数理统计试题及答案
数理统计学考试题及答案
![数理统计学考试题及答案](https://img.taocdn.com/s3/m/ec0574b477eeaeaad1f34693daef5ef7bb0d120e.png)
数理统计学考试题及答案一、单项选择题(每题3分,共30分)1. 下列哪个选项是描述数据集中趋势的统计量?A. 方差B. 标准差C. 平均数D. 极差答案:C2. 假设检验中,若原假设为H0:μ=μ0,备择假设为H1:μ≠μ0,则该检验属于:A. 单尾检验B. 双尾检验C. 左尾检验D. 右尾检验答案:B3. 以下哪个分布是描述二项分布的?A. 正态分布B. t分布C. F分布D. 泊松分布答案:A4. 以下哪个选项是描述数据离散程度的统计量?A. 众数B. 中位数C. 极差D. 均值答案:C5. 以下哪个选项是描述数据分布形态的统计量?A. 偏度B. 方差C. 标准差D. 均值答案:A6. 以下哪个选项是描述数据分布集中趋势的统计量?A. 偏度B. 峰度C. 众数D. 标准差答案:C7. 以下哪个选项是描述数据分布离散程度的统计量?A. 偏度B. 峰度C. 标准差D. 均值答案:C8. 以下哪个选项是描述数据分布形态的统计量?A. 均值B. 方差C. 偏度D. 众数答案:C9. 以下哪个选项是描述数据分布集中趋势的统计量?A. 极差B. 标准差C. 均值D. 偏度答案:C10. 以下哪个选项是描述数据分布离散程度的统计量?A. 均值B. 众数C. 方差D. 偏度答案:C二、多项选择题(每题4分,共20分)1. 以下哪些统计量可以用来描述数据的集中趋势?A. 均值B. 中位数C. 众数D. 方差答案:ABC2. 以下哪些统计量可以用来描述数据的离散程度?A. 极差B. 方差C. 标准差D. 均值答案:ABC3. 以下哪些统计量可以用来描述数据的分布形态?A. 偏度B. 峰度C. 均值D. 方差答案:AB4. 以下哪些分布是描述连续型随机变量的?A. 正态分布B. 泊松分布C. 二项分布D. t分布答案:AD5. 以下哪些检验是用于检验总体均值的?A. t检验B. 方差分析C. 卡方检验D. F检验答案:A三、计算题(每题10分,共50分)1. 给定一组数据:2, 4, 6, 8, 10,求其平均数和标准差。
概率论与数理统计期末考试试题及参考答案
![概率论与数理统计期末考试试题及参考答案](https://img.taocdn.com/s3/m/3ff3201826284b73f242336c1eb91a37f011326e.png)
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
本科数理统计试题及答案
![本科数理统计试题及答案](https://img.taocdn.com/s3/m/c63d3f54773231126edb6f1aff00bed5b8f3731e.png)
本科数理统计试题及答案一、选择题(每题2分,共20分)1. 以下哪项不是数理统计中的基本概念?A. 总体B. 样本C. 变量D. 常数2. 随机变量X的概率分布函数F(x)满足什么条件?A. 非负B. 单调递增C. 右连续D. 所有选项3. 以下哪个统计量是度量数据离散程度的?A. 均值B. 方差C. 众数D. 标准差4. 假设检验中,拒绝原假设的决策规则是基于什么?A. p值B. 置信区间C. 样本均值D. 样本方差5. 以下哪项不是参数估计的方法?A. 最大似然估计B. 贝叶斯估计C. 插值估计D. 矩估计6. 两个独立随机变量X和Y的协方差Cov(X,Y)为0意味着什么?A. X和Y是独立的B. X和Y是相同的C. X和Y的方差为0D. X和Y的均值相等7. 以下哪项是描述总体分布特征的参数?A. 样本均值B. 样本方差C. 总体均值D. 总体方差8. 在回归分析中,如果自变量和因变量之间存在线性关系,那么回归系数的符号表示什么?A. 正相关B. 负相关C. 无相关D. 强相关9. 以下哪项是描述数据集中趋势的统计量?A. 极差B. 四分位数C. 变异系数D. 标准差10. 以下哪项是假设检验中的两类错误?A. 第一类错误和第二类错误B. 系统误差和随机误差C. 抽样误差和非抽样误差D. 总体误差和样本误差二、填空题(每题2分,共20分)1. 统计学中的“大数定律”表明,随着样本量的增大,样本均值会______总体均值。
2. 如果随机变量X服从标准正态分布,则其概率密度函数为______。
3. 在统计学中,一个数据集的中位数是将数据集从小到大排列后位于______位置的数值。
4. 相关系数的取值范围是______。
5. 假设检验的原假设通常表示为______,备择假设表示为______。
6. 在回归分析中,如果回归系数为正,则表示自变量和因变量之间存在______关系。
7. 统计学中的“中心极限定理”说明,即使总体分布未知,只要样本量足够大,样本均值的分布将近似为______分布。
数理统计考试试题及答案
![数理统计考试试题及答案](https://img.taocdn.com/s3/m/6613232ae97101f69e3143323968011ca300f7d5.png)
一、(满分12分)设X X X n ,,,12为来自均匀分布θU (0,)的随机样本,θθ,ˆˆ12分别为未知参数θ的矩估计量和最大似然估计量。
(1)证明nT n =+θθ和ˆˆ112都是未知参数θ的无偏估计; (2)比较两个估计量的优劣性.二、(满分14分)设X 服从伽玛分布Γαβ(,),其特征函数为=−−βϕαt itX ()(1).(1) 利用特征函数法求X 的数学期望和方差; (2)设X X X n ,,,12是独立同分布的随机变量,其概率密度为,⎩≤⎨=>⎧λλx f x e x x 0,0.(),0-试用特征函数法证明:∑=Γ=λY X n i i n~(,)1 三、(满分14分)从两个独立的正态总体中抽取如下样本值: 甲(X ) 4.4 4.0 2.0 4.8 乙(Y )5.01.03.20.4经计算得x s y s ====3.8, 1.547, 2.4, 4.45312*2*2,在显著性水平=α0.05下,能否认为两个总体同分布? 四、(满分10分)设X X X ,,,129是总体μσX N ~(,)2的一个样本.记Y X Y X k k k k ∑∑===63,=,11171269SS X Y Z Y Y k k ∑=−=−=2(),12()7212229求统计量 Z 的分布。
五、(满分14分)设X X X n ,,,12是总体X 的一个样本,X 的密度函数为f x x x ⎩⎨=<<⎧−θθθ他其0,.(;),01,1>θ0求未知参数g =θθ()1的最大似然估计量gθ()ˆ,并求g θ()的有效估计量.六、 (满分20分)观测某种物质吸附量y 和温度x 时,得到数据如下:x i 1.5 1.8 2.4 3.0 3.5 3.9 4.4 4.8 5.0 y i4.85.77.08.310.912.413.113.615.3应用线性模型N y a bx ⎩⎨⎧=++εσε~(0,)2(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)在温度x =60时,求吸附量y 0的置信水平为α−=10.95的预测区间; (4) 若要使吸附量在5-10之间,温度应该如何控制(=α0.05).七、 (满分16分) 为了观察燃烧温度是否对砖块的密度有显著性影响,今在4种温度下做试验,得砖块密度的观察值如下: 温度(摄氏度) 砖块密度100 21.8 21.9 21.7 21.6 21.7 125 21.7 21.4 21.5 21.4 150 22.9 22. 8 22.8 22.6 22.5 17521.9 21.7 21.8 21.4试问燃烧温度对砖块密度是否有显著影响?(=α0.01) 附注:计算中可能用到的数据如下:t r F F t F F ===Φ=====5(7) 2.3646,(7)0.6664,(1,7) 5.59,(1.96)0.976(3,3)15.5,(6) 2.4469,(2,15) 3.68,(3,14) 5.50.9750.050.950.9750.9750.950.99一、(满分12分)解:(1)总体X 的密度函数为总体X 的分布函数为0,0(),01,x x F x x x θθθθ≤⎧⎪⎪=<<⎨⎪≥⎪⎩;由于2θ=EX ,得X 2ˆ1=θθ的矩估计量为 1ˆ[2]2θθ===E E X EX ,故的无偏估计量。
数理统计试题及答案
![数理统计试题及答案](https://img.taocdn.com/s3/m/367717eff424ccbff121dd36a32d7375a417c6e9.png)
数理统计试题及答案一、选择题1. 在一次试验中,事件A和事件B是互斥事件,概率分别为0.4和0.3。
则事件“A或B”发生的概率是多少?A. 0.1B. 0.2C. 0.3D. 0.7答案:D. 0.72. 一批产品的重量服从正态分布,均值为100g,标准差为5g。
若随机抽取一件产品,其重量大于105g的概率是多少?A. 0.6827B. 0.1587C. 0.3413D. 0.0228答案:B. 0.15873. 一家量化投资公司共有1000名员工,调查结果显示,有700人拥有股票,400人拥有债券,300人既拥有股票又拥有债券。
随机选择一名员工,问其既拥有股票又拥有债券的概率是多少?A. 0.3B. 0.4C. 0.2D. 0.15答案:A. 0.34. 设X和Y为两个随机变量,已知X的期望为2,方差为4;Y的期望为5,方差为9,且X与Y的协方差为6。
则X + Y的期望为多少?A. 5B. 7C. 6D. 9答案:B. 7二、计算题1. 一箱产品中有10个次品,从中随机抽取3个,求抽到1个次品的概率。
解答:总共的可能抽取组合数为C(10,3) = 120。
抽取到1个次品的组合数为C(10,1) * C(90,2) = 4005。
所以,抽到1个次品的概率为4005/120 = 33.375%。
2. 已知某城市的男性身高服从正态分布,均值为172cm,标准差为5cm;女性身高也服从正态分布,均值为160cm,标准差为4cm。
问男性身高高于女性身高的概率是多少?解答:需要计算男性身高大于女性身高的概率,可以转化为计算两个正态分布随机变量之差的概率。
设随机变量X表示男性身高,Y表示女性身高,则X - Y服从正态分布,其均值为172cm - 160cm = 12cm,方差为5cm^2 + 4cm^2 =41cm^2。
要计算男性身高高于女性身高的概率,即计算P(X - Y > 0)。
首先,标准化X - Y,得到标准正态分布的随机变量Z:Z = (X - Y - 12) / sqrt(41)所以,P(X - Y > 0) = P(Z > (0 - 12) / sqrt(41)) = P(Z > -2.464)查标准正态分布表可知,P(Z > -2.464) ≈ 0.9937所以,男性身高高于女性身高的概率约为99.37%。
数理统计期末测试题
![数理统计期末测试题](https://img.taocdn.com/s3/m/4bb9838dcc22bcd126ff0c50.png)
数理统计一、填空题1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g , 则称),,(21n X X X g 为统计量。
不含任何未知参数2、设母体σσμ),,(~2N X 已知,则在求均值μ的区间估计时,使用的随机变量为nX σμ-3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为 。
025.01015u ⨯±4、假设检验的统计思想是 。
小概率事件在一次试验中不会发生5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%, 此问题的原假设为 。
0H :05.0≤p6、某地区的年降雨量),(~2σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2σ的矩估计值为 。
1430.87、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2N 与)1,2(N , 2*22*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS +==χχ,已知)4(~),20(~222221χχχχ,则__________,==b a 。
用)1(~)1(222*--n S n χσ,1,5-==b a8、假设随机变量)(~n t X ,则21X 服从分布 。
)1,(n F 9、假设随机变量),10(~t X 已知05.0)(2=≤λX P ,则____=λ 。
用),1(~2n F X 得),1(95.0n F =λ10、设子样1621,,,X X X 来自标准正态分布母体)1,0(N ,X为子样均值,而01.0)(=>λX P , 则____=λ01.04)1,0(~1z N nX=⇒λ 11、假设子样1621,,,X X X 来自正态母体),(2σμN ,令∑∑==-=161110143i i i iX XY ,则Y 的分布 )170,10(2σμN12、设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与2S 分别是子样均值和子样方差,令2*210S X Y =,若已知01.0)(=≥λY P ,则____=λ 。
《概率论与数理统计》期末考试试题及解答.doc
![《概率论与数理统计》期末考试试题及解答.doc](https://img.taocdn.com/s3/m/9f98f424bb68a98271fefa96.png)
《概率论与数理统计》期末考试试题及解答一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)?P(B)?0.5,则A,B至少有一个不发生的概率为__________.答案:0.3解:P(A?B)?0.3即0.3?P(A)?P(B)?P(A)?P(AB)?P(B)?P(AB)?0.5?2P(AB)所以P(AB)?0.1P(?)?P(AB)?1?P(AB)?0.9.2.设随机变量X服从泊松分布,且P(X?1)?4P(X?2),则P(X?3)?______.答案:1?1e6解答:P(X?1)?P(X?0)?P(X?1)?e????e,??P(X?2)??22e??????2?? 由P(X?1)?4P(X?2) 知e??e?2?e2 即2????1?0 解得??1,故P(X?3)?1?1e 623.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y?X在区间(0,4)内的概率密度为fY(y)?_________.答案:0?y?4,fY(y)?FY?(y)?fX? 0,其它.?解答:设Y的分布函数为FY(y),X的分布函数为FX(x),密度为fX(x)则FY(y)?P(Y?y)?P(X?2y)?y?)yX)Xy? ?)y 因为X~U(0,2),所以FX(?0,即FY(y)?FX故10?y?4,fY(y)?FY?(y)?fX? 0,其它.?另解在(0,2)上函数y?x2严格单调,反函数为h(y)?所以0?y?4,fY(y)?fX? ?0,其它.?24.设随机变量X,Y相互独立,且均服从参数为?的指数分布,P(X?1)?e,则??_________,P{min(X,Y)?1}=_________.答案:??2,P{min(X,Y)?1}?1?e-4解答:P(X?1)?1?P(X?1)?e???e?2,故??2P{min(X,Y)?1}?1?P{min(X,Y)?1}?1?P(X?1)P(Y?1)?1?e?4.5.设总体X的概率密度为???(??1)x,0?x?1, f(x)?? ???1. ?其它?0,X1,X2,?,Xn是来自X的样本,则未知参数?的极大似然估计量为_________.答案:???11nlnxi?ni?1?1解答:似然函数为L(x1,?,xn;?)??(??1)xi??(??1)n(x1,?,xn)?i?1nlnL?nln(??1)??n?lnxi?1ni解似然方程得?的极大似然估计为dlnLn???lnxi?0 d???1i?12?? ?11n?lnxini?1?1.二、单项选择题(每小题3分,共15分)1.设A,B,C为三个事件,且A,B相互独立,则以下结论中不正确的是(A)若P(C)?1,则AC与BC也独立.(B)若P(C)?1,则A?C与B也独立.(C)若P(C)?0,则A?C与B也独立.(D)若C?B,则A与C也独立. ()答案:(D).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D).事实上由图可见A与C不独立.2.设随机变量X~N(0,1),X的分布函数为?(x),则P(|X|?2)的值为(A)2[1??(2)]. (B)2?(2)?1.(C)2??(2). (D)1?2?(2). ()答案:(A)解答:X~N(0,1)所以P(|X|?2)?1?P(|X|?2)?1?P(?2?X?2)(2)??(?2)?1?[2?(2?) ?1??1]?2?[1 ? 应选(A).3.设随机变量X和Y不相关,则下列结论中正确的是(A)X与Y独立. (B)D(X?Y)?DX?DY.(C)D(X?Y)?DX?DY. (D)D(XY)?DXDY. () 3答案:(B)解答:由不相关的等价条件知,?xy?0?cov(x,y)?0 D(X?Y)?DX?DY+2cov (x,y)应选(B).4.设离散型随机变量X和Y的联合概率分布为(X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3) P111169183??若X,Y独立,则?,?的值为(A)??29,??19. (A)??129,??9.(C)??16,??16 (D)??518,??118.4 )(答案:(A)解答:若X,Y独立则有??P(X?2,Y?2)?P(X?2)P(Y?2) 1121 ?(????)(??)?(??) 393921 ???,??99 故应选(A).5.设总体X的数学期望为?,X1,X2,?,Xn为来自X的样本,则下列结论中正确的是(A)X1是?的无偏估计量. (B)X1是?的极大似然估计量.(C)X1是?的相合(一致)估计量. (D)X1不是?的估计量. ()答案:(A)解答:EX1??,所以X1是?的无偏估计,应选(A).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设A?‘任取一产品,经检验认为是合格品’B?‘任取一产品确是合格品’则(1)P(A)?P(B)P(A|B)?P()P(A|)?0.9?0.95?0.1?0.02?0.857.(2)P(B|A)?四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.5 P(AB)0.9?0.95??0.9977. P(A)0.857解:X的概率分布为P(X?k)?C3()()k25k353?kk?0,1,2,3.X即X的分布函数为P02712515412523612538 125x?0,?0,?27?,0?x?1,?125??81,1?x?2, F(x)???125?117 2?x?3,?125,?x?3.?1,?26EX?3??,552318DX?3???.5525五、(10分)设二维随机变量(X,Y)在区域D?{(x,y)|x?0,y?0,x?y?1} 上服从均匀分布. 求(1)(X,Y)关于X的边缘概率密度;(2)Z?X?Y的分布函数与概率密度.(1)(X,Y)的概率密度为?2,(x,y)?Df(x,y)??0,其它.?fX(x)?(2)利用公式fZ(z)? 其中f(x,z?x)????????????2?2x,0?x?1f(x,y)dy??0,其它??f(x,z?x)dx?2,0?x?1,0?z?x?1?x?2,0?x?1,x?z?1.??0,其它??0,其它.当z?0或z?1时fZ(z)?0 0?z?1时fZ(z)?2?z0dx?2x0?2zz6故Z的概率密度为??2z,0?z?1,fZ(z)????0,其它.Z的分布函数为fZ(z)??z??z?0?0,?0,z?0,?z??fZ(y)dy???2ydy,0?z?1??z2,0?z?1, 0??1,z?1.?z?1??1,或利用分布函数法?z?0,?0,?FZ(z)?P(Z?z z1,)?P(X?Y?)z,y0??????2dxd?D1?1,z?1.??0,?2, ??z?1,?z?0,0?z?1, z?1.?2z,?0,0?z?1,其它.fZ(z)?FZ?(z)??六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,2)分布. 求(1)命中环形区域D?{(x,y)|1?x?y?2}的概率;(2)命中点到目标中心距离Z?1)P{X,Y)?D}?222.??f(x,y)dxdyD???2??4D?x2?y28dxdy? 18?r282??2?21e?r28rdrd??(2)EZ?E? ?21e?r28d(?)??e 82??e?e;1?18?12 ?? ??r28 ????1e?04 ???1e8??x2?y28dxdy?18???2???0re?rdrd??r28r2dr7??rer2?8????0??0e?r28dr??????r28dr?.七、(11分)设某机器生产的零件长度(单位:cm)X~N(?,?2),今抽取容量为16的样本,测得样本均值?10,样本方差s2?0.16. (1)求?的置信度为0.95的置信区间;(2)检验假设H0:?2?0.1(显著性水平为0.05).(附注)t0.05(16)?1.746,t0.05(15)?1.753,t0.025(15)?2.132,解:(1)?的置信度为1??下的置信区间为(?t?/2(n?222?0.05(16)?26.296,?0.05(15)?24.996,?0.025(15)?27.488. ?t?/2(n??10,s?0.4,n?16,??0.05,t0.025(15)?2.132所以?的置信度为0.95的置信区间为(9.7868,10.2132)2 (2)H0:?2?0.1的拒绝域为?2???(n?1).15S22?15?1.6?24,?0.05 ??(15)?24.996 0.12 因为?2?24?24.996??0.05(15),所以接受H0.2《概率论与数理统计》期末考试试题(A)专业、班级:姓名:学号:一、单项选择题(每题3分共18分)891011121314151617《概率论与数理统计》课程期末考试试题(B)专业、班级:姓名:学号:181920212223242526272829共8页30。
《应用数理统计》考试试题与参考答案
![《应用数理统计》考试试题与参考答案](https://img.taocdn.com/s3/m/a760fd4033687e21af45a933.png)
《应用数理统计》试卷 第 1 页 共 4 页《应用数理统计》期末考试试卷一、单项选择题:(每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )A.P(A)=1-P (B )B.P(AB)=P(A)P(B)C.P(A ∪B)=1D.P(AB )=1 2、设A ,B 为随机事件,P(A)>0,P (A|B )=1,则必有( ) A.P(A ∪B)=P(A) B.A ⊂B C.P(A)=P(B) D.P(AB)=P(A)3、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( )A.2422B .C C 2142 C .242!A D.24!!4、某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( ) A.()343B.41)43(2C. 43)41(2D.C 4221434()5、已知随机变量X 的概率密度为f X (x ),令Y=-2X ,则Y 的概率密度f Y (y)为( )A.2f X (-2y)B.f X ()-y2C.--122f y X () D.122f y X ()- 6、如果函数f(x)=x a x b x a x b,;,≤≤或0<>⎧⎨⎩是某连续随机变量X 的概率密度,则区间[a,b]可以是( )A.〔0,1〕B.〔0,2〕C.〔0,2〕D.〔1,2〕7、下列各函数中是随机变量分布函数的为( )A.F x xx 1211(),=+-∞<<+∞B..0,1;0,0)(2x x x x x F ≤C.F x e x x 3(),=-∞<<+∞-D.F x arctgx x 43412(),=+-∞<<+∞π8 则P{X=0}=A.112B.212 C. 412 D. 5129、已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=( ) A. 3 B. 6 C. 10 D. 12 10、设Ф(x)为标准正态分布函数,X i =10,,事件发生;事件不发生,A A ⎧⎨⎩ i=1,2,…,100,且P(A)=0.8,X 1,X 2,…,X 100相互独立。
数理统计试题
![数理统计试题](https://img.taocdn.com/s3/m/ae750a16daef5ef7bb0d3c0e.png)
<数理统计>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 (必须写出分布的参数)。
2.设),(~2σμN X ,而,,,,是从总体X 中抽取的样本,则μ的矩估计值为 。
3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。
4.已知2)20,8(1.0=F ,则=)8,20(9.0F 。
5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。
6.设样本的频数分布为则样本方差2s =_____________________。
7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。
8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________。
9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x,x, …,x )落入W 的概率为,则犯第一类错误的概率为_____________________。
10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。
11.设总体服从正态分布,且未知,设为来自该总体的一个样本,记,则的置信水平为的置信区间公式是 ;若已知,则要使上面这个置信区间长度小于等于,则样本容量n 至少要取__ __。
12.设为来自正态总体的一个简单随机样本,其中参数和均未知,记,,则假设:的检验使用的统计量是 。
概率论与数理统计试题库及答案(考试必做)
![概率论与数理统计试题库及答案(考试必做)](https://img.taocdn.com/s3/m/37f905ef0875f46527d3240c844769eae009a321.png)
概率论与数理统计试题库及答案(考试必做)概率论试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,P (A)=0.5,P(B)=0.6,P(BA)=0.8。
则P(B A)=3.若事件A和事件B相互独立, P(A)= ,P(B)=0.3,P(A B)=0.7,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词__的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X分布律为P{X k} 5A(1/2)A=______________7. 已知随机变量X的密度为f(x)k(k 1,2, )则ax b,0 x 1,且P{x 1/2} 5/8,则0,其它a ________b ________28. 设X~N(2, ),且P{2 x 4} 0.3,则P{x 0} _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x+ x+1=0有实根的概率是280,则该射手的命8111.设P{X 0,Y 0}34,P{X 0} P{Y 0} ,则P{max{X,Y} 0} 7712.用(X,Y)的联合分布函数F(x,y)表示P{a X b,Y c} 13.用(X,Y)的联合分布函数F(x,y)表示P{X a,Y b} 14.设平面区域D 由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知X~N( 2,0.4),则E(X 3)=16.设X~N(10,0.6),Y~N(1,2),且X与Y相互独立,则17.设X的概率密度为f(x)22D(3X Y)x2,则D(X)=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,2),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)= 219.设D(X) 25,D Y 36, xy 0.4,则D(X Y) 20.设X1,X2, ,Xn, 是独立同分布的随机变量序列,且均值为,方差为,那么当n充分大时,近似有X~或2~。
数理统计试题及答案
![数理统计试题及答案](https://img.taocdn.com/s3/m/93262aa0a1116c175f0e7cd184254b35effd1a78.png)
一、 (满分12分)X X X n ,,,12是总体X 的随机样本, X 的密度函数为)( ⎩≥⎨=><<∞⎧-λλλx f x e x x 0,0()0,0(1) 求X 的特征函数;(2) 利用X 的特征函数,求EX D X ,(); (3) 求∑==S X k k n1的概率密度函数. 二、(满分8分))(>X X X n n ,,,1122是总体μσN (,)2的随机样本,记 ,∑∑∑∑+--===-=-=-==+==+S S n n n n Y X Y X S X Y S X Y Z n Y Y k k n k k n k k k k n n n n 11,,(),()1111()121111*2*212112212*22*2222求统计量Z 的分布.三、 (满分14分)总体X 服从均匀分布θU (0,), X X X n ,,,12为其样本,(1) 证明,==+=+θθθn X n X X n n ,(1)2ˆˆˆ11()2(1)3都是未知参数θ的无偏估计; (2) 比较这三个估计量的优劣性.四、(满分14分)测得两批电子器材的电阻值(单位:Ω)分别为:A 批: 30, 32, 34, 36, 38, 42, 48, 52, 52, 56B 批: 31, 33, 37, 42, 46, 48, 53, 55, 56, 59设A 批器材的电阻μσX N ~(,),112B 批器材的电阻μσY N ~(,)222,而且总体相互独立.在显著性水平=α0.05下,能否认为两批器材的电阻的分布相同? 五、(满分14分)X X X n ,,,12是总体X 的随机样本,X 的密度函数为他其)( ⎩⎪⎨=>⎪<<⎧-θθθθf x x x 0,(;)0,01111(1)求未知参数θ的极大似然估计量θˆ; (2)证明θˆ是未知参数θ的UMVUE .六、(满分8分)将一颗骰子掷了120次,所得结果如下: 点数i 1 2 3 4 5 6 出现次数νi232718221416试在显著性水平=α0.05下,检验一颗骰子是否均匀、对称?七、 (满分16分)假定在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 对应的数据如下:x s / 1 2 3 4 5 6 7 8 9 10 μy m /7101316182123252730应用线性模型⎩⎨⎧=++εσεεεεN y a bx n ~(0,),,,,212为其样本.(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)预测腐蚀时间为=x s 6.50时,腐蚀深度y 0的范围-=a (10.95); (4) 若要使腐蚀深度在20-26μm 之间,腐蚀时间应该如何控制(=α0.05).八、 (满分14分) 某种型号的电池4批,分别为四个工厂所生产.各随机抽取5只电池样品,得它们的寿命如下:A 140 48 40 42 45 A 2 26 34 30 28 32 A 339 40 41 50 50 A 43634404035试在显著性水平=α0.05下,检验各批电池的平均寿命有无显著性的差异. 附注:计算中可能用到的数据如下:,,,,,,)(======Φ===χF F F r F t t (99) 4.03(1,8) 5.32,(3,16) 3.24.511.071(8)0.6319(99) 3.18(1.96)0.975,(18) 2.101,(8) 2.306,0.9750.950.950.950.050.9520.9750.975一、(满分12) 解:(1)X 的特征函数为())1)00()()|1()it xitxit xX e itt f x e dx edx it λλλφλλλ---∞∞---∞-∞====---⎰⎰(((2)21222222221()1(0)(0)222()1(0)(0)1()X X X X X X i it i t EX i it t EX i DX EX EX φφφλλλλφφφλλλλλ----⎛⎫'''=-=== ⎪⎝⎭--⎛⎫''''''=-=== ⎪⎝⎭=-=,,;,,;.(3)S 的特征函数为S ()[()](1/)n n X t t it φφλ-==-所以),(λn Γ~ S ,其密度函数为.0,00,!1)(1S ⎪⎩⎪⎨⎧≤>-=--y y n e y y f yn n )(λλ 二、(满分8)解:根据抽样分布定理得,*2*22222121222*2*21212(1)(1)11~(,),~(,),~(1)~(1),,n S n S Y N Y N n n n n Y Y S S μσμσχχσσ----,并且,,相互独立.于是,212*2*212*2*2122~(0,)~(0,1)(1)(1)2~(22)21)(1)2Y Y N N n n S n S n n S n S σχσσ--+---+-,,相互独立. 由t 分布的定义得 ,~(16)~(22)t Z t n =-,即. 三、(满分14分)解: (1)X 的密度函数为X 的分布函数为 0,0(),01,x F x x x x θθθθ≤⎧⎪=<<⎨⎪≥⎩;)(n X 的密度函数为()11,0()[()]()0,n n n nX n x x f x n F x f x θθθθ--⎧<<⎪==⎨⎪⎩;;其他 ()1()01ˆ.1nn n nx n n EX n dx E E X n n θθθθθ+⎡⎤====⎢⎥+⎣⎦⎰, (1)X 的密度函数为(1)11(),0()[1()]()0,n n n X n x x f x n F x f x θθθθθ--⎧-<<⎪=-=⎨⎪⎩;;其他 1(1)2(1)0()ˆ(1)1n nx x EX n dx E E n X n θθθθθθ--⎡⎤===+=⎣⎦+⎰,. 3ˆ(2)2E E X EX θθ===. 所以,1()2(1)31ˆˆˆ,(1),2n n X n X X nθθθ+==+=都是θ的无偏估计量. 2)122222()()()()2()()2(2)(1)n n n n n nx n n EXn dx D X EX EX n n n θθθθ+===-=+++⎰, ()2122222(1)(1(1)(1)2()2()(2)(1)(2)(1)n nx x n EX n D X EX EX n n n n θθθθθ--===-=++++⎰,.10()0,x f x θθθ⎧<<⎪=⎨⎪⎩,;其他()()2221()2(1)31ˆˆˆ()()()(1)()2(2)23n n n D D X D D n X D D X n n n n nθθθθθθ+===+===++,,所以,当1n >,132ˆˆˆ()()()D D D θθθ<<, 132ˆˆˆθθθ最有效,次之,效果最差. 四、(满分14)解:首先检验 2222012112:,:H H σσσσ=≠ 当0H 成立时, *21*22~(9,9)S F F S =拒绝域为 0,975(9,9) 4.03F F ≥= 或0.0251(9,9)0.2484.03F F ≤== 得 *2*21242,88,46,99.3333x S y S ====*21*220.8859S F S ==由于0.2480.8859 4.03F <=<,所以接受0H ,即认为两批器材的电阻的方差没有显著性差异.在此基础上检验012112:,:H H μμμμ=≠ 当0H 成立时,~(18)t t =拒绝域为 0.975||(18) 2.101t t ≥= 计算可得0.9242t ==- 由于||0.9242 2.101t =<,所以接受0H ,即认为两批器材的电阻的均值没有显著性的差异.综合以上,可以认为两批器材的电阻的分布相同. 五、(满分14分)解:(1) 11111()(;)()0nnk kn k k L f x x θθθθθ-====>∏∏,取对数得,11ln ()ln 1ln nk k L n x θθθ=⎛⎫=-+- ⎪⎝⎭∑令211ln ()ln 0n k k d n L x d θθθθ==--=∑ 解得 =11ˆln nkk x n θ=-∑ 所以,未知参数θ的极大似然估计量 11ˆln n k k X n θ-=-∑. (2) :(;)0f x θθ>{}=(0,1)与未知参数θ无关.[]11101211222202111(ln )ln 1(ln )ln 2ln 11ˆˆln ,()ln ttn nk k k k tE X xx dx e dt t E X xx dx e dt D X E E X D D X n n n θθθθθθθθθθθθθθθ--∞--∞==-===-===-=⎡⎤⎡⎤=-==-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰∑∑,,,,,2223222121ln 21);(ln )(θθθθθθθθ=+-=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡∂∂-=X E X f E I 由于 21ˆ()()D nnI θθθ==, 所以,=11ˆln nkk X n θ=-∑是未知参数θ的有效估计量,也是未知参数θ的UMVUE . 六、(满分8分)解: 0111:(1,2,,6),:(1,2,,6)66i i H p i H p i ===不全是当0H 成立时, 26221()(5).k k k k np np νχχ=-=∑近似服从 拒绝域为 22210.95(5)=(5)11.071αχχχ-≥=经计算得 2621() 5.911.071k k k knp np νχ=-==<∑ 所以接受0H ,可以认为这个骰子是均匀、对称的. 七、(满分16)解:(1)21112111155,()82.5,19,()512,205.n nn k xx k k k k k n nyy k xy k k k k x x L x x y y n n L y y L x y nx y ========-====-==-⨯=∑∑∑∑∑.设a 和b 的最小二乘估计分别为aˆ和b ˆ,则 205ˆˆˆ 5.3333, 2.484882.5xy xx L ay bx b L =-==== 回归方程为 ˆˆˆ 5.3333 2.4848ya bx x =+=+. (2)0:,0:10≠=b H b H当0H 成立时, )2(~ˆˆ-=n t L bt xx e σ拒绝域为 1-/20.975||(2)(8) 2.306t t n t α≥-==计算可得,ˆ0.570839.541e t σ====,由于||39.541 2.306t =>,所以,拒绝0H ,认为回归效果显著.(3)当0 6.5x =时,ε++=00bx a y ,00ˆˆˆ21.4848y a bx =+= 由于, )2(~)(11ˆˆ2000--++-=n t Lxxx x n y yt e σ得到, αα-=-<-1)}2(|{|21n tt P所以,成本0y 的置信水平为α-1的预测区间为120012ˆˆˆˆ(2)(2).yt n y t n αασσ--⎛--+- ⎝代入数据计算可得,001122ˆ20.1ˆˆˆ((22.870e e y t n y t n αασσ----+-=,所以,当06x =.5,腐蚀深度0y 的置信水平为95.0的预测区间为20.10,22.87().(4)当腐蚀深度在20-26m μ之间,近似地有0.97511ˆˆ'(')(200.5708 1.96 5.3333) 6.35ˆ 2.4848e x y u a b σ=+-=+⨯-=0.97511ˆˆ''('')=(260.5708 1.96 5.3333)7.87ˆ 2.4848e x y u a bσ=---⨯-= 所以,腐蚀时间控制6.35~7.87s ,可以使腐蚀深度在20-26m μ之间. 八(满分14)、解:20,5,44321======n n n n n r)4,,2,1(:,:143210 ====k H H k μμμμμ不全相同.当0H 成立时, ),1(~1r n r F rn S r S F e A----=拒绝域为 10.95(1,)(3,16) 3.24F F r n r F α-≥--== . 计算可得,1122111111111143,()48n n k k k k x x n S x x n =====-=∑∑2222222222112130,()40n n kk k k x xn S x x n =====-=∑∑3322333333113144,()122n n k k k k x x n S x x n =====-=∑∑4422444444114137,()32n n kk k k x xn S x x n =====-=∑∑24212==∑=rk kk e S n S 42211()5()625rA k k k k k S n x x x x ===-=-=∑∑由于 113.77 3.24Ae S r F S n r-==>-,所以拒绝0H ,即认为不同厂家的电池的平均寿命有显著性差异.。
数理统计 期末试题及答案
![数理统计 期末试题及答案](https://img.taocdn.com/s3/m/a3cdd9775b8102d276a20029bd64783e09127dbe.png)
数理统计期末试题及答案注意事项:本文为数理统计期末试题及答案,按照试题的要求,将试题和答案进行整理和排版,以便学生们参考和复习。
以下为试题及答案的详细内容。
一、选择题1. 下列哪个统计图可以用于表示定性变量的分布情况?A. 饼图B. 直方图C. 线图D. 散点图答案:A2. 假设某地区的年降雨量服从正态分布,平均降雨量为50mm,标准差为10mm。
设有一天的降雨量为X,X~N(50,10^2),则P(X≥60)等于多少?A. 0.1587B. 0.3413C. 0.5000D. 0.8413答案:D3. 在一场篮球赛中,甲队的命中率为75%,乙队的命中率为80%。
已知甲队共投篮20次,乙队共投篮30次。
问:甲队在这场比赛中命中球的次数比乙队多多少次?A. 1B. 2C. 3D. 4答案:B4. 某投资公司第一天投资100万美元,以后每天投资额为前一天的1/4。
设投资额构成一个等比数列,求该公司的总投资额。
A. 200万美元B. 240万美元C. 250万美元D. 300万美元答案:C5. 一个城市中共有A、B、C三个医院,过去一年中A医院门诊病人数占总病人数的1/3,B医院门诊病人数占总病人数的1/4,C医院门诊病人数占总病人数的1/6。
如果某天随机选择一位门诊病人,那么他就诊于C医院的概率是多少?A. 1/6B. 1/5C. 1/4D. 1/3答案:A二、计算题1. 设X为正态分布随机变量,已知X~N(50,16),求P(45≤X≤55)。
答案:要求P(45≤X≤55),可以使用标准正态分布表计算。
先求得标准化后的值:(45-50)/4=-1.25,(55-50)/4=1.25。
查表可得P(-1.25≤Z≤1.25)=0.7881-0.1056=0.6825。
故P(45≤X≤55)≈0.6825。
2. 甲、乙两人独立地各自以相同的速率生产零件,甲人生产的零件平均每小时有2个次品,乙人生产的零件平均每小时有3个次品。
数理统计期中考试试题及答案
![数理统计期中考试试题及答案](https://img.taocdn.com/s3/m/71d0417fdc36a32d7375a417866fb84ae45cc39f.png)
数理统计期中考试试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是描述数据集中趋势的度量?A. 方差B. 标准差C. 平均值D. 极差答案:C2. 在统计学中,正态分布曲线的对称轴是什么?A. 均值B. 中位数C. 众数D. 标准差答案:A3. 以下哪个不是描述数据离散程度的统计量?A. 方差B. 标准差C. 平均值D. 极差答案:C4. 假设检验中,拒绝原假设意味着什么?A. 原假设是正确的B. 原假设是错误的C. 无法确定原假设的正确性D. 需要更多的数据答案:B5. 以下哪个统计量用于衡量两个变量之间的相关性?A. 均值B. 标准差C. 相关系数D. 方差答案:C6. 以下哪个选项是描述数据分布形状的度量?A. 平均值B. 方差C. 偏度D. 峰度答案:C7. 以下哪个选项是描述数据分布中心位置的度量?A. 方差B. 标准差C. 中位数D. 众数答案:C8. 以下哪个选项是描述数据分布集中程度的度量?A. 极差B. 方差C. 标准差D. 偏度答案:B9. 以下哪个选项是描述数据分布的峰值的度量?A. 方差B. 标准差C. 峰度D. 偏度答案:C10. 以下哪个选项是描述数据分布的偏斜程度的度量?A. 方差B. 标准差C. 偏度D. 峰度答案:C二、填空题(每题3分,共15分)1. 一组数据的均值是50,标准差是10,则这组数据的方差是______。
答案:1002. 如果一组数据服从正态分布,那么它的均值和中位数是______。
答案:相等的3. 相关系数的取值范围是______。
答案:-1到14. 在进行假设检验时,如果p值小于显著性水平α,则我们______原假设。
答案:拒绝5. 一组数据的偏度为0,说明这组数据是______。
答案:对称的三、简答题(每题5分,共20分)1. 请简述什么是置信区间,并给出其计算方法。
答案:置信区间是用于估计一个未知参数的区间,它表明了在给定的置信水平下,参数值落在这个区间内的概率。
数理统计期中考试试题及答案
![数理统计期中考试试题及答案](https://img.taocdn.com/s3/m/d9a363c450e79b89680203d8ce2f0066f4336462.png)
数理统计期中考试试题及答案一、选择题(每题5分,共20分)1. 下列哪项是描述数据离散程度的统计量?A. 平均数B. 中位数C. 众数D. 方差答案:D2. 以下哪个分布是描述二项分布的?A. 正态分布B. 泊松分布C. 均匀分布D. 二项分布答案:D3. 以下哪个公式是计算样本方差的?A. \( \bar{x} = \frac{\sum_{i=1}^{n}x_i}{n} \)B. \( s^2 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1} \)C. \( \sigma^2 = \frac{\sum_{i=1}^{n}(x_i - \mu)^2}{n} \)D. \( \mu = \frac{\sum_{i=1}^{n}x_i}{n} \)答案:B4. 以下哪个统计量用于衡量两个变量之间的相关性?A. 标准差B. 相关系数C. 回归系数D. 均值答案:B二、填空题(每题5分,共20分)1. 一组数据的均值是50,中位数是45,众数是40,这组数据的分布是_____。
答案:右偏分布2. 如果一个随机变量服从标准正态分布,那么其均值μ和标准差σ分别是_____和_____。
答案:0,13. 在回归分析中,如果自变量X的增加导致因变量Y的增加,那么X和Y之间的相关系数是_____。
答案:正数4. 假设检验的目的是确定一个统计假设是否_____。
答案:成立三、计算题(每题10分,共30分)1. 已知样本数据:2, 4, 6, 8, 10,求样本均值和样本方差。
答案:均值 = 6,方差 = 82. 假设一个二项分布的随机变量X,其成功概率为0.5,试求X=2的概率。
答案:\( P(X=2) = C_4^2 \times 0.5^2 \times 0.5^2 = 0.25 \)3. 已知两个变量X和Y的相关系数为0.8,求X和Y的线性回归方程。
答案:需要更多信息,如X和Y的均值和方差,才能求解。
数理统计学试题 答案
![数理统计学试题 答案](https://img.taocdn.com/s3/m/1233c8fe58fafab069dc02b8.png)
第一学期成人本科数理统计学试题一、选择题(每题1分,共30分)1、样本是总体中:(D)A、任意一部分B、典型部分C、有意义的部分D、有代表性的部分E、有价值的部分2、参数是指:(C)A、参与个体数B、研究个体数C、总体的统计指标D、样本的总和E、样本的统计指标3、抽样的目的是:(E)A、研究样本统计量B、研究总体统计量C、研究典型案例D、研究误差E、样本推断总体参数4、脉搏数(次/分)是:(B)A、观察单位B、数值变量C、名义变量D.等级变量E.研究个体5、疗效是:(D)A、观察单位B、数值变量C、名义变量D、等级变量E、研究个体6、抽签的方法属于(D)A、分层抽样B、系统抽样C、整群抽样D、单纯随机抽样E、二级抽样7、统计工作的步骤正确的是(C)A、收集资料、设计、整理资料、分析资料B、收集资料、整理资料、设计、统计推断C、设计、收集资料、整理资料、分析资料D、收集资料、整理资料、核对、分析资料E、搜集资料、整理资料、分析资料、进行推断8、实验设计中要求严格遵守四个基本原则,其目的是为了:(D)A、便于统计处理B、严格控制随机误差的影响C、便于进行试验D、减少和抵消非实验因素的干扰E、以上都不对9、对照组不给予任何处理,属(E)A、相互对照B、标准对照C、实验对照D、自身对照E、空白对照10、统计学常将P≤0.05或P≤0.01的事件称(D)A、必然事件B、不可能事件C、随机事件D、小概率事件E、偶然事件11、医学统计的研究内容是(E)A、研究样本B、研究个体C、研究变量之间的相关关系D、研究总体E、研究资料或信息的收集.整理和分析12、统计中所说的总体是指:(A)A、根据研究目的确定的同质的研究对象的全体B、随意想象的研究对象的全体C、根据地区划分的研究对象的全体D、根据时间划分的研究对象的全体E、根据人群划分的研究对象的全体13、概率P=0,则表示(B)A、某事件必然发生B、某事件必然不发生C、某事件发生的可能性很小D、某事件发生的可能性很大E、以上均不对14、总体应该由(D)A、研究对象组成B、研究变量组成C、研究目的而定D、同质个体组成E、个体组成15、在统计学中,参数的含义是(D)A、变量B、参与研究的数目C、研究样本的统计指标D、总体的统计指标E、与统计研究有关的变量16、调查某单位科研人员论文发表的情况,统计每人每年的论文发表数应属于(A)A、计数资料B、计量资料C、总体D、个体E、样本17、统计学中的小概率事件,下面说法正确的是:(B)A、反复多次观察,绝对不发生的事件B、在一次观察中,可以认为不会发生的事件C、发生概率小于0.1的事件D、发生概率小于0.001的事件E、发生概率小于0.1的事件18、统计上所说的样本是指:(D)A、按照研究者要求抽取总体中有意义的部分B、随意抽取总体中任意部分C、有意识的抽取总体中有典型部分D、按照随机原则抽取总体中有代表性部分E、总体中的每一个个体19、以舒张压≥12.7KPa为高血压,测量1000人,结果有990名非高血压患者,有10名高血压患者,该资料属(B)资料。
数理统计期末考试试题答案
![数理统计期末考试试题答案](https://img.taocdn.com/s3/m/6c17391c78563c1ec5da50e2524de518964bd392.png)
1. Let n X X X ,,,21 be a random sample from the ),(βαGamma distributionβααβαβαxe x xf --Γ=1)(1),|(, 0>x , 0>α, 0>β.(a) ( 8 %) Find the method of moment estimates of α and β. (b) ( 7 %) Find the MLE of β, assuming α is known.(c) ( 7 %) Giving 0>α, find the Cramer-Rao lower bound of estimates of β. (d) ( 8 %) Giving 0>α, find the UMVUE of β.2. Suppose that n X X X ,,,21 are iid ~),2(p B , )1,0(∈p . Let )1(2)(p p p -=τ.(a) ( 5 %) Show that ∑==ni i X T 1 is a sufficient statistic for p .(b) ( 5 %) Let ⎩⎨⎧≠==1 if ,01if ,111X X Y . Show that Y is an unbiased estimate of )(p τ.(c) (10%) Find the UMVUE W of )(p τ.3. Let n X X X , , ,21 be a random sample from a )(λPoisson ,0>λ, distribution. Consider testing 1:0=λH vs 3:1=λH . (a) (10%) Find a UMP level α test, 10<<α.(b) ( 7 %) For 3=n , the test rejects 0H , if 5321≥++X X X .Find the power function )(λβ of the test.(c) ( 8 %) For 3=n , the test rejects 0H , if 5321≥++X X X .Evaluate the size and the power of the test.4. (10%) Let n X X X , , ,21 be iid )(ΛPoisson distribution, and let the priordistribution of Λ be a ),(βαGamma distribution, 0>α, 0>β. Find the posterior distribution of Λ.5. Let n X X X , , ,21 be a random sample from an exponential distribution with meanθ,0>θ. (a) ( 5 %) Show that ∑==ni i X T 1 is a sufficient statistic n for θ.(b) ( 5 %) Show that the Poisson family has a monotone likelihood ratio, MLR. (c) ( 5 %) Find a UMP level α test of 10:0≤<θH vs 1:1>θH by theKarlin-Rubin Theorem shown below.[Definition] A family of pdfs or pmfs }|)|({Θ∈θθt g has a monotone likelihood ratio,MLR, if for every 12θθ>, )|()|(12θθt g t g is a monotone function of t .[Karlin-Rubin Theorem] Suppose that T is a sufficient statistic for θ and the pdfs orpmfs }|)|({Θ∈θθt g has a non-decreasing monotone likelihood ratio. Consider testing 00:θθ≤H vs 01:θθ>H . A UMP level α test rejects 0H if and only if 0t T >, where )(00t T P >=θα.數理統計期末考試試題答案1. (a) Since αββαβαβαααβαα=Γ+Γ=Γ=+∞-⎰)()1()(1)(10dx e x X E xand22012)1()()2()(1)(βααβαβαβαααβαα+=Γ+Γ=Γ=+∞-+⎰dx e xX E x,Let αβ=1m and 22)1(βαα+=m ⇒αα1212+=m m ⇒ 21221~m m m -=α, 12121~~m m m m -==αβ. Furthermore, X m =1,2122212212)1()(11S nn X X n X X n m m ni i ni i -=-=-=-∑∑==, The MME of α.and β are 22)1(~Sn X n -=α, X n S n 2)1(~-=β(b) βααβααβαβααβ∑--=--==∏Γ=Γ∏=ni iix i ni n x i ni ex e x x L 1)(])([1])(1[)~,|(1111⇒ βαβαααβ∑∑==--+-Γ-=ni ni i x x n n x L 111ln )1(ln )(ln )~,|(lnLet 01)~,|(ln 12=+-=∂∂∑=n i i x n x L ββααββ ⇒ ααβx x n ni i ==∑=11ˆ. Furthermore, 32132222ln 2)~,|(ln ββαββααββx n n x n x L n i i -=-=∂∂∑= ⇒02ˆ2ˆ)~,|ˆ(ln 233222<-=-=-=∂∂x n x x n x n x n n x L ββααββ, So, αβX =ˆ is the MLE of β. (c) 232132222)2()]~,|(ln [βαβαββαββααββββn n n X n E x L E n i i =+-=+-=∂∂-∑=⇒ CRLB =αβαβββn x L E 222)]~,|(ln [1=∂∂- (d) Since βααβα==)(XE , αβX =ˆ is an unbiased estimate of β, and===αβαβααn nXVar 2221)(CRLB, αβX =ˆ is the UMVUE of β. [Or] βααβαβαxe x x I xf --∞Γ=1),0()()(1),|()]1(exp[)()(11),0(ββααα-Γ=-∞x x x I⇒ Given α, )}|({βx f is an exponential family in β.⇒ ∑==ni i X T 1is a sufficient statistic for β.Since ααβn T X ==ˆ is an unbiased estimate of β and a function of sufficient statistics T , by Rao-Blackwell Theorem, αβX =ˆ is the UMVUE of β.2. (a) ∏∏==--⎪⎪⎭⎫⎝⎛==ni n i x x ii i n i i p p x I x p x f p x x x f 112}2,1,0{21])1()(2[)|()|,,,( n x n i i i n i x i i p p p x I x p p p x I x ni i i 21}2,1,0{12}2,1,0{)1()1]()(2[])1()1)((2[1--⎪⎪⎭⎫⎝⎛=--⎪⎪⎭⎫ ⎝⎛=∑===∏∏ Let n x T p p p p x T g 2)~()1()1()),~((--= and )(2)(}2,1,0{1i n i i x I x x h ∏=⎪⎪⎭⎫ ⎝⎛=. By factorization theorem, ∑==ni i X T 1is a sufficient statistic for p .[Or] )]1ln(exp[)1()(2)1()(2)|(2}2,1,0{2}2,1,0{p p x p x I x p p x I x p x f x x --⎪⎪⎭⎫ ⎝⎛=-⎪⎪⎭⎫ ⎝⎛=- ⇒ )}|({p x f is an exponential family ⇒ ∑==ni i X T 1is a sufficient statistic.(b) )1(2)1(12)1(0)1(1)(12111p p p p X P X P Y E -=-⎪⎪⎭⎫ ⎝⎛=≠⋅+=⋅=-, so Y is an unbiased estimate of )(p τ. (c) If n X X X ,,,21 , N n ∈, are iid ~),2(p B , then ),2(~1p n B X T ni i ∑==.⇒ )()1 & 1()()& 1()()& 1()|(211t T P t X X P t T P t T X P t T P t T Y P t T Y E ni i =-============∑=t n t t n t ni i p p t n p p t n p p t T P t X P X P ----=-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---==-===∑212121)1(2)1(122)1(2)()1()1( )12()2()!2()!2(!)!12()!1()!22(2--=-----=n n t n t n t n t t n t n , n t 2,,2,1,0 =.By Rao-Blackwell Theorem, )12(2)()|(--==n T n T T Y E W is the UMVUE of λλτ-=e )(.3. (a) By Neyman-Pearson Lemma, a UMP level α test rejects 0H if and only if)1|,,,()3|,,,(2121=>=λλn n x x x kf x x x f .⇔ ])!(1[])!(3[1131-=-=∏>∏e x k e x i x n i i x ni ii ⇔ n x ke i 23>∑ ⇔ k n x n i i ln 23ln )(1+>∑= ⇔c kx ni i =+>∑=3ln ln 21 Since)(~1λn Poisson X ni i ∑=, a UMP level α test rejects0H if and only ifc X ni i >∑=1, where c is the smallest integer satisfying α≤-∞+=∑nc i i e i n 1!. [Or] ∑==ni i X T 1is sufficient for λ and )(~λn Poisson T .By the corollary of Neyman-Pearson Lemma, a UMP level α test rejects 0H if and only if )1|()3|(=>=λλt kg t g .⇔ 13!1!3-->e t k e t t t ⇔ 23ke t > ⇔ k x ni ln 23ln )(11+>∑=(b) )4(1)5()(321321≤++-=≥++=X X X P X X X P λλλβλλλλλλ343210]!4)3(!3)3(!2)3(!1)3(!0)3([1-++++-=e, 0>λ (c) The size of this test is 1847.0]!43!33!23!13!03[1)1(343210=++++-=-e β The power of this test is 9450.0]!49!39!29!19!09[1)3(943210=++++-=-e β 4. Since ∑==ni i X T 1 is sufficient for λ and )(~λn Poisson T .λλλλn tT e t n t f -=!)()|(|; and βλααλβαλ--ΛΓ=e f 1)(1)(⇒ βλααλλβαλλ---Γ=e e t n tf n t1)(1!)(),(λβααλβα)1(1)(!+--+Γ=n t tet n, 0>λ⇒ ααλβααββαβαλλβα+∞+--+++ΓΓ=Γ=⎰t tn t tT n t t n d et nt f )1)(()(!)(!)(0)1(1⇒ αλβαααλβααββαλββαβαλβαλλ++--+++--+Λ++Γ=++ΓΓΓ==t n t t t n t tT t n t e n t t n et nt f t f t f )1)(()1)(()(!)(!)(),()|()1(1)1(1|, 0>λThe posterior distribution of Λ is )1,(++ββαn t Gamma .5. (a) )(1))(1()|()|,,,(),0(111),0(211i n i x n ni ni i x i n x I e x I e x f x x x f i ∞=∑-==∞-∏===∏∏θθθθθθLet θθθ)~(1)),~((x T n ex T g -= and )()~(),0(1i n i x I x h ∞=∏=. By factorization theorem, ∑==ni i X T 1is a sufficient statistic for θ.[Or])]1(exp[1)()(1)|(),0(),0(βθθθθ-==∞∞-x x I x I e x f x⇒ )}|({θx f is an exponential family.⇒ ∑==ni i X T 1is a sufficient statistic.Since ααβn T X ==ˆ is an unbiased estimate of β and a function of sufficient statistics T , by Rao-Blackwell Theorem, αβX =ˆ is the UMVUE of β. (b) )(~1λn Poisson X T ni i ∑== ⇒ λλλn t et n t g -=!)()|(, ,2,1,0∈t ⇒ )(1212121212!)(!)()|()|(λλλλλλλλλλ----⎪⎪⎭⎫ ⎝⎛==n t n t n t e e t n et n t g t g If 12λλ> ⇒ 112>λλ ⇒ )|()|(12λλt g t g is an increasing function of t ,Hence }0|)|({>λλt g of T has MLR. (c) ),(~1θn Gam m a X T ni i ∑== ⇒ θθθtn ne t n t g --Γ=1)(1)|(, 0>t⇒tn tn n tn n e e t n e t n t g t g )11(211112121212)(1)(1)|()|(θθθθθθθθθθ------⎪⎪⎭⎫ ⎝⎛=ΓΓ=, 0>t If 12θθ> ⇒ 0)11(211212>-=--θθθθθθ ⇒ )|()|(12θθt g t g is increasing in t .Hence }0|)|({>θθt g of T has an MLR.By Karlin-Rubin Theorem, the UMP size α test rejecting 0H if c X T ni i >=∑=1, where csatisfies that αθ==>∑=}1|{1c X P ni i ; i.e.,α=Γ⎰∞--cxn dx e x n 1)(1.。
数理统计试题及答案
![数理统计试题及答案](https://img.taocdn.com/s3/m/4d5f7c4f7275a417866fb84ae45c3b3567ecdd9d.png)
数理统计试题及答案一、单项选择题(每题3分,共30分)1. 在概率论中,随机变量X的数学期望E(X)表示的是()。
A. X的众数B. X的中位数C. X的均值D. X的方差答案:C2. 以下哪项是描述性统计中常用的数据集中趋势的度量方法?()。
A. 极差B. 方差C. 标准差D. 偏度答案:A3. 假设检验中,原假设H0通常表示的是()。
A. 研究者想要证明的假设B. 研究者想要否定的假设C. 研究者认为正确的假设D. 研究者认为错误的假设答案:C4. 在回归分析中,如果自变量X与因变量Y之间存在线性关系,则回归系数β1表示的是()。
A. X每增加一个单位,Y平均增加β1个单位B. X每增加一个单位,Y平均减少β1个单位C. X每减少一个单位,Y平均增加β1个单位D. X每减少一个单位,Y平均减少β1个单位答案:A5. 以下哪项是统计学中用于衡量数据离散程度的指标?()。
A. 均值B. 中位数C. 众数D. 方差答案:D6. 抽样分布是指()。
A. 总体数据的分布B. 样本数据的分布C. 样本统计量的分布D. 总体统计量的分布答案:C7. 在统计学中,置信区间是用来估计()。
A. 总体均值B. 总体方差C. 总体标准差D. 以上都是答案:D8. 以下哪项是统计学中用于衡量数据分布形态的指标?()。
A. 均值B. 方差C. 偏度D. 峰度答案:C9. 假设检验中,如果p值小于显著性水平α,则()。
A. 拒绝原假设B. 接受原假设C. 无法做出决策D. 需要更多的数据答案:A10. 在方差分析中,如果F统计量大于临界值,则()。
A. 拒绝原假设B. 接受原假设C. 无法做出决策D. 需要更多的数据答案:A二、多项选择题(每题5分,共20分)1. 下列哪些是统计学中常用的数据收集方法?()。
A. 观察法B. 实验法C. 调查法D. 抽样法答案:ABCD2. 描述性统计中,以下哪些是数据的集中趋势的度量方法?()。
概率论与数理统计试题及答案
![概率论与数理统计试题及答案](https://img.taocdn.com/s3/m/fd0dfa19ce84b9d528ea81c758f5f61fb7362836.png)
概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。
答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。
答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。
答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。
答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。
答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。
答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(本题15分,每题3分)
1、总体)3,20(~N X 的容量分别为10,15的两独立样本均值差~Y X -________;
2、设1621,...,,X X X 为取自总体)5.0,0(~2N X 的一个样本,若已知0.32)16(2
01.0=χ,则
}8{16
1
2∑=≥i i X P =________;
3、设总体),(~2
σμN X ,若μ和2
σ均未知,n 为样本容量,总体均值μ的置信水平为
α-1的置信区间为),(λλ+-X X ,则λ的值为________;
4、设n X X X ,...,,21为取自总体),(~2σμN X 的一个样本,对于给定的显著性水平α,已知关于2
σ检验的拒绝域为χ2
≤)1(21--n αχ,则相应的备择假设1H 为________;
5、设总体),(~2σμN X ,2
σ已知,在显著性水平下,检验假设00:μμ≥H ,01:μμ<H ,
拒绝域是________。
1、)2
1
0(,N ; 2、; 3、n
S n t )
1(2
-α; 4、2
02σσ<; 5、05.0z z -≤。
二、选择题(本题15分,每题3分)
1、设321,,X X X 是取自总体X 的一个样本,α是未知参数,以下函数是统计量的为( )。
(A ))(321X X X ++α (B )321X X X ++ (C )
3211
X X X α
(D )
23
1)(31α-∑=i i X 2、设n X X X ,...,,21为取自总体),(~2σμN X 的样本,X 为样本均值,21
2
)(1X X n S i n i n -=∑=,
则服从自由度为1-n 的t 分布的统计量为( )。
(A )
σμ)
-X n ( (B )n S X n )(μ- (C )σ
μ)--X n (1 (D )n S X n )(1μ--
3、设n X X X ,,,21Λ是来自总体的样本,2
)(σ=X D 存在, 21
2
)(11X X n S i n
i --=∑=, 则( )。
(A )2S 是2σ的矩估计
(B )2S 是2σ的极大似然估计
(C )2S 是2σ的无偏估计和相合估计
(D )2S 作为2σ的估计其优良性与分布有关
4、设总体),(~),,(~2
2
2211σμσμN Y N X 相互独立,样本容量分别为21,n n ,样本方差分别
为2
221,S S ,在显著性水平α下,检验2221122210:,:σσσσ<≥H H 的拒绝域为( )。
(A )
)1,1(122
12
2
--≥n n F s s α (B )
)1,1(122
12
122
--≥-
n n F
s s α
(C )
)1,1(212
122
--≤n n F s s α (D )
)1,1(212
12
122
--≤-
n n F
s s α
5、设总体),(~2σμN X ,2σ已知,μ未知,n x x x ,,,21Λ是来自总体的样本观察值,已
知
μ的置信水平为的置信区间为(,
),则取显著性水平05.0=α时,检验假设0.5:,0.5:10≠=μμH H 的结果是( )。
(A )不能确定 (B )接受0H (C )拒绝0H (D )条件不足无法检验
1、B ;
2、D ;
3、C ;
4、A ;
5、B.
三、(本题14分) 设随机变量X 的概率密度为:⎪⎩⎪⎨⎧<<=其他θ
θx x x f 0,
0,
2)(2,其中未知
参数0>θ,n X X ,,1Λ是来自X 的样本,求(1)θ的矩估计;(2)θ的极大似然估计。
解:(1) θθ
θ32
2)()(0
2
2
===⎰⎰∞
+∞-x d x
x d x f x X E , 令θ32
)ˆ(==X X
E ,得X 23
ˆ=θ为参数θ的矩估计量。
(2)似然函数为:),,2,1(,022),(1
212
n i x x x x L i n
i i n
n
n
i i
i Λ=<<==∏∏
==θθ
θ
θ,
, 而)(θL 是θ的单调减少函数,所以θ的极大似然估计量为},,,max{ˆ21n
X X X Λ=θ。
四、(本题14分)设总体),0(~2σN X ,且1021,x x x Λ是样本观察值,样本方差22=s , (1)求2
σ的置信水平为的置信区间;(2)已知)1(~2
2
2
χσX Y =
,求⎪⎪⎭
⎫
⎝⎛32σX D 的置信水平为的置信区间;(70.2)9(2975.0=χ,023.19)9(2
025.0=χ)。
解:
(1)2σ的置信水平为的置信区间为⎪
⎪⎭
⎫ ⎝⎛)9(18,)9(182975.02025.0χχ,即为(,);
(2)⎪⎪⎭⎫ ⎝⎛32σX D =22
2
2222)]1([11σχσσσ==⎪⎪⎭
⎫ ⎝⎛D X D ; 由于2322σσ=⎪⎪⎭⎫ ⎝⎛X D 是2σ的单调减少函数,置信区间为⎪
⎪⎭
⎫ ⎝⎛222,2σσ, 即为(,)。
五、(本题10分)设总体X 服从参数为θ的指数分布,其中0>θ未知,n X X ,,1Λ为取自总体X 的样本, 若已知)2(~2
21
n X U n
i i χθ
∑==
,求: (1)θ的置信水平为α-1的单侧置信下限;
(2)某种元件的寿命(单位:h )服从上述指数分布,现从中抽得容量为16的样本,测得样本均值为5010(h ),试求元件的平均寿命的置信水平为的单侧置信下限。
)585.42)32(,985.44)31((2
10.0205.0==χχ。
解:(1) ,1)2(2,1)2(222αχθαχθαα-=⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧>∴-=⎭⎬⎫⎩⎨⎧<n X n P n X n P Θ
即θ的单侧置信下限为)
2(22
n X n αχθ=
;(2)706.3764585.425010162=⨯⨯=θ。
六、(本题14分)某工厂正常生产时,排出的污水中动植物油的浓度)1,10(~N X ,今阶段性抽取10个水样,测得平均浓度为(mg/L ),标准差为(mg/L ),问该工厂生产是否正常
(22
0.0250.0250.9750.05,(9) 2.2622,(9)19.023,(9) 2.700t αχχ====)
解:(1)检验假设H 0:σ2
=1,H 1:σ2
≠1; 取统计量:2
2
2
)1(σχs n -=
;
拒绝域为:χ2
≤)9()1(2975.022
1χχ
α
=--
n =或χ2≥2
025.022
)1(χχα=-n =,
经计算:96.121
2.19)1(22
2
2
=⨯=-=
σχs n ,由于)023.19,700.2(96.122∈=χ2,
故接受H 0,即可以认为排出的污水中动植物油浓度的方差为σ2
=1。
(2)检验假设101010
≠'='μμ:,:H H ; 取统计量:10
/10S X t -=~ )9(2
αt ;
拒绝域为2622.2)9(025.0=≥t t ;1028.210
/2.1108.10=-=
t Θ< ,所以接受0
H ', 即可以认为排出的污水中动植物油的平均浓度是10(mg/L )。
综上,认为工厂生产正常。
七、(本题10分)设4321,,,X X X X 为取自总体)4,(~2μN X 的样本,对假设检验问题5:,5:10≠=μμH H ,(1)在显著性水平下求拒绝域;(2)若μ=6,求上述检验所犯的第二类错误的概率β。
解:(1) 拒绝域为96.12
5
4
/45025.0=≥-=
-=
z x x z ; (2)由(1)解得接受域为(,),当μ=6时,接受0H 的概率为
921.02608.12692.8}92.808.1{=⎪⎭
⎫
⎝⎛-Φ-⎪⎭⎫
⎝⎛-Φ=<<=X P β。
八、(本题8分)设随机变量X 服从自由度为),(n m 的F 分布,(1)证明:随机变量X
1
服从 自由度为),(m n 的F 分布;(2)若n m =,且05.0}{=>αX P ,求}1
{α
>X P 的值。
证明:因为),(~n m F X ,由F 分布的定义可令n
V m
U X //=,其中)(~),(~22n V m U χχ,U 与V 相互独立,所以
),(~//1m n F m U n V X =。
当n m =时,X 与X 1服从自由度为),(n n 的F 分布,故有=>}{αX P }1
{α>X P ,
从而 95.005.01}{1}1
{1}1{}1{=-=>-=>-=<=>ααααX P X
P X P X P 。