导数的几何意义PPT优秀课件2

合集下载

导数的几何意义课件

导数的几何意义课件

6
(2)求曲线y=f(x)=x2+1在点P(1,2)处的切
线方程.
y |x1
lim [(1
x0
x)2
1] (12 x
1)

lim
x0
2x x2 x

2
y 2 2(x 1)
2x y 0
例2.在函数 h(t) 4.9t 2 6.5t 10 的
回 顾
(2)求平均变化率 y f (x 0 x) f (x0 ) ;
x
x
(3)取极限,得导数f
( x0
)

lim
x0
y x
.
你能借助函数 f (x)的图象说说平均变化率
f x0 x f (x0 )表示什么吗?请在函数
x 图象中画出来.
平均变化率表示的是割线 PPn 的斜率
t0 附近比较平坦,几乎没有升降.
h / (t1 ), h / (t2 ) 0
曲线在
t1 ,
t3 ,
t2
t4
处切线 l1 ,
l3 ,
l2
l4
的斜率 小于0 大于
h/ (t3 ), h/ (t4 ) 0
在 t1 , t2 附近,曲线下降 ,函数在 t1 , t2
t3, t4
附近单调 递减
上升
t3, t4
圆的切线
割线斜率
在 x 0的过程中,割线PPn的的变化情况 你能描述一下吗? 请在函数图象中画出来.
曲线的切线定义
当点 Pn (x0 x , f (x0 x)) 沿着曲线 f (x) 逼近点 P(x0 , f (x0 )) 时,即x 0,割线 PPn 趋近于确定的位置,这个确定位置上

《313导数的几何意义》2精品PPT课件

《313导数的几何意义》2精品PPT课件

解得 x0=1 或 x0=-12. 故所求的切线方程为 y-1=3(x-1)或 y+18=34(x+12), 即 3x-y-2=0 或 3x-4y+1=0.
• [方法规律总结] 1.求曲线在点P(x0,y0)处切 线的步骤:
• (1)求出函数y=f(x)在点x0处的导数f ′(x0); • (2)根据直线的点斜式方程,得切线方程为y-y0
=f ′(x0)(x-x0).
• 3.要正确区分曲线y=f(x)在点P处的切线,与 过点P的曲线y=f(x)的切线.
=f ′(x0)(x-x0); • 2.过曲线外的点P(x1,y1)求曲线的切线方程的
步骤:
• (1)设切点为Q(x0,y0); • (2)求出函数y=f(x)在点x0处的导数f ′(x0); • (3)利用Q在曲线上和f ′(x0)=kPQ,解出x0,y0及
f ′(x0). • (4)根据直线的点斜式方程,得切线方程为y-y0
• 难点:对导数几何意义的理解.
• 导数的几何意义新知导学
1.曲线的切线:过曲线 y=f(x)上一点 P 作曲线的割线 PQ, 当 Q 点沿着曲线无限趋近于 P 时,若割线 PQ 趋近于某一确定 的直线 PT,则这一确定的直线 PT 称为曲线 y=f(x)在点 P 的 ____切__线____.
fxn-fx0 设 P(x0,y0),Q(xn,yn),则割线 PQ 的斜率 kn=___x_n-__x_0___.
2.导数的几何意义 函数 y=f(x)在 x=x0 处的导数,就是曲线 y=f(x)在 x=x0
处的__切__线__的__斜__率___,即 k=f′(x0)=_Δl_ixm→ _0__f_x_0_+__Δ_Δx_x_-__f_x_0_. 3.函数的导数 对于函数 y=f(x),当 x=x0 时,f′(x0)是一个确定的数.当

1.1.3导数的几何意义课件共35张PPT

1.1.3导数的几何意义课件共35张PPT

(3)设切点为(a,b),则 y′|x=a=a2=1, ∴a=±1, 当 a=1 时,b=53,切点为1,53, 当 a=-1 时,b=1,切点为(-1,1), ∴切线方程为 3x-3y+2=0 或 x-y+2=0. ………………………………………………………………………………12 分
[反思提升] (1)求“在某点处”的切线:该点必在曲线上且是切点,而求“过某 点”的切线该点不一定在曲线上,且该点不一定是切点. (2)求“过某点”的切线方程的步骤 ①设“过某点”的切线 l 与曲线相切的切点坐标为(x0,y0). ②用“在点(x0,y0)处”的切线求法,写出切线 l 的方程. ③利用切线“过某点”,其坐标满足切线方程,求出 x0 与 y0. ④将(x0,y0)代入②中的切线 l 化简即求出“过某点”的切线方程. (3)求“过某点”的曲线的切线方程中,该点在曲线上时,所求点的切线中一定包 括“在该点”处曲线的切线.
∴曲线 y=1x在点(1,1)处的切线方程为 y-1=-(x-1),即 y=-x+2. 曲线 y=x2 在点(1,1)处的切线斜率为
f′(1)=liΔmx→0 1+ΔΔxx2-12=liΔmx→0 2Δx+ΔxΔx2=liΔmx→0 (2+Δx)=2, ∴曲线 y=x2 在点(1,1)处的切线方程为 y-1=2(x-1),即 y= 2x-1. 两条切线方程 y=-x+2 和 y=2x-1 与 x 轴所围成的图形如图 所示, ∴S=12×1×2-12=34,即三角形的面积为34.
导数几何意义应用问题的解题策略: (1)导数几何意义的应用问题往往涉及解析几何的相关知识,如直线斜率与方 程以及直线间的位置关系等,因此要综合应用所学知识解题. (2)解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可 以求切点,切点的坐标是常设的未知量. (3)一定要区分曲线 y=f(x)在点 P(x0,f(x0))处的切线与过点 P(x0,f(x0))的切线 的不同,前者 P 为切点,后者 P 不一定为切点.

02教学课件_6.1.2 第2课时 导数的几何意义

02教学课件_6.1.2 第2课时 导数的几何意义

解析 因为 f′(1)=Δlixm→0a1+ΔxΔ2x-a×12 =Δlixm→02aΔx+ΔxaΔx2=Δlixm→0(2a+aΔx)=2a,
所以2a=2,所以a=1.
反思 感悟
求切点坐标的一般步骤 (1)设出切点坐标. (2)利用导数或斜率公式求出斜率. (3)利用斜率关系列方程,求出切点的横坐标. (4)把横坐标代入曲线或切线方程,求出切点纵坐标.
③解方程得k=f′(x0),x0,y0,从而写出切线方程.
跟踪训练2 求过点(-1,0)且与曲线y=x2+x+1相切的直线方程.
解 设切点为(x0,x20+x0+1), 则切线的斜率为 k=Δlixm→0x0+Δx2+x0+ΔΔxx+1-x20+x0+1=2x0+1.
又 k=x20+x0-x0+-11- 0=x20+x0+x0+1 1, ∴2x0+1=x20+x0+x0+1 1, 解得x0=0或x0=-2. 当x0=0时,切线斜率k=1,过点(-1,0)的切线方程为y-0=x+1,即x -y+1=0.
B.16
√C.8
D.2
解析 k=f′(2)=Δlixm→022+ΔxΔ2x-2×22=8.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3.已知函数y=f(x)的图像如图所示,则f′(xA)与f′(xB) 的大小关系是
A.f′(xA)>f′(xB) C.f′(xA)=f′(xB)
反思
感悟
求曲线在某点处的切线方程的步骤
跟踪训练1 曲线y=f(x)=x2+1在点P(2,5)处的切线与y轴交点的纵坐 标是 -3 .
解析 ∵f′(2)=Δlixm→0ΔΔxf=Δlixm→02+Δx2+Δx1-22-1=Δlixm→0(4+Δx)=4,

5.1.2导数的概念及其几何意义(第二课时)课件(人教版)

5.1.2导数的概念及其几何意义(第二课时)课件(人教版)

切线的 斜率k
切线的 倾斜角
f′(x0)>0 f′(x0)<0
f′(x0)=0
上升 降落
平坦
k>0
锐角
k<0
钝角
零角(切线与x k=0
轴平行)
说明:切线斜率的绝对值的大小反应了曲线在相应点附近上升
或降落的快慢.
3.若f′(x)是在区间(a,b)上的增函数,则f(x)的图象是 向下凸的,如例题(1)中图A.若f′(x)在(a,b)上是减函数, 则f(x)的图象是向上凸的,如例题(1)中图B.若f′(x)是在 区间(a,b)上的常函数,则f(x)图象是一条线段,如例题
∴ΔΔyx=4x0+2Δx. ∴f′(x0)= lim (4x0+2Δx)=4x0,
Δx→0
(1)∵抛物线的切线的倾斜角为 45°, ∴斜率为 tan 45°=1.
即 f′(x0)=4x0=1 得 x0=14,该点为14,89.
(2)∵抛物线的切线平行于直线4x-y-2=0,
∴斜率为4,
即f′(x0)=4x0=4,得x0=1,该点为(1,3).
数,算到一个新的函数,而不是具体的数。
联系: 函数f (x)在x x0处的导数f (x0)就是其导函数f (x) 在x x0处的函数值。
所以在求某一点的导数,就不用一个一个算了,可以 直接计算出函数的导函数,然后借助导函数研究每一个 点的导数
提示: 导函数也简称导数,所以
如果题目让你计算函数的导数, 一般就是计算它的导函数。
利用导数的几何意义求切线方程的方法
(1)若已知点(x0,y0)在已知曲线上,求在点(x0,y0)处 的切线方程,先求出函数y=f(x)在点x0处的导数,然 后根据直线的点斜式方程,得切线方程y-y0= f′(x0)(x-x0).

课件3:5.1.2 导数的概念及其几何意义

课件3:5.1.2 导数的概念及其几何意义

2.导数的几何意义
函数 y=f(x)在 x=x0 处的导数 f′(x0)就是切线 P0T 的斜率 k0, lim fx0+Δx-fx0
即 k0=__Δ_x_→_0______Δ_x________=f′(x0).
知识点二 导函数的概念
1.定义:当 x 变化时,y= f′(x) 就是 x 的函数,我们
[规律方法] 求切点坐标可以按以下步骤进行 (1)设出切点坐标; (2)利用导数或斜率公式求出斜率; (3)利用斜率关系列方程,求出切点的横坐标; (4)把横坐标代入曲线或切线方程,求出切点纵坐标.
[跟踪训练] 直线 l:y=x+a(a≠0)和曲线 C:y=x3-x2+1 相切,则 a 的值为___________,切点坐标为____________. 解析:设直线 l 与曲线 C 的切点为(x0,y0), 因为 y′=Δlxi→m0x+Δx3-x+ΔxΔ2x+1-x3-x2+1=3x2-2x, 则 y′|x=x0=3x20-2x0=1,解得 x0=1 或 x0=-13, 当 x0=1 时,y0=x30-x02+1=1, 又(x0,y0)在直线 y=x+a 上,
答案:B
4.已知函数 y=f(x)的图象在点 M(1,f(1))处的切线方程是 y=12x+2, 则 f(1)+f′(1)=________. 解析:由导数的几何意义得 f′(1)=12,由点 M 在切线上得 f(1)=12×1+2=52,所以 f(1)+f′(1)=3. 答案:3
5.曲线 y=x2-3x 的一条切线的斜率为 1,则切点坐标为________. 解析:设切点坐标为(x0,y0), y′=Δlxi→m0x0+Δx2-3xΔ0+x Δx-x20+3x0 =Δlxi→m02x0Δx-3ΔΔxx+Δx2=2x0-3=1,故 x0=2, y0=x20-3x0=4-6=-2,故切点坐标为(2,-2).

导数的几何意义ppt课件

导数的几何意义ppt课件

∴y0=4,∴点 P 的坐标为(2,4),
∴切线方程为 y-4=4(x-2),即 4x-y-4=0.
问题导入
知识探究
巩固练习
课堂小结
布置作业
1.与导数的几何意义相关的题目往往涉及解析几何的相关知 识,如直线间的位置关系,因此要善于综合应用所学知识解题.
2.与导数的几何意义相关的综合问题解题的关键是函数在某 点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点 的坐标是常设的未知量.
问题导入
知识探究
巩固练习
课堂小结
布置作业
求切线的解题步骤
1.已知切点(x0,f(x0))
①求斜率,求出曲线在点(x0,f(x0))处的切线斜率 f′(x0)
②写方程,y- f(x0)=f′(x0)(x-x0),化为一般式。
2.经过(x1,y1),切点未知
①设切点(x0,f(x0)) ②求斜率,k= f′(x0) ③写出含参 x0 的切线方程,得到 y- f(x0)=f′(x0)(x-x0) ④将已知点代入得 y1- f(x0)=f′(x0)(x1-x0)解出切点坐标 ⑤将切点坐标代入 y- f(x0)=f′(x0)(x-x0),并化为一般式
课堂小结
布置作业
(2)由3y=x-x3y,-2=0, 可得(x-1)2(x+2)=0, 解得 x1=1,x2=-2. 从而求得公共点为 P(1,1)或 P(-2,-8).
说明切线与曲线 C 的公共点除了切点外,还有另外的点(-2, -8).
问题导入
知识探究
【易错题解析】
巩固练习
课堂小结
布置作业
已知曲线 y=2x2-7,求曲线过点 P(3,9)的切线方程.
设所求切线的切点为 A(x0,y0),则切线的斜率 k=4x0,

5.2导数的几何意义 课件(36张)

5.2导数的几何意义 课件(36张)

函数值.
2.从求函数y=f(x)在x=x0处导数的过程可以看到,当x=x0时,f'(x0)是一个唯
一确定的数.这样,当x变化时,y=f'(x)就是x的函数,我们称它为y=f(x)的导函
数(简称导数).y=f(x)的导函数有时也记作y',即
f(x+x)-f(x)
f'(x)=y'= lim
x
Δ→0
所以直线l1的斜率k1=y'|x=1=3,可得直线l1的方程为y=3x-3.
设直线l2与曲线y=x2+x-2相切于点B(b,b2+b-2),
则l2的方程为y-(b2+b-2)=(2b+1)(x-b).
因为 l1⊥l2,所以直线 l2 的斜率
所以直线 l2 的方程为
1
k2=2b+1=- ,解得
3
1 22
在点
5
1,- 3
A.1
π
B. 4

C. 4
π
D.- 4
解析:∵y'= lim
Δ→0
1
(x+x)3 -2
3
处切线的倾斜角为(
1
3
- x 3 -2
x
∴切线的斜率 k=y'|x=1=1.

∴切线的倾斜角为 .故选
4
答案:B
B.
=x2,
)
3.抛物线y=2x2在点P(1,2)处的切线l的斜率为
.
解析:由题意可得,y'=4x,故所求斜率为y'|x=1=4.
答案:4
1
4.已知函数y=f(x)的图象在点M(1,f(1))处的切线方程为y= 2 x+2,则

导数的几何意义 课件

导数的几何意义  课件

x0
x
=lim[(x)2+3x x+3x2]=3x2. x0
令3x2=3,得x=±1,
所以点P的坐标为(1,1)或(-1,-1).
答案:(1,1)或(-1,-1)
2.(1)设直线l与曲线C的切点为(x0,y0),
因为 y=lim (x+x)3-(x+x)2+1-(x3-x2+1)=3x2-2x,
x0
3
lim
x0
1 3
(
x
0
x)3 x
1 3
x
3 0
x 0 2,
所以切线方程为
y
1 3
x
3 0
x
2 0
(x
x0 ),
又因为切线过点A(1,0),所以
0
1 3
x
3 0
x
2 0
(1
x0 ),
化简得
2 3
x
3 0
x0解2 得0,x0=0或
x0
3 2
.
①当x0=0时,所求的切线方程为:y=0;
②当x0
时3 ,
【解题探究】1.曲线上一点切线的斜率与该点的导数有什么 关系? 2.切点的坐标满足切线方程吗?是否也满足曲线的方程? 探究提示: 1.曲线上一点切线的斜率就是该点的导数. 2.切点的坐标既满足切线方程,同时也满足曲线的方程.
【解析】1.因为y=x3,所以 y=lim (x+x)3-x3
x0
x
=lim (x)3+3x (x)2+3x2 x
3 27
将切点坐标 (-1,2代3入) 直线y=x+a,
3 27
得 a= 23+1故=32, a=32 .
27 3 27
27
(2)由(1)知切点坐标是 (-1,23).

导数的几何意义ppt

导数的几何意义ppt

导数的物理意义
80%
速度
导数可以用来描述物理量随时间 的变化速率,例如速度是位移对 时间的导数。
100%
斜率
在物理量中,导数可以表示斜率 ,例如加速度是速度对时间的导 数。
80%
变化率
导数可以用来描述物理量的变化 率,例如电流强度是电荷对时间 的导数。
02
导数与切线斜率
切线的定义
பைடு நூலகம்01
切线是过曲线上某一点的直线, 该点称为切点。
导数在经济问题中的应用
边际分析与决策
导数可以用来描述边际成本、边际收益和边际利润等概念,帮助 企业做出最优的决策。
供需关系
导数可以用来分析市场的供需关系,例如通过分析需求函数和供给 函数的导数,可以了解市场均衡点的变化趋势。
经济增长与人口变化
导数可以用来描述经济增长和人口变化的趋势,例如通过分析GDP 和人口增长率的导数,可以了解经济和人口的发展趋势。
04
导数在实际问题中的应用
导数在物理问题中的应用
速度与加速度
导数可以用来描述物体运动的速度和加速度,通过分析导 数可以了解物体的运动状态和变化趋势。
斜率与曲线
导数可以用来描述曲线的斜率,例如在分析弹性、阻力和 引力等物理现象时,导数可以帮助我们理解物体在曲线上 的运动状态。
能量与功率
在物理中,导数可以用来描述能量和功率的变化,例如在 分析电路、热传导和流体动力学等问题时,导数可以帮助 我们建立数学模型并求解。
导数与函数极值
总结词
导数可以用来确定函数的极值点。
详细描述
函数的极值点出现在导数为零或变号的点上。在极值点处,函数值可能达到最大或最小。因此,通过求函数的导 数并找到导数为零的点,可以确定函数的极值点。

第五章5.1.2第2课时 导数的几何意义课件(人教版)

第五章5.1.2第2课时 导数的几何意义课件(人教版)

解析 设切点坐标为(x0,y0),

y
|x=x0
= lim Δx→0
x0+Δx3-2x0+Δx-x30-2x0 Δx
=3x20-2=tan π4=1,
所以x0=±1, 当x0=1时,y0=-1. 当x0=-1时,y0=1.
当t=t1时,函数的图象在t=t1处的切线l1的斜率h′(t1)<0,这时,在t =t1附近曲线降落,即函数在t=t1附近单调递减. 当t=t2时,函数的图象在t=t2处的切线l2的斜率h′(t2)<0,这时,在t =t2附近曲线降落,即函数在t=t2附近单调递减. 通过研究t=t1和t=t2发现直线l1的倾斜程度小于直线l2的倾斜程度,这 说明函数在t=t1附近比在t=t2附近降落的缓慢.
内容索引
一、导数的几何意义 二、函数的单调性与导数的关系 三、导函数(导数)
随堂演练
课时对点练
一、导数的几何意义
问题1 导数f′(x0)的几何意义是什么? 提示 我们知道导数f′(x0)表示函数y=f(x)在x=x0处的瞬时变化率, 反应了函数y=f(x)在x=x0附近的变化情况,如下图.
容易发现,平均变化率ΔΔyx=fx0+ΔΔxx-fx0表示的是割线 P0P 的斜率,当
跟踪训练 3 已知函数 f(x)=x2-12x.求 f′(x).
解 ∵Δy=f(x+Δx)-f(x)
=(Δx)2+2x·Δx-12Δx,
∴ΔΔyx=2x+Δx-12.
∴f′(x)= lim Δx→0
ΔΔyx=2x-12.
课堂小结
1.知识清单: (1)导数的几何意义. (2)函数的单调性与导数的关系. (3)导函数的概念. 2.方法归纳:方程思想、数形结合. 3.常见误区:切线过某点,这点不一定是切点.

导数的几何意义 课件

导数的几何意义    课件

1 85
,
6 12
.
(2)因为切线平行于直线6x-y-2=0,
所以切线的斜率为6,即f'(x0)=6x0=6,得x0=1.
所以该点的坐标为(1,10).
(3)因为切线与直线x+12y-3=0垂直,
所以切线的斜率为12,即f'(x0)=6x0=12,得x0=2.
所以该点的坐标为(2,19).
反思解答此类题目,所给的直线的倾斜角或斜率是解题的关键,由
切线与x轴正方向的夹角为钝角;若f'(x0)=0,则切线与x轴平行或重
合.
2.“用割线的极限位置来定义切线”和“与曲线只有一个公共点的
直线是切线”的区别是什么?
剖析:在初中我们学习过圆的切线:当直线和圆有唯一公共点时,
我们称直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做
切点,圆是一种特殊的曲线.如果将圆的切线推广为一般曲线的切
点斜式方程求切线方程;解答第(2)小题,可把第(1)小题中求得的直
线方程与已知的曲线方程组成方程组,求方程组的解.
解:(1)将 x=2 代入曲线 C 的方程,得 y=4,
∴切点的坐标为(2,4).
y
Δx→0 x
∴y'|x=2= lim
=
1 (2 + Δx)3 + 4 - 1 × 23 - 4
需注意f'(x0)与f'(x)的意义不同,f'(x)为f(x)的导函数,而f'(x0)为f(x)在
x=x0处的导函数值.
区别
f'(x0)是具体的值,是数

f'(x)是 f(x)在某区间 I
f'(x) 上每一点都存在导数

《导数的几何意义》课件

《导数的几何意义》课件

热量与温度
在热传导问题中,导数的几何意义可以帮助 理解热量在物体中的传递和分布。温度是热 量的度量,而物体中的温度梯度(即温度随
位置的变化率)可以用导数来表示。
经济问题
要点一
供需关系
在经济学中,导数可以用来分析供需关系的变化。需求函 数或供给函数的导数可以描述价格与需求量或供给量之间 的变化率,帮助理解市场的均衡状态和价格调整机制。
隐函数求导
方法
通过对方程两边求导来求解隐函数的导数。
注意事项
在求导过程中,需要保持方程两边的等价关 系,并注意复合函数的求导法则。
04
导数在实际问题中的应用
物理问题
速度与加速度
在物理学中,导数被广泛应用于描述物体的 运动状态。速度是位置函数的导数,表示物 体在单位时间内通过的距离;而加速度是速 度函数的导数,表示物体速度变化的快慢。
02 导数可以用来求解微分方程,通过对方程进行求 导和积分,可以得到微分方程的解。
03 微分方程是描述物理现象的重要工具,通过求解 微分方程,可以了解物理现象的变化规律。
THANKS
感谢观看
信号处理
在信号处理和图像处理中,导数起着关键作用。信号的强度随时间的变化率可以用导数 来描述,而图像的边缘和轮廓可以通过求导来检测。此外,导数还可以用于图像的锐化
和模糊处理等操作。
05
导数的扩展知识
高阶导数
01
定义
高阶导数是函数导数的连续函数 ,表示函数在某一点的n阶导数 。
02
03
应用
计算方法
导数的性质
总结词
导数具有一些基本的性质,如可加性、可乘性、链式法则等。
详细描述
导数具有可加性、可乘性和链式法则等基本性质。这些性质是导数运算的基础,有助于理解和计算复杂的导数表 达式。

高中数学第五章导数的概念及其几何意义第2课时导数的几何意义pptx课件新人教A版选择性必修第二册

高中数学第五章导数的概念及其几何意义第2课时导数的几何意义pptx课件新人教A版选择性必修第二册
()
【答案】(1)A (2)D 【解析】(1)由导数的几何意义知,导函数递增,则说明函数切线斜 率随x增大而变大. (2) 从 导 函 数 的 图 象 可 知 两 个 函 数 在 x0 处 斜 率 相 同 , 可 以 排 除 B , C.再者导函数的函数值反映的是原函数的斜率大小,可明显看出y=f(x) 的导函数的值在减小,所以原函数的斜率慢慢变小,排除A.
【预习自测】
判断正误(正确的画“√”,错误的画“×”)
(1)曲线y=f(x)上的每一点都有切线.
()
(2)直线与曲线相切,则直线与已知曲线只有一个公共点. ( )
【答案】(1)× (2)×
导数的几何意义
(1)函数y=f(x)在x=x0处的导数f′(x0)就是切线P0T的斜率k0,即k0= __Δ_lxi_m→_0_f(_x_0+__Δ_Δ_xx)_-__f_(x_0_)__=f′(x0).
易错警示 混淆曲线“在”或“过”某点的切线致误
求函数y=x3-3x2+x的图象上过原点的切线方程.
【错解】∵Δy=f(Δx+0)-f(0)=(Δx)3-3(Δx)2+Δx, ∴ΔΔyx=1-3Δx+(Δx)2, ∴f′(0)= lim [1-3Δx+(Δx)2]=1.
Δx→0
故所求切线方程为 y=x.
(2)导数f′(x0)的几何意义是曲线 y=f(x)在点(x0,f(x0))处的切线的 ___斜__率___,物理意义是运动物体在x0时刻的__瞬__时__速__度___.
【预习自测】
如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么 ()
A.f′(x0)>0
B.f′(x0)<0
【答案】3227 -31,2237 【解析】设直线 l 与曲线 C 的切点为(x0,y0), 因为 y′=Δlxi→m0(x+Δx)3-(x+ΔxΔ)2x+1-(x3-x2+1) =3x2-2x,则 y′|x=x0=3x20-2x0=1,解得 x0=1 或 x0=-13,

课件2:5.1.2 导数的概念及其几何意义

课件2:5.1.2 导数的概念及其几何意义

答案:(1)A
(2)曲线 f(x)=x3 在点(a,a3)(a≠0)处的切线与 x 轴,直线
x=a 围成的三角形的面积为16,则 a=________.
解析:(2)因为 f′(a)=lim Δx→0
a+ΔΔxx3-a3=3a2,
所以曲线在点(a,a3)处的切线方程为 y-a3=3a2(x-a).
令 y=0,得切线与 x 轴的交点为32a,0,
2.若函数 f(x)=-3x-1,则 f′(x)=( )
A.0
B.-3x
C.3
D.-3
解析:k= lim Δx→0
-3x+Δx-Δ1x--3x-1=-3.
答案:D
3.设曲线 y=x2+x-2 在点 M 处的切线斜率为 3,则点
M 的坐标为( )
A.(0,-2)
B.(1,0)
C.(0,0)
D.(1,1)
方法归纳 求满足某条件的曲线的切点坐标的步骤 (1)先设切点坐标(x0,y0); (2)求导函数 f′(x); (3)求切线的斜率 f′(x0); (4)由斜率间的关系列出关于 x0 的方程,解方程求 x0; (5)点(x0,y0)在曲线 f(x)上,将(x0,y0)代入求 y0 得切点坐标.
微点 2 与曲线的切点相关的问题 例 4 已知直线 l1 为曲线 y=x2+x-2 在(1,0)处的切线, l2 为该曲线的另一条切线,且 l1⊥l2. (1)求直线 l2 的方程; (2)求由直线 l1,l2 和 x 轴围成的三角形面积.
方法归纳 1.求曲线上某点切线方程的三个步骤
2.过曲线外的点 P(x1,y1)求曲线的切线方程的步骤 (1)设切点为 Q(x0,y0). (2)求出函数 y=f(x)在点 x0 处的导数 f′(x0). (3)利用 Q 在曲线上和 f′(x0)=kPQ,解出 x0,y0 及 f′(x0). (4)根据直线的点斜式方程,得切线方程为 y-y0=f′(x0)(x-x0).

5.1.2导数的概念及几何意义课件(人教版)

5.1.2导数的概念及几何意义课件(人教版)

4
巩固练习.求函数 y=x-x在 x=2 处的导数.
解: (导数定义法):

4
4

Δy=(2+Δx)-
-2-2
2+Δx

2Δx
=Δx+

2+Δx
2Δx
Δx+
2+Δx
Δy
2

=1+

Δx
Δx
2+Δx


2
Δy
∴lim
=lim 1+2+Δx=2,
Δx→0 Δx
Δx→0

从而 y′|x=2=2.
y
y
量为Δy=f(x0+Δx)-f(x0).我们把比值
,即 x =
x
f(x 0+Δx)-f(x 0)
______________________叫做函数y=f(x)从x
0到x0+Δx的平均变
Δx
化率.
2.函数在x=x0处的导数
y
y
如果当Δx→0时,平均变化率 x 无限趋近于一个确定的值,即 x 有
曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至
可以有无穷多个.与曲线只有一个公共点的直线也不一定是曲线的
切线.
例 1.
已知函数 f(x)=2x2+4x,则 f′(3)=________.
解析:
(1)Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3)
=12Δx+2(Δx)2+4Δx
1
=3liΔxm→0
Δx
1
=3li m [3x2+3xΔx+(Δx)2]=x2,
Δx→0
y′|x=3=32=9,
即曲线在P(3,9)处的切线的斜率等于9.

导数的几何意义课件(共28张PPT)

导数的几何意义课件(共28张PPT)
y
y f x
P1
T P
y
y f x
P2
T
n 1, 2, 3, 4
O
x
O
x
1
y f x
y
2
y f x
时, 割线PPn的 变 化 趋势 是 什么?
P
P3
T
T
P4 P
O
x
O
x
3
4
图1.1 2
新 授
1、曲线上一点的切线的定义
y=f(x) y Q 割 线 T 切线
当点Q沿着曲线无限接近点P即Δ x→0时,割线PQ有一个 极限位置PT.则我们把直线PT称为曲线在点P处的切线. 设切线的倾斜角为α ,那么当Δx→0时,割线PQ的斜率, 称为曲线在点P处的切线的斜率.
f ( x0 x ) f ( x0 ) y 即: k切线 tan lim lim x 0 x x 0 x
题型三:导数的几何意义的应用
例1:(1)求函数y=3x2在点(1,3)处的导数.
2 3(1 x) 2 3 12 3 x 6x 解:y |x 1 lim lim x 0 x x 0 x
lim 3( x 2) 6
x 0
(2)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
C
割线与切线的斜率有何关系呢?
k PQ
y=f(x) y Q(x1,y1)
△y
y f ( x x ) f ( x ) = x x
即:当△x→0时,割线 PQ的斜率的极限,就是曲线 在点P处的切线的斜率,
P(x0,y0)
△x
M
o
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
瞬时速度就是位移函数s(t)对时间t的导数.
x x ) f( x )是函数f(x)在以x 与x +Δ x y f( 0 0 0 0 x x
பைடு நூலகம்
为端点的区间[x0,x0+Δ x](或[x0+Δx,x0])上的平均变化 率,而导数则是函数f(x)在点x0 处的变化率,它反映了函 数随自变量变化而变化的快慢程度.
y y=f(x) Q
Δy P O
β
Δx
M x
y 请 问 : 是 割 线 P Q 的 什 么 ? x
斜 率!
请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着 点P逐渐转动的情况 . y
y=f(x) Q
割 线 T 切线
P

x
o
我们发现,当点Q沿着曲线无限接近点P即Δ x→0 时,割线PQ有一个极限位置PT.则我们把直线PT称为曲 线在点P处的切线. 设切线的倾斜角为α ,那么当Δx→0时,割线PQ的 斜率,称为曲线在点P处的切线的斜率.
2 |x y 2 4 . 2
-2 -1
1 3 x 3
P
x 2
即点P处的切线的斜率等于4.
O -1 -2
1
(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.
什么是导函数?
由函数f(x)在x=x0处求导数的过程可以看到,当 时,f’(x0) 是一个确定的数.那么,当x变化时,便是x 的一个函数,我们叫它为f(x)的导函数.即:
y fx ( x ) fx ( ) l f ( x ) y i m l i m x 0 x 0 x x
在不致发生混淆时,导函数也简称导数.
函 数 y f( x ) 在 点 x 处 的 导 数 f ( x ) 0 0 等 于 函 数 f( x ) 的 导 ( 函 ) 数 f ( x ) 在 点 x 处 的 0 函 数 值 .
如何求函数y=f(x)的导数?
( 1 ) 求 函 数 的 增 量 y f ( x x ) f ( x ) ;
( 2 ) 求 函 数 的 增 量 与 自 变 量 的 增 量 的 比 值 : y f( x x ) f( x ) ; x x
y ( 3 ) 求 极 限 , 得 导 函 数 y f ( x ) l i m . x 0 x
注意:这里的增量不是一般意义上的增量,它可正也可负. 自变量的增量Δx的形式是多样的,但不论Δx选择 哪种形式, Δy也必须选择与之相对应的形式.
下面来看导数的几何意义:
如图,曲线C是函数y=f(x) 的图象,P(x0,y0)是曲线C上的 任意一点,Q(x0+Δ x,y0+Δ y) 为P邻近一点,PQ为C的割线, PM//x轴,QM//y轴,β为PQ的 倾斜角.则 : MP x, MQ y, y tan . x
1
y
M
求曲线在某点处的切线方程 的基本步骤:先利用切线斜率 的定义求出切线的斜率,然后 利用点斜式求切线方程.
j
x
-1 O
1
1 3 8 y x上一点 P ( 2 , ) 练习:如图已知曲线 3 3 ,求 : (1)点P处的切线的斜率; (2)点P处的切线方程.
1 1 3 3 (x x) x 1 3 y 3 解: (1 )y x ,y lim lim3 x 0 0 y 3 x x x y 2 2 3 4 1 3x x3x( x) ( x) lim 3 0 3x x 2 1 2 2 2 lim [3x 3x x( x) ] x . 1 0 3x
( 1 ) 求 函 数 的 增 量 y f ( xx ) f ( x ) ; 0 0
( x ) fx () y fx 0 0 ( 2 ) 求 平 均 变 化 率 ; x x y ( 3 ) 取 极 限 , 得 导 数 f ( x ) l i m. 0 x 0 x
新课标人教版课件系列
《数学》
选修1-1
3.1.2《导数的几何意义》
先来复习导数的概念
定义:设函数y=f(x)在点x0处及其附近有定义,当 自变量x在点x0处有改变量Δ x时函数有相应的改变量 Δ y=f(x0+ Δ x)- f(x0).如果当Δ x0 时,Δ y/Δ x的极限 存在,这个极限就叫做函数f(x)在点x0处的导数(或变化 | ( x ) 或 y ,: 率)记作 f 即 0 x x fx ( x ) fx () y 0 0 f () x l i m l i m . 0 x 0 x 0 x x
( xfx ) () y fx 0 0 k fx ()l i m l i m 即: 切 0 线 x 0 x 0 x x
'
这个概念:①提供了求曲线上某点切线的斜 率的一种方法;②切线斜率的本质——函数在 x=x0处的导数.
例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程. f ( x0 x ) f ( x0 ) 解 : k lim y x 0 Q x (1 x ) 2 1 (1 1) lim 2 x 0 x y = x +1 2x ( x ) 2 lim 2. x 0 x P 因此,切线方程为y-2=2(x-1), x 即y=2x.
看一个例子:
思 考 一 下 , 导 数 可 以 用 下 式 表 示 吗 ? f( x )f( x ) 0 f ( x )l i m 0 x x 0 x x 0
如果函数y=f(x)在点x=x0存在导数,就说函数y=f(x) 在点x0处可导,如果极限不存在,就说函数 f(x)在点x0处 不可导.
由导数的意义可知,求函数y=f(x)在点x0处的导数 的基本方法是:
相关文档
最新文档