(2)根据平行线的性质得出∠B =∠DEF ,求出BC =EF ,再根据全等三角形的判定定理推出即可;【详解】(1)解:∵∠B =55°,∠ACB =100°,∴∠A =180°―∠B ―∠ACB =25°,∵AB∥DE ,∴∠CHE =∠A =25°;(2)证明:∵AB∥DE ,∴∠B =∠DEF ,在△ABC 和△DEF 中,AB =DE ∠B =∠DEF BC =EF∴△ABC≌△DEF (SAS).【变式1-3】如图,点B 、E 、C 、F 在同一直线上,∠A =∠D =90°,BE =CF ,AC =DF .求证:∠B =∠DEF .【答案】答案见解析【分析】本题考查了三角形全等的判定与性质,掌握三角形全等的判定定理是解题的关键即可得到答案.根据BE =CF 得到BE +EC =EC +CF 即BC =FE ,之后利用HL 证明Rt △ABC≌Rt △DFE 即可得到答案.【详解】证明:∵BE =CF ,∴BE +EC =EC +CF ,即BC =FE .∵∠A =∠D =90°,则在Rt △ABC 和Rt △DFE 中,BC =FE AC =DE ,∴Rt △ABC≌Rt △DFE(HL).∴∠B =∠DEF .【题型2 翻折型】【方法技巧】【典例2】如图,AB=AD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.【变式2-1】如图,已知∠1=∠2,∠C=∠D,求证:AC=BD【答案】证明见解析【分析】本题考查全等三角形的判定与性质,由两个三角形全等的判定定理AAS 得到△ABC≌△BAD (AAS),再由三角形全等性质即可得证,熟练掌握两个三角形全等判的定定理AAS 及性质是解决问题的关键.【详解】证明:在△ABC 与△BAD 中,∠1=∠2∠C =∠D AB =AB,∴△ABC≌△BAD (AAS),∴AC =BD .【变式2-2】如图,已知AD 平分∠BAC ,AB =AC .求证:△ABD≌△ACD .【答案】见解析【分析】本题主要考查了全等三角形的判定.根据AD 平分∠BAC ,可得∠BAD =∠CAD ,再根据边角边可证明△ABD≌△ACD .【详解】证明:∵AD 平分∠BAC,∴∠BAD =∠CAD ,在△ABD 和△ACD 中,∵AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD≌△ACD (SAS).【变式2-3】如图,AB =AC ,BO =CO ,求证:∠ADC =∠AEB .【答案】见解析【分析】本题考查了全等三角形的判定与性质、三角形外角的定义及性质,连接OA ,证明△AOB≌△AOC (SSS)得出∠B =∠C ,再由三角形外角的定义及性质即可得出答案,熟练掌握以上知识点并灵活运用是解此题的关键.【详解】证明:如图,连接OA ,在△AOB 和△AOC 中,AB =AC OB =OC OA =OA,∴△AOB≌△AOC (SSS),∴∠B =∠C ,∵∠DOB =∠EOC ,∴∠B +∠DOB =∠C +∠EOC ,∴∠ADC =∠AEB .【题型3旋转型】【方法技巧】【典例3】如图,在△ABC 和△AEF 中,点E 在BC 边上,∠C =∠F ,AC =AF ,∠CAF =∠BAE ,EF 与AC 交于点G .(1)试说明:△ABC ≌△AEF ;(2)若∠B =55°,∠C =20°,求∠EAC 的度数.【答案】(1)见解答;(2)35°.【解答】(1)证明:∵∠CAF=∠BAE,∴∠CAF+∠EAC=∠BAE+∠EAC,即∠BAC=∠EAF,在△ABC和△AEF中,,∴△ABC≌△AEF(ASA);(2)解:∵∠B=55°,∠C=20°,∴∠BAC=180°﹣55°﹣20°=105°,∵△ABC≌△AEF,∴AB=AE,∴∠B=∠AEB=55°,∴∠BAE=180°﹣∠B﹣∠AEB=70°,∴∠EAC=∠BAC﹣∠BAE=105°﹣70°=35°.【变式3-1】如图,点E在△ABC外部,点D在BC边上,若∠1=∠2,∠E=∠C,AE=AC,求证:AB=AD.【答案】证明见解答.【解答】证明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴AB=AD.【变式3-2】如图,点E在△ABC边AC上,AE=BC,BC∥AD,∠BAC=∠ADE.(1)求证:△ABC≌△DEA;(2)若∠CAD=30°,求∠BCD的度数.【答案】(1)见解析;(2)∠BCD=105°.【解答】(1)证明:∵BC∥AD,∴∠ACB=∠DAE.在△ABC和△DEA中,∵,∴△ABC≌△DEA(AAS).(2)解:由(1)知△ABC≌△DEA(AAS),∴AC=AD,∠ACB=∠CAD=30°,∴,∴∠BCD=∠ACD+∠ACB=30°+75°=105°.∴∠BCD=105°.【变式3-3】如图,在△ABC中,点D是BC的中点,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.【答案】证明见解答过程.【解答】证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵点D是BC的中点,∴BD=CD,在△BDE与△CDF中,,∴△BDE≌△CDF(AAS).【变式3-4】如图,∠ABC=∠ADE,∠BAD=∠CAE,AC=AE,求证:△ABC≌△ADE.【答案】见解答.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE.在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).【题型4 一线三等角型】【方法技巧】模型一一线三垂直如图一,∠D=∠BCA=∠E=90°,BC=AC。

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。

2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。

依据教学大纲安排,重点讲解第一种状况问题的解决。

安排一个课时讲授。

教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。

2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。

(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。

3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。

三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。

教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。

由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。

四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。

教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。

八年级上册数学常考题型+65条易错点

八年级上册数学常考题型+65条易错点

(一)先解决一个最值得关注的问题关于“粗心”的解决办法。

习惯于依赖做题经验,看到题马上就用以前的方法去写,忽略了问题问什么,题目条件是什么。

粗心的问题,基本是看到题目非常熟悉,条件反射地就按惯性去做,导致错误。

当然也有可能就是无脑的,莫名其妙的低级错误。

这就无解了,老师帮不了你。

4条建议:一、读题要慢,至少两遍,书写要快,思路定了,立马动手;二、草稿纸的使用要规划好,不可随意写,方便检查;三、检查,主要是检查没有把握的题目;四、深挖根源,对粗心的相关知识点要梳理,整理相应错题,集中突破。

(二)重头戏来了,命题陷阱!这里列举出了历年中考绝大多数易错点,请同学们有则改之(请脑补自己犯下的错,最好有自己的错题),无则跳过。

一、数与式(8条)易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆,以及绝对值的分类讨论。

(每年选择题必考)易错点2:实数的运算关键是把好符号关;在较复杂的运算中,不注意运算优先级或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。

(每年填空题必考)易错点4:求分式值为零时学生易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。

当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;初中阶段就学过三个非负数:绝对值、二次根式、完全平方式。

易错点7:0指数幂,底数不为0。

易错点8:代入求值要使式子有意义。

最常考的是分式的化简求值,要注意每个分式的分母不为0,还要注意除号“÷”后面的式子也不能为0。

一定要注意计算顺序,先观察从哪里开始计算。

二、方程(组)与不等式(组)(8条)易错点1:二元一次方程组有可能无解,无解的条件可以用对应的两条一次函数图像平行。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况。

新北师大版八年级数学上册第三章位置与坐标知识点总结和典型例题分析

新北师大版八年级数学上册第三章位置与坐标知识点总结和典型例题分析

新北师大版八年级数学上册第四章位置与坐标一、生活中确定位置的方法(重难点)1、行列定位法把平面分成若干个行列的组合,然后用行号和列号表示平面中点的位置,要准确表示平面中的位置,需要行号、列号两个独立的数据,缺一不可。

2、方位角加距离定位法此方法也叫极坐标定位法,是生活中常用的方法。

在平面中确定位置时需要两个独立的数据:方位角、距离。

特别需要注意的是中心位置的确定。

3、方格定位法在方格纸上,一点的位置由横向方格数和纵向方格数确定,记作(横向方个数,纵向方个数)。

需要两个数据确定物体位置。

4、区域定位法是生活中常用的方法,也需要两个数据才能确定物体的位置。

此方法简单明了,但不够准确。

A1区,D3区等。

5、经纬度定位法利用经度和纬度来确定物体位置的方法,也同时需要两个数据才能确定物体的位置。

二、平面直角坐标系1、平面直角坐标系及相关概念(重点)在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系,简称直角坐标系。

通常两条数轴位置水平和垂直位置,规定水平轴向右和垂直轴向上为两条数轴的正方向。

水平数轴称为x轴或横轴,垂直数轴称为y轴或者纵轴,x轴、y轴统称坐标轴,公共原点O称为坐标系的原点。

两条数轴把平面划分为四个部分,右上部分叫做第一象限,其余部分按逆时针方向分别叫做第二、第三、第四象限。

2、点的坐标表示(重点)在平面直角坐标系中,平面上的任意一点P,都可以用坐标来表示。

过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

在平面直角坐标系中,平面上的任意一点P,都有唯一一对有序实数(即点的坐标)与它对应;反之,对于任意一对有序实数,都可以在平面上找到唯一一点与它对应。

3、特殊位置上点的坐标特点(难点)(1)坐标轴上点的坐标特点x轴上点的纵坐标为0;y轴上点的横坐标为0;原点的横坐标、纵坐标都为0。

(2)余坐标轴平行直线上点的坐标特点与x轴平行直线上所有点的纵坐标相同;与y轴平行直线上所有点的横坐标相同。

八年级上册数学难点解析

八年级上册数学难点解析

八年级上册数学难点解析八年级上册数学的学习对于学生来说是一个重要的阶段,其中包含了不少具有挑战性的难点。

接下来,让我们逐一进行解析。

一、三角形全等的判定三角形全等是几何学习中的重要内容。

判定三角形全等的方法有“边边边”(SSS)、“边角边”(SAS)、“角边角”(ASA)、“角角边”(AAS)以及直角三角形中的“斜边、直角边”(HL)。

学生在应用这些判定方法时,容易出现以下错误:1、对判定条件理解不深刻,例如在“边角边”中,没有注意到“角”必须是两边的夹角。

2、不能正确找出全等三角形的对应边和对应角,导致证明过程混乱。

解决方法:1、多做练习题,通过实际操作加深对判定条件的理解。

2、学会根据已知条件,准确地画出图形,标注出对应元素。

二、三角形的内角和与外角定理三角形内角和为 180 度,这是一个基本的定理。

但在实际应用中,学生可能会遇到困难。

例如,在已知两个内角的度数求第三个内角时,出现计算错误。

外角定理指的是三角形的一个外角等于与它不相邻的两个内角之和。

学生容易忽略“不相邻”这个关键词,导致应用错误。

应对策略:1、牢记内角和定理,多进行相关的计算练习,提高计算准确性。

2、对外角定理,通过具体的图形和实例来加深理解。

三、整式的乘法与因式分解这部分内容涉及到较多的公式和运算规则。

在整式乘法中,如幂的运算(同底数幂相乘、幂的乘方、积的乘方),学生容易混淆指数的运算规则。

因式分解是整式乘法的逆运算,常见的方法有提公因式法、公式法(平方差公式、完全平方公式)。

学生在分解因式时,可能出现以下问题:1、没有先考虑提公因式,直接使用公式法。

2、不能正确判断能否使用公式法,以及使用哪种公式。

学习建议:1、熟练掌握各种运算规则和公式,通过大量的练习来巩固。

2、养成先观察式子特点,再选择合适方法进行因式分解的习惯。

四、分式的运算分式的运算包括分式的加减乘除。

在分式加减运算中,通分是关键,但学生可能会在找最简公分母时出错。

人教版八年级上册数学教案(通用10篇)

人教版八年级上册数学教案(通用10篇)

人教版八年级上册数学教案(通用10篇)八年级上册数学教案 1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力。

2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。

3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。

重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用。

2.难点:灵活地应用公式法进行因式分解。

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的`。

教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容。

教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2。

【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。

3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2。

【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2。

【归纳公式】完全平方公式a2±2ab+b2=(a±b)2。

二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4。

【例2】如果x2+axy+16y2是完全平方,求a的值。

【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题。

八年级上册数学教案(优秀5篇)

八年级上册数学教案(优秀5篇)

八年级上册数学教案〔优秀5篇〕八年级上册数学教案〔优秀5篇〕八年级上册数学教案〔优秀5篇〕1 一、教学目的:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的打破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的打破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中假如数据分布较为均匀时,比方教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,假设分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=0。

而用组中值51去乘以频数20恰好为1020≈0,即当数据分布较为平均时组中值恰好近似等于它的平均数。

所以利用组中值X频数去代替这组数据的和还是比拟合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析1、教材P140探究栏目的意图。

〔1〕、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

〔2〕、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比方组、组中值及频数在表中的详细意义。

2、教材P140的考虑的意图。

〔1〕、使学生通过考虑这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题〔2〕、帮助学生理解表中所表达出来的信息,培养学生分析数据的才能。

八年级数学上册重难点分析

八年级数学上册重难点分析

F 八年级上册数学重难点分析第一章 轴对称图形知识点:重难点:轴对称与轴对称图形的概念及识别以及轴对称与轴对称图形的区别和联系;考点:轴对称的性质、轴对称图形的折叠问题;易混点:角平分线、垂直平分线的性质、对称轴是一条直线而非线段经典考题:如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm,长BC 为10cm;当小红折叠时,顶点D 落在BC 边上的点F 处折痕为AE,想一想,此时EC 有多长 用你学过的方法进行解释. 提示:AF 多长BF 呢FCEF第二章 勾股定理与平方根知识点:勾股定理、实数的概念及分类、平方根、算数平方根和立方根、实数大小的比较、实数的运算重 难点:勾股定理的应用、平方根与立方根的计算学上第一次接触根式难 点:勾股定理的应用易混点:平方根与立方根的区别实数、有理数、无理数概念问题经典考题:一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米.1这个梯子的顶端离地面有多高2如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米第三章 中心对称图形一知识点:平移、旋转、四边形的相关概念、平行四边形的性质、矩形的性质、菱形的性质、正方形的性质、梯形的性质、中心对称图形的概念及性质重难点:中心对称图形的性质、平行四边形的性质及判定平行四边形、矩形、菱形、正方形考点:中心对称图形的性质、平行四边形的性质及判定、图形的旋转易混点:平行四边形的判别;特别平行四边形的判别;经典考题:下列几组几何图形中,既是轴对称图形,又是中心对称图形,完全正确的一组是.A.正方形、菱形、矩形、平行四边形 B.正三角形、正方形、菱形、矩形C.正方形、矩形、菱形 D.平行四边形、正方形、等腰三角形第四章数量、位置变化知识点:平面直角坐标系及有关概念、坐标变化与图形变化的规律重难点:平面直角坐标系的引入及有关概念的认识象限、点的坐标等、坐标变化与图形变化的规律学生第一次接触直角坐标系考点:关于x轴、y轴或原点对称的点的坐标的特征易混点:平面直角坐标系中坐标的表示;坐标变化的情况;下表为坐标变化与图形变化的规律坐标变化与图形变化的规律坐标 x , y 的变化图形的变化x × a或y × a 被横向或纵向拉长压缩为原来的 a倍x × a, y × a 放大缩小为原来的 a倍x × -1或y × -1 关于 y 轴或 x 轴对称x × -1, y × -1 关于原点成中心对称x +a或 y+ a 沿 x 轴或 y 轴平移 a个单位x +a, y+ a 沿 x 轴平移 a个单位,再沿 y 轴平移 a个单经典考题:点P-5,1沿x轴正方向平移2个单位,再沿y轴负方向平移4个单位,所得到的点的坐标为_______;第五章一次函数知识点:函数的概念、自变量取值范围、函数的三种表示法、由函数关系式画其图像的一般步骤、正比例函数和一次函数概念及性质重难点:函数概念的引入、一次函数与正比例函数的性质及图像、一次函数与一元一次方程的关系考点:一次函数与正比例函数的性质、一次函数图像的应用易混点:一次函数的表达式及用待定系数法确定一次函数的表达式;经典考题:如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点Px,0在OB上运动0<x<3,过点P作直线m与x轴垂直.1求点C的坐标,并回答当x取何值时y1>y22设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式. 3当x为何值时,直线m平分△COB的面积第六章数据的集中度知识点:平均数、众数、中位数的概念及算法重难点:平均数、中位数与众数概念的理解;计算器求平均数;考点:加权平均数、中位数的理解;易混点:中位数、平均数的计算;用计算器求平均数;经典考题:有10个数据的平均数为6,另有20个数据的平均数为3,那么所有这30个数据的平均数是________;。

北师大版八年级上册数学各章节重难点知识

北师大版八年级上册数学各章节重难点知识

1.1、探索勾股定理(一)教学目标1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2 、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力。

重点、难点重点:了解勾股定理的由来并能用它解决一些简单问题。

难点:勾股定理的发现。

1.1、探索勾股定理(二)教学目标1、经历运用拼图的方法说明勾股定理是正确的过程,在数学活动发展学生的探究意识和合作交流的习惯2、掌握勾股定理和它的简单应用。

重点难点重点:能熟练应用拼图法证明勾股定理.难点:用面积证勾股定理.1.2 能得到直角三角形吗教学目的知识与技能:掌握直角三角形的判别条件,并能进行简单应用;教学思考:进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.解决问题:会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.重点、难点重点:探索并掌握直角三角形的判别条件。

难点:运用直角三角形判别条件解题1.3.蚂蚁怎样走最近教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.第二章实数2.1. 数怎么又不够用了(一)教学目标(一)教学知识点1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出理由.(二)能力训练要求1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.2.1、数怎么又不够用了(二)教学目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.教学重点:1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点:1.无理数概念的建立及估算.2.2 平方根(一)教学目标:1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根.3.了解算术平方根的性质.教学重点:了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.教学难点:了解算术平方根的概念、性质.2.2平方根(二)教学目标:1.了解平方根的概念、开平方的概念.2.明确算术平方根与平方根的区别与联系.3.进一步明确平方与开方是互为逆运算..教学重点:1.了解平方根、开平方的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.教学难点:1.平方根与算术平方根的区别与联系.2.负数没有平方根,即负数不能进行开平方运算的原因.2.3 立方根教学目标:1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.教学重点:立方根的概念.教学难点:1.正确理解立方根的概念.2.会求一个数的立方根.3.区分立方根与平方根的不同之处.教学方法:类比学习法.2.5 用计算器开方教学目标:1、会用计算器求平方根和立方根。

八年级数学上册第十二章全等三角形重难点归纳(带答案)

八年级数学上册第十二章全等三角形重难点归纳(带答案)

八年级数学上册第十二章全等三角形重难点归纳单选题1、如图,若△ABC≌△ADE则下列结论中不成立...的是()A.∠BAD=∠CAEB.∠BAD=∠CDEC.DA平分∠BDED.AC=DE答案:D分析:根据全等三角形的性质得出∠B=∠ADE,∠BAC=∠DAE,AB=AD,∠E=∠C,再逐个判断即可.解:A.∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠BAD=∠CAE,故本选项不符合题意;B.如图,∵△ABC≌△ADE,∴∠C=∠E,∵∠AOE=∠DOC,∠E+∠CAE+∠AOE=180°,∠C+∠COD+∠CDE=180°,∴∠CAE=∠CDE,∵∠BAD=∠CAE,∴∠BAD=∠CDE,故本选项不符合题意;C.∵△ABC≌△ADE,∴∠B=∠ADE,AB=AD,∴∠B=∠BDA,∴∠BDA=∠ADE,∴AD平分∠BDE,故本选项不符合题意;D.∵△ABC≌△ADE,∴BC=DE,故本选项符合题意;故选:D.小提示:本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等,对应边相等.2、下列说法不正确的是()A.有两条边和它们的夹角对应相等的两个三角形全等B.有三个角对应相等的两个三角形全等C.有两个角及其中一角的对边对应相等的两个三角形全等D.有三条边对应相等的两个三角形全等答案:B分析:根据全等三角形的判定定理逐一判断即可得答案.A.符合判定SAS,故该选项说法正确,不符合题意,B.全等三角形的判定必须有边的参与,AAA不能判定两个三角形全等,故该选项说法不正确,符合题意,C.正确,符合判定AAS,故该选项说法正确,不符合题意,D.正确,符合判定SSS,故该选项说法正确,不符合题意,故选:B.小提示:本题考查全等三角形的判定,全等三角形常用的判定方法有:SSS、SAS、AAS、ASA、HL,注意:AAS、AAA不能判定两个三角形全等,当利用SAS判定两个三角形全等时,角必须是两边的夹角;熟练掌握全等三角形的判定定理是解题关键.3、小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.在角的内部,到角的两边距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形的三条高交于一点D.三角形三边的垂直平分线交于一点答案:A分析:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,因为是两把完全相同的长方形直尺,可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB如图所示:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.小提示:本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.4、如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE//AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9答案:A分析:根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明△BDF≌△DEC,求出BF=CD=3,故A错误.解:在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DF⊥AB,∴CD=DF=3,故B正确;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正确;∴AC=AE+CE=9,故D正确;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,∴BF=CD=3,故A错误;故选:A.小提示:此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键.5、如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°答案:B分析:由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可证Rt△BEC≌Rt△CDB(HL),得出∠BCD =∠CBE=70°即可.解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,,{CE=BDBC=CB∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故选:B.小提示:本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键.6、如图,为测量桃李湖两端AB的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C,测得∠ACB的度数,在AC的另一侧测得∠ACD=∠ACB,CD=CB,再测得AD的长,就是AB的长.那么判定△ABC≌△ADC的理由是()A.SASB.SSSC.ASAD.AAS答案:A分析:已知条件是∠ACD=∠ACB,CD=CB,AC=AC,据此作出选择.解:在△ADC与△ABC中,{CD=CB∠ACD=∠ACBAC=AC.∴△ADC≌△ABC(SAS).故选:A.小提示:此题考查了全等三角形的应用,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个答案:C分析:①证明△BAD≌△CAE,再利用全等三角形的性质即可判断;②由△BAD≌△CAE可得∠ABF=∠ACF,再由∠ABF+∠BGA=90°、∠BGA=∠CGF证得∠BFC=90°即可判定;③分别过A作AM⊥BD、AN⊥CE,根据全等三角形面积相等和BD=CE,证得AM=AN,即AF平分∠BFE,即可判定;④由AF平分∠BFE结合BF⊥CF即可判定.解:∵∠BAC=∠EAD∴∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE在△BAD和△CAE中AB=AC, ∠BAD=∠CAE,AD=AE∴△BAD≌△CAE∴BD=CE故①正确;∵△BAD≌△CAE∴∠ABF=∠ACF∵∠ABF+∠BGA=90°、∠BGA=∠CGF∴∠ACF+∠BGA=90°,∴∠BFC=90°故②正确;分别过A作AM⊥BD、AN⊥CE垂足分别为M、N ∵△BAD≌△CAE∴S△BAD=S△CAE,∴12BD⋅AM=12CE⋅AN∵BD=CE∴AM=AN∴AF平分∠BFE,无法证明AF平分∠CAD.故③错误;∵AF平分∠BFE,BF⊥CF∴∠AFE=45°故④正确.故答案为C.小提示:本题考查了全等三角形的判定与性质、角平分线的判定与性质以及角的和差等知识,其中正确应用角平分线定理是解答本题的关键.8、如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED答案:B分析:根据全等三角形的性质即可得到结论.解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.小提示:本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9、如图,在△ABC中,∠C=90°,以点B为圆心,任意长为半径画弧,分别交AB、BC于点M、N.分别以点M、MN的长度为半径画弧,两弧相交于点P,过点P作线段BD,交AC于点D,过点D作N为圆心,以大于12∠ABC;③BC=BE;④AE=BE中,一定正确的是()DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=12A.①②③B.①②③④C.②④D.②③④答案:A分析:由作法可知BD是∠ABC的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL可得Rt△BDC≌Rt△BDE,故BC=BE,③正确,解:由作法可知BD是∠ABC的角平分线,故②正确,∵∠C=90°,∴DC⊥BC,又DE⊥AB,BD是∠ABC的角平分线,∴CD=ED,故①正确,在Rt△BCD和Rt△BED中,,{DE=DCBD=BD∴△BCD≌△BED,∴BC=BE,故③正确.故选A.小提示:本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键.10、判断两个直角三角形全等的方法不正确...的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等答案:D分析:根据直角三角形全等的判定条件逐一判断即可.解:A、两条直角边对应相等,可以利用SAS证明两个直角三角形全等,说法正确,不符合题意;B、斜边和一锐角对应相等,可以利用AAS证明两个直角三角形全等,说法正确,不符合题意;C、斜边和一条直角边对应相等,可以利用HL证明两个直角三角形全等,说法正确,不符合题意;D、两个锐角对应相等,不可以利用AAA证明两个直角三角形全等,说法错误,符合题意;故选D.小提示:本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.填空题11、如图,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=18cm,AB=11cm,那么DE的长度为_____________________cm.答案:3.5分析:过C点作CF⊥AB于F,如图,根据角平分线的性质得到CF=CE,再证明Rt△ACE≌Rt△ACF得到AF=AE,证明△CBF≌△CDE得到BF=DE,然后利用等线段代换,利用AF=AE得到11+DE=18-DE,从而可求出DE的长.解:过C点作CF⊥AB于F,如图,∵AC平分∠BAD,CE⊥AD,CF⊥AB,∴CF=CE,在Rt△ACE和Rt△ACF中,,{AC=ACCF=CE∴Rt△ACE≌Rt△ACF(HL),∴AF=AE,∵∠ABC+∠D=180°,∠ABC+∠CBF=180°,∴∠CBF=∠D,在△CBF和△CDE中,{∠CBF=∠D∠CFB=∠CEDCF=CE,∴△CBF≌△CDE(AAS),∴BF=DE,∵AF=AE,∴AB+BF=AD-DE,即11+DE=18-DE,∴DE=3.5cm.所以答案是:3.5.小提示:本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质.12、如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件____,使△ABC≌△ADC.答案:∠D=∠B(答案不唯一)分析:本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.解:添加的条件为∠D=∠B,理由是:在△ABC和△ADC中,{∠BAC =∠DAC∠D =∠B AC =AC,∴△ABC ≌△ADC (AAS ),所以答案是:∠D =∠B .小提示:本题主要考查全等三角形的判定定理,能熟记全等三角形的判定定理是解决本题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .13、如图,OP 平分∠MON,PE ⊥OM 于点E ,PF ⊥ON 于点F ,PE =PF,OA =OB ,则图中有__________对全等三角形.答案:3分析:根据角平分线的性质得到PE =PF ,根据全等三角形的判定定理判断即可.解:如图,OP 平分∠MON,PE ⊥OM 于点E ,PF ⊥ON 于点F ,PE =PF ,∴∠1=∠2,在△AOP 和△BOP 中,{OA =OB ,∠1=∠2,OP =OP ,∴△AOP ≌△BOP (SAS ),∴AP =BP ,在Rt △EOP 和Rt △FOP 中,{PE =PF ,OP =OP,∴Rt △EOP ≌Rt △FOP (HL ),在Rt △AEP 和Rt △BFP 中,{PA =PB,PE =PF,∴Rt △AEP ≌Rt △BFP (HL ),∴图中有3对全等三角形.所以答案是:3.小提示:本题考查的是角平分线的性质、全等三角形的判定,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14、如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是________.答案:5分析:过D 作DE ⊥AB 于E ,由△DAE ≌△DAC 得到DE 的长,进而解答;解:如图,过D 作DE ⊥AB 于E ,△DAE 和△DAC 中,AD 平分∠BAC ,则∠DAE =∠DAC ,∠DEA =∠DCA =90°,DA =DA ,∴△DAE ≌△DAC (AAS ),∴DE =DC =2,∴△ABD 的面积=12×AB ×DE =12×5×2=5,所以答案是:5;小提示:本题考查了角平分线的概念,全等三角形的判定(AAS )和性质;熟练掌握全等三角形的判定和性质是解题的关键.15、如图,在等腰Rt △ABC 中,AC =BC ,D 为△ABC 内一点,且∠BCD =∠CAD ,若CD =4,则△BCD 的面积为________.答案:8分析:由线段CD 的长求ΔBCD 的面积,故过B 作CD 的垂线,则由三角形面积公式可知:S ΔBCD =12×CD ×BE ,再由题中的∠BCD =∠CAD 和等腰直角三角形ABC ,即可求证ΔACD ≌ΔCBE ,最后由CD =BE =4即可求解. 解:过点B 作CD 的垂线,交CD 的延长线于点E∵∠ACB =90°∴∠BCD +∠ACD =90°∵∠BCD =∠CAD∴∠ACD +∠CAD =90°∴∠ADC =90°∵BE ⊥CD∴∠E =90°∴∠BCD +∠CBE =90°∴∠ACD =∠CBE∵AC =CB∴ΔACD ≌ΔCBE∴CD =BE =4∴SΔBCD=12×CD×BE=12×4×4=8故答案是:8.小提示:本题主要考察全等三角形的证明、辅助线的画法、等腰三角形的性质和三角形面积公式,属于中档难度的几何证明题.解题的关键是由三角形面积公式画出合适的辅助线.解答题16、已知:等腰Rt△ABC和等腰Rt△ADE中,AB=AC,AE=AD,∠BAC=∠EAD=90°.(1)如图1,延长DE交BC于点F,若∠BAE=68°,则∠DFC的度数为;(2)如图2,连接EC、BD,延长EA交BD于点M,若∠AEC=90°,求证:点M为BD中点;(3)如图3,连接EC、BD,点G是CE的中点,连接AG,交BD于点H,AG=9,HG=5,直接写出△AEC的面积.答案:(1)68°;(2)见解析;(3)36分析:(1)由已知条件可得∠D=∠C=45°,对顶角∠AQD=∠CQF,则∠DAC=∠DFC,根据∠DAE=∠CAB即可的∠DFC=∠BAE;(2)过点B作ME的垂线交EM的延长线于N,证明△AEC≌△BNA,得AE=BN,进而可得AD=NB,再证明△DAM≌△BNM即可得证点M为BD中点;(3)延长AG至K,使得GK=AG=9,连接CK,设AE交BC于点P,先证明△ABE≌△ACD,进而证明△AEG≌△KCG,根据角度的计算以及三角形内角和定理求得∠BAD=∠KCA,进而证明△ABD≌△CAK,再根据∠CAG=∠ABD,∠BAC=90°,证明AH⊥BD,根据已知条件求得S△ABD最后证明S△AEC=S△ABD即可.(1)设DF交AC于Q,如图1,∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴∠D=∠C=45°∵∠AQD=∠CQF∵∠DAQ=180−∠D−∠AQD,∠QFC=180−∠C−∠CQF∴∠DAQ=∠QFC∵∠BAC=∠EAD=90°即∠BAE+∠EAQ=∠EAQ+∠QAD∴∠BAE=∠QAD∴∠DFC=∠BAE∵∠BAE=68°∴∠DFC=68°故答案为68°(2)如图2,过点B作ME的垂线交EM的延长线于N,∴∠N=90°∵∠AEC=90°∴∠N=∠AEC∵∠BAC=90°∴∠EAC+∠NAB=90°∵∠NAC+∠ACE=90°∴∠NAB=∠ECA∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴AB=AC,AD=AE 又∵AC=AB∴△AEC≌△BNA∴NB=AE∵AE=AD∴AD=NB∵∠DAE=90°∴∠DAM=90°∴∠DAM=∠N又∵∠DMA=∠BMN∴△DAM≌△BNM∴DM=BM即M是BD的中点(3)延长AG至K,使得GK=AG=9,连接CK,设AE交BC于点P,如图∵∠BAC=∠EAD=90°即∠BAE+∠EAC=∠EAC+∠CAD∴∠BAE=∠CAD∵△ABC是等腰Rt△ABC和△ADE是等腰Rt△ADE∴AB=AC,AE=AD在△ABE与△ACD中,{AE=AD∠BAE=∠CAD AB=AC∴△ABE≌△ACD(SAS)∴S△ABE=S△ABD,BE=CD∵G点是EC的中点∴EG=GC∵∠AGE=∠KGC,AG=GK∴△AGE≌△KGC(SAS)∴AE=CK,∠AEG=∠KCG∴AE=KC=AD,∠ACK=∠ACB+∠BCE+∠KCG=45°+∠AEC+∠BCE=45°+∠ABC+∠BAP=90°+∠BAE=∠BAD∴△AKC≌△ABD(SAS)∴BD=AK=18,∠CAK=∠ABD∵∠BAG+∠CAG=90°∴∠ABD+∠BAG=90°即∠AHB=90°∵AG=9,HG=5∴AH=AG−HG=9−5=4∴S△ABD=12BD⋅AH=12×18×4=36∵S△AEC=S△AEG+S△AGC=S△GCK+S△AGC=S△ACK=S△ABD=36∴S△AEC=36小提示:本题考查了三角形全等的性质与判定,等腰直角三角形的性质,三角形内角和定理,三角形外角性质,构造辅助线是解题的关键.17、如图,在四边形ABCD中,点E为对角线BD上一点,∠A=∠BEC,∠ABD=∠BCE,且AD=BE.(1)证明:①△ABD≅△ECB;②AD≌BC;(2)若BC=15,AD=6,请求出DE的长度.答案:(1)①证明见解析;②证明见解析(2)9分析:(1)①由ASA证明全等即可,②由①可证明;(2)由△ABD≌△ECB可证DE=BD-BE=15-6=9.(1)解:证明:①在△ABD和△ECB中,{∠A=∠BEC∠ABD=∠BCEAD=BE,∴△ABD≌△ECB(ASA),②由①得:△ABD≌△ECB∴∠ADB=∠EBC,∴AD∥BC;(2)∵△ABD≌△ECB,BC=15,AD=6,∴BD=BC=15,BE=AD=6,∴DE=BD-BE=15-6=9.小提示:本题考查了全等三角形的判定与性质、平行线的判定等知识,证明△ABD≌△ECB是解题的关键.18、如图1,已知ΔABC中,∠ACB=90°,AC=BC,BE、AD分别与过点C的直线垂直,且垂足分别为E,D.(1)猜想线段AD、DE、BE三者之间的数量关系,并给予证明.(2)如图2,当过点C的直线绕点C旋转到ΔABC的内部,其他条件不变,如图2所示,①线段AD、DE、BE三者之间的数量关系是否发生改变?若改变,请直接写出三者之间的数量关系,若不改变,请说明理由;②若AD=2.8,DE=1.5时,求BE的长.答案:(1)DE=AD+BE,证明见解析(2)①发生改变,DE=AD−BE;②1.3分析:(1)证明ΔACD≅ΔCBE,可得AD=CE,CD=BE,即可求解;(2)①证明ΔACD ≅ΔCBE ,可得AD =CE ,CD =BE , 即可求解;②由①可得DE =AD −BE ,从而得到BE =AD −DE ,即可求解.(1)解:DE =AD +BE , 理由如下:∵BE 、AD 分别与过点C 的直线垂直,∴∠BEC =∠ADC =90°,∴∠ACD +∠CAD =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE ,在ΔACD 和ΔCBE 中,{∠ADC =∠BEC∠CAD =∠BCE AC =BC,∴ΔACD ≅ΔCBE (AAS ),∴AD =CE ,CD =BE ,∵ DE =EC +CD ,∴DE =AD +BE ;(2)解:①发生改变.∵BE 、AD 分别与过点C 的直线垂直,∴∠BEC =∠ADC =90°,∴∠ACD +∠CAD =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE ,在ΔACD 和ΔCBE 中,{∠ADC =∠BEC∠CAD =∠BCE AC =BC,∴ΔACD≅ΔCBE(AAS),∴AD=CE,CD=BE,∵DE=CE-CD,∴DE=AD−BE;②由①知:DE=AD−BE,∴BE=AD−DE=2.8−1.5=1.3,∴BE的长为1.3.小提示:本题主要考查了全等三角形的判定和性质、等角的余角相等,熟练掌握全等三角形的判定和性质是解题的关键.。

八年级上册数学举一反三系列专题10 分式章末重难点题型(举一反三)(人教版)(解析版)

八年级上册数学举一反三系列专题10  分式章末重难点题型(举一反三)(人教版)(解析版)

专题10 分式章末重难点题型【举一反三】【人教版】【考点1 分式及最简分式的概念】 【方法点拨】1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2. 最简分式:若分式的分子和分母没有公因式,这个分式称为最简分式,约分时,一般将一个分式化为最简 分式.【例1】(2019秋•泰安期中)下列各式2a b -,3x x +,5y π+,a b a b +-,1()x y m -,xyx中,分式的个数共有( )A .2个B .3个C .4个D .5个【分析】一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子叫做分式. 【答案】解:由题可得,是分式的有:,,(x ﹣y ),,共4个,故选:C .【点睛】本题主要考查了分式的定义,分式的分母必须含有字母,而分子可以含字母,也可以不含字母.【变式1-1】(2018春•沈北校级期中)代数式2232212124513,(2),,,,2,,,3123213x x x x a x x a a x m t x x b x x aπ-+++-++---中分式的个数为( ) A .6个B .5个C .1个D .3个【分析】根据分式的定义,可得答案. 【答案】解:代数式、、、、、的分母中含有字母,属于分式,共有6个. 故选:A .【点睛】本题考查了分式的定义,分母中含有字母的式子是分式,注意π是常数不是字母.【变式1-2】(2019春•温江区期末)下列分式2410xyx ,22a b a b ++,22x y x y -+,221a a a +-最简分式的个数有( )A .4个B .3个C .2个D .1个【分析】直接利用分式的基本性质化简得出答案. 【答案】解:=,,=x ﹣y ,==,故只有是最简分式.故选:D .【点睛】此题主要考查了最简分式,正确化简分式是解题关键.【变式1-3】(2018秋•任城区期中)下列分式23bcab c-,2242x x x --,2222x xy xy y +-,211m m ++中,最简分式有( ) A .1个B .2个C .3个D .4个【分析】根据最简分式的定义,逐个判断即可得结论. 【答案】解:∵=,故A 不是最简分式;==,故B 不是最简分式;=,故C 是最简分式;分式的分子分母没有公因式,故D 最是简分式.故选:B .【点睛】本题考查了最简分式的判断,掌握最简分式的定义是解决本题的关键.【考点2 分式有意义条件】【方法点拨】分式有意义的条件:分母不等于0.【例2】(2019秋•夏津县校级月考)x取何值时,下列分式有意义:(1)2 23 xx+-(2)6(3) ||12 xx+-(3)26 1x x ++.【分析】(1)根据分式的分母不为零分式有意义,可得答案;(2)根据分式的分母不为零分式有意义,可得答案;(3)根据分式的分母不为零分式有意义,可得答案.【答案】解:(1)要使有意义,得2x﹣3≠0.解得x≠,当x≠时,有意义;(2)要使有意义,得|x|﹣12≠0.解得x≠±12,当x≠±12时,有意义;(3)要使有意义,得x2+1≠0.x为任意实数,有意义.【点睛】本题考查了分式有意义,分式的分母不为零分式有意义.【变式2-1】下列分式中的字母满足什么条件时,分式有意义.(1)21mm+-;(2)123xx+-;(3)211xx--;(4)293xx--.【分析】(1)利用分式有意义的条件是分母不等于零,进而求出即可;(2)利用分式有意义的条件是分母不等于零,进而求出即可;(3)利用分式有意义的条件是分母不等于零,进而求出即可;(4)利用分式有意义的条件是分母不等于零,进而求出即可.【答案】解:(1)m﹣1≠0时,分式有意义,故m≠1;(2)2﹣3x≠0时,分式有意义,故x≠;(3)x﹣1≠0时,分式有意义,故x≠1;(4)x﹣3≠0时,分式有意义,故x≠3.【点睛】此题主要考查了分式有意义的条件,利用分母不等于零求出是解题关键.【变式2-2】(2019秋•夏津县校级月考)若分式1324x xx x++÷++有意义,求x的取值范围.【分析】先把除法化为乘法,再根据分式有意义的条件即可得到结果.【答案】解:∵,∴x+2≠0且x+4≠0且x+3≠0解得x≠﹣2、﹣3、﹣4.【点睛】本题主要考查了分式有意义的条件,关键是注意分式所有的分母部分均不能为0,分式才有意义.【变式2-3】(2018秋•宜都市期末)若式子2131xy+-无意义,求代数式2()()y x y x x+-+的值.【分析】根据式子无意义可确定y的值,再化简代数式(y+x)(y﹣x)+x2,最后代入求值.【答案】解:∵式子无意义,∴3y﹣1=0,解得y=,原式=y2﹣x2+x2=y2=()2 =.【点睛】本题考查了分式无意义的条件和多项式的化简求值.当分母等于0时,分式无意义. 【考点3 分式值为0的条件】【方法点拨】满足分式的值为0的条件:分子为0分母不为0.【例3】(2018秋•大荔县期末)如果分式2122x x -+的值为0,求x 的值是多少?【分析】根据分式值.为0的条件:分子为0,分母不为0,求出x 的值即可 【答案】解:依题意得:x 2﹣1=0且2x +2≠0, 解得x =1, 即分式的值为0时,x 的值是1.【点睛】此题考查了解一元二次方程﹣因式分解法,以及分式值为零的条件,做题时注意分母不为0的条件.【变式3-1】(2019秋•东莞市校级期中)当a 取何值时,分式3||62a a-+的值为零. 【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题. 【答案】解:由分式的值为零,得3﹣|a |=0,且6+2a ≠0. 解得a =3, 当a =3时,分式的值为零.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.【变式3-2】(2019秋•北湖区校级月考)当x 取何值时,分式2(3)(2)9x x x +--(1)有意义;(2)分式的值为0.【分析】(1)分式有意义,分母不为零;(2)分式的值为零时,分子为零,但是分母不为零. 【答案】解:(1)根据题意,得 x 2﹣9≠0,解得,x ≠±3, 即当x ≠±3时,分式有意义;(2)根据题意,得(x +3)(x ﹣2)=0,且x 2﹣9≠0, 解得,x =2, 即当x =2时,分式的值为零. 【点睛】本题考查了分式的值为零的条件、分式有意义的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 【变式3-3】对于分式23x a ba b x++-+,当1x =时,分式的值为零,当2x =-时,分式无意义,试求a 、b 的值.【分析】根据分式的值为零的条件为0的条件可得1+a +b =0且a ﹣2b +3≠0,根据分式无意义的条件可得a ﹣2b ﹣6=0,两者联立可求a 、b 的值. 【答案】解:∵分式,当x =1时,分式的值为零,∴1+a +b =0且a ﹣2b +3≠0, 当x =﹣2时,分式无意义, ∴a ﹣2b ﹣6=0, 联立可得,解得.故a 的值是、b 的值是﹣.【点睛】此题主要考查了分式无意义的条件和分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少. 【考点4 分式的基本性质】【方法点拨】分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值 不变.【例4】(2019春•稷山县期末)若A ,B 为不等于0的整式,则下列各式成立的是( )A .(A A E E B B E=g g 为整式) B .(A A E E B B E+=+为整式)C .22(1)(1)A A x B B x +=+g gD .22(1)(1)A A xB B x +=+g g【分析】分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变. 【答案】解:A .E 可能为0,故不成立; B .不符合分式性质,故错误; C .(x +1)2≥0,故错误; D .x 2+1>0,故正确. 故选:D .【点睛】本题考查了分式的性质,正确理解分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变是解题的关键,【变式4-1】(2019秋•龙口市期中)下列各式从左到右变形正确的是( ) A .0.220.22a b a ba b a b++=++B .231843214332x yx y x y x y ++=--C .n n am m a -=- D .221a b a b a b+=++ 【分析】根据分式的基本性质,依次分析各个选项,选出正确的选项即可. 【答案】解:A .分式的分子和分母同时乘以10,应得,即A 不正确,B .,故选项B 正确,C .分式的分子和分母同时减去一个数,与原分式不相等,即C 项不合题意,D .不能化简,故选项D 不正确.故选:B .【点睛】本题考查了分式的基本性质,正确掌握分式的基本性质是解题的关键. 【变式4-2】(2019秋•大名县期中)下列各式中,正确的是( )A .3355x xy y--=- B .a b a bc c+-+-=C .a b a bc c---=D .a ab a a b-=-- 【分析】根据分式的基本性质即可求出答案. 【答案】解:(A )原式=,故选项A 错误;(B )原式=,故选项B 错误; (C )原式=,故选项C 错误;故选:D .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 【变式4-3】(2018秋•奉贤区期末)若分式22xyx y+中的x ,y 的值同时扩大到原来的2倍,则此分式的值( )A .扩大到原来的4倍B .扩大到原来的2倍C .不变D .缩小到原来的12【分析】根据分式的基本性质即可求出答案. 【答案】解:=,故选:C .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 【考点5 利用分数的基本性质求值】 【例5】若a 、b 都是正实数,且112a b a b-=+,求22ab a b -的值. 【分析】已知等式左边通分并利用同分母分式的减法法则计算,整理后得到一个关系式,代入所求式子中计算即可求出值. 【答案】解:∵﹣==,∴﹣(a ﹣b )(a +b )=2ab ,即a 2﹣b 2=﹣2ab , 则==﹣.【点睛】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应将多项式分解因式后再约分.【变式5-1】(2019春•禅城区校级月考)已知:0234x y z==≠,求代数式2x y z x y z +-++的值. 【分析】设t =,则x 、y 、z 可以用同一个字母来表示,然后将其代入代数式,然后将代数式化简即可. 【答案】解:设t =,则x =2t ① y =3t ② z =4t ③将①②③代入代数式,得 ==, 所以,代数式的值是.【点睛】本题体现了转化思想,将未知数x 、y 、z 转化为含有相同字母的量,然后代入所求代数式,只要将代数式化简即可.【变式5-2】(2019秋•高唐县期末)已知113a b-=,求分式232a ab ba ab b +---的值.(提示:分式的分子与分母同除以)ab .【分析】根据分式的基本性质,分式的分子分母都除以ab ,分式的值不变,再把换成3计算即可.【答案】解:分式的分子分母都除以ab ,得==,∵=3, ∴=﹣3,所以原式==.【点睛】本题利用分式的基本性质,分子分母都除以ab ,巧妙运用已知条件是解本题的关键,也是解本题的突破口.【变式5-3】已知实数a 满足2310a a -+=,求下列各式的值: (1)21()a a+的值;(2)221a a +; (3)441a a +的值; (4)225121a a a a ++-+的值.【分析】(1)已知等式两边除以a ,求出a +的值,即可确定出原式的值; (2)原式利用完全平方公式变形,把a +的值代入计算即可求出值; (3)原式利用完全平方公式变形,把(2)结论代入计算即可求出值; (4)把已知等式变形后代入计算即可求出值. 【答案】解:(1)已知等式变形得:a +=3, 则原式=9;(2)原式=(a +)2﹣2=9﹣2=7; (3)原式=(a 2+)2﹣2=49﹣2=47;(4)由a 2﹣3a +1=0,得到a 2=3a ﹣1, 则原式==8.【点睛】此题考查了分式方程混合运算,熟练掌握运算法则是解本题的关键. 【考点6 分式的化简求值】【例6】(2019春•潜山市期末)先化简,再求值:2292(3)693x x x x x x -+--+++,其中1x =-.【分析】根据分式的加法和减法可以化简题目中的式子,然后将x =﹣1代入化简后的式子即可解答本题. 【答案】解:+(x ﹣3﹣)======x ﹣4, 当x =﹣1时,原式=﹣1﹣4=﹣5.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.【变式6-1】(2019春•合肥期末)先化简,再求值:3(2)(1)2m m m ++÷+-.其中﹣2≤m ≤2且m 为整数,请你从中选取一个喜欢的数代入求值.【分析】根据分式的加法和除法可以化简题目中的式子,然后从﹣2≤m ≤2且m 为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【答案】解:(m +2+)÷(m +1) ====, ∵﹣2≤m ≤2且m 为整数,∴当m =0时,原式==.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.【变式6-2】(2019春•卫辉市期末)先化简:223626699a a a a a a +-+++-g ,然后从﹣3≤a ≤3的范围内选取一个合适的整数作为a 的值代入求值.【分析】根据分式的运算法则进行化简,然后根据分式有意义的条件找出a 的值代入原式即可求出答案.【答案】解:•+ =×… ==∵a≠±3,0∴取a=1,原式==2【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于中等题型.【变式6-3】(2018秋•长安区校级月考)(1)先化简:2344(1)11a aaa a-+-+÷++,并从0,1-,2中选一个合适的数,作为a的值代入求值.(2)先化简后求值:2221412211a aa a a a--÷+-+-g,其中a满足20a a-=.【分析】(1)根据分式的混合计算的法则进行计算,先算括号内的,除以一个数等于乘以这个数的倒数,分式乘法先约分,再相乘,x只能取0,而不能取﹣1,2,应注意.(2)先将各自的分子、分母进行因式分解,再转化为乘法,约分后,整体代入即可求出结果.【答案】解:(1)=(﹣)×=×=;∵x≠﹣1,x≠2,∴x=0,当x=0时,原式==1.(2)=××=(a﹣2)(a+1)=a2﹣a﹣2;当a2﹣a=0时,原式=﹣2.【点睛】本题考查了分式的混合运算,掌握计算法则、熟练进行分解因式是解题的关键.【考点7 解分式方程】【方法点拨】分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③检验(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).【例7】(2019秋•武冈市期中)解方程:(1)3222x x x --=-- (2)22510111x x x -+=+-- 【分析】(1)根据解分式方程的过程进行计算即可;(2)先确定公分母,再进行计算即可.【答案】解:(1)3﹣2(x ﹣2)=﹣x解得x =7经检验:x =7是原方程的根∴原方程的解是x =7.(2)2(1﹣x )+5(1+x )=10解得x =1检验:把x =1代入到(x +1)(x ﹣1)中,得:(1+1)×(1﹣1)=0∴原分式方程无解.【点睛】本题考查了解分式方程,解决本题的关键是解分式方程要进行验根.【变式7-1】(2019秋•临淄区期中)解分式方程(1)22411x x =-- (2)2113222x x x x+=++ 【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【答案】解:(1)去分母得:2x +2=4,解得:x =1,经检验x =1是增根,分式方程无解;(2)去分母得:x +x +2=32,经检验x =15是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.【变式7-2】(2019秋•岱岳区期中)解方程:(1)31144x x x --=-- (2)213242x x x=+-- 【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【答案】解:(1)去分母得:3﹣x +1=x ﹣4,解得:x =4,经检验x =4是增根,分式方程无解;(2)去分母得:4x =6x ﹣12﹣1,解得:x =6.5,经检验x =6.5是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.【变式7-3】(2019秋•泰安期中)解下列分式方程:(1)2214111x x x +=+-- (2)29472393x x x x +-=+-- 【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【答案】解:(1)方程两边同乘(x +1)(x ﹣1)得:2(x ﹣1)﹣(x +1)=4,去括号得:2x ﹣2﹣x ﹣1=4,解得:x =7,检验:当x =7时,(x +1)(x ﹣1)≠0,∴x =7是原方程的解;(2)方程两边同乘3(x ﹣3)得:2x +9=3(4x ﹣7)+6(x ﹣3)检验:当x =3时,3(x ﹣3)=0,∴x =3是原方程的增根∴原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.【考点8 分式方程的增根】【例8】(2019•大城县一模)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?【分析】(1)把?=5代入方程,进而利用解分式方程的方法解答即可;(2)设?为m ,利用分式方程的增根解答即可.【答案】解:(1)方程两边同时乘以(x ﹣2)得5+3(x ﹣2)=﹣1解得x =0经检验,x =0是原分式方程的解.(2)设?为m ,方程两边同时乘以(x ﹣2)得m +3(x ﹣2)=﹣1由于x =2是原分式方程的增根,所以把x =2代入上面的等式得m +3(2﹣2)=﹣1,m =﹣1所以,原分式方程中“?”代表的数是﹣1.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.【变式8-1】(2018春•安岳县期末)关于x 的方程:12111ax x x+-=--. (1)当3a =时,求这个方程的解;(2)若这个方程有增根,求a 的值.【分析】(1)把a 的值代入分式方程,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)由分式方程有增根,得到最简公分母为0,求出x 的值,代入整式方程即可求出a 的值.【答案】解:(1)当a =3时,原方程为﹣=1,方程两边同时乘以(x ﹣1)得:3x +1+2=x ﹣1,解这个整式方程得:x =﹣2,检验:将x =﹣2代入x ﹣1=﹣2﹣1=﹣3≠0,∴x =﹣2是原方程的解;(2)方程两边同时乘以(x ﹣1)得ax +1+2=x ﹣1,若原方程有增根,则x ﹣1=0,解得:x =1,将x =1代入整式方程得:a +1+2=0,解得:a =﹣3.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.【变式8-2】(2018春•洛宁县期中)m 为何值时,关于x 的方程223242mx x x x +=--+会产生增根? 【分析】先去分母得2(x +2)+mx =3(x ﹣2),整理得(m ﹣1)x +10=0,由于关于x 的方程+=会产生增根,则(x +2)(x ﹣2)=0,解得x =﹣2 或x =2,然后把x =﹣2 和x =2分别代入(m ﹣1)x +10=0即可得到m 的值. 【答案】解:原方程化为+=,方程两边同时乘以(x +2)(x ﹣2)得2(x +2)+mx =3(x ﹣2),整理得(m ﹣1)x +10=0,∵关于x 的方程 +=会产生增根,∴(x +2)(x ﹣2)=0,∴x =﹣2 或x =2,∴当x =﹣2时,(m ﹣1)×(﹣2)+10=0,解得m =6,当x =2时,(m ﹣1)×2+10=0,解得m =﹣4,∴m =﹣4或m =6时,原方程会产生增根.【点睛】本题考查了分式方程的增根:先把分式方程转化为整式方程,解整式方程,若整式方程的解使分式方程的分母为0,则这个整式方程的解就是分式方程的增根.【变式8-3】(2018秋•克东县期末)若关于x的方程322133x mxx x---=---无解,求m的值.【分析】方程去分母转化为整式方程,根据分式方程无解可得m﹣1=0或将x=3代入整式方程,即可求出m的值.【答案】解:去分母得:3﹣2x+mx﹣2=﹣x+3,整理得:(m﹣1)x=2,当m﹣1=0,即m=1时,方程无解;当m﹣1≠0时,x﹣3=0,即x=3时,方程无解,此时=3,即m=,所以m=1或m=.【点睛】此题考查了分式方程的解,分式方程的解即为能使分式方程左右两边相等的未知数的值,且分式方程分母不为0.【考点9 分式方程的应用之行程问题】【例9】(2019秋•正定县期中)A市到B市的距离约为210km,小刘开着小轿车,小张开着大货车,都从A 市去B市.小刘比小张晚出发1小时,最后两车同时到达B市,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少.(列方程解答)(2)当小刘出发时,求小张离B市还有多远.【分析】(1)设大货车的速度为x千米/小时,则小轿车的速度为1.5x千米/小时,根据时间=路程÷速度结合小轿车比大货车少用1小时,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据小张离B市的距离=A,B两市间的距离﹣小张的速度×小张出发的时间,即可求出结论.【答案】解:(1)设大货车的速度为x千米/小时,则小轿车的速度为1.5x千米/小时,依题意,得:﹣=1,解得:x=70,经检验,x=70是原方程的解,且符合题意,∴1.5x=105.答:大货车的速度为70千米/小时,小轿车的速度为105千米/小时.(2)210﹣70×1=140(千米).答:当小刘出发时,小张离B市还有140千米.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.【变式9-1】(2019•云南模拟)在“要致富先修路”的思想指导下,近几年云南的交通有了快速的变化,特别是“高铁网络”延伸到云南以后,许多地区的经济和旅游发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通工具.假期里小明和爸爸从昆明到某地去旅游,从昆明到该地乘汽车行驶的路程约为800km,高铁列车比汽车行驶的路程少50km,高铁列车比汽车行驶的时间少5h.已知高铁列车的平均时速是汽车平均时速的2.5倍,求高铁列车的平均时速.【分析】设汽车的平均时速为xkm/h,则高铁列车的平均时速为2.5xkm/h,根据时间=路程÷速度结合高铁列车比汽车行驶的时间少5h,即可得出关于x的分式方程,解之经检验后即可得出结论.【答案】解:设汽车的平均时速为xkm/h,则高铁列车的平均时速为2.5xkm/h,依题意,得:﹣=5,解得:x=100,经检验,x=100是原分式方程的解,且符合题意,∴2.5x=250.答:高铁列车的平均时速为250km/h.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.【变式9-2】(2019•宜宾)甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C 两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.【分析】设乙车的速度为x千米/时,则甲车的速度为(x+10)千米/时,路程知道,且甲车比乙车早半小时到达C城,以时间做为等量关系列方程求解.【答案】解:设乙车的速度为x千米/时,则甲车的速度为(x+10)千米/时.根据题意,得:+=,解得:x=80,或x=﹣110(舍去),∴x=80,经检验,x=80是原方程的解,且符合题意.当x=80时,x+10=90.答:甲车的速度为90千米/时,乙车的速度为80千米/时.【点睛】本题考查分式方程的应用、分式方程的解法,分析题意,找到合适的等量关系是解决问题的关键.根据时间=,列方程求解.【变式9-3】(2019•高淳区二模)甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的13,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【分析】(1)设乙骑自行车的速度为xm/min,则公交车的速度是3xm/min,甲步行速度是xm/min,根据题意列方程即可得到结论;(2)8×200=1600米即可得到结果.【答案】解:(1)设乙骑自行车的速度为xm/min,则公交车的速度是3xm/min,甲步行速度是xm/min,由题意得:﹣8=+.解得x=200.经检验x=200原方程的解答:乙骑自行车的速度为200m/min.(2)当甲到达学校时,乙同学还要继续骑行8分钟,所以8×200=1600(m).答:乙同学离学校还有1600m.【点睛】此题主要考查了分式方程的应用,根据题意得到甲的运动速度是解题关键.【考点10 分式方程的应用之工程问题】【例10】(2019秋•滦州市期中)列方程解应用题某工程队修建一条1200m的道路,由于施工过程中采用了新技术,所以工作效率提高了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)这项工程,如果要求工程队提前两天完成任务,那么实际的工作效率比原计划增加百分之几?【分析】(1)设这个工程队原计划每天修建道路x米,则实际每天修建道路(1+50%)x米,根据工作时间=工作总量÷工作效率结合实际比原计划提前4天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设实际的工作效率比原计划增加的百分比为y,根据工作时间=工作总量÷工作效率结合实际比原计划提前2天完成任务,即可得出关于y的分式方程,解之经检验后即可得出结论.【答案】解:(1)设这个工程队原计划每天修建道路x米,则实际每天修建道路(1+50%)x米,依题意,得:﹣=4,解得:x=100,经检验,x=100是原方程的解,且符合题意.答:这个工程队原计划每天修建道路100米.(2)设实际的工作效率比原计划增加的百分比为y,依题意,得:﹣=2,解得:y=0.2=20%.经检验,y=20%是原方程的解,且符合题意.答:实际的工作效率比原计划增加20%.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键【变式10-1】(2018秋•徽县期末)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?【分析】(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由(1)可求出甲、乙单独施工所需天数,再利用两队合作完工所需时间=总工作量÷(甲队一天完成的工作量+乙队一天完成的工作量),即可求出结论.【答案】解:(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,1÷(+)=18(天).答:甲乙两队合作完成该工程需要18天.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.【变式10-2】(2018秋•江北区期末)在我市区某中学美化校园招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙合做12天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天,需付工程款2万元.若该工程计划在35天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?【分析】(1)设乙队单独完成这项工程需要x天,根据甲完成的部分+乙完成的部分=总工程量(单位1),即可得出关于x的分式方程,解之经检验后即可求出结论;(2)设甲、乙两队全程合作需要y天完成该工程,根据甲完成的部分+乙完成的部分=总工程量(单位1),即可得出关于y的一元一次方程,解之即可得出y值,再分别求出甲队单独完成以及甲、乙两队全程合作完成该工程所需费用,比较后即可得出结论.【答案】解:(1)设乙队单独完成这项工程需要x天,依题意,得:+=1,解得:x=45,经检验,x=45是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要45天.(2)设甲、乙两队全程合作需要y天完成该工程,依题意,得:+=1,解得:y=18.。

新人教版八年级数学上册期中考试重难点题型(举一反三)(含解析)

新人教版八年级数学上册期中考试重难点题型(举一反三)(含解析)

期中考试重难点题型汇编【举一反三】【人教版】【知识点1】三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.钝角三角形三条高的交点在三角形外,直角三角形的三条高的交点在三角形上,锐角三角形的三条高的交点在三角形内,三条高线的交点叫做三角形的垂心4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.(三条中线的交点叫重心)5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (三角形三条角平分线的交点到三边距离相等,三条角平分线的交点叫做内心6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.(例如自行车的三角形车架利用了三角形具有稳定性)7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n 边形的内角和等于(2)n -·180° ⑷多边形的外角和:多边形的外角和为360°. ⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 【知识点2】全等三角形1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法: ⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(三角形三条角平分线的交点到三边距离相等)【知识点3】轴对称1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称 图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个 图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰 所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑷等腰三角形的性质:①等腰三角形两腰相等. ②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等. ②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一. ④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.【考点1 灵活运用三角形三边关系】【例1】(2019秋•洛龙区校级期中)已知△ABC的三边长为a,b,c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是()A.2b﹣2c B.﹣2b C.2a+2b D.2a【变式1-1】(2019秋•濉溪县期中)设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.﹣6<a<﹣3B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>2【变式1-2】(2019秋•宁都县期中)如图,在△ABC中,AB=5,AC=3,则BC边上的中线AD的取值范围是()A.2<AD<8B.0<AD<8C.1<AD<4D.3<AD<5【变式1-3】(2019•防城港期中)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()A.1cm<AB<4cm B.5cm<AB<10cmC.4cm<AB<8cm D.4cm<AB<10cm【考点2 角平分线与多边形内角和】【例2】(2019春•沛县期中)如图,在五边形ABCDE中,∠A+∠B+∠E=α,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是()A.90°+αB.﹣90°C.D.540°【变式2-1】(2019春•西湖区校级期中)如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°【变式2-2】(2019秋•香洲区期中)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD 的平分线交于点P,则∠P=()A.90°﹣αB.αC.90°+αD.360°﹣α【变式2-3】(2018秋•遵义期中)如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=()A.∠A+∠D﹣45°B.(∠A+∠D)+45°C.180°﹣(∠A+∠D)D.∠A+∠D【考点3 多边形内角和与外角和】【例3】(2019秋•岳池县期中)一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是()A.6条B.7条C.8条D.9条【变式3-1】(2019春•内江期中)马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830°,则该多边形的边数是()A.7B.8C.7或8D.无法确定【变式3-2】(2019春•诸城市期中)过多边形的一个顶点可以作7条对角线,则此多边形的内角和是外角和的()A.4倍B.5倍C.6倍D.3倍【变式3-3】(2019•凉山州期中)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7B.7或8C.8或9D.7或8或9【考点4 三角形全等的条件判断】【例4】(2018秋•利津县期中)如图,AB∥CD,BC∥AD,AB=CD,AE=CF,其中全等三角形的对数是()A.4B.3C.2D.1【变式4-1】(2018秋•思明区校级期中)如图,已知,∠CAB=∠DAE,AC=AD,增加下列条件:①AB =AE;②BC=ED;③∠C=∠D;④∠B=∠E;⑤∠1=∠2.其中能使△ABC≌△AED的条件有()A.2个B.3个C.4个D.5个【变式4-2】(2018秋•东台市期中)根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°【变式4-3】(2018秋•东台市期中)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,BC=EF,∠B=∠E;③∠B=∠E,∠C=∠F,BC=EF;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点5 等腰三角形中的分类讨论思想】【例5】(2018春•鄄城县期中)等腰三角形的周长为15cm,其中一边长为3cm,则该等腰三角形的腰长为()A.3cm B.6cm C.3cm或6cm D.8cm【变式5-1】(2018春•金水区校级期中)已知等腰三角形一腰的垂直平分线与另一腰所在的直线的夹角为40°,则此等腰三角形的顶角是()A.50°B.130°C.50°或140°D.50°或130°【变式5-2】(2019秋•绥棱县期中)已知一个等腰三角形底边的长为5cm,一腰上的中线把其周长分成的两部分的差为3cm,则腰长为()A.2cm B.8cm C.2cm或8cm D.10cm【变式5-3】(2018秋•沙依巴克区校级期中)等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于()A.30°B.30°或150°C.120°或150°D.30°或120°或150°【考点6 三种双角平分线应用】【例6】(2018春•翠屏区校级期中)已知△ABC,下列说法正确的是(只填序号).①如图(1),若点P是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;②如图(2),若点P是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A;③如图(3),若点P是∠ABC和外角∠ACE的角平分线的交点,则∠P=∠A.【变式6-1】(2019秋•新洲区期中)如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=度.【变式6-2】(2019秋•高密市期中)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BD的平分线与∠A1CD的平分线交于点A2,若∠A=60°,则∠A2的度数为.【变式6-3】(2018秋•江汉区校级期中)如图,△ABC中,∠C=104°,BF平分∠ABC与△ABC的外角平分线AE所在的直线交于点F,则∠F=.【考点7 线段垂直平分线的应用】【例7】(2018春•叶县期中)如图所示,在△ABC中,AB=AC,∠BAC为钝角,BC=6,AB、AC的垂直平分线分别交BC于点D、E,连接AD、AE,那么△ADE的周长为.【变式7-1】(2018秋•江都区期中)如图,在△ABC中,DM、EN分别垂直平分AC和BC交AB于M、N,∠ACB=118°,则∠MCN的度数为.【变式7-2】(2019秋•新乡期中)如图,在△DAE中,∠DAE=30°,线段AE,AD的中垂线分别交直线DE于B和C两点,则∠BAC的大小是.【变式7-3】(2018秋•老河口市期中)如图,△ABC的边AB,AC的垂直平分线相交于点P,连接PB,PC,若∠A=70°,则∠BPC的度数是.【考点8 利用轴对称变换求最值】【例8】(2017秋•襄州区期中)如图,∠AOB=30°,∠AOB内有一定点P,且OP=12,在OA上有一点Q,OB上有一点R,若△PQR周长最小,则最小周长是【变式8-1】(2018秋•洛龙区校级期中)如图,等腰三角形ABC的面积是16,且底边BC长为4,腰AC 的垂直平分线EF分别交边AC,AB于点EF,若点D为边BC的中点,点M为线段EF上一动点,则△CMD周长的最小值是.【变式8-2】(2019秋•北塘区期中)如图,在五边形ABCDE中,∠BAE=136°,∠B=∠E=90°,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为.【变式8-3】(2019•黄冈期中)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是.【考点9 全等三角形的判定与性质】【例9】(2019秋•吉县期中)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD =AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【变式9-1】(2019•内江期中)如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD于点F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.【变式9-2】(2019秋•九龙坡区校级期中)如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,连接BE并延长交AC于点F,AF=EF,求证:AC=BE.【变式9-3】(2019秋•吴兴区校级期中)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=DAE =90°,线段BD,CE有怎样的数量关系和位置关系?请说明理由.【考点10 灵活运用30°直角三角形】【例10】(2018秋•天台县期中)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1.(1)求∠B的度数;(2)求CN的长.【变式10-1】(2019秋•江津区校级期中)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC的长.【变式10-2】(2019秋•重庆校级期中)如图,已知△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F,且CF=3.求BF.【变式10-3】(2018春•槐荫区期中)如图所示,在等边△ABC中,点D,E分别在边BC,AC上,且DE ∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的大小;(2)若CD=3,求DF的长.【考点11 灵活运用“三线合一”】【例11】(2018秋•思明区校级期中)如图,已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【变式11-1】(2018秋•湖里区校级期中)如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.【变式11-2】(2019春•广饶县期中)已知△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,若E、F分别是AB、AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.【变式11-3】(2018秋•硚口区期中)如图,在等边△ABC中,D是AB上一点,E是BC延长线上一点,AD=CE,DE交AC于点F.(1)求证:DF=EF;(2)过点D作DH⊥AC于点H,求.【考点12 复杂的尺规作图】【例12】(2019秋•罗平县期中)作图题,求作一点P,使PM=PN,且到∠AOB的两边距离也相等.【变式12-1】(2019春•东阳市期中)如图,已知△ABC.(1)用尺规作△ABC的角平分线BD(保留痕迹,不写作法);(2)画BC边上的高AE;(3)画AB边上中线CF;(4)在AC边上找点P,使得点P到点B与点C的距离相等.【变式12-2】(2019春•雁塔区校级期中)请用直尺、圆规作图,不写作法,但要保留作图痕迹:已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,点P到∠ABC两边的距离相等.【变式12-3】(2018•惠山区二模)如图,已知△ABC(AC<AB<BC),请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)在边BC上确定一点P,使得P A+PC=BC;(2)作出一个△DEF,使得:①△DEF是直角三角形;②△DEF的周长等于边BC的长.【考点13 三角形内角和与等腰三角形】【例13】(2018秋•杭州期中)如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,求∠EFC 的度数.【变式13-1】(2019秋•沛县期中)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC 上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=°,∠EDC=°,∠DEC=°;点D从B 向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.【变式13-2】(2018秋•泗阳县期中)已知,在△ABC中,点D在BC上,点E在BC的延长线上,且BD =BA,CE=CA.(1)如图1,若∠BAC=90°,∠B=45°,试求∠DAE的度数;(2)若∠BAC=90°,∠B=60°,则∠DAE的度数为(直接写出结果);(3)如图2,若∠BAC>90°,其余条件不变,探究∠DAE与∠BAC之间有怎样的数量关系?【变式13-3】(2019秋•越秀区期中)在△ABC中,AB=AC,点D在底边BC上,AE=AD,连结DE.(1)如图①,已知∠BAC=90°,∠BAD=60°,求∠CDE的度数.(2)如图①,已知∠BAC=90°,当点D在BC(点B、C除外)上运动时,试探究∠BAD与∠CDE的数量关系;(3)如图②,若∠BAC≠90°,试探究∠BAD与∠CDE的数量关系.【考点14 等腰三角形中的新定义问题】【例14】(2019秋•椒江区校级期中)定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的“三阶等腰线”.(1)请你在图1,图2中用两种不同的方法画出顶角为36°的等腰三角形的“三阶等腰线”,并标注每个等腰三角形顶角的度数.(若两种方法分得的三角形成3对全等三角形,则视为同一种).(2)如图3,△ABC中,∠B=36°,AD和DE是△ABC的“三阶等腰线”,点D在BC边上,点E 在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.【变式14-1】(2019春•市北区期中)(本题画图时,直接用直尺画出相关线段即可,不需尺规作图,直接标注等腰三角形顶角度数即可,不需写出求解过程)把一张顶角为36°的等腰三角形纸片折叠两次,得到3个等腰三角形,你能办到吗?图1是其中的一种方法(虚线表示折痕)定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线(1)请你在图1后面用另一种不同的方法画出顶角为36°的等腰三角形的三分线①标注折痕(折痕用虚线表示)②标注得到的每个等腰三角形顶角的度数;(若两种方法分得的三角形形成3对全等三角形,则视为同一种)(2)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(不必标注折痕,若两种方法分得的三角形成3对全等三角形,则视为同一种)【变式14-2】(2019春•顺德区期中)如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的角平分线BD交AC于点D,且BD是△ABC的一条特异线,则∠BDC=度;(2)如图2,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE 是△ABC的一条特异线;(3)如图3,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数(如有需要,可在答题卡相应位置另外画图).【变式14-3】(2018秋•滨湖区期中)【定义】数学课上,陈老师对我们说,如果1条线段将一个三角形分成2个等腰三角形,那么这1条线段就称为这个三角形的“好线”,如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】如图①,在△ABC中,∠A =36°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数.如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.【应用】(1)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形最大内角的所有可能值;(2)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在BC边上,点E在AB 边上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.【考点15 翻折变换中的角度问题】【例15】(2019春•东台市校级期中)△ABC,直线DE交AB于D,交AC于E,将△ADE沿DE折叠,使A落在同一平面上的A′处,∠A′的两边与BD、CE的夹角分别记为∠1,∠2.(1)如图①,当A′落在四边形BDEC内部时,探索∠A与∠1+∠2之间的数量关系,并说明理由.(2)如图②,当A′落在AC右侧时,探索∠A与∠1,∠2之间的数量关系,并说明理由.【变式15-1】(2019春•淮阴区期中)如图(1),△ABC是一个三角形的纸片,点D、E分别是△ABC边上的两点,研究(1):如果沿直线DE折叠,则∠BDA′与∠A的关系是.研究(2):如果折成图2的形状,猜想∠BDA′、∠CEA′和∠A的关系,并说明理由.研究(3):如果折成图3的形状,猜想∠BDA′、∠CEA′和∠A的关系,并说明理由.【变式15-2】(2019秋•李沧区期中)图形在折叠过程中会形成相等的边和相等的角,下面是同学们在数学课上所做的三角形、四边形折叠实验,请根据实验过程解决问题:问题(一)如图①,一张三角形ABC纸片,点D、E分别是△ABC边上两点.研究(1):如果沿直线DE折叠,使A点落在CE上,则∠BDA′和∠A的数量关系是;研究(2):如果折成图②的形状,猜想∠BDA′、∠CEA′和∠A的数量关系是;研究(3):如果折成图③的形状,猜想∠BDA′、∠CEA′和∠A的数量关系,并说明理由.问题(二)研究(4):将问题(一)推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD 的内部时,∠1+∠2与∠A、∠B之间的数量关系是.(直接写出结论)【变式15-3】(2019春•广陵区校级期中)发现(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,请你判断∠1+∠2与∠A有何数量关系,直接写出你的结论,不必说明理由思考(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=100°,求∠BIC的度数;拓展(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC 折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.【考点16 三角形中的动点问题】【例16】(2019秋•全椒县期中)已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF =60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.【变式16-1】(2018秋•开州区期中)在△ABC中,AB=AC,点D为射线CB上一个动点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作EF∥BC,交直线AC于点F,连接CE.(1)如图①,若∠BAC=60°,则按边分类:△CEF是三角形;(2)若∠BAC<60°.①如图②,当点D在线段CB上移动时,判断△CEF的形状并证明;②当点D在线段CB的延长线上移动时,△CEF是什么三角形?请在图③中画出相应的图形并直接写出结论(不必证明).【变式16-2】(2018秋•十堰期中)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.【变式16-3】(2019秋•洪山区期中)(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,求证:DE=BD+CE(3)拓展与应用:如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC =∠BAC,求证:△DEF为等边三角形期中考试重难点题型汇编【举一反三】【人教版】【知识点1】三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.钝角三角形三条高的交点在三角形外,直角三角形的三条高的交点在三角形上,锐角三角形的三条高的交点在三角形内,三条高线的交点叫做三角形的垂心4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.(三条中线的交点叫重心)5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (三角形三条角平分线的交点到三边距离相等,三条角平分线的交点叫做内心6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.(例如自行车的三角形车架利用了三角形具有稳定性)7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.n ·180°⑷多边形的外角和:多边形的外角和为360°.⑶多边形内角和公式:n边形的内角和等于(2)⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 【知识点2】全等三角形1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法: ⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(三角形三条角平分线的交点到三边距离相等)【知识点3】轴对称1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称 图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个 图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰 所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分 线.②对称的图形都全等.。

人教版八年级上册数学解题技巧专题归纳

人教版八年级上册数学解题技巧专题归纳

AB=AC
即∠QAB=∠PAC
∴△AQB≌△APC
另由旋转得AQ=AP
∴BQ=CP
三、翻折
如图所示,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的, 若∠BAC=150°,则∠θ的度数是_________.
A
E
D
1
2
B
C
在求三角形内外角时,经常遇到与直角三角形、平行线、折叠相关的 问题,此时需要根据直角三角形的性质、平行线的性质、折叠的性质推导 出与三角形相关的角,再根据三角形内角和定理、外角性质得出相关的角 的度数.
三角形全等证明的解题思路⑴
AD
BE
CF
AD
C
B
B
C
E
D
A
D D
E
全等三角形在位置上通常有着特殊的关系,可以用旋转、翻折、平移等 图形变换方式来描述,运用图形变换有利于找对应边和对应角,从而有助于 证明三角形全等.
⑵∠A=80°,∠B=∠C;
解: ⑵设∠B=x°,则∠C=x°, 根据三角形内角和定理得80+x+x=180, 解得x=50,所以∠B=∠C=50°.
例 ∠A ,∠B ,∠C是△ABC的三个内角,且分别满足下列条件,求∠A,∠B,∠C中未 知角的度数.
⑶∠A:∠B:∠C=2:3:4
解:⑶因为∠A+∠B+∠C=180°, 所以∠A=180°× 2 =40°, 234 ∠B=180°× 3 =60°, 234 ∠C=180°× 4 =80°. 234
⑴求证:MB=MD,ME=MF; ⑵当E、F两点移到如图所示的位置时,其它条件不变,上述结论能否成立?若 成立,请说明你的理由.
B
B
A E MF C A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学
一、因式分解:几个最简整式乘积的形式。

①乘积形式②最简整式:化简到不能再化简
因式分解=分解因式
化简>计算>整式乘法
做题不一定是整体,有时是先看部分,再看整体。

(1)观察法:①提公因式
②公式法(2个)
③十字相乘法=配凑
④计算
(2)用因式分解的定义来检验。

是,是结果;不是,则返回第1步。

2
2)(b a b a b a -=-+)(2222b ab a b a ++=+)(2222b ab a b a +-=-)( 22)(4b a ab b a -=-+)(pq x q p x q x p x +++=++)())((2
3223333)(b ab b a a b a +++=+3223333)(b ab b a a b a -+-=-
分解因式综合题: ①)334)(334(27162-+=-m m m
②)2)(35(67522b a b a b ab a -+=--
③)1)(1(6662-+=-a a a
④)12)(2(36962-+=-+a a a a
⑤)2)(34()()23(22322222n m n m n m n m n mn m n m ++=+-+=---+)(
⑥)133)(13()1()23(12)23(2222--+-=+--=----n m n m n n m n n n m ⑦2222)33(9)3(6)3(mn n m n m n m mn n m ++=++++
⑧)23)(23(4)3(2-+++=-+n m n m n m
分解因式求解题:
1、已知5=+b a ,6=ab ,求22a ,2b 。

2、已知2=+b a ,3-=ab ,求2a ,22b ,b a a --22,ab b 22-。

配凑法=配方法
322-+a a 22244b ab a -+
=4122-++a a =222444b b ab a -++
=
412-+)(a =2242b b a -+)( =)1)(3(-+a a =)2)(32(b a b a -+
解一元二次方程:02=++c bx ax
方法1:配方法(所有)0322=-+a a
4122=++a a
4)1(2=+a
21±=+a
31-=或a
方法2:十字相乘法(特殊)0322=-+a a
0)1)(3(=-+a a
31-=或a
解一元一次方程:①代入消元法
②加减消元法
二、三角形:1、角度、边、全等式子之间加“、”或“,”。

2、数字大小要一致。

3、过程问题:①条理思维要清晰
②不写定义
③等量交换
④有∵才有∴
余角=互余补角=互补>邻补角
同角或等角的余角相等。

同角或等角的补角相等。

平角为︒180对顶角相等补角和为︒180
三角形内角和为︒180四边形内角和为︒360
五边形内角和为︒540n 边形内角和为︒∙-180)2(n
过两点有且只有一条直线。

两点之间线段最短。

过一点有且只有一条直线与已知直线垂直。

平行公理经过直线外一点,有且只有一条直线与已知直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

两直线平行,同位角相等/内错角相等/同旁内角互补。

同位角相等/内错角相等/同旁内角互补,两直线平行。

定理三角形两边之和大于第三边。

推论三角形两边之差小于第三边。

定理三角形内角和为︒
180。

推论三角形的任意一个外角等于和它不相邻的两个内角的和。

推论三角形的任意一个外角都大于一个和它不相邻的内角。

邻补角的两条角平分线形成的角是直角)
(︒。

90
定理1在角的平分线上的点到角的两边的距离相等。

定理2到一个角的两边距离相等的点,在这个角的角平分线上。

三、全等三角形证明:SSS 、SAS 、ASA 、AAS 、HL。

S(边)
S(边)
A(夹角)
S(边)
A(角) A(角) 任意两角

Rt HL(斜边和一条直角边)

四、等腰三角形‘四线合一’
等边三角形‘四线合一’
直角三角形斜边上的中线等于斜边的一半。

(证明方法:线段垂直平分线上的点到线段两端的距离相等)
在直角三角形中,︒
30所对的直角边等于斜边的一半。

三角形五心两条也可三角形内/外
中心只有正三角形才有中心,四心合一为中心。

相关文档
最新文档