在圆锥曲线中的几何图形的面积问题

合集下载

圆锥曲线常见问题及基本方法(二)

圆锥曲线常见问题及基本方法(二)

圆锥曲线常见问题及基本方法(二)【一】利用韦达定理,结合设而不求的方法,使原问题转化为参数(k 参)的函数问题,例如题目中出现过定点的直线,或出现向量数量积,或者面积等能够利用韦达定理将原问题都转化为参数的问题 例1:已知点M(-2,0),N(2,0),动点P满足条件||||PM PN -=记动点P 的轨迹为W.(Ⅰ)求W 的方程;(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.解:(Ⅰ)依题意,点P 的轨迹是以M ,N 为焦点的双曲线的右支,所求方程为:22x y 122-= (x >0)(Ⅱ)当直线AB 的斜率不存在时,设直线AB 的方程为x =x 0,此时A (x 0),B (x 0,),OA OB ⋅=2当直线AB 的斜率存在时,设直线AB 的方程为y =kx +b ,代入双曲线方程22x y 122-=中,得:(1-k 2)x 2-2kbx -b 2-2=0 依题意可知方程1︒有两个不相等的正数根,设A(x 1,y 1),B(x 2,y 2),则2222122212244(1)(2)0201201k b k b kb x x k b x x k ⎧⎪∆=--∙--≥⎪⎪+=>⎨-⎪⎪+=>⎪-⎩解得|k|>1, 又OA OB ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1x 2+kb (x 1+x 2)+b2=2222k 242k 1k 1+=+-->2,综上可知OA OB ⋅的最小值为2 【二】利用韦达定理将两点坐标统一为单点坐标(适用点参)例1:给定抛物线C :24,y x =F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点. (Ⅰ)设l 的斜率为1,求OA OB 与夹角的余弦(Ⅱ)设,[4,9]FB AF λλ=∈若,求l 在y 轴上截距的变化范围.解:(Ⅰ)C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为.1-=x y将1-=x y 代入方程x y 42=,并整理得 .0162=+-x x设),,(),,(2211y x B y x A 则有 .1,62121==+x x x x.31)(2),(),(212121212211-=++-=+=⋅=⋅x x x x y y x x y x y x OB OA.41]16)(4[||||21212122222121=+++=+⋅+=x x x x x x y x y x.41143||||),cos(-=⋅=OB OA OB OA(Ⅱ)由题设λ= 得 ),,1(),1(1122y x y x --=-λ即⎩⎨⎧-=-=-.1212),1(1y y x x λλ由②得21222y y λ=, ∵ ,4,4222121x y x y == ∴.122x x λ=③联立①、③解得λ=2x ,依题意有.0>λ ∴),2,(),2,(λλλλ-B B 或又F (1,0),得直线l 方程为 ),1(2)1()1(2)1(--=--=-x y x y λλλλ或当]9,4[∈λ时,l 在方程y 轴上的截距为,1212---λλλλ或由 ,121212-++=-λλλλλ 可知12-λλ在[4,9]上是递减的, ∴ ,431234,341243-≤--≤-≤-≤λλλλ直线l 在y 轴上截距的变化范围为].34,43[]43,34[⋃--【三】最值:与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:【1】结合定义利用图形中几何量之间的大小关系;例1:(2009四川卷理)已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( A ) A.2 B.3 C.115 D.3716解析2:如下图,由题意可知2d ==【2】不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;例1:(2009重庆卷文)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a cPF F PF F =,则该椭圆的离心率的取值范围为)1,1 .解法1:因为在12PF F ∆中,由正弦定理得211221sin sin PF PF PF F PF F =则由已知,得1211a cPF PF =,即12aPF cPF = 设点00(,)x y 由焦点半径公式,得1020,PF a ex PF a ex =+=-则00()()a a ex c a ex +=- 记得0()(1)()(1)a c a a e x e c a e e --==-+由椭圆的几何性质知0(1)(1)a e x a a e e ->->-+则,整理得 ① ②2210,e e +->解得11(0,1)e e e <∈或,又,故椭圆的离心率1,1)e ∈解法2 由解析1知12cPF PF a=由椭圆的定义知 212222222c a PF PF a PF PF a PF a c a+=+==+则即,由椭圆的几何性质知22222,,20,a PF a c a c c c a c a<+<++->+则既所以2210,e e +->以下同解析1.【3】函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。

圆锥曲线二级结论的应用:直观理解与数学技能的提升

圆锥曲线二级结论的应用:直观理解与数学技能的提升

圆锥曲线二级结论的应用:直观理解与数学技能的提升在数学中应用圆锥曲线的二级结论,可以帮助我们更高效地解决问题、减少计算量,并增强对几何图形的直观理解。

以下是几种在数学中应用圆锥曲线二级结论的实例:1.2.焦点与准线性质的应用:3.在解决与焦点和准线相关的问题时,这些性质可以直接使用。

例如,在求椭圆上的点到两焦点距离之和时,可以直接应用这一性质,而不必每次都从头开始计算。

4.5.6.弦长公式的应用:7.对于圆锥曲线上的弦长问题,利用相应的弦长公式可以迅速得出答案。

在解决几何问题时,如果知道某些特定条件下的弦长公式,可以大大减少计算复杂度。

8.9.10.切线性质的应用:11.切线的性质在求导数和曲线的几何特征时非常有用。

通过计算导数来找出切线的斜率,进而利用切线方程研究曲线的局部性质。

12.13.14.面积与周长公式的应用:15.当需要计算圆锥曲线围成的图形的面积或周长时,直接使用相应的公式可以迅速得出答案。

这在几何和微积分问题中特别常见。

16.17.18.离心率与半轴长的应用:19.在解决与圆锥曲线的形状和尺寸有关的问题时,离心率和半轴长是两个关键参数。

它们可以帮助我们理解曲线的“扁平”程度或“张开”程度,从而更容易地识别和分析几何图形。

20.21.22.渐近线与包络线的应用:23.在涉及渐近线和包络线的问题中,利用这些性质可以帮助我们更好地理解曲线的长期行为,特别是在处理无穷大或无穷小时的行为。

24.25.26.对称性与极值点的应用:27.在解决与对称性和极值点相关的问题时,这些性质可以用来验证解的正确性或找到潜在的解。

28.29.30.焦点三角形性质的应用:31.在处理涉及焦点和弦的问题时,焦点三角形的性质可以用来简化计算,特别是当弦经过圆锥曲线的焦点时。

32.在数学中,圆锥曲线的二级结论不仅帮助我们解决实际问题,还提供了直观理解几何图形和性质的工具。

通过不断练习和应用这些结论,可以加深对圆锥曲线理论的理解,并提升数学技能。

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷) 解析几何(原卷版)

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷) 解析几何(原卷版)

十年高考真题精解解析几何十年树木,百年树人,十年磨一剑。

本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。

三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。

(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一: 圆锥曲线的基础性质(2019新课标I 卷T10理科).已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=(2013新课标Ⅰ卷T4理科)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x(2013新课标Ⅰ卷T10理科)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +(2015新课标I 卷T14理科)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .(2014新课标Ⅰ卷T4理科)已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. B. 3 C.m D.3m(2011新课标I 卷T14理科)在平面直角坐标系xoy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C的方程为.(2012新课标I 卷T10文科)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =C 的实轴长为(A (B ) (C )4 (D )8轨迹条件点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|. =±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方程标准方程 (>0) (a>0,b>0) px y 22=参数方程(t 为参数) 范围 ─a x a ,─b y b |x| a ,y R x 0中心原点O (0,0) 原点O (0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b) (a,0), (─a,0) (0,0)对称轴x 轴,y 轴;长轴长2a,短轴长2bx 轴,y 轴;实轴长2a, 虚轴长2b.x 轴焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0)12222=+b y a x b a >12222=-by a x 为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222)0,2(p F双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. (2)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. (3)共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为. 抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下. (2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设222a y x ±=-x y ±=2=e λ=-2222b y a x λ-=-2222b y a x 02222=-by a x )0(2222≠=-λλb y a x 02222=-b y a x 0=±b y a x )0(2222≠=-λλby a xA(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221p x AF p x x +==(AF 叫做焦半径).二、考向题型研究二: 简单的离心率求解问题(2019新课标I 卷T10文科)双曲线C :﹣=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C的离心率为( ) A .2sin40° B .2cos40°C .D .(2016新课标I 卷T5文科)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34(2011新课标I 卷T7理科)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A ,B 两点,|AB|为C 的实轴长的2倍,则C 的离心率为( ) A .B .C .2D .3(2012新课标I 卷T4文科)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45一、直接求出或求出a 与b 的比值,以求解。

解析几何《圆锥曲线的综合应用》

解析几何《圆锥曲线的综合应用》

解析几何【8】圆锥曲线的综合应用1、定值、最值、取值范围问题(1)在圆锥曲线中,还有一类曲线方程,对其变量取不同值时,曲线本身的性质不变;或形态发生某些变化,但其某些固有的共同性质始终保持着,这就是定值问题.(2)当变量取不同值时,相关几何量达到最大或最小,这就是最值问题.通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题,曲线遵循某种条件时,变量有相应的允许取值范围,即取值范围问题.求解时有两种方法:①代数法:引入新的变量,通过圆锥曲线的性质、韦达定理、方程思想等,用新的变量表示(计算)最值、范围问题,再用函数思想、不等式方法得到最值、范围.②几何法:若问题的条件和结论能明显地体现曲线几何特征,则利用图形性质来解决最值与取值范围问题.2、对称、存在性问题、圆锥曲线有关的证明问题涉及线段相等,角相等,直线平行、垂直的证明方法,及定点、定值问题的判断方法等.3、实际应用解决的关键是建立坐标系,合理选择曲线模型,然后转化为相应的数学问题,作出定量或定性分析与判断,解题的一般思想是【温馨点睛】1、圆锥曲线经常和函数、三角函数、平面向量、不等式等结合,还有解析思想的应用,这些问题有较高的能力要求,这是每年高考必考的一道解答题,平时加强训练,认真审题,挖掘题目的隐含条件作为解题的突破口.2、利用函数思想,讨论有关最值时,特别要注意圆锥曲线自身范围的限定条件.3、涉及弦长的问题时,在熟练地利用根与系数的关系,设而不求计算弦长;涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解.4、圆锥曲线综合问题要四重视;①定义;②平面几何知识;③根与系数的关系;④曲线的几何特征与方程的代数特征.【例1】设1F 、2F 是椭圆22:12x C y 的左、右焦点,P 为椭圆C 上任意一点.(1)求12PF PF 的取值范围;(2)设过点1F 且不与坐标轴垂直的直线交椭圆C 于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.设点1F C 上任意一点,且12PF PF (1)(2)满足AD BD ,【例2】如图,已知抛物线2:4C x y ,过点 0,2M 任作一直线与C 相交于A 、B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y 相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221MN MN 为定值,并求此定值.(1)(2)C 、D 两点(A 、【例3】已知抛物线2y x 上的动点 00,M x y ,过M 分别作两条直线交抛物线于P 、Q 两点,交直线x t 于A 、B 两点.(1)若点M ,求M 与焦点的距离;(2)若1t , 1,1P , 1,1Q ,求证:A B y y 为常数;(3)是否存在t ,使得1A B y y 且P Q y y 为常数?若存在,求t 的所有可能值;若不存在,请说明理由.x .(1)(2)(3)使得PM PN 为【例4】为了考察冰川的融化状况,一支科考队在某冰川上相距8km 的A 、B 两点各建一个考察基地.视冰川面为平面形,以过A 、B 两点的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系(如图).在直线2x 的右侧,考察范围为到点B 的距离不超过5km 的区域;在直线2x 的左侧,考察范围为到A 、B两点的距离之和不超过km 的区域.(1)求考察区域边界曲线的方程;(2)如图,设线段12PP 、23P P 是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km ,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.【同类变式】某市为改善市民出行,大力发展轨道交通建设,规划中的轨道交通s号线线路示意图如图,已知M、N是东西方向主干道边两个景点,P、Q是南北方向主干道边两个景点,四个景点距离城市中心O均为km,线路AB段上的任意一点到景点N的距离比到景点M的距离都多10km,线路BC段上的任意一点到O的距离都相等,线路CD段上的任意一点到景点Q的距离比到景点P的距离都多10km,以O为原点建立平面直角坐标系xOy.(1)求轨道交通s号线线路示意图所在曲线的方程;(2)规划中的线路AB段上需建一站点G到景点Q的距离最近,问如何设置站点G的位置?【真题自测】1.设A 、B 是椭圆22:13x y C m长轴的两个端点,若C 上存在点M 满足120AMB ,则m 的取值范围是().A 0,19, ;.B 9, ;.C 0,14, ;.D 4, .2.① ②P .A 13.②若 111,P x y 、 222,P x y 为曲线C 上任意两点,则有12120x x .下列判断正确的是().A ①和②均为真命题;.B ①和②均为假命题;.C ①为真命题,②为假命题;.D ①为假命题,②为真命题.4.设圆C 位于抛物线22y x 与直线3x 所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为.5.114c ,则c6.Q 使得AP AQ 07.如图,已知椭圆2221x y ,过原点的两条直线1l 和2l 分别与椭圆交于点A 、B 和C 、D ,记AOC 的面积为S .(1)设 11,A x y , 22,C x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明122112S x y x y ;(2)设1:l y kx ,若,33C ,13S ,求k 的值.(3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 和2l 如何变动,面积S 保持不变.。

圆锥曲线大题专题及答案

圆锥曲线大题专题及答案

解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。

圆锥曲线专题

圆锥曲线专题

圆锥曲线专题一、求面积问题方法:利用焦点三角形及定义1、已知椭圆14922=+y x 的左右焦点为F 1、F 2,P 为椭圆上一点, (1)若∠F 1PF 2=900,求△F 1PF 2的面积(2)若∠F 1PF 2=600,求△F 1PF 2的面积2、已知双曲线14522=-y x 的左右焦点为F 1、F 2,P 为双曲线上一点, (1)若∠F 1PF 2=900,求△F 1PF 2的面积(2)若∠F 1PF 2=600,求△F 1PF 2的面积二、求轨迹方程(一)与两个定圆相切的圆心轨迹方程(用圆心距解题)1.一动圆与两圆:012812222=+-+=+x y x y x 和都外切,则动圆的圆心 的轨迹方程是什么?2. 一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

(二)用代入法求轨迹1.已知圆922=+y x ,从圆上任意一点P 向x 轴作垂线段/PP ,点M 在/PP 上,并且/2MP =,求点M 的轨迹。

2.双曲线2219x y -=有动点P ,12,F F 是曲线的两个焦点,求12PF F ∆的重心M 的轨迹方程。

三、直线截圆锥曲线得相交弦(求相交弦长,相交弦的中点坐标)常用方法:方程的根与系数关系;弦长公式;对焦点弦要懂得用焦半径公式(连结圆锥曲线(包括椭圆,双曲线,抛物线)上一点与对应焦点的线段的长度,叫做圆锥曲线焦半径。

点差法; (一)求相交弦长1.已知椭圆:1922=+y x ,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长.2.求直线1y x =+被双曲线2214y x -=截得的弦长;变式:双曲线X 2-22y =1,截得直线Y=x+M 所得的弦长为求M 的(二)中点问题1.已知中点坐标:以定点为中点的弦所在直线的方程(1)过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。

圆锥曲线焦点三角形面积问题

圆锥曲线焦点三角形面积问题

圆锥曲线焦点三角形面积问题
圆锥曲线焦点三角形面积问题指的是在一个圆锥曲线上,给定焦点和一个点P 的坐标,求得由焦点和该点P构成的三角形的面积。

首先,我们需要了解圆锥曲线和焦点的概念。

圆锥曲线是指在三维空间中一个由直线与一个射线共用一个端点且直线在射线上方的几何图形。

常见的圆锥曲线有椭圆、双曲线和抛物线。

焦点是指在一个几何图形或曲线上与该图形或曲线中的点有特殊关系的点。

要计算由焦点和点P构成的三角形的面积,我们可以利用三角形的面积公式。

三角形的面积可以用其底边和高来计算。

在这个问题中,底边是焦点和点P之间的距离,高是点P到焦点所在的直线的垂直距离。

首先,我们可以使用两点间距离公式计算焦点和点P之间的距离。

假设焦点的坐标为F(x1, y1, z1),点P的坐标为P(x2, y2, z2),则焦点和点P之间的距离为
√((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)。

然后,我们需要计算点P到焦点所在的直线的垂直距离。

这个垂直距离也可以被称为焦距。

焦距可以通过焦点到点P之间的线段与焦点所在的直线的垂直距离来计算。

最后,我们可以利用三角形的面积公式:面积 = 1/2 * 底边 * 高,来计算出由焦点和点P构成的三角形的面积。

需要注意的是,在计算过程中,我们要保证点P在圆锥曲线上,以确保三角形的存在。

综上所述,通过给定焦点和点P的坐标,我们可以计算出由这两 points 构成的三角形的面积。

这个问题涉及到了圆锥曲线的性质和三角形面积的计算方法,通过运用相关的几何知识,我们可以解决这个问题。

(完整版)圆锥曲线常见题型及答案

(完整版)圆锥曲线常见题型及答案

圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。

此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。

此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。

圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题

圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题

圆锥曲线中的定值、定点问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2.例2. 已知点是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。

解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --=设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3. 已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。

圆锥曲线综合问题中几何性质的应用分析——以一道椭圆综合问题为例

圆锥曲线综合问题中几何性质的应用分析——以一道椭圆综合问题为例

圆锥曲线综合问题中几何性质的应用分析——以一道椭圆综
合问题为例
崔鹏
【期刊名称】《中国数学教育(高中版)》
【年(卷),期】2024()1
【摘要】通过实例分析圆锥曲线中几何图形性质的应用,引导学生通过转化深入挖掘几何位置关系,进而获得坐标运算结果,总结归纳常见几何图形的几何性质及其坐标化的方法,提供了系统科学的复习方式和解题策略.
【总页数】4页(P61-64)
【作者】崔鹏
【作者单位】中国人民大学附属中学
【正文语种】中文
【中图分类】G633.65
【相关文献】
1.在“思问”中培养学生以题概类的能力--以一道三角函数解决几何中角度最值问题为例
2.中职专业课程融入思政元素的探索与实践——以《印刷综合实训》课程为例
3.关注圆锥曲线综合,开展解法探究思考——以一道圆锥曲线综合题为例
4.问“课”哪得清如许,为有“思考”源头来——以“椭圆的几何性质”为例
5.引例分析突破,解法反思整合——以一道圆锥曲线综合题为例
因版权原因,仅展示原文概要,查看原文内容请购买。

由一道题谈求解圆锥曲线中三角形面积问题的思路

由一道题谈求解圆锥曲线中三角形面积问题的思路

产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产产探索探索与与研研究究圆锥曲线中三角形的面积问题通常较为复杂,且解题时的运算量较大.这类问题侧重于考查同学们的运算和逻辑思维能力.下面结合一道例题,谈一谈圆锥曲线中三角形的面积问题的解法.例题:已知斜率为的直线l 过点M (0,3),交椭圆x 24+y 23=1于A ,B 两点,求三角形AOB 的面积.一、直接法直接法是指根据题意,利用相关的公式、定理、定义等直接求解.在运用直接法求解圆锥曲线中三角形的面积问题时,只需根据已知条件,以及三角形的位置、形状求得三角形的底边长、高线长、角的大小,利用三角形的面积公式S=12×底×高、S =12ab sin θ,就可以直接求得问题的答案.解法1.设A (x 1,y 1),B (x 2,y 2),由题意知直线AB 的方程为x =+3,联立直线和椭圆的方程,得ìíîïïïïx =+3,x 24+y 23=1.消去x ,得116y 2-32y +5=0,由韦达定理得y 1+y 2=11y 1y 2=3011.根据弦长公式得AB =1+k 2||y 1-y 2=∙()y 1+y 22-4y 1y 2=65,由点到直线的距离公式得O 到AB 的距离为:d =3,可得三角形AOB 的面积为S =12×65×3.我们先将直线与椭圆的方程联立;然后根据韦达定理和弦长公式求得弦AB 的长;再根据点到直线的距离公式求得O 到AB 的距离,即可根据三角形的面积公式S =12×底×高,直接求得三角形AOB 的面积.二、割补法割补法是解答几何图形的面积问题的重要方法.运用割补法求解圆锥曲线中三角形的面积问题,通常要将不规则的图形分割、填补成规则的几何图形,如三角形、梯形、平行四边形等,以运用规则图形的性质、面积公式求圆锥曲线中三角形的面积.解法2.由解法1知y 1+y 2y 1y 2=3011.将x 轴作为分割线,把三角形OAB 分割成两个三角形OPA 和OPB ,可得直线与x 轴的交点P,即OP =,则S =S △OPA +S △OPB =12×OP ×|y 1-y 2|=.通过观察图形并分析,很容易求得OP 以及|y 1-y 2|,于是采用割补法,将三角形OAB 分割成两个三角形OPA 和OPB.再根据三角形的面积公式求两个三角形的面积之和,就能快速求得问题的答案.三、利用海伦公式海伦公式为:S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2.该公式主要用于求三角形的面积.在解题时,常需利用两点间的距离公式、弦长公式、点到直线的距离公式、勾股定理、正余弦定理分别求得三角形的边长,再将三边的边长代人公式中进行求解.解法3.由解法1知y 1+y 2y 1y 2=3011.由两点之间的距离公式可得OA =x 12+y 12,OB =x 22+y 22,AB =(x1-x 2)2+(y 1-y 2)2,代入即可算出S .海伦公式是一个拓展公式,同学们在使用前要对其作具体的说明.运用海伦公式求解圆锥曲线中三角形的面积问题,往往能简化运算.可见,圆锥曲线中三角形的面积问题的解法较多.但需注意根据题意和三角形的形状选用合适的面积公式和距离公式,这样才能规避繁琐的运算,提升解题的效率.(作者单位:华东师范大学盐城实验中学)47Copyright ©博看网. All Rights Reserved.。

几何图形的面积问题(与函数值域转化)(解析版)

几何图形的面积问题(与函数值域转化)(解析版)

几何图形的面积问题(与函数值域转化)一、考情分析圆锥曲线中几何图形的面积问题,是近几年高考命题的重点和难点。

在2018年的全国卷和2019年的全国卷中,都有圆锥曲线的大题压轴的第二问出现。

题目的难度是可想而知的,这其中涉及到:距离,斜率,切线,直线与圆,三角形的面积,四边形的面积等。

此专题,从这个出发点出发,梳理了最近的高考题和诊断性考试题,得出曲径通幽的解题之法。

归根结底,最终都是转换到函数值域。

二、经验分享圆锥曲线中的几何图形的面积问题,以及围绕与几何图形的面积问题关键是: 其一,选取合适的变量,第二,建立目标函数,转化函数的取值范围与最值问题(也就是转化成函数值域问题), 第三,构造函数,用导数的方法求其最大值与最小值。

其求解策略一般有以下几种:①几何法:根据题目上传达的几何图形以及几何关系,建立目标函数,若目标函数有明显几何特征和意义,则考虑几何图形的性质求解;②代数法: 若目标函数的几何意义不明显,利用基本不等式、导数等方法求函数的值域或最值,注意变量的范围,在对目标函数求最值前,常要对函数进行变换,注意变形技巧,若一个函数式的分母中含有一次式或二次式、分子中含有一次式或二次式的二次根式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.三、题型分析(一)角的最值问题例1. 已知椭圆22221(0)x y a b a b +=>>上一点A 关于原点O 的对称点为,B F 为其右焦点,若,AF BF ⊥设,ABF α∠=且,,124ππα⎡⎤∈⎢⎥⎣⎦则椭圆离心率的取值范围是 .【答案】26[,]23【点评】本题的关键是利用椭圆的定义建立等量关系式2sin 2cos 2c c a αα+=,然后借助已知条件,,124ππα⎡⎤∈⎢⎥⎣⎦利用三角函数的图象求解离心率的范围. 【变式训练1】【百校联盟2018届TOP202018届高三三月联考】.已知平行四边形ABCD 内接于椭圆()2222:10x y a b a b Ω+=>>,且AB , AD 斜率之积的范围为32,43⎛⎫-- ⎪⎝⎭,则椭圆Ω离心率的取值范围是( ) A. 13,23⎛⎫⎪⎪⎝⎭ B. 32,32⎛⎫⎪ ⎪⎝⎭ C. 13,43⎛⎫⎪ ⎪⎝⎭D. 11,43⎛⎫⎪⎝⎭【答案】A【变式训练2】【2019届河北武邑中学高三周考】已知直线:60l x y +-=和曲线22:2220M x y x y +---=,点A 在直线l 上,若直线AC 与曲线M 至少有一个公共点C ,且030MAC ∠=,则点A 的横坐标的取值范围是( )A .()0,5B .[]1,5C .[]1,3D .(]0,3 【答案】B【解析】设()00,6A x x -,依题意有圆心到直线的距离sin302d AM =≤,即()()22001516x x -+-≤,解得[]01,5x ∈.【变式训练3】【2019届山东省济宁市高三3月模拟】已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,焦距为2(0)c c >,抛物线22y cx =的准线交双曲线左支于,A B 两点,且0120(AOB O ∠=为坐标原点),则该双曲线的离心率为 ( ) A.31 B. 2 C. 21 D. 51【答案】A【解析】由题意得,当()22222424c a b cx y a-=-⇒= ,则 ()()2222222244,,2424ca b ca b c cA B aa⎛⎛-- -- ⎝⎝,又因为120AOB ∠=︒, ()22242242244244tan 384084032ca b c c a c a c a a aπ-==-+=⇒-+=4222840423(4231,)331e e e e e ∴-+=⇒=±-<⇒=⇒=舍去.(二)距离的最值问题例2.【2019届山东菏泽一中宏志部高三上学期月考】若过点()2 3 2P --,的直线与圆224x y +=有公共点,则该直线的倾斜角的取值范围是( )A .0 6π⎛⎫ ⎪⎝⎭,B .0 3π⎡⎤⎢⎥⎣⎦, C. 0 6π⎡⎤⎢⎥⎣⎦, D .0 3π⎛⎤ ⎥⎝⎦, 【答案】B【解析】当过点(23,2)P --的直线与圆224x y += 相切时,设斜率为k ,则此直线方程为+2=k(23)y x +,即k 2320x y k -+-=.由圆心到直线的距离等于半径可得2|232|21k k -=+,求得0k =或3k =,故直线的倾斜角的取值范围是[0,]3π,所以B 选项是正确的.【变式训练1】【2020届河北省武邑中学高三上学期测试】在平面直角坐标系x y O 中,圆1C :()()221625x y ++-=,圆2C :()()2221730x y r -+-=.若圆2C 上存在一点P ,使得过点P 可作一条射线与圆1C 依次交于点A ,B ,满足2PA =AB ,则半径r 的取值范围是( ) A .[]5,55 B .[]5,50 C .[]10,50 D .[]10,55 【答案】A【解析】由题,知圆1C 的圆心为(1,6)-,半径为5,圆2C 的圆心为(17,30),半径为r ,两圆圆心距为22(171)(306)30++-=,如图,可知当AB 为圆1C 的直径时取得最大值,所以当点P 位于点1P 所在位置时r 取得最小值,当点P 位于点2P 所在位置时r 取得最大值.因为max ||10AB =,||2||PA AB =,所以min 5r =,max 55r =,故选A .(三)几何图形的面积的范围问题例3.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( )A.45πB.34πC.(625)π-D.54π 【答案】A【解析】设直线l :240x y +-=.因为1||||2C l OC AB d -==,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线.圆C 半径最小值为11422255O l d -=⨯=,圆C 面积的最小值为1. 【变式训练1】【北京市朝阳区2018届高三第一学期期末】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,A B 间的距离为2,动点P 与A , B 距离之比为2,当,,P A B 不共线时, PAB ∆面积的最大值是 A. 22 B. 2 C.223 D. 23【答案】A【变式训练2】【吉林省普通中学2020届第二次调研】已知F 为抛物线2y x =的焦点,点,A B 在该抛物线上且位于x 轴的两侧,而且·6OAOB =(O 为坐标原点),若ABO ∆与AFO ∆的面积分别为1S 和2S ,则124S S +最小值是( )A .73 B . 6 C . 132D . 3【答案】B【变式训练3】【2016高考新课标1卷】设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解析】(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k .可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.(四)函数转化例4.【2019届成都一诊】设椭圆()012222>>=+b a by a x C :的左右顶点为A,B.P 是椭圆上不同于A,B 的一点,设直线AP,BP 的斜率分别为m,n ,则当()||ln ||ln 32323n m mnmn b a +++⎪⎭⎫ ⎝⎛-取得最小值时,椭圆C 的离心率为( )A.51 B.22 C.54D.23【答案】D【解析】设()()(),,,0,,0,00y x P a B a A -,点P 在双曲线上,得()01220220>>=+b a b y a x C :,2202220)(ax a b y -=,所以a x y m +=00,a x y m -=00,化简,22ab mn -=原式⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+-+⎪⎪⎪⎪⎭⎫⎝⎛--=b a b a b a b a a b a b a b b a ln 63232ln 62323232222所以设1>=b a t ,函数t t t t t f ln 63232)(23++-=,求导可以得到:2t =时,函数取得最小值=)2(f ,2=ba,23=e 。

解答圆锥曲线最值问题的几个“妙招”

解答圆锥曲线最值问题的几个“妙招”

圆锥曲线最值问题侧重于考查圆锥曲线的定义、几何性质、方程,以及直线与圆锥曲线的位置关系.圆锥曲线问题的命题形式较多,常见的有求某条线段的最值、图形面积的最值、参数的最值、离心率的最值、点到曲线的最小距离等.下面结合几道例题,来谈一谈解答此类问题的“妙招”.一、利用几何图形的性质圆锥曲线中的圆、直线、椭圆、双曲线、抛物线均为平面几何图形.在解答圆锥曲线最值问题时,可根据题意画出几何图形,并添加合适的辅助线,将问题看作平面几何问题,利用平面几何图形的性质,如圆锥曲线的几何性质、等腰三角形的性质、平行四边形的性质,以及正余弦定理、勾股定理等来解题.例1.设F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,若椭圆上存在一点Q ,使∠F 1QF 2=120°,求椭圆离心率e 的最小值.解:设P (x 1,y 1),F 1(-c ,0),F 2(c ,0),由椭圆的焦点弦公式得,|PF 1|=a +ex 1,|PF 2|=a -ex 1,在ΔPF 1F 2中,由余弦定理可得:cos 120°=|PF 1|2+|PF 2|2-|F 1F 2|2|PF 1|∙|PF 2|=(a +ex 1)2+(a -ex 1)2-4c 22(a +ex 1)∙(a -ex 1)=-12,可得:x 1=4c 2-3a 2e 2,由椭圆的范围可知-a ≤x 1≤a ,可得0≤4c 2-3a 2e2≤a 2,解得e =c a≥,即椭圆离心率的最小值为.解答本题,关键要抓住椭圆的几何性质:椭圆的范围为-a ≤x ≤a ,-b ≤y ≤b .在根据余弦定理和焦点弦公式求得x 1后,根据椭圆的范围建立关系式0≤4c 2-3a 2e2≤a 2,即可求得椭圆离心率的取值范围.例2.椭圆x 24+y 23=1的左焦点为F ,直线x =m与椭圆相交于A ,B 两点,当ΔFAB 的周长最大时,求ΔFAB 的面积.解:设椭圆的右焦点为E ,连接BE ,AE,如图所示.由椭圆的定义得:AF +AE =BF +BE =2a ,则C ΔFAB =AB +AF +BF =AB +(2a -AE )+(2a -BE )=4a +AB -AE -BE .在ΔAEB 中,AE +BE ≥AB ,所以AB -AE -BE ≤0,当AB 过点E 时取等号.所以AB +BF +AF =4a +AB -BE ≤4a ,即直线x =m 过椭圆的右焦点E 时,ΔFAB 的周长最大.将x =1代入椭圆x 24+y 23=1得y =±32,即AB =3.因此,当ΔFAB 的周长最大时,S ΔFAB =3.我们首先根据题意作图,并添加合适的辅助线,即可根据椭圆的定义建立线段AF 、AE 、BF 、BE 之间的几何关系;然后根据三角形的性质:两边之和大45。

圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线是解析几何中的一个重要分支,涉及广泛且难度较大。

在高考中,经常出现各种关于圆锥曲线的问题,如求解方程、定位点、证明定理、计算面积等等。

本文将介绍圆锥曲线问题在高考中的常见题型及解题技巧,以供大家参考。

常见题型1. 判定方程类型判定方程 $Ax^2+Bxy+Cy^2+Dx+Ey+F=0$ 的类型。

同学们需要掌握二次型的知识,使用行列式和 $\Delta$ 判别法即可。

其中,行列式 $AC-B^2$ 确定了方程的类型:$AC-B^2>0$ 时,方程为椭圆方程;2. 求曲线方程通常给出几何条件,让同学们求出曲线方程。

此类问题需要根据情况选择不同的方法,在此介绍两种主要的解法:(1)通过几何条件确定曲线类型,再代入方程求解。

例如,已知一个抛物线上的顶点坐标和另外一点的坐标,可以用顶点公式和对称性解出对称轴和开口方向,进而确定方程。

(2)确定曲线焦点和准线,利用焦准式求解方程。

例如,已知一个双曲线的焦距和离心率,可以通过求出曲线的焦点和准线,利用焦准式求解方程。

3. 定位点通常给出一个几何条件,要求定位某个点的坐标。

此类问题有多种方法,例如利用坐标系的对称性、平移、伸缩等变化来确定点的位置,或者利用直线方程、曲线方程的关系求解点的坐标等。

4. 证明定理此类问题一般是让同学们证明某个定理或者结论。

需要掌握各种定理的证明方法,例如对偶证明、取对数证明、辅助线证明、画图论证等。

5. 计算面积此类问题一般要求同学们计算某个图形或者曲面的面积。

需要灵活运用面积公式、积分等方法,注意确定积分区间以及被积函数的形式。

解题技巧1. 建立坐标系建立坐标系是解决圆锥曲线问题的前提,可以帮助理清几何图形的关系和计算各种量的大小。

要注意选择坐标系的方向和起点,以便于计算和简化计算公式。

2. 利用几何条件圆锥曲线问题往往给出具体的几何条件,同学们需要认真理解并灵活运用。

常见的几何条件有点的坐标、直线的方程、曲线类型、焦准距等等。

圆锥曲线面积公式

圆锥曲线面积公式

圆锥曲线面积公式圆锥是一种三维曲面,它具有非常独特的性质,是许多几何结构中常见的几何形状之一。

它是由一个圆和一条接近它的直线组成的,其特性可以用一种称为“圆锥曲线面积公式”的公式来描述。

圆锥曲线面积公式是描述圆锥形状及其面积的一种经典几何公式。

其中,圆锥体的表面积可以用以下公式表示:S =r(h + r)其中,r表示圆锥底部圆的半径,h表示圆锥高度,π表示3.1415926。

圆锥曲线面积公式是世界上最常用的一个几何公式,它可以用来解决圆锥的表面积、体积和对称性等相关问题。

在建筑设计、医学技术和其他多种应用领域,圆锥曲线面积公式在图形绘制和几何处理方面都被广泛使用。

在高等数学中,圆锥曲线面积公式也被广泛应用,它可以帮助数学家们求解许多复杂的几何问题。

举个例子,假设有一个圆锥体,它底部半径为5,高度为10,则根据圆锥曲线面积公式,它的表面积为π5(10+5),也就是785.398163。

圆锥曲线面积公式也可以用来解决另一种复杂的几何问题,那就是求解圆锥体的体积。

圆锥体的体积是由底面圆和圆锥面积之积所得,因此,圆锥体的体积公式可以用以下公式表示:V=rh/3,其中,r表示圆锥底部圆的半径,h表示圆锥高度,π表示3.1415926。

举个例子,假设有一个圆锥体,其底部半径为5,高度为10,则根据圆锥体的体积公式,它的体积为π510/3,即261.7990512。

圆锥曲线面积公式不仅可以用于解决圆锥底部半径、高度和面积、体积等问题,还可以用于解决其他一些几何问题,比如计算圆锥面积的分段函数,以及计算平面内的圆锥的平行于底面的线段的长度。

圆锥曲线面积公式可以让数学家们知道如何去计算几何图形,为科学家们在多个学科领域工作提供了极大的帮助。

总之,圆锥曲线面积公式是一种经典的几何公式,用于描述圆锥曲线的面积及其相关特性,它可以用来解决圆锥表面积、体积、分段函数等多种复杂的几何问题,并且在建筑设计、医学技术和其他多种应用领域中被广泛使用,为科学家们工作提供了极大的帮助。

浅谈解决圆锥曲线问题的几种方法

浅谈解决圆锥曲线问题的几种方法

浅谈解决圆锥曲线问题的几种方法【摘要】圆锥曲线问题是数学中重要的课题之一,本文将深入探讨解决这一问题的几种方法。

首先介绍了圆锥曲线的概念和问题的重要性。

接着分别从几何法、代数法、参数法、向量法和微积分法五个方面展开讨论各种解决问题的方法。

在对各种方法进行了综合比较,并指出它们在不同场景下的适用性。

最后展望未来,提出了关于圆锥曲线问题研究的一些新的思路和方向。

通过本文的阐述,读者将对解决圆锥曲线问题有更深入的认识,同时也对未来的研究方向有了一定的启发。

【关键词】圆锥曲线, 解决问题, 方法, 几何法, 代数法, 参数法, 向量法, 微积分法, 综合比较, 适用场景, 未来展望, 引言, 正文, 结论.1. 引言1.1 圆锥曲线概述圆锥曲线是平面上具有特定几何性质的曲线。

根据圆锥曲线的定义,可以将它们分为椭圆、双曲线、抛物线和圆。

它们在几何学和代数学中具有广泛的应用,例如在物理学、工程学和计算机图形学中都有着重要的作用。

椭圆是一个闭合的曲线,其定义是所有到两个固定点的距离之和等于常数的点的集合。

双曲线是一个开放的曲线,其定义是到两个固定点的距离之差的绝对值等于常数的点的集合。

抛物线是一个开放的曲线,其定义是到一个固定点的距离等于到一个固定直线的距离的点的集合。

圆是一个闭合的曲线,其定义是到一个固定点的距离等于常数的点的集合。

圆锥曲线的研究对于理解几何及代数概念具有重要意义。

掌握不同方法解决圆锥曲线问题将有助于我们更深入地理解这些曲线的性质和特点,从而在实际问题中应用这些知识。

在接下来的内容中,我们将介绍几种不同的方法来解决圆锥曲线问题,希望读者能从中受益。

1.2 问题的重要性圆锥曲线在几何学和数学中具有重要的地位,它们是平面上特殊的曲线,包括圆、椭圆、双曲线和抛物线。

解决圆锥曲线问题的方法不仅仅是为了解题,更重要的是培养数学思维和逻辑推理能力。

圆锥曲线在几何学、物理学、工程学等领域都有广泛的应用,掌握解决圆锥曲线问题的方法可以帮助我们更好地理解这些领域的知识和解决实际问题。

“动”中求“静”,变中取“最”——一道椭圆内接四边形面积题的探究

“动”中求“静”,变中取“最”——一道椭圆内接四边形面积题的探究

一问题呈现
问题 !(!"!"届河南省高三适应性测试(+月份) 数学(理)试题+(#)如图(!'(!'! 是椭圆E'&+! /#!
$(的两个焦点!过'( 的直线(( 与椭圆E 交于*!+ 两 点!过'! 与(( 平行的直线(! 与 椭圆E 交于"!. 两点(点*!.
在& 轴上方)!则四边形*+".
面积的最大值为
#!)!联
立2&! 4+
/#!
$(!




(3!
/ +)#!
0
!槡,3# 0( $"!则 有 #( /#! $3!!槡,/3+!#(#! $ 03!(/+!由 弦 长 公 式 可 得 *+ $ 槡3! /( +
#( 0#! $ 槡3! /( + 槡(#( /#!)! 0+#(#! $ +(3! /()
03!(/+!而 9%2*+
$9%2'(*
/9%2'(+
( $!
2'(
+
#( 0#!
槡, $ ! #( 0#!
槡, $!
槡(#(
/#!)!
0+#(#!
$!槡,3槡!3/!+/(!令3!
/($:,(!则9%2*+
!槡,槡: $:/,
槡 !槡,
$ 槡:
/
,
槡:
!
!槡, 槡:@ ,
槡:
$(!当且仅当槡: $ , !即:$ 槡:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在圆锥曲线中的几何图形的面积问题(四)
在圆锥曲线中,经常要求最值问题:常常会平面图形的面积问题。

我们要分析图形的面积的变化是什么量引起的?我们根据变化的量来建立等量关系,尽量化简变成了两个变量之间的函数关系。

我们借助函数来求最值,可以是二次函数法、可以是导数法。

若不能变成函数的关系,我们利用方程的几何意义来求最值,我们借助圆锥曲线和直线与圆的知识来解决。

我们也可借助参数,把问题变成以“角”为参变量的参数方程,我们借助三角函数的知识来求最值问题。

若方程中含有三个变量时,我们可虑有均值不等式法来求最值。

在寻找等量关系之间时,恰当地利用原圆锥曲线的性质:变量的取值范围、利用图像的对称性,利用圆锥曲线的参数方程等等知识。

在圆锥曲线中,我们经常求圆中的有关三角形的面积时,通常我们要选择圆心到弦的距离为参数来进行寻找等量关系,便于我们整体思想来化简问题,简化问题,便于我们解决问题。

例4已知椭圆13
42
2=+y x , 直线x t =(0t >)与曲线E 交于不同的两点,M N ,以线段MN 为直径作圆C ,圆心为C .若圆C 与y 轴相交于不同的两点,A B ,求ABC ∆的面积的最大值.
)解法1:依题意,圆心为(,0)(02)C t t <<.
由22,1,43x t x y =⎧⎪⎨+=⎪⎩
得221234t y -=. ∴ 圆C
的半径为r =. ∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,

0t <<
,即07
t <<. ∴
弦长||AB === ∴ABC ∆
的面积12S =

)2127
t =
- )22
1272
t +-≤
=
=,即
t =. ∴ ABC ∆的面积的最大值为7
. 解法2:依题意,圆心为(,0)(02)C t t <<.
由22,1,43
x t x y =⎧⎪⎨+=⎪⎩ 得221234t
y -=. ∴ 圆C 的半径为2
r =. ∴ 圆C 的方程为2
22
123()4t x t y --+=. ∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C
到y 轴的距离d t =,

02t <<,即07
t <<. 在圆C 的方程2
22
123()4t x t y
--+=中,令0x =,得
y = ∴ 弦长||AB =
∴ABC ∆
的面积12S =

)2127
t =
- )22
1272
t +-≤
7=.
=,即7t
=时,等号成立. ∴ ABC ∆.。

相关文档
最新文档