最新中考水平宽铅垂高法求面积最大值(带答案)复习过程

合集下载

中考专题复习--浅谈水平宽铅锤高求三角形面积+课件+-2023-2024学年人教版数学九年级下册+

中考专题复习--浅谈水平宽铅锤高求三角形面积+课件+-2023-2024学年人教版数学九年级下册+

1
s3
o•
-2 -1
1
2
3
4
5P
x
-1
-2
y
5
S=S梯形OPMB– S1 –S2
4
B(•3,4)
M
s1
3
2
•A(5,2)
1
s2
o•
-2 -1
1
2
3
4
5P
x
-1
-2
牛刀小试:1.如图,在直角坐标系中,点A的坐标为 (-2,0),连结OA,将线段OA绕原点O顺时针旋转 120°,得到线段OB.
(1)求点B的坐标;
3.如图1,抛物线y=-x+bx+c与x轴交于A(1,0),B(-3,
0)两点。 (3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P, 使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面 积最大值;若没有,请说明理由。
谢谢!
小结
我们可以得到一种计算三角形面积新方法:即三角 形的面积等于水平宽与铅锤高乘积的一半。
谢谢大家,再见!
例如图所示, 求△ OAB的面 积。
AM平行于x轴
y 4x OB 3
当y=2 x 3Βιβλιοθήκη 2所以M(3 2
,2

y
5
4
3
2
M
h2 1
o•
-2 -1
1
-1
-2
B(•3,4)
h1
S S S
OAB
ABM
2.如图,抛物线与x轴交于A(1,0),B(- 3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴于C点,在该抛物线的对 称轴上是否存在点Q,使得△QAC的周长最小?若存在, 求出Q点的坐标;若不存在,请说明理由.

2024成都中考数学二轮复习专题:三角形面积求最大值问题——铅垂法

2024成都中考数学二轮复习专题:三角形面积求最大值问题——铅垂法

铅垂法求三角形面积最值问题求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积.这是在“补”,同样可以采用“割”:()111222ABC ACD BCD S S S CD AE CD BF CD AE BF =+=⋅+⋅=+此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6.下求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4,将4代入直线AB 解析式得D 点纵坐标为2,故D 点坐标为(4,2),CD =5,165152ABC S =⨯⨯=.【方法总结】作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S ⨯水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ;(3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标;(4)根据C 、D 坐标求得铅垂高;(5)利用公式求得三角形面积.【思考】如果第3个点的位置不像上图一般在两定点之间,如何求面积?铅垂法其实就是在割补,重点不在三个点位置,而是取两个点作水平宽之后,能求出其对应的铅垂高!因此,动点若不在两定点之间,方法类似:【铅垂法大全】(1)取AB 作水平宽,过点C 作铅垂高CD .(2)取AC 作水平宽,过点B 作BD ⊥x 轴交直线AC 于点D ,BD 即对应的铅垂高,=2ABC ABD BCD S S S ⨯-=水平宽铅垂高(3)取BC 作水平宽,过点A 作铅垂高AD .甚至,还可以横竖互换,在竖直方向作水平宽,在水平方向作铅垂高.(4)取BC作水平宽,过点A作铅垂高AD.(5)取AC作水平宽,过点B作铅垂高BD.(6)取AB作水平宽,过点C作铅垂高CD.方法突破例一、如图,已知抛物线25y ax bx =++经过(5,0)A -,(4,3)B --两点,与x 轴的另一个交点为C .(1)求该抛物线的表达式;(2)点P 为该抛物线上一动点(与点B 、C 不重合),设点P 的横坐标为m .当点P 在直线BC 的下方运动时,求PBC ∆的面积的最大值.【分析】(1)265y x x =++,(2)取BC 两点之间的水平距离为水平宽,过点P 作PQ ⊥x 轴交直线BC 于点Q ,则PQ 即为铅垂高.根据B 、C 两点坐标得B 、C 水平距离为4,根据B 、C 两点坐标得直线BC 解析式:y =x +1,设P 点坐标为(m ,m ²+6m +5),则点Q (m ,m +1),得PQ =-m ²-5m -4,考虑到水平宽是定值,故铅垂高最大面积就最大.当52-时,△BCP 面积最大,最大值为278.【小结】选两个定点作水平宽,设另外一个动点坐标来表示铅垂高.例二、在平面直角坐标系中,将二次函数2(0)y ax a =>的图像向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x 轴交于点A 、B (点A 在点B 的左侧),1OA =,经过点A 的一次函数(0)y kx b k =+≠的图像与y 轴正半轴交于点C ,且与抛物线的另一个交点为D ,ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图像下方,求ACE ∆面积的最大值,并求出此时点E 的坐标.【分析】(1)抛物线解析式:21322y x x =--;一次函数解析式:1122y x =+.(2)显然,当△ACE 面积最大时,点E 并不在AC 之间.已知A (-1,0)、10,2C ⎛⎫ ⎪⎝⎭,设点E 坐标为213,22m m m ⎛⎫-- ⎪⎝⎭,过点E 作EF ⊥x 轴交直线AD 于F 点,F 点横坐标为m ,代入一次函数解析式得11,22m m ⎛⎫+ ⎪⎝⎭可得213222EF m m =-++考虑到水平宽是定值,故铅垂高最大面积最大.既然都是固定的算法,那就可以总结一点小小的结论了,对坐标系中已知三点()11,A x y 、()22,B x y 、()33,C x y ,按铅垂法思路,可得:12233121321312ABC S x y x y x y x y x y x y =++---如果能记住也不要直接用,可以当做是检验的方法咯.【总结】铅垂法是求三角形面积的一种常用方法,尤其适用于二次函数大题中的三角形面积最值问题,弄明白方法原理,熟练方法步骤,加以练习,面积最值问题轻轻松松.专项训练1.已知二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,且二次函数2y x bx c =-++的图象经过点(0,3)B ,一次函数y mx n =+的图象经过点(0,1)C -.(1)分别求m 、n 和b 、c 的值;(2)点P 是二次函数2y x bx c =-++的图象上一动点,且点P 在x 轴上方,写出ACP ∆的面积S 关于点P 的横坐标x 的函数表达式,并求S 的最大值.【分析】(1)把直线和曲线经过的点代入得到方程组,求解即可得到答案;(2)分两种情况:①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D ,分别根据三角形面积公式得到关系式,利用函数式表示三角形PAC 的面积,配方可得答案.【解答】解:(1)二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,一次函数y mx n =+的图象经过点(0,1)C -,∴301m n n -+=⎧⎨=-⎩,∴131m n ⎧=-⎪⎨⎪=-⎩,二次函数2y x bx c =-++和一次函数y mx n =+的图象都经过点(3,0)A -,二次函数2y x bx c =-++的图象经过点(0,3)B ,∴9303b c c --+=⎧⎨=⎩,∴23b c =-⎧⎨=⎩.(2)由(1)知一次函数与二次函数的解析式分别为:113y x =--或223y x x =--+,①当点P 在y 轴左侧时,过点P 作//PD y 轴交AC 于点D ,则13|3|22PAC S PD PD ∆=⨯⨯-=,②当点P 在y 轴右侧时,过点P 作//PD y 轴交AC 的延长线于点D,则13|3|22PAC S PD x x PD ∆=⨯⨯+-=,点P 在抛物线上,设2(,23)P x x x --+,则1(,1)3D x x --,2215231433PD x x x x x ∴=--+++=--+,233535169(4)(2232624PAC S PD x x x ∆∴==-++=-++,即当56x =-时,PAC S ∆最大16924=.【点评】本题考查的是二次函数综合运用,涉及一次函数、图形面积的计算等,掌握其性质及运算是解决此题关键,2.如图,抛物线经过(2,0)A -,(4,0)B ,(0,3)C -三点.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上有一动点P ,使得PBC ∆的面积最大,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)将点A 、B 、C 的坐标代入抛物线表达式,即可求解;(2)由PBC ∆的面积PHB PHC S S ∆∆=+,即可求解;(3)分AC 是边、AC 是对角线两种情况,利用平移的性质和中点公式即可求解.【解答】解:(1)将点A 、B 、C 的坐标代入抛物线表达式得42016403a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得38343a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,故抛物线的表达式为233384y x x =--;(2)设直线BC 的表达式为y mx n =+,则043m n n =+⎧⎨=-⎩,解得343m n ⎧=⎪⎨⎪=-⎩,故直线BC 的表达式为334y x =-,过点P 作y 轴的平行线交BC 于点H ,设点P 的坐标为233(,3)84x x x --,则点3(,3)4H x x -,则PBC ∆的面积221133334(33)3224844PHB PHC S S PH OB x x x ∆∆=+=⋅=⨯⨯--++=-+,304-<,故该抛物线开口向下,PBC ∆的面积存在最大值,此时2x =,则点P 的坐标为(2,3)-;(3)存在,理由:设点N 的坐标为(,)m n ,则233384n m m =--①,①当AC 是边时,点A 向下平移3个单位得到点C ,则点()M N 向下平移3个单位得到点()N M ,则03n -=或03n +=②,联立①②并解得23m n =⎧⎨=-⎩或13m n ⎧=-⎪⎨=⎪⎩(不合题意的值已舍去);②当AC 是对角线时,则由中点公式得:11(03)(0)22n -=+③,联立①③并解得23m n =⎧⎨=-⎩(不合题意的值已舍去);综上,点N 的坐标为(2,3)-或(1-+3)或(1--3).【点评】本题是二次函数综合题,主要考查了一次函数的性质、平行四边形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.3.综合与探究:如图,在平面直角坐标系中,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -三点,点(,)P m n 是直线BC 下方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P 运动到什么位置时,PBC ∆的面积最大,求出此时P 点坐标及PBC ∆面积的最大值;(3)在y 轴上是否存在点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【分析】(1)将A 、B 、C 坐标代入即可求解析式;(2)设P 坐标,表示出PBC ∆的面积,再求出最大面积和面积最大时P 的坐标;(3)两个直角顶点是对应点,而AOC ∆两直角边的比为14,只需BOQ ∆两直角边比也为14,两个三角形就相似,分两种情况列出比例式即可.【解答】解:(1)设二次函数的解析式为12()()y a x x x x =--,二次函数的图象交坐标轴于(1,0)A -,(3,0)B ,(0,4)C -,11x ∴=-,23x =,124()()a x x x x -=--,解得11x =-,23x =,43a =,∴二次函数的解析式为2448(1)(3)4333y x x x x =+-=--,故答案为:2448(1)(3)4333y x x x x =+-=--;(2)设直线BC 解析式为y kx b =+,将(3,0)B ,(0,4)C -代入得034k b b =+⎧⎨-=⎩,解得43b =,4c =-,BC ∴解析式是443y x =-,如答图1,过P 作//PD y 轴,交BC 于D ,点(,)P m n 是直线BC 下方抛物线上的一个动点,03m ∴<<,248433n m m =--,4(,4)3D m m -,224484(4)(4)43333PD m m m m m ∴=----=-+,22211439()(4)(30)262()22322PBC B C S PD x x m m m m m ∆∴=⋅-=-+⋅-=-+=--+,3032<<,32m ∴=时,PBC S ∆最大为92,此时224843834()45333232n m m =--=⨯-⨯-=-,3(2P ∴,5)-,故答案为:3(2P ,5)-,PBC S ∆最大为92;(3(1,0)A -,(0,4)C -,(3,0)B ,∴14OA OC =,3OB =,点Q 在y 轴上,90BOQ AOC ∴∠=∠=︒,若以O ,B ,Q 为顶点的三角形与AOC ∆相似,则BOQ ∠与AOC ∠对应,分两种情况:①如答图2,AOC QOB ∆∆∽,则14OQ OA OB OC ==即134OQ =,解得34OQ =,13(0,4Q ∴或23(0,)4Q -;②AOC BOQ ∆∆∽,则14OB OA OQ OC ==即314OQ =,解得12OQ =,3(0,12)Q ∴或4(0,12)Q -,综上所述,存在y 轴上的点Q ,使以O ,B ,Q 为顶点的三角形与AOC ∆相似,这样的点一共4个:13(0,4Q 或23(0,)4Q -,3(0,12)Q 或4(0,12)Q -,故答案为:存在这样的点Q ,坐标分别是:13(0,4Q 或23(0,)4Q -,3(0,12)Q 或4(0,12)Q -,【点评】本题是二次函数、相似三角形、面积等问题的综合题,主要考查坐标、线段的转化,面积的表示,涉及方程思想,分类思想等,难度适中.4.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC ∆的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点N 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可求解析式;(2)过点P 作PH x ⊥轴于H ,交BC 于点G ,先求出BC 的解析式,设点2(,23)P m m m -++,则点(,3)G m m -+,由三角形面积公式可得221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+,由二次函数的性质可求解;(3)设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,先求出点A ,点M 坐标,可求MC 解析式,可得4DE MD ==,由等腰直角三角形的性质可得22MQ NQ MN ==,由两点距离公式可列222(|4|)42n n -=+,即可求解.【解答】解:(1)点(3,0)B ,点(0,3)C 在抛物线2y x bx c =-++图象上,∴9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,∴抛物线解析式为:223y x x =-++;(2)点(3,0)B ,点(0,3)C ,∴直线BC 解析式为:3y x =-+,如图,过点P 作PH x ⊥轴于H ,交BC 于点G ,设点2(,23)P m m m -++,则点(,3)G m m -+,22(23)(3)3PG m m m m m ∴=-++--+=-+,221133273(3)()22228PBC S PG OB m m m ∆=⨯⨯=⨯⨯-+=--+,∴当32m =时,PBC S ∆有最大值,∴点3(2P ,154;(3)存在N 满足条件,理由如下:抛物线223y x x =-++与x 轴交于A 、B 两点,∴点(1,0)A -,2223(1)4y x x x =-++=--+,∴顶点M 为(1,4),点M 为(1,4),点(0,3)C ,∴直线MC 的解析式为:3y x =+,如图,设直线MC 与x 轴交于点E ,过点N 作NQ MC ⊥于Q ,∴点(3,0)E -,4DE MD ∴==,45NMQ ∴∠=︒,NQ MC ⊥,45NMQ MNQ ∴∠=∠=︒,MQ NQ ∴=,MQ NQ ∴==,设点(1,)N n ,点N 到直线MC 的距离等于点N 到点A 的距离,NQ AN ∴=,22NQ AN ∴=,222()2MN AN ∴=,22(|4|)42n n ∴-=+,2880n n ∴+-=,4n ∴=-±,∴存在点N 满足要求,点N 坐标为(1,4-+或(1,4--.【点评】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,一次函数的性质,两点距离公式,等腰直角三角形的性质等知识,利用参数列方程是本题的关键.5.如图,抛物线过点(0,1)A 和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B ,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为3,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当PAB ∆面积最大时,求点P 的坐标及PAB ∆面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A ,C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.【分析】(1)由待定系数法求出直线AB 的解析式为31y =+,求出F 点的坐标,由平行四边形的性质得出1613181(33a a a -+=-+--,求出a 的值,则可得出答案;(2)设2(,231)P n n n -++,作PP x '⊥轴交AC 于点P ',则3(,1)3P n n '+,得出2733PP n n '=-+,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出7(33C ,4)3-,设(3Q ,)m ,分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,(0,1)A ,(3B ,0),设直线AB 的解析式为y kx m =+,∴301k m m ⎧+=⎪⎨=⎪⎩,解得331k m ⎧=⎪⎨⎪=⎩,∴直线AB 的解析式为313y x =+,点F 43F ∴点纵坐标为343113=-,F ∴点的坐标为,1)3-,又点A 在抛物线上,1c ∴=,对称轴为:2b x a=-=,b ∴=-,∴解析式化为:21y ax =-+,四边形DBFE 为平行四边形.BD EF ∴=,1613181(33a a a ∴-+=-+--,解得1a =-,∴抛物线的解析式为21y x =-++;(2)设2(,1)P n n -++,作PP x '⊥轴交AC 于点P ',则(,1)P n '+,2PP n '∴=-+,22172222ABP S OB PP n n ∆'==-+=--+,∴当n =ABP ∆,此时P 47)12.(3)211y y x ⎧=+⎪⎨⎪=-++⎩,0x ∴=或x =C ∴,43-,设Q ,)m ,①当AQ 为对角线时,7()3R m ∴+,R 在抛物线2(4y x =--+上,27(43m ∴+=--+,解得443m =-,443Q ∴-,37(3R -;②当AR 为对角线时,73R m ∴-,R 在抛物线2(4y x =--+上,2743m ∴-=-+,解得10m =-,Q ∴10)-,37)3R -.综上所述,443Q -,37(3R -;或Q ,10)-,37)3R -.【点评】本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键.6.在平面直角坐标系xOy 中,等腰直角ABC ∆的直角顶点C 在y 轴上,另两个顶点A ,B 在x 轴上,且4AB =,抛物线经过A ,B ,C 三点,如图1所示.(1)求抛物线所表示的二次函数表达式.(2)过原点任作直线l 交抛物线于M ,N 两点,如图2所示.①求CMN ∆面积的最小值.②已知3(1,2Q -是抛物线上一定点,问抛物线上是否存在点P ,使得点P 与点Q 关于直线l对称,若存在,求出点P 的坐标及直线l的一次函数表达式;若不存在,请说明理由.【分析】(1)先根据等腰直角三角形的性质求得OA 、OB 、OC ,进而得A 、B 、C 三点的坐标,再用待定系数法求得抛物线的解析式;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,联立方程组求得12||x x -,再由三角形的面积公式求得结果;②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,由OP OQ =列出方程求得m 的值,再根据题意舍去不合题意的m 值,再求得PQ 的中点坐标,便可求得直线l 的解析式.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠,在等腰Rt ABC ∆中,OC 垂直平分AB ,且4AB =,2OA OB OC ∴===,(2,0)A ∴-,(2,0)B ,(0,2)C -,∴4204202a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得,1202a b c ⎧=⎪⎪=⎨⎪=-⎪⎩,∴抛物线的解析式为2122y x =-;(2)①设直线l 的解析式为y kx =,1(M x ,1)y ,2(N x ,2)y ,由2122y x y kx⎧=-⎪⎨⎪=⎩,可得21202x kx --=,122x x k ∴+=,124x x =-,∴222121212()()4416x x x x x x k -=+-=+,∴12||x x -=∴121||2CMN S OC x x ∆=-=,∴当0k =时取最小值为4.CMN ∴∆面积的最小值为4.②假设抛物线上存在点21(,2)2P m m -,使得点P 与点Q 关于直线l 对称,OP OQ ∴==解得,1m2m =,31m =,41m =-,31m =,41m =-不合题意,舍去,当1m =1)2P -,线段PQ的中点为1(1)2-,∴112k +=-,∴1k =,∴直线l的表达式为:(1y x =-,当2m =时,点(P 1)2-,线段PQ的中点为1(2,1)-,∴112-=-,∴1k =,∴直线l的解析式为(1y x =+.综上,点P ,12-,直线l的解析式为(1y x =或点(P 1)2-,直线l 的解析式为(1y x =+.【点评】本题是二次函数的综合题,主要考查了二次函数的图象与性质,一次函数的图象与性质,待定系数法,轴对称的性质,第(2)①题关键是求得M 、N 两点的横坐标之差,第(2)②小题关键是根据轴对称性质列出m 的方程,以及求得PQ 的中点坐标.。

水平宽铅垂高求三角形面积完整版

水平宽铅垂高求三角形面积完整版
(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.
解:(1)将B、C两点的坐标代入得
解得: 所以二次函数的表达式为:
(2)存在点P,使四边形POP C为菱形.设P点坐标为(x, ),PP 交CO于E若四边形POP C是菱形,则有PC=PO.
连结PP 则PE⊥CO于E,∴OE=EC= = .
∴ = 解得 = , = (不合题意,舍去)
∴P点的坐标为( , )
(3)过点P作 轴的平行线与BC交于点Q,与OB交于点F,设P(x, ),易得,直线BC的解析式为 则Q点的坐标为(x,x-3).
图① 图②
3.(2015年恩施) 如图11,在平面直角坐标系中,二次函数 的图象与x轴交于A、B
两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,
点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP C,那么是否存在点P,使四边形POP C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
水平宽铅垂高求三角形面积
作三角形铅垂高是解决三角形面积问题的一个好办法
------------二次函数教学反思
铅垂高
如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=1\2 ah,即三角形面积等于水平宽与铅垂高乘积的一半.
例1.(2013深圳)如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.

中考数学压轴题:二次函数中的面积问题(含答案)

中考数学压轴题:二次函数中的面积问题(含答案)

学生/课程年级日期学科时段课型数学授课教师核心内容二次函数中求面积最值,图形平移或折叠面积问题1.会利用函数的图象性质来研究几何图形的面积最值问题;教学目标重、难点2.掌握几种求图形面积的常见解题方法与技巧,如:割补法、平行等积变换法等。

3.掌握图形平移或折叠变换过程中找等量关系列函数解析式求图形面积问题的一般方法.割补法求三角形面积,动态问题一般解题思路。

了解学生的学习情况S△ = a h或S△ = a d (d表示已知点到直线的距离)以动点作垂直(平行)x轴的直线,即铅垂高,再分别过点A,C作PF的高,即和为水平宽。

S△ = ×水平宽×铅垂高如下图:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.如图,AD∥BC中,AC与BD交点O,则S△ABC = S△DBC,S△AOB = S△COD2如图,在平面直角坐标系中,抛物线y=mx -8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x ,10),C(x ,0),且x -x =4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线,直线AD2 2 1的交点分别为P,Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值.图形面积的求法常见有三种,分别是:(1)_______________________________(2)_______________________________(3)_______________________________[学有所获答案] (1)直接公式求法 割补法 平行线等积变换法(2)(3) 2 如图,已知抛物线y =x +bx +c 与 轴交于A ,B 两点(点A 在点B 的左侧)与 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D ,点E 为y 轴上一动点,CE 的垂直平分线交抛物线于P ,Q 两点(点P 在第三象限)(1)求抛物线的函数表达式和直线BC 的函数表达式;(2)当△CDE 是直角三角形,且∠CDE =90°时,求出点P 的坐标;(3)当△PBC 的面积为 时,求点E 的坐标.2 如图,已知抛物线y = x +ax +4a 与x 轴交于点A ,B ,与y 轴负半轴交于点C 且OB =OC ,点P 为抛物线上的一个动点,且点P 位于x 轴下方,点P 与点C 不重合.(1)求该抛物线的解析式;(2)若△PAC 的面积为 ,求点P 的坐标;(3)若以A ,B ,C ,P 为顶点的四边形面积记作S ,则S 取何值时,对应的点P 有且只有2个?将()的图像如何平移到的图像。

铅垂线法二次函数面积最大值问题

铅垂线法二次函数面积最大值问题

铅垂线法二次函数面积最大值问题铅垂线法二次函数面积最大值问题1. 引言在数学中,二次函数是一种非常重要的函数形式。

它以抛物线的形式呈现,具有丰富的几何和代数特性。

铅垂线法是一种常见的解决问题的方法,可以应用于许多数学和物理问题中。

本文将介绍铅垂线法在二次函数面积最大值问题中的应用,探讨如何通过该方法求解最优解。

2. 二次函数的基本形式二次函数可以写为 y = ax^2 + bx + c 的形式,其中 a、b 和 c 是常数,a ≠ 0。

它的图像是一个抛物线,开口的方向取决于 a 的正负。

二次函数的图像关于一个对称轴对称,这个对称轴可以用铅垂线表示。

铅垂线是通过顶点并与抛物线垂直的线段,它对应的 x 坐标就是对称轴的 x 坐标。

3. 铅垂线法的基本原理铅垂线法是一种基于几何和代数思想的问题解决方法。

对于一个给定的二次函数,我们希望找到一个特定的线段,使得这个线段和 x 轴以及抛物线所围成的面积达到最大值。

根据几何原理,这个线段应该与铅垂线重合。

4. 铅垂线法步骤以下是使用铅垂线法求解铅垂线方程和最大面积的一般步骤:1)确定二次函数的标准形式,并找出对称轴的 x 坐标;2)以对称轴上的一点作为铅垂线的起点,并确定该线段的长度;3)利用铅垂线的起点和终点,计算所围成的面积;4)随着铅垂线的移动,不断重复步骤 2 和步骤 3;5)比较每一次计算的面积值,找到最大值对应的铅垂线长度,得到最大面积。

5. 铅垂线法在二次函数面积最大值问题中的应用对于给定的二次函数 y = ax^2 + bx + c,我们可以通过铅垂线法求解铅垂线方程。

假设对称轴的 x 坐标为 p,则铅垂线的方程可以表示为 x = p。

利用二次函数的顶点公式,我们可以得到顶点的坐标 (-b/2a, f(-b/2a))。

铅垂线的起点坐标可以表示为 (p, f(p))。

为了计算所围成的面积,我们可以使用定积分。

根据定积分的定义,对于一个 x 坐标在 p 和 q 之间的函数 f(x),所围成的面积可以表示为∫[p,q] f(x)dx。

铅垂高水平宽面积公式

铅垂高水平宽面积公式

铅垂高水平宽面积公式
铅垂高水平宽面积的公式主要有以下三种:
一、公式1:面积= 泊松号 X 铅锤长度^²
①泊松号:指一个水体中水深和宽度的比值,根据泊松号表,可以确定水体深度和宽度的大小。

②铅锤长度:指用铅锤测定水体深度的时候,把铅锤垂直向下投放的距离,也就是两支铅锤的总长度。

二、公式2:面积= 2 X 垂膨泊松号 X 铅锤长度 X 面积系数
①垂膨泊松号:指水体中水深(投放铅锤时,从投放点到水体底部的距离)和宽度的比值,根据垂膨泊松号表,可以确定水体深度和宽度的大小。

②铅锤长度:与公式1中定义相同。

③面积系数:指水体宽度在铅锤投放时会发生变化而产生的影响,通过查阅相关资料可以确定面积系数的大小。

三、公式3:面积= 2 X 水柱体积 X 面积系数
①水柱体积:指用两支铅锤测量水体的时候,铅锤之间的柱体积,也就是一个整体的一个立方体的体积。

②面积系数:与公式2中定义相同。

专题突破二次函数面积最值问题的4种解法,必看

专题突破二次函数面积最值问题的4种解法,必看

专题突破二次函数面积最值问题的4种解法,必看!二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。

特别是在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。

而求三角形面积的最值问题,更是常见。

今天介绍二次函数考试题型中,面积最值问题的4种常用解法。

同学们,只要熟练运用一两种解法,炉火纯青,在考试答题的时候,能够轻松答题,就好。

原题:在(1)中的抛物线上的第二象限是否存在一点P,使△PBC的面积最大?若存在,求出P点的坐标及△PBC的面积最大值,若没有,请说明理由。

考试题型,大多类似于此。

求面积最大值的动点坐标,并求出面积最大值。

一般解题思路和步骤是,设动点P的坐标,然后用代数式表达各线段的长。

通过公式计算,得出二次函数顶点式,则坐标和最值,即出。

解法一:补形,割形法。

方法要点是,把所求图像的面积适当的割补,转化成有利于面积表达的常规几何图形。

请看解题步骤。

解法二:铅锤定理,面积=铅锤高度×水平宽度÷2。

这是三角形面积表达方法的一种非常重要的定理。

铅锤定理,在教材上没有,但是大多数数学老师都会作为重点,在课堂上讲解。

因为,铅锤定理,在很多地方都用的到。

这里,也有铅锤定理的简单推导,建议大家认真体会。

解法二:铅锤定理,在求二次函数三角形面积最值问题,运用非常多。

设动点P的坐标,然后用代数式分别表达出铅锤高度和水平宽度,然后利用铅锤定理的计算公式,得出二次函数,必有最大值。

解法三:切线法。

这其实属于高中内容。

但是,基础好的同学也很容易理解,可以看看,提前了解一下。

解法四:三角函数法。

请大家认真看上面的解题步骤。

总之,从以上的四种解法可以得出一个规律。

过点P做辅助线,然后利用相关性质,找出各元素之间的关系。

设动点P的坐标,然后找出各线段的代数式,再通过面积计算公式,得出二次函数顶点式,求出三角形面积的最大值。

对于同学们中考数学来说,只要你熟练掌握解法一和解法二,那么二次函数几何综合题中,求三角形面积最大值问题,就非常简单了。

二次函数中的面积最值问题最佳处理方法

二次函数中的面积最值问题最佳处理方法

因材教育二次函数中的面积最值问题从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考.如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.解答(1)抛物线解析式为y=-x2-2x+3;(2)Q(-1,2);下面着重探讨求第(3)小题中面积最大值的几种方法.一、补形、割形法几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形.方法一如图3,设P点(x,-x2-2x+3)(-3<x<0).方法二如图4,设P 点(x ,-x 2-2x +3)(-3<x<0).(下略.)二、“铅垂高,水平宽”面积法如图5,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半.根据上述方法,本题解答如下:解如图6,作PE ⊥x 轴于点E ,交BC 于点F .设P 点(x ,-x 2-2x +3)(-3<x<0).∴点P 坐标为(-32,154)三、切线法若要使△PBC 的面积最大,只需使BC 上的高最大.过点P 作BC 的平行线l ,当直线l 与抛物线有唯一交点(即点P)时,BC 上的高最大,此时△PBC 的面积最大,于是,得到下面的切线法.解如图7,直线BC 的解析式是y =x +3,过点P 作BC 的平行线l ,从而可设直线l 的解析式为:y =x +b .=278.四、三角函数法本题也可直接利用三角函数法求得.解如图8,作PE ⊥x 轴交于点E ,交BC 于点F ,怍PM ⊥BC 于点M .设P 点(x ,-x 2-2x +3)(-3<x<0),则F(x ,x +3).从以上四种解法可以看到,本题解题思路都是过点P 作辅助线,然后利用相关性质找出各元素之间的关系进行求解.如此深入挖掘一道题的多种解法,可使我们摆脱题海战术,提高解题能力.同时,善于总结一道题的多种解法能加快解题速度,提高解题效率,也有利于培养我们的钻研能力和创新精神.二次函数之面积问题(讲义)一、知识点睛1.二次函数之面积问题的处理思路①分析目标图形的点、线、图形特征;②依据特征、原则对图形进行割补、转化;③设计方案,求解、验证.面积问题的处理思路:公式、割补、转化.坐标系背景下问题处理原则:________________________,__________________________.2.二次函数之面积问题的常见模型①割补求面积——铅垂法:1()2APB B A S PM x x =⋅⋅-△1()2APB B A S PM x x =⋅⋅-△②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ .二、精讲精练1.如图,抛物线经过A(-1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式.(2)点M是直线BC上方抛物线上的点(不与B,C重合),过点M作MN∥y轴交线段BC于点N,若点M的横坐标为m,请用含m 的代数式表示MN的长.(3)在(2)的条件下,连接MB,MC,是否存在点M,使四边形OBMC的面积最大?若存在,求出点M的坐标及四边形OBMC的最大面积;若不存在,请说明理由.2.如图,抛物线322++-=x x y 与直线1+=x y 交于A ,C 两点,其中C点坐标为(2,t ).(1)若P 是直线AC 上方抛物线上的一个动点,求△APC 面积的最大值.(2)在直线AC 下方的抛物线上,是否存在点G ,使得6AGC S =△?如果存在,求出点G 的坐标;如果不存在,请说明理由.3.如图,抛物线223y x x =--与x 轴交于A ,B 两点,与直线y x p =-+交于点A 和点C (2,-3).(1)若点M 在抛物线上,且以点M ,A ,C 以及另一点N 为顶点的平行四边形ACNM 的面积为12,求M ,N 两点的坐标.(2)在(1)的条件下,若点Q 是x 轴下方抛物线上的一动点,当△QMN 的面积最大时,请求出△QMN 的最大面积及此时点Q 的坐标.4.如图,抛物线223y x x =-++与x 轴交于A ,B 两点,与y 轴交于点C ,对称轴与抛物线交于点P ,与直线BC 交于点M ,连接PB .(1)抛物线上是否存在异于点P 的一点Q ,使△QMB 与△PMB 的面积相等?若存在,求出点Q 的坐标;若不存在,请说明理由.(2)在第一象限对称轴右侧的抛物线上是否存在一点R ,使△RMP 与△RMB 的面积相等?若存在,求出点R 的坐标;若不存在,请说明理由.5.如图,已知抛物线2y x bx c =++与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,-3).(1)求抛物线的解析式.(2)如图,已知点H (0,-1).①在x 轴下方的抛物线上是否存在点D ,使得S △ABH =S △ABD ?若存在,求出点D 的坐标;若不存在,请说明理由.②在抛物线上是否存在点G (点G 在y 轴的左侧),使得S △GHC =S △GHA ?若存在,求出点G 的坐标;若不存在,请说明理由.【参考答案】一、知识点睛充分利用横平竖直的线段长函数特征几何特征互转二、精讲精练12。

铅垂高水平宽求三角形面积

铅垂高水平宽求三角形面积

铅垂高水平宽求三角形面积
S△ABC=1\2ah。

过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的水平宽(a),中间的这条直线在△ABC内部线段的长度叫△ABC的铅垂高(h),我们可得出一种计算三角形面积的新方法:S△ABC=1\2ah,即三角形面积等于水平宽与铅垂高乘积的一半。

铅垂高法是解决与二次函数相关的三角形面积问题的一个特殊的方法。

铅垂高
任何物件如铅垂一样的与地成正垂直,就是铅垂方向,沿铅垂方向的高度就是铅垂高,即在铅垂方向的投影;
与铅垂方向垂直的方向就是水平方向,物体沿水平方向的宽度就是水平宽。

把三角形沿水平方向分割成上下两部分,上部分面积=水平宽×h1×1/2,下部分面积=水平宽×h2×1/2,h1+h2=铅垂高,结论得证。

如何求解二次函数中的面积最值问题

如何求解二次函数中的面积最值问题

如何求解二次函数中的面积最值问题(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--如何求解二次函数中的面积最值问题从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考.题目(重庆市江津区)如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小若存在,求出Q点的坐标;若不存在,请说明理由;(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.解答 (1)抛物线解析式为y=-x2-2x+3;(2)Q(-1,2);下面着重探讨求第(3)小题中面积最大值的几种方法.一、补形、割形法几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形.方法一如图3,设P点(x,-x2-2x+3)(-3<x<0).23方法二 如图4,设P 点(x ,-x 2-2x +3)(-3<x<0).(下略.)二、“铅垂高,水平宽”面积法如图5,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半. 根据上述方法,本题解答如下:4解 如图6,作PE ⊥x 轴于点E ,交BC 于点F .设P 点(x ,-x 2-2x +3)(-3<x<0).∴点P 坐标为(-32,154) 三、切线法若要使△PBC 的面积最大,只需使BC 上的高最大.过点P 作BC 的平行线l ,当直线l 与抛物线有唯一交点(即点P)时,BC 上的高最大,此时△PBC 的面积最大,于是,得到下面的切线法.解 如图7,直线BC 的解析式是y =x +3,过点P 作BC 的平行线l ,从而可设直线l 的解析式为:y =x +b .5=278. 四、三角函数法本题也可直接利用三角函数法求得.解 如图8,作PE ⊥x 轴交于点E ,交BC 于点F ,怍PM ⊥BC 于点M . 设P 点(x ,-x 2-2x +3)(-3<x<0),则F(x ,x +3).6从以上四种解法可以看到,本题解题思路都是过点P 作辅助线,然后利用相关性质找出各元素之间的关系进行求解.如此深入挖掘一道题的多种解法,可使我们摆脱题海战术,提高解题能力.同时,善于总结一道题的多种解法能加快解题速度,提高解题效率,也有利于培养我们的钻研能力和创新精神.。

2020年中考数学专题突破一:抛物线中的面积问题(铅垂高)

2020年中考数学专题突破一:抛物线中的面积问题(铅垂高)

专题一:抛物线中的面积问题(铅垂高)【导例引入】 导例:抛物线2123333y x x =-++交x 轴正半轴于点A (33,0),交y 轴于点B (0,3),且这个抛物线的顶点为C .连接AB 、AC 、BC ,则抛物线的对称轴为直线 ,线段CD 的长为 ,△ABC 的面积为 .【方法指引】如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:S △ABC =ah ,即三角形面积等于水平宽与铅垂高乘积的一半.根据上述方法,我们来得到求三角形的面积的最值问题的方法:S △PAB =·PQ·,根据二次函数解析式设出点P 的坐标,结合一次函数解析式从而得到点Q 的坐标,从而转化为S 与点P 横坐标之间的二次函数解析式,再根据二次函数增减性求最值.一般情况下,当铅垂线段PQ 最大时,S △PAB 取得最大值.导例答案:3 2 33【例题精讲】类型一:抛物线上动点产生的三角形面积的最值例1在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y =x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.【分析】(1)根据题意得到B、C两点的坐标,设抛物线的解析式为y=(x﹣4)(x﹣m),将点C的坐标代入求得m的值即可;(2)过点D作DF⊥x轴,交BC与点F,设D(x,x2﹣x﹣2),则DF=﹣x2+2x,然后列出S与x的关系式,最后利用配方法求得其最大值即可;(3)根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点E,EA=EC=EB=,过D作Y轴的垂线,垂足为R,交AC的延线于G,设D(x,x2﹣x﹣2),则DR=x,CR=﹣x2+x,最后,分为∠DCM=2∠BAC和∠MDC=2∠BAC两种情况列方程求解即可.类型二:抛物线上动点产生的四边形的面积例2. 如图,抛物线y=ax2+bx﹣3与x轴交于点A(1,0)和点B,与y轴交于点C,且其对称轴l为x=﹣1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.【分析】(1)由对称轴可求得B点坐标,结合A、B两点坐标,利用待定系数法可求得抛物线解析式;(2)过点P作PM⊥x轴于点M,设抛物线对称轴l交x轴于点Q.可证明△BPM≌△NBQ,则可求得PM=BQ,可求得P点的纵坐标,利用抛物线解析式可求得P点坐标;(3)连接AC,设出P点坐标,则可表示出四边形PBAC的面积,再利用二次函数的性质可求得其最大值.类型三:由已知面积来定未知面积类问题例3. 如图1,在平面直角坐标系中有一Rt△AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线l:y=﹣x2+bx+c经过A、B 两点.(1)求抛物线l的解析式及顶点G的坐标.(2)①求证:抛物线l经过点C.②分别连接CG,DG,求△GCD的面积.(3)在第二象限内,抛物线上存在异于点G的一点P,使△PCD与△CDG的面积相等,请直接写出点P的坐标.【分析】(1)先求得点A和点B的坐标,然后将点A和点B的坐标代入抛物线的解析式,可求得b、c的值,从而可得到抛物线的解析式,最后依据配方法可求得点G的坐标(2)由旋转的性质可求得点D和点C的坐标,将点C的横坐标代入抛物线的解析式求得y=0,从而可证明点抛物线l经过点C;如图1所示;过点G作GE⊥y轴,分别求得梯形GEOC、△OCD、△GED的面积,最后依据S△CDG=S梯形GEOC﹣S△OCD﹣S△GED求解即可;(3)过点G作PG∥CD,交抛物线与点P.先求得直线CD的解析式,然后可得到直线PG的一次项系数,然后由点G的坐标可求得PG的解析式,最后将直线PG的解析式与抛物线的解析式联立,最后解得点P的坐标即可.类型四:与面积倍分有关的综合题例4. 如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(A在B的左侧),与y轴的交点为C,顶点为D,直线CD与x轴的交点为E,解析式为y=﹣x﹣3,线段CD的长为.(1)求抛物线的解析式;(2)如图2,F是y轴上一点,且AF∥CD,在抛物线上是否存在点P,使经过P点的直线恰好将四边形AECF的周长和面积同时平分?如果存在,请求出P点的坐标;如果不存在,请说明理由.(3)将(2)中的△AOF绕平面内某点逆时针旋转90°后得△MQN(点M,Q,N分别与点A,O,F对应),使点M,N在抛物线上,则点M,N的坐标分别为M,N.【分析】(1)根据三角函数求出抛物线与y轴的交点C,顶点D的坐标,由顶点式可得抛物线的解析式;(2)作OH⊥CE,交AF于点G,交CE于H,取GH的中点M,求出BM的解析式,找到此解析式与抛物线的另一个交点,即为所求;(3)找到△AOF绕平面内某点逆时针旋转90°后得△MQN,M,N在抛物线上,求出与AF垂直的点M,N的坐标即可.【真题精炼】1.(2018•青海)如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;(3)条件同(2),若△ODP与△COB相似,求点P的坐标.2.(2017秋•吴中区期末)已知,二次函数y=﹣x2+bx+c的图象与x轴的两个交点A,B的横坐标分别为1和2,与y轴的交点是C.(1)求这个二次函数的表达式;(2)若点D是y轴上的一点,是否存在D,使以B,C,D为顶点的三角形与△ABC相似?若存在,求点D的坐标,若不存在,请说明理由;(3)过点C作CE∥x轴,与二次函数y=﹣x2+bx+c的图象相交于点E,点H是该二次函数图象上的动点,过点H作HF∥y轴,交线段BC于点F,试探究当点H运动到何处时,△CHF与△HFE的面积之和最大,求点H的坐标及最大面积.3.(2018•阜新)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.(2014秋•常熟市校级月考)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)当△BDM为以∠M为直角的直角三角形时,求m的值.(3)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由.5.(2013秋•苏州期中)如图,抛物线y=ax2+bx+c(a<0)与双曲线y=相交于点A、B,且抛物线经过坐标原点,点A在第二象限内,且点A到两坐标轴的距离相等,点B的坐标为(1,﹣4).(1)求A的坐标及抛物线的解析式;(2)若点E为A、B两点间的抛物线上的一点,试求△ABE面积的最大值,并求出此时点E的坐标;(3)过点B作直线BC∥x轴,点C为直线BC与抛物线的另一交点.在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请求出点D的坐标;若不存在,请说明理由.6.(2019•虹口区二模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+8与x轴相交于点A(﹣2,0)和点B(4,0),与y轴相交于点C,顶点为点P.点D(0,4)在OC 上,联结BC、BD.(1)求抛物线的表达式并直接写出点P的坐标;(2)点E为第一象限内抛物线上一点,如果△COE与△BCD的面积相等,求点E的坐标;(3)点Q在抛物线对称轴上,如果△CDB∽△CPQ,求点Q的坐标.7.如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.(1)求b、c的值;(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△P AA1面积的3倍,求点P的坐标.参考答案例1 【解答】解:(1)把x=0代y=x﹣2得y=﹣2,∴C(0,﹣2).把y=0代y=x﹣2得x=4,∴B(4,0),.设抛物线的解析式为y=(x﹣4)(x﹣m),将C(0,﹣2)代入得:2m=﹣2,解得:m=﹣1,∴A(﹣1,0).∴抛物线的解析式y=(x﹣4)(x+1),即y=x2﹣x﹣2.(2)如图所示:过点D作DF⊥x轴,交BC与点F.设D(x,x2﹣x﹣2),则F(x,x﹣2),DF=(x﹣2)﹣(x2﹣x﹣2)=﹣x2+2x.∴S△BCD=OB•DF=×4×(﹣x2+2x)=﹣x2+4x=﹣(x2﹣4x+4﹣4)=﹣(x﹣2)2+4.∴当x=2时,S有最大值,最大值为4.(3)如图所示:过点D作DR⊥y垂足为R,DR交BC与点G.∵A(﹣1,0),B(4,0),C(0,﹣2),∴AC=,BC=2,AB=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.取AB的中点E,连接CE,则CE=BE,∴∠OEC=2∠ABC.∴tan∠OEC==.当∠MCD=2∠ABC时,则tan∠CDR=tan∠ABC=.设D(x,x2﹣x﹣2),则DR=x,CR=﹣x2+x.∴=,解得:x=0(舍去)或x=2.∴点D的横坐标为2.当∠CDM=2∠ABC时,设MD=3k,CM=4k,CD=5k.∵tan∠MGD=,∴GM=6k,GD=3k,∴GC=MG﹣CM=2k,∴GR=k,CR=k.∴RD=3k﹣k=k.∴==,整理得:﹣x2+x=0,解得:x=0(舍去)或x =.∴点D的横坐标为.综上所述,当点D的横坐标为2或.【例2】解:(1)∵A(1,0),对称轴l为x=﹣1,∴B(﹣3,0),∴,解得,∴抛物线的解析式为y=x2+2x﹣3;(2)如图1,过点P作PM⊥x轴于点M,设抛物线对称轴l交x轴于点Q.∵PB⊥NB,∴∠PBN=90°,∴∠PBM+∠NBQ=90°.∵∠PMB=90°,∴∠PBM+∠BPM=90°.∴∠BPM=∠NBQ.又∵∠BMP=∠BNQ=90°,PB=NB,∴△BPM≌△NBQ.∴PM=BQ.∵抛物线y=x2+2x﹣3与x轴交于点A(1,0)和点B,且对称轴为x=﹣1,∴点B的坐标为(﹣3,0),点Q的坐标为(﹣1,0).∴BQ=2.∴PM=BQ=2.∵点P是抛物线y=x2+2x﹣3上B、C之间的一个动点,∴结合图象可知点P的纵坐标为﹣2,将y=﹣2代入y=x2+2x﹣3,得﹣2=x2+2x﹣3,解得x1=﹣1﹣,x2=﹣1+(舍去),∴此时点P的坐标为(﹣1﹣,﹣2);(3)存在.如图2,连接AC.可设点P的坐标为(x,y)(﹣3<x<0),则y=x2+2x﹣3,∵点A(1,0),∴OA=1.∵点C是抛物线与y轴的交点,∴令x=0,得y=﹣3.即点C(0,﹣3).∴OC=3.由(2)可知S四边形PBAC=S△BPM+S四边形PMOC+S△AOC=BM•PM+(PM+OC)•OM+OA•OC=(x+3)(﹣y)+(﹣y+3)(﹣x)+×1×3=﹣y﹣x+.将y=x2+2x﹣3代入可得S四边形PBAC=﹣(x2+2x﹣3)﹣x+=﹣(x+)2+.∵﹣<0,﹣3<x<0,∴当x=﹣时,S四边形PBAC有最大值.此时,y=x2+2x﹣3=﹣.∴当点P的坐标为(﹣,﹣)时,四边形PBAC的面积最大,最大值为.例3:【解答】解:(1)∵OA=1,∴A(1,0).又∵tan∠BAO==3,∴OB=3.∴B(0,3).将A(1,0)、B(0,3)代入抛物线的解析式得:,解得:b=﹣2,c=3.∴抛物线的解析式为y=﹣x2﹣2x+3.∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的顶点G的坐标为(﹣1,4).(2)①证明:由旋转的性质可知;OC=OB=3,∴C(﹣3,0).当x=﹣3时,y=﹣(﹣3)2﹣2×(﹣3)+3=﹣9+6+3=0,∴点抛物线l经过点C.②如图1所示;过点G作GE⊥y轴.∵GE⊥y轴,G(﹣1,4),∴GE=1,OE=4.∴S梯形GEOC=(GE+OC)•OE=×(1+3)×4=8.∵由旋转的性质可知;OD=OA=1,∴DE=3.∴S△OCD=OC•OD=×3×1=,S△GED=EG•ED=×1×3=.∴S△CDG=S梯形GEOC﹣S△OCD﹣S△GED=8﹣﹣=5.(3)如图2所示:过点G作PG∥CD,交抛物线与点P.∵PG∥CD,∴△PCD的面积=△GCD的面积.∵OD=OA=1,∴D(0,1).设直线CD的解析式为y=kx+b.∵将点C(﹣3,0)、D(0,1)代入得:,解得:k=,b=1,∴直线CD的解析式为y=+1.∵PG∥CD,∴直线PG的一次项系数为.设PG的解析式为y=x+b1.∵将点G的坐标代入得:+b1=4,解得:b1=,∴直线PG的解析式为y=+.∵将y=+与y=﹣x2﹣2x+3联立.解得:,,∴P(﹣,).例4:【解答】解:(1)作DW⊥x轴,CW⊥y轴交于W点.CW=•cos∠DCW=1.DW=•sin∠DCW=1.∴C点坐标为(0,﹣3),D点坐标为(1,﹣4),由顶点式可得抛物线的解析式为:y=x2﹣2x﹣3;(2分)(2)作OH⊥CE,交AF于点G,交CE于H,取GH的中点M,根据二次函数解析式可得:A(﹣1,0),由直线CD的解析式可知:E(﹣3,0),∵C(﹣3,0),∴∠AEH=45°,∴△OEH是等腰三角形,∵OH⊥EC,∴H点的坐标是(﹣1.5,﹣1.5)∵AF∥CD,∴∠OAF=45°,∴G(﹣0.5,﹣0.5),∵M是GH的中点,∴M(﹣1,﹣1),求出BM的解析式y=x﹣,此解析式与抛物线的一个交点就是要求的P(﹣,﹣).(3分)(3)△AOF绕平面内某点逆时针旋转90°后得△MQN,则直线MN的解析式为y=x+b,∵MN=AF,∴M(1,﹣4),N(2,﹣3).(4分)【真题精讲】1、【解答】解:(1)把A(﹣1,0),B(3,0),C(0,2)代入y=ax2+bx+c得:,解得:a=﹣,b=,c=2,∴抛物线的解析式为y=﹣x2+x+2.(2)设点P的坐标为(t,﹣t2+t+2).∵A(﹣1,0),B(3,0),∴AB=4.∴S=AB•PD=×4×(﹣t2+t+2)=﹣t2+t+4(0<t<3);(3)当△ODP∽△COB时,=即=,整理得:4t2+t﹣12=0,解得:t=或t=(舍去).∴OD=t=,DP=OD=,∴点P的坐标为(,).当△ODP∽△BOC,则=,即=,整理得t2﹣t﹣3=0,解得:t=或t=(舍去).∴OD=t=,DP=OD=,∴点P的坐标为(,).综上所述点P的坐标为(,)或(,).2.【解答】解:(1)∵二次函数y=﹣x2+bx+c的图象与x轴的两个交点A,B的横坐标分别为1和2,∴A(1,0),B(2,0),∴,∴,∴二次函数的表达式y=﹣x2+3x﹣2;(2)∵二次函数的表达式y=﹣x2+3x﹣2,∴C(0,﹣2),∴OC=2,∵A(1,0),B(2,0)∴OB=2,∴OB=OC∴∠OBC=∠OCB=45°,∴∠BAC<135°,即:点D只能在点C上方的y轴上,∴∠DCB=∠ABC=45°∴设D(0,d),d>﹣2,∵A(1,0),B(2,0),C(0,﹣2),∴AB=1,BC=2,CD=d+2,∵以B,C,D为顶点的三角形与△ABC相似,∴①△DCB∽△ABC,∴,∴CD=AB=1,∴d+2=1,∴d=﹣1,∴D(0,﹣1)②△BCD∽△ABC,∴,∴,∴d=6,∴D(0,6);(3)如图,∵CE∥轴,∴令y=﹣2,∴﹣2=﹣x2+3x﹣2,∴x=0(舍)或x=3,∴E(3,﹣2),∵B(2,0),C(0,﹣2),∴直线BC的解析式为y=x﹣2,设H(m,﹣m2+3m﹣2),F(m,m﹣2),∵点F是线段BC上的点,∴0<m<2,HF=﹣m2+3m﹣2﹣(m﹣2)=﹣m2+2m,∴S△CHF+S△EHF=HF×3=(﹣m2+2m)=﹣(m2﹣2m+1)+=﹣(m﹣1)2+∴m=1时,△CHF与△HFE的面积之和最大,最大面积为,此时,H(1,0).3.【解答】解:(1)将A(1,0),B(3,0)代入函数解析式,得,解得,这个二次函数的表达式是y=x2﹣4x+3;(2)当x=0时,y=3,即点C(0,3),设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得,解这个方程组,得.故直线BC的解析是为y=﹣x+3,过点P作PE∥y轴,交直线BC于点E(t,﹣t+3),PE=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴S△BCP=S△BPE+S CPE=(﹣t2+3t)×3=﹣(t﹣)2+,∵﹣<0,∴当t=时,S△BCP最大=(3)M(m,﹣m+3),N(m,m2﹣4m+3)MN=|m2﹣3m|,BM=|m﹣3|,当MN=BM时,①m2﹣3m=(m﹣3),解得m=,②m2﹣3m=﹣(m﹣3),解得m=﹣当BN=MN时,∠NBM=∠BMN=45°,m2﹣4m+3=0,解得m=1或m=3(舍)当BM=BN时,∠BMN=∠BNM=45°,﹣(m2﹣4m+3)=﹣m+3,解得m=2或m=3(舍),当△BMN是等腰三角形时,m的值为,﹣,1,2.4.【解答】解:(1)由题意可得:y=mx2﹣2mx﹣3m=m(x﹣3)(x+1),∵m≠0,∴当y=0时,0=m(x﹣3)(x+1),解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)如图1,∵y=mx2﹣2mx﹣3m=m(x﹣1)2﹣4m,∴顶点M坐标(1,﹣4m),当x=0时,y=﹣3m,∴D(0,﹣3m),B(3,0),∴DM2=(0﹣1)2+(﹣3m+4m)2=m2+1,MB2=(3﹣1)2+(0+4m)2=16m2+4,BD2=(3﹣0)2+(0+3m)2=9m2+9,当△BDM为Rt△,∠M为直角的直角三角形时,有:DM2+MB2=BD2.DM2+MB2=BD2时有:m2+1+16m2+4=9m2+9,解得m=﹣(m=舍去).故m=﹣时,△BDM为以∠M为直角的直角三角形;(3)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:,解得,故C1:y=x2﹣x﹣.如图2:过点P作PQ∥y轴,交BC于Q,由B、C的坐标可得直线BC的解析式为:y=x﹣,设P(x,x2﹣x﹣),则Q(x,x﹣),PQ=x﹣﹣(x2﹣x﹣)=﹣x2+x,S△PBC=S△PCQ+S△PBQ=PQ•OB=×(﹣x2+x)×3=﹣(x﹣)2+,当x=时,S△PBC有最大值,Smax=,则×()2﹣﹣=﹣,故P(,﹣).5.【解答】解:(1)∵抛物线y=ax2+bx+c(a<0)与双曲线y=相交于点A、B,点B 的坐标为(1,﹣4),∴xy=k=1×(﹣4)=﹣4,∴双曲线y=﹣,∵点A到两坐标轴的距离相等,且点A在第二象限内,∴可设A点坐标为:(﹣m,m)(m>0),代入双曲线解析式得;m=2,∴点A(﹣2,2),∵抛物线y=ax2+bx+c(a<0)过A(﹣2,2),B(1,﹣4),O(0,0),∴,解得:,∴抛物线的解析式为:y=﹣x2﹣3x;(2)由A(﹣2,2),B(1,﹣4),代入y=kx+d得:,解得:,∴直线AB的解析式为:y=﹣2x﹣2,设E(n,﹣n2﹣3n),过E作EF∥y轴,交AB于点F,则F点坐标为(n,﹣2n﹣2),∴EF=(﹣n2﹣3n)﹣(﹣2n﹣2)=﹣n2﹣n+2,∴S△ABE=S△AEF+S△BEF=×(﹣n2﹣n+2)×3=﹣(n+)2+,∴S△ABE的最大值为:,此时,n=﹣,﹣n2﹣3n=,∴E(﹣,);(3)∵B(1,﹣4)且直线BC∥x轴,∴令﹣x2﹣3x=﹣4,解得:x1=1,x2=﹣4,∴C(﹣4,﹣4),∴S△ABC=5×6×=15,过点C作AB的平行线CD,交抛物线于点D,设直线CD对应的一次函数解析式为y=﹣2x+t,则﹣4=﹣2×(﹣4)+t,解得:t=﹣12,∴直线CD对应的一次函数解析式为y=﹣2x﹣12,令﹣2x﹣12=﹣x2﹣3x,解得:x1=3,x2=﹣4(舍去),当x=3时,y=﹣18,∴存在点D(3,﹣18)满足条件.6.【解答】解:(1)将点A(﹣2,0),B(4,0)代入y=ax2+bx+8,得:,解得:,∴抛物线的表达式为y=﹣x2+2x+8.∵y=﹣x2+2x+8=﹣(x﹣1)2+9,∴点P的坐标为(1,9).(2)当x=0时,y=﹣x2+2x+8=8,∴点C的坐标为(0,8).设点E的坐标为(x,﹣x2+2x+8)(0<x<4),∵S△COE=S△BCD,∴×8•x=×4×4,解得:x=2,∴点E的坐标为(2,8).(3)过点C作CM∥x轴,交抛物线对称轴于点M,如图所示.∵点B(4,0),点D(0,4),∴OB=OD=4,∴∠ODB=45°,BD=4,∴∠BDC=135°.∵点C(0,8),点P(1,9),∴点M的坐标为(1,8),∴CM=PM=1,∴∠CPM=45°,CP=,∴点Q在抛物线对称轴上且在点P的上方,∴∠CPQ=∠CDB=135°.∵△CDB∽△CPQ,∴=,即,解得:PQ=2,∴点Q的坐标为(1,11).7.【解答】解:(1)已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,∴解得:∴b、c的值分别为﹣4,3;(2)∵A(0,3),B(1,0),∴OA=3,OB=1,可得旋转后C点的坐标为(4,1),当x=4时,由y=x2﹣4x+3得y=3,可知抛物线经过y=x2﹣4x+3经过点(4,3)∴将原抛物线沿y轴向下平移2个单位后过点C,∴平移后的抛物线的解析式为y=x2﹣4x+1.(3)∵点P在y=x2﹣4x+1上,可设P点的坐标为(x0,x02﹣4x0+1),将y=x2﹣4x+1配方得y=(x﹣2)2﹣3∴对称轴为直线x=2,∵S△PMM1=3S△P AA1 MM1=AA1=2∴x0<2,①当0<x0<2时,∵S△PMM1=3S△P AA1,×2×(2﹣x0)=3××2×x0,解得:x0=,∴x0=,此时x02﹣4x0+1=﹣∴点P的坐标为(,﹣),②当x0<0时,同理可得×2×(2﹣x0)=3××2×(﹣x0)解得:x0=﹣1,∴x0=﹣1,此时x02﹣4x0+1=6,∴点P的坐标为(﹣1,6),综上所述,可知:点P的坐标为(,﹣)或(﹣1,6).。

面积问题之”水平宽、铅锤高“模型的实战分析

面积问题之”水平宽、铅锤高“模型的实战分析

三角形面积问题之“宽高公式”的实战分析高邮市赞化学校段广猛《三角形面积问题之“宽高公式”的两种证明方法》一文中,主要介绍了三种情形下“宽高公式”模型的证明.如图1、图2、图3所示,12ABCS OC AD∆=⨯⨯,其中OC表示B、C两点在水平方向上的距离,简称这个三角形的“水平宽”;而AD表示点A到边BC在竖直方向上的距离,简称这个三角形的“铅锤高”.于是三角形的面积S=12⨯水平宽⨯铅锤高,这个公式不妨称为“宽高公式”.细心观察上面三种情形,操作方式都是过点A作平行于y轴的直线交边BC所在的直线于点D,则AD就是“铅锤高”;而B、C两点之间的水平距离,即线段OC就是“水平宽”.在实际应用中,笔者不建议学生固化思维,强记这里的结论而直接使用.一方面,这个公式课本上并没有直接出现,中考时能不能直接使用值得商榷;另一方面,对于图2的结论,大部分学生普遍可以接受,但是若是不知道这个公式推导的来龙去脉而强行直接使用,图1及图3的结论,多数学生是很难理解原理而导致不能正确使用.更何况,这三种情形下的推导过程也是相辅相成、思想统一的,都采用了“改斜归正”及“割补法”的思想,而这两种思想方法又是极其重要的解题原理,需要同学们认真深刻体会的,所以笔者强烈建议学生体会这里的推导原理,以达到灵活使用的目的.其实,掌握了原理,怎么割补三角形都可以,只要过三角形的三个顶点中的任意一点作平行于坐标轴的直线都可以实现面积处理,仅仅是繁简程度不一而已,下文会一一提及.如图4、图5、图6所示,12ABC S BD AE ∆=⨯⨯,其中BD 表示点B 到边AC 在水平方向上的距离,简称这个三角形的“水平宽”;而AE 表示A、C 两点在竖直方向上的距离,简称这个三角形的“铅锤高”.于是依然有三角形的面积S=12⨯水平宽⨯铅锤高.这三张图的操作方式都是过点B 作平行于x 轴的直线交边AC 所在的直线于点D,则BD 就是“水平宽”;而A、C 两点之间的竖直距离,即线段AE 就是“铅锤高”.实际上,过点C 作平行于坐标轴的直线,无论是平行于x 轴,还是平行于y 轴,最终都可以实现对于此三角形的面积处理,有时是“割”,即“面积加法”;有时是“补”,即“面积减法”.由此可以看出,不用强记公式,只要过三角形的三个顶点中的任意一点作平行于坐标轴的直线,无论是平行于x 轴,还是平行于y 轴,都可以实现面积处理.图7提供了一种方式,12ABC S CD AE ∆=⨯⨯.那么问题来了,割补方式千变万化,而且好像都可行,在解题实战中,难道就随意割补吗?非也!理论上是都可行,但计算量绝不相当!我们知道,“在变化中抓不变量”也是一种重要的思想方法,“以不变应万变”.此时再结合这个解题策略,就可以使计算过程“如履平地”.在三角形三个顶点中,一般情况下会有两个定点和一个动点,抓住这两个定点就是关键所在.如图8或图9所示,点B 和点C 是两个定点,而点A 是一个动点.这时,我们就应该过动点A 作平行于y 轴或者平行于x 轴的直线交直线BC 于点D,利用B、C 两个定点求出直线BC 的解析式,再设出动点A 的坐标,将横坐标或者纵坐标代入直线BC 的解析式,表示出点D 的坐标,进而容易表示出线段AD.在图9中,ABC ACD ABD S S S ∆∆∆=-=12AD CF ⋅11(CF )22AD BE AD BE -⋅=⋅-1(OE )2AD BE =⋅-12AD OB =⋅,因为B、C 都是定点,故OB 是常值,而且直线BC 的解析式易求,进而AD 的长度好表示.若是你“不信邪”,偏偏如图10所示那样“割补”,我想说“此路依然行得通”,但与前面的两种方法相比,一烦在“水平宽”BD 上,需要求出直线AC 的解析式,理论上肯定行得通,这条直线的解析式会因为点A 是动点而导致含有参数,计算量较大;二烦在“铅锤高”AE 上,也是因为点A 是动点而导致含有参数.“罪魁祸首”都在动点A 上,而“元凶”就是因为一开始过定点B 进行了“割补”.需要特别说明的是,这种方法并非是错误的,仅仅是计算量较大些,其操作依然是可行的.下面以2016年苏州中考压轴题第(2)问为例具体谈谈“宽高公式”的使用.(2016•苏州)如图11,直线l:y=-3x+3与x 轴、y 轴分别相交于A、B 两点,抛物线y=ax 2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM 的面积为S,求S 与m 的函数表达式,并求出S 的最大值.对于第(1)小问,易知该抛物线的函数表达式为:y=-x 2+2x+3;对于第(2)小问,这是一个“两定一动型”三角形面积问题,“死咬”A、B 两定点“不松口”,过动点M 作平行于坐标轴的直线进行“割补”即可,这里提供两种方式.方式一:如图12所示,过动点M 作平行于y 轴的直线交边AB所在的直线于点N,则ABM MNB MNA S S S ∆∆∆=-=12MN OG ⋅11(OG )22MN AG MN AG -⋅=⋅-12MN OA =⋅.设M(t,-t 2+2t+3),其中t 的取值范围是0<t<3,则N(t,-3t+3),从而MN =M N y y -=(-t 2+2t+3)-(-3t+3)=-t 2+5t,而OA=1,故S=12(-t 2+5t)=-12t(t-5),当t=52时,S 有最大值为258.值得一提的是,上面的操作过程可总结如下:第一步:抓住两个定点A 和B,它们之间在水平方向上的距离OA 作为△ABM 的“水平宽”;第二步:过动点M 作平行于y 轴的直线交边AB 所在的直线于点N,则MN 作为△ABM 的“铅锤高”;第三步:将面积“往竖直线MN 上靠”,通过面积“减法”,得到所求三角形的面积为12ABM S MN OA ∆=⋅.方式二:如图13所示,过动点M 作平行于x 轴的直线交边AB 所在的直线于点N、交y 轴于点G,则ABM MNB MNA S S S ∆∆∆=+=12MN BG ⋅11(BG O )22MN OG MN G +⋅=⋅+12MN OB =⋅.设M(t,-t 2+2t+3),其中t 的取值范围是0<t<3,则N(223t t -,-t 2+2t+3),从而MN =M N x x -t -223t t -=253t t -+,而OB=3,故S=122533t t -+⋅⋅=-12t(t-5),当t=52时,S 有最大值为258.上面的操作过程可总结如下:第一步:抓住两个定点A 和B,它们之间在竖直方向上的距离OB 作为△ABM 的“铅锤高”;第二步:过动点M 作平行于x 轴的直线交边AB 所在的直线于点N,则MN 作为△ABM 的“水平宽”;第三步:将面积“往水平线MN 上靠”,通过面积“加法”,得到所求三角形的面积为12ABM S MN OB ∆=⋅.至此,这个“两定两动型”三角形面积问题,利用“宽高公式”得到了比较完美的解答.当然,关于面积处理,绝不仅仅只有“宽高公式”,还有很多其他的路可走,如“框图法”(亦可称“矩形大法”)、其他的割补法(如上题中连接OM 也是一种很好的分割处理手段)等等,但大多体现出来的思想方法都是“大同小异”的,即想方设法将所求“斜面积”“改斜归正”,使问题得以解决.后面若有机会,会专门成文,敬请期待!通过前面的《模型证明》及本文的《实战分析》,笔者认为根本不用记忆所谓的“宽高公式”,只要在处理面积的问题中,狠抓不动点不放手,过动点作平行于坐标轴的直线交这不动边所在的直线于一点,将三角形的面积进行“割”或“补”,即面积“加”或“减”,然后平移其中一条高线,即可转化为高线的“加”或“减”,就能够得出所谓的“宽高公式”!这道苏州中考真题中有一个限制条件“点M 在第一象限内”,很明显是为了简化起见.若是将这个条件去掉,即“点M 是抛物线上任意一动点”,那么△ABM 的面积为S 关于m 的函数表达式又如何求解呢?我想其他的方法就未必恰当了,这时“宽高法”的作用会更明显.图14及图15给出了两种情形,前者可看出此时方法过程跟原题一模一样;而后者可看出唯一的区别就是点N 位于了点M 的上方,此时MN=N M y y -,其他都没变化也就是这时候要分类了,分类的标准就是M、N“谁高谁低”,可分三类,也可分两类.甚至于,结合本人作品《巧用绝对值避开“繁琐的”分类讨论》一文,直接借用“绝对值”,y y 即可,最后解一个含绝对值的方程就可以了,在此不再一一赘述,将MN表示为M N有兴趣的同学可自行展开.同学们,研究之窗已向你们打开,还有什么道理不去认真钻研、琢磨呢!加油,中考必胜!最后来首打油诗结束本文,“横切竖切都可以,切法不一莫强求;关键抓住不动点,最好沿着动点切;切完之后即加减,加减之后即宽高!”。

中考专题 铅垂法求面积最值问题探究

中考专题 铅垂法求面积最值问题探究

专题一:铅垂法求面积最值问题探究导例:抛物线y=−13x 2+2√33x +3交x 轴正半轴于点A (3√3,0),交y 轴于点B (0,3),且这个抛物线的顶点为C .连接AB 、AC 、BC ,则抛物线的对称轴为直线 ,线段CD 的长为 ,△ABC 的面积为 .如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:12S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半.根据上述方法,我们来得到求三角形的面积的最值问题的方法:S △PAB =12·PQ·|x A −x B |,根据二次函数解析式设出点P 的坐标,结合一次函数解析式从而得到点Q 的坐标,从而转化方法点睛专题导入类型一:抛物线上动点产生的三角形面积的最值例1 在平面直角坐标系中,直线y=12x ﹣2与x 轴交于点B ,与y 轴交于点C ,二次函数y=12x 2+bx+c 的图象经过B ,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的解析式;(2)如图,连接DC ,D B ,设△BCD 的面积为S ,求S 的最大值.【分析】(1)根据题意得到B 、C 两点的坐标,设抛物线的解析式为y=12(x-4)(x-m ),将点C 的坐标代入求得m 的值即可;(2)过点D 作DF ⊥x 轴,交BC 与点F ,设D (x ,12x 2-32x-2),则DF=-12x 2+2x ,然后列出S 与x 的关系式,最后利用配方法求得其最大值即可. 类型二:抛物线上动点产生的四边形的面积例2. 如图,抛物线y =a x 2+b x -3与x 轴交于点A (1,0)和点B ,与y 轴交于点C ,且其对称轴L 为直线x =-1,点P 是抛物线上B ,C 之间的一个动点(点P 不与点B ,C 重合). (1)直接写出抛物线的解析式;(2)探究:当动点N 在对称轴L 上时,j 是否存在PB ⊥NB ,且PB =NB 的关系,若存在,请求出此时点P 的坐标,若不不存,请说明理由;(3)是否存在点P 使得四边形PBAC 的面积最大?若存在,请求出四边形PBAC 面积的最大值,若不存在,请说明理由.典例精讲【分析】(1)由对称轴可求得B 点坐标,结合A 、B 两点坐标,利用待定系数法可求得抛物线解析式;(2)过点P 作PM ⊥x 轴于点M ,设抛物线对称轴l 交x 轴于点Q .可证明△BPM ≌△NBQ ,则可求得PM=BQ ,可求得P 点的纵坐标,利用抛物线解析式可求得P 点坐标;(3)连接AC ,设出P 点坐标,则可表示出四边形PBAC 的面积,再利用二次函数的性质可求得其最大值.1.如图,抛物线y=ax 2+bx+c 与坐标轴交点分别为A (﹣1,0),B (3,0),C (0,2),作直线BC .(1)求抛物线的解析式;(2)点P 为抛物线上第一象限内一动点,过点P 作PD ⊥x 轴于点D ,设点P 的横坐标为t (0<t <3),求△ABP 的面积S 与t 的函数关系式.2.如图①,在平面直角坐标系中,已知抛物线y =ax 2+bx -5与x 轴交于A (-1,0),B (5,0)两点,与y 轴交于点C . (1)求抛物线的函数解析式;(2)若点D 是y 轴上的一点,且以B ,C ,D 为顶点的三角形与△ABC 相似,求点D 的坐标; (3)如图②,CE ∥x 轴与抛物线相交于点E ,点H 是直线CE 下方抛物线上的动点,过点H 且与y 轴平行的直线与BC ,CE 分别相交于点F ,G ,试探究当点H 运动到何处时,四边形CHEF专题过关的面积最大,求点H的坐标及最大面积.3.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的解析式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m 的值.备用图4.如图,在平面直角坐标系中,A,B为x轴上两点,C,D为y轴上的两点,经过点A,C,B的抛物线的一部分C1与经过点A,D,B的抛物线的一部分C2组合成一条封闭曲线,我),点M是抛物线C2:y=mx2们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣32﹣2mx﹣3m(m<0)的顶点.(1)求A,B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.5.已知直线y=12x+2分别交x 轴、y 轴于A ,B 两点,抛物线y=12x 2+mx ﹣2经过点A ,和x 轴的另一个交点为C . (1)求抛物线的解析式;(2)如图1,点D 是抛物线上的动点,且在第三象限,求△ABD 面积的最大值;(3)如图2,经过点M (﹣4,1)的直线交抛物线于点P ,Q ,连接CP ,CQ 分别交y 轴于点E ,F ,求OE•OF 的值.专题一:二次函数中的三角形面积最值问题 答案 例1 (1)把x=0代y=12x ﹣2得y=﹣2,∴C (0,﹣2).把y=0代y=12x ﹣2得x=4,∴B (4,0).设抛物线的解析式为y=12(x ﹣4)(x ﹣m ),将C (0,﹣2)代入,得2m=﹣2. 解得m=﹣1.∴A (﹣1,0).∴抛物线的解析式y=12(x ﹣4)(x+1),即y=12x 2﹣32x ﹣2.(2)如图所示:过点D 作DF ⊥x 轴,交BC 与点F .例2.(1)y =x 2+2x -3;∵A (1,0),对称轴L 为直线x =-1, ∴B (-3,0),将AB 两点坐标代入得,∴{a +b −3=0,9a −3b −3=0.,解得{a =1,b =2.∴抛物线的解析式为y =x 2+2x -3. (2)如解图①,过点P 作PM ⊥x 轴于点M ,连接BP ,过点B 作BN ⊥PB 交直线L 于点N , 设抛物线的对称轴与x 轴交于点Q ,第6题解图①∵PB ⊥NB ,∴∠PBN =90°,∴∠PBM +∠NBQ =90°.∵∠PMB =90°,∴∠PBM +∠BPM =90°.∴∠BPM =∠NBQ .又∵PB =NB ,∴△BPM ≌△NBQ .∴PM =BQ .由(1)得y =x 2+2x -3,∴Q (-1,0),B (-3,0) ∴BQ =2,∴PM =BQ =2.∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点,且点P 的纵坐标为-2,将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3,解得x 1=-1-√2,x 2=-1+√2 (不合题意,舍去) .∴点P 的坐标为(-1-√2,-2); (3)存在.如解图②,连接AC ,BC ,CP ,PB ,过点P 作PD ∥y 轴交BC 于点D ,图②∵A (1,0),B (-3,0),C (0,-3),∴S △ABC =12×3×4=6. 直线BC 的解析式为y =-x -3.。

专题 二次函数压轴题-线段周长面积最大值(知识解读)-中考数学(全国通用)

专题 二次函数压轴题-线段周长面积最大值(知识解读)-中考数学(全国通用)

专题01 线段周长面积最大值(知识解读)【专题说明】从近几年的各地中考试卷来看,求线段、周长面积的最大问题在压轴题中比较常见,而且通常与二次函数相结合。

这个专题为同学们介绍解题方法,供同学们参考。

【方法点拨】考点1:线段、周长最大问题考点2 :面积最大问题 (1)铅锤法铅锤高水平宽⨯=21S(2)面积方法如图1,同底等高三角形的面积相等.平行线间的距离处处相等.如图2,同底三角形的面积比等于高的比.如图3,同高三角形的面积比等于底的比.如图1 如图2 如图3(3)利用相似性质利用相似图形,面积比等于相似比的平方。

【典例分析】【考点1 线段最大值问题】【典例1】(盘锦)如图,在平面直角坐标系中,抛物线y=ax2+bx+4交y轴于点C,交x 轴于A、B两点,A(﹣2,0),a+b=,点M是抛物线上的动点,点M在顶点和B点之间运动(不包括顶点和B点),ME∥y轴,交直线BC于点E.(1)求抛物线的解析式;(2)求线段ME的最大值;【变式1-1】(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;【变式1-2】(2021•柳南区校级模拟)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?【典例2】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)过点P作PN⊥BC,垂足为点N.求线段PN的最大值;【变式2】(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【考点2 周长最大值问题】【典例3】(2022春•衡阳期中)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+x+c经过A、B两点.(1)求二次函数解析式;(2)如图1,点E在线段AB上方的抛物线上运动(不与A、B重合),过点E作ED⊥AB,交AB于点D,作EF⊥AC,交AC于点F,交AB于点M,求△DEM的周长的最大值;【变式3】(2022春•北碚区校级期中)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+2交x轴于A、B两点(点A在点B的左侧),交y轴于点C,一次函数y=﹣x﹣1交抛物线于A,D两点,其中点D(3,﹣4).(2)点G为抛物线上一点,且在线段BC上方,过点G作GH∥y轴交BC于H,交x 轴于点N,作GM⊥BC于点M,求△GHM周长的最大值;【考点3 面积最大值问题】【典例4】(2021秋•龙江县校级期末)综合与探究如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的解析式,连接BC,并求出直线BC的解析式;(2)请在抛物线的对称轴上找一点P,使AP+PC的值最小,此时点P的坐标是(,);(3)点Q在第一象限的抛物线上,连接CQ,BQ,求出△BCQ面积的最大值.【变式4-1】(2022春•南岸区月考)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x 轴交于A(﹣1,0),B(3,0),交y轴于点C,且OC=3.(2)点P为直线BC下方抛物线上的一点,连接AC、BC、CP、BP,求四边形PCAB 的面积的最大值,以及此时点P的坐标;【变式4-2】(2022•东方二模)如图,抛物线y=x2+bx+c经过B(3,0)、C(0,﹣3)两点,与x轴的另一个交点为A,顶点为D.(1)求该抛物线的解析式;(2)点E为该抛物线上一动点(与点B、C不重合),当点E在直线BC的下方运动时,求△CBE的面积的最大值;【典例5】(聊城)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC.又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.【变式5】(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC 于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.专题01 线段周长面积最大值(知识解读)【专题说明】从近几年的各地中考试卷来看,求线段、周长面积的最大问题在压轴题中比较常见,而且通常与二次函数相结合。

二次函数最值的4种解法

二次函数最值的4种解法

1.(2019▪湖北黄石▪10 分)如图,已知抛物线y=x2+bx+c 经过点A(﹣1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M 的坐标;(2)若点C 在抛物线上,且点C 的横坐标为8,求四边形AMBC 的面积;(3)定点D(0,m)在y 轴上,若将抛物线的图象向左平移2 个单位,再向上平移3 个单位得到一条新的抛物线,点P 在新的抛物线上运动,求定点D 与动点P 之间距离的最小值d(用含m 的代数式表示)(x﹣5),即可求解;【分析】(1)函数的表达式为:y=(x+1)(2)S 四边形A MBC=AB(y C﹣y D),即可求解;(3)抛物线的表达式为:y=x2,即可求解.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=(x2﹣4x﹣5)=x2﹣x ﹣,点M坐标为(2,﹣3);,S四边(2)当x=8 时,y=(x+1)(x﹣5)=9,即点C(8,9)=AB(y C﹣y D)=×6×(9+3)=36;形A MBC(3)y=(x+1)(x﹣5)=(x2﹣4x﹣5)=(x﹣2)2﹣3,抛物线的图象向左平移 2 个单位,再向上平移3 个单位得到一条新的抛物线,则新抛物线表达式为:y=x2,则定点D与动点P之间距离P D==,∵,PD 有最小值,当x2=3m﹣时,PD 最小值d==.【点评】本题考查的是二次函数综合运用,涉及到图形平移、面积的计算等知识点,难度不大.2.(2019▪贵州毕节12 分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10 元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:若日销售量y 是销售价x 的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数【分析】关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y =kx+b 得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w 元,得w=(x(﹣x+40)=﹣x2+50x+400整理得w﹣10)=﹣(x﹣25)2+225∵﹣1<0∴当x=2 时,w 取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25 元,每日销售的最大利润是225 元.【点评】本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润× 销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.3 (2019•山东省滨州市•14分)如图①,抛物线y=﹣x2+ x+4 与y 轴交于点A,与x轴交于点B,C,将直线AB 绕点 A 逆时针旋转90°,所得直线与x 轴交于点D.(1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离;②当点P到直线A D 的距离为时,求s in∠P AD 的值.【考点】二次函数(1)根据抛物线y=﹣x2+ x+4 与y轴交于点A,与x轴交于点B,C,可以【分析】求得点A.B.C 的坐标,再根据将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D,可以求得点D 的坐标.从而可以求得直线AD 的函数解析式;(2)①根据题意,作出合适的辅助线,然后根据二次函数的性质即可求得点P 到直线AD 的距离最大值,进而可以得到点P 的坐标;②根据①中关系式和题意,可以求得点P 对应的坐标,从而可以求得sin∠P AD 的值.,【解答】解:(1)当x=0 时,y=4,则点A的坐标为(0,4)当y=0 时,0=﹣x2+x+4,解得,x1=﹣4,x2=8,则点B的坐标为(﹣4,0),点C的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°,∵将直线AB 绕点A 逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0),设直线AD 的函数解析式为y=kx+b,,得,即直线AD 的函数解析式为y=﹣x+4;(2)作PN⊥x 轴交直线AD 于点N,如右图①所示,设点P的坐标为(t,﹣t2+t+4),则点N的坐标为(t,﹣t+4),∴PN=(﹣t2+ t+4)﹣(﹣t+4)=﹣t2+ t,∴PN⊥x 轴,∴PN∥y 轴,∴∠OAD=∠PNH=45°,作PH⊥AD 于点H,则∠PHN=90°,∴PH==(﹣t2+ t)=t=﹣(t﹣6)2+ ,∴当t=6 时,PH 取得最大值,此时点P的坐标为(6,),,最大距离是;即当点P到直线A D 的距离最大时,点P的坐标是(6,)②当点P 到直线AD 的距离为时,如右图②所示,则t=,解得,t1=2,t2=10,则P1 的坐标为(2,),P2 的坐标为(10,﹣),当P1 的坐标为(2,),则P1A==,∴sin∠P1AD==;当P2 的坐标为(10,﹣),则P2A==,∴sin∠P2AD==;由上可得,sin∠P AD 的值是或.【点评】本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用数形结合的思想解答.4.(2019,四川成都,12 分)如图,抛物线y=a x2 +bx +c经过点A(-2,5),与x 轴相交于B(-1,0),C(3,0)两点,(1)抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△ BCD 沿沿直线BD 翻折得到△ B C'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D 的坐标;(3)设P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△ CPQ 为等边三角形时,求直线BP 的函数表达式。

专题07 一次函数的应用(铅锤法求面积)(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

专题07 一次函数的应用(铅锤法求面积)(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

专题07一次函数的应用(铅锤法求面积)【方法说明】常规图形中:平面直角坐标系中:()1212ABC S BD d d =+ ()1212ABC S BD y y =+ ()1212ABC S BD x x =+ (1)A 、B 两点坐标分别为________,________;(2)点(3,0)M 在x 轴上,若点P 是直线AB 上的一个动点,当标.【答案】(1)(2,0),(0,3);(2)(4,3)-或(4,9)-【分析】(1)根据直线332y x =-+,令0y =求出B 的坐标;(2)分类讨论:点P 在x 轴的上方和下方,两种情况,利用三角形的面积公式和已知条件,列出方程,利用方程求得点P 的坐标即可.【详解】(1)解:对于直线332y x =-+,当0x =时,3y =.12PBM PAM ABM S S S =+=△△△∴3P y =,∵点P 在x 轴下方,∴3P y =-,当=3y -时,代入32y =-解得4x =.∴3(4,)P -;②当点P 在x 轴上方时,12PBM APM ABM S S S =-=△△△∴9P y =,∵点P 在x 轴上方,∴9P y =.(1)求A B ,两点的坐标;(2)求C 点坐标及b 的值;(3)如图2,直线BC 交y 轴于点D ,在直线BC 上取一点E ,使AE AC =F .①求证:BD ED =;②在直线AE 上是否存在一点P ,使ABP 的面积等于ABD 的面积?若存在,直接写出点P 的坐标;若不存在,说明理由.【答案】(1)()02A ,,()10B ,(2)点31C (,);12b =-(3)①见解析;②点P 的坐标为11,22⎛⎫- ⎪⎝⎭或17,22⎛⎫ ⎪⎝⎭【分析】(1)22y x =-+中求出0x =时y 的值和0y =时x 的值即可得;(2)作CD x ⊥轴,证明ABO BCD ≌△△得2BD OA ==,1CD OB ==根据待定系数法求解可得;(3)①过点C 作CG x ⊥轴于点G ,作EM x ⊥轴于点M ,EN y ⊥轴于点BCG BEM AAS ≌()、BDO EDN AAS ≌(),即可求解;则90AOB BDC ∠=∠=︒,∴90OAB ABO ∠+∠=︒,∵ABC 是等腰直角三角形,∴90AB BC ABC =∠=︒,,∴90ABO CBD ∠+∠=︒,∴OAB DBC ∠=∠,∴()AAS ABO BCD ≌△△,∴21BD OA CD OB ====,,则点()31C ,,∵直线BC 所在直线解析式为y =将点()31C ,代入,得:132b ⨯+=(3)①过点C 作CG x ⊥轴于点则BGC BME END BOD ∠=∠=∠=∠∵90ABC AE AC ∠=︒=,,∴AB 是CE 的中垂线,∴BC BE =,∵CBG EBM ∠=∠,∴AAS BCG BEM ≌() ,∴21BM BG EM CG ====,,∵1BO =,∴1OM EN OB ===,∵BDO EDN ∠=∠,∴()AAS BDO EDN ≌ ,∴BD ED =;②如图③,作EH x ⊥轴于点H 由1122y x =-知10,2D ⎛⎫- ⎪⎝⎭,即OD 则52AD OA OD =+=,∴115512224ABD S AD OB =⨯=⨯⨯= 由①知()11E --,,(1)求一次函数y kx b =+的关系式;(2)点P 是一次函数24y x =+图象上的动点,设点关于n 的函数关系式.ΔΔ1202ABC PAC P s s s AC y =-=-⨯⨯12010242n =-⨯⨯+ΔΔ1202PAC ABC P s s S AC y =-=⨯⨯-11024202n =⨯⨯+-(1)求点A 、B 的坐标;(2)如图1,若点C (−2,2),求三角形ABC 的面积;(3)若点P 是第一、三象限角平分线上一点,且三角形ABP 的面积为392,求点当CE 为对角线时,,CE BF 的中点为O ,则CO OE=∴()4,0E综上所述,E 的坐标为()4,4-或()4,0;(3)解:如图所示,设BD 交x 轴于点G ,∵BD 将四边形ABCD 的面积分成2:3的两部分,则:=2:3AG CG 或:3:2AG CG =∵()()1,0,4,0A C -∴5AC =则()1,0G -或()2,0-当()1,0G -时,设直线BG 的解析式为11y k x b =+(1)求直线l 的表达式;(2)求直线BC 的表达式;(3)求AOB 的面积;(4)点P 是第三象限在直线l 【答案】(1)35y x =(2)8y x =-+(3)12(4)()5,3--【分析】(1)根据待定系数法求解即可;()()5,3,8,0A B 3,8AD OB ∴==11822AOB S OB AD =⨯=⨯⨯△(4)解:如图,(1)写出S 与x 之间的函数关系,并写出(2)当AOC 的面积为6时,求出点(3)在(2)的条件下,坐标轴上是否存在点角形面积也为6,若存在,请直接写出点【答案】(1)(3186S x =+-(2)2()4,C -(3)存在,()10,2M ,2(0,M 【分析】(1)先求出点A (2)将6S =代入函数解析式可求得点(3)根据三角形三个顶点不同分类讨论求出点【详解】(1)解:点(C x 当0y =时,x 6=-,则AO1164622BM BM ⋅-⋅=,∴6BM =,(1)A点和B点坐标分别为,;是以AB为腰的等腰三角形,求点(2)点C在x轴上,若ABCM在x轴上,若点P是直线AB上的一个动点,(3)点(3,0)【答案】(1)(2,0),(0,3)①当AB BC =时,点②当AB AC =时,∵(2,0),(0,3),A B ∴222313,AB =+=∵13,AB AC '==∴(132,0)(2C C '''+、综上所述,符合条件的点(3)∵(3,0),M ∴3,OM =∴32 1.AM =-=①当点P 在x 轴下方时,PBM PAM ABMS S S ∆∆∆=+1122AM OB AM =⋅⋅+⋅11131||22P y =⨯⨯+⨯⨯3,=∴|3|P y =∵点P 在x 轴下方,∴3,P y =-当=3y -时,代入y =解得 4.x =∴3(4,)P -;②当点P 在x 轴上方时,PBM APM ABM S S S ∆∆∆=-∴||9,P y =∵点P 在x 轴上方,∴9.P y =9y =y =-(1)填空:=a ,b =;(2)如果在第三象限内有一点M (3)在(2)的条件下,当2m =-时,的面积相等,请求出点P 的坐标.【答案】(1)-1,3(2)2m -(3)14(0,)5P -或2(0,)5P∵()1,0A -,()3,0B ,∴AB =3-(-1)=4∵(2,)M m -位于第三象限∴MN m m ==-∴114(22ABM S AB MN =⋅=⨯⨯- 故答案为:2m -;(3)当2m =-时,2ABM S =-⨯ 设BM 与y 轴的交点为Q 点,BM 将()3,0B 和(2,2)M --代入得:0322k b k b =+⎧⎨-=-+⎩,解得2565k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴BM 的解析式为2655y x =-,当x =0时,65y =-,∴1(2PBM PBQ PMQ S S S =+=⨯ 解得145n =-,∴14(0,)5P -;当P 点位于Q 点上方时,如图所示,1(2PBM PBQ PMQ S S S n =+=⨯+ 解得25n =,∴2(0,)5P ;综上所述,14(0,)5P -或2(0,)5P .【点睛】本题考查了一次函数中的几何问题,面积找出点的坐标,分类讨论思想和灵活运用函数知识和几何知识是本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24
1.备用答案:
1 9a 3a b
1 a
解: (1) 将( –3,1),( 0,–2)代入得:
解得
2
2b
b2
∴ 抛物线的解析式为: y 1 x2 1 x 2 22
(2) 过 B 作 BE⊥ x 轴于 E,则 E( –3, 0),易证△ BEC≌△ COA ∴ BE = AO = 2 CO = 1 ∴ C( –1, 0)
1.如图,抛物线 y x 2 bx c 与 x 轴交与 A(1,0),B(- 3 , 0) 两点,
( 1)求该抛物线的解析式;
( 2)设( 1)中的抛物线交 y 轴与 C点,在该抛物线的对称轴上是否存在点 Q,使得△ QAC
的周长最小?若存在,求出 Q点的坐标;若不存在,请说明理由 .
( 3)在( 1)中的抛物线上的第二象限上是否存在一点
24.( 本小题满分 12 分 )
(2) (4)
如图①, 已知抛物线 y ax 2 bx 3 ( a≠ 0)与 x 轴交于点 A(1 ,0) 和点 B ( - 3, 0) ,
与 y 轴交于点 C.
(1) y=x 2 +2x-3
(2)
5
(2)P(-1, 10 ),P(-1,-
10 ),P(-1,-6),P(-1,-
P,使△ PBC的面积最大?,若存
在,求出点 P 的坐标及△ PBC的面积最大值 . 若没有,请说明理由 . ( 12 杭州模拟)
C
B
A
解: (1) 将 A(1 ,0) , B( - 3, 0) 代 y x2 bx c 中得
1 b c=0 9 3b c 0
b2

c3
∴抛物线解析式为: y x2 2 x 3
设 M ( xm , xm2 2xm 4),则N( xm, xm )
S OMB S OMN S MNB
1 xm ( xm2 2xm 4) xm 1 xm (xm2 2xm 4) ( 4 xm ) 1(0 2分)
2
2
解得 x1 3
5
3
, x2
5
2
2
即M1(3
5 10 ,
5
3
), M 2 (
5 10 ,
_B _x
_M
解:(1) y x2 2x 4 (x 1)2 5
当M是顶点时, M(1,- 5)(1分)
y x2 2x 4 解得 B(4,4() 1分) yx
过点 M作y轴的平行线与 AB交于点 N,易得 N(1,1)
S OMB
S OMN
S MNB
1 6 1 1 6 3 1(2 1分)
2
2
(2)(a)当M在直线 AB下方时,
1
1
BE PE OE( PE OC )
2
2
1 = (x
3)( x2
2x
3)
1 (
x)(
x2
2x
3 3)
2
பைடு நூலகம்
2

3 (x
3)2
9
27
2 2 28
当x
3 时, S四边形 BPCO 最大值= 9 27
2
28
∴ S BPC 最大= 9 27 9 27 2828
当x
3
时,
x2
2x
3
15
2
4
3 15 ∴点 P 坐标为 ( , )
5() 2分)
2
2
2
2
P,使△ CNP为等腰三角
形?若存在,请直接写出所有符合条件的点
P 的坐标;若不存在,请说明理由.
(3) 如图②,若点 E 为第三象限抛物线上一动点,连接 BE、CE,求四边形 BOCE面积的最大
值,并求此时 E 点的坐标 .08
y
2
y
2
-5
B
N
0 Ax
5
B
-2
C
-4
0
10
Ax
5
15
1
-2
C
-4
图①
A
O
x
(2)
P
y
C
B
A
EO
x
(3)
( 3)答:存在。 理由如下:
设 P 点 ( x, x2 2x 3) ( 3 x 0)
9
∵ S BPC
S四边形 BPCO
S BOC
S四边形 BPCO
2
若 S四边形 BPCO 有最大值,则 S BPC 就最大,
S = S S ∴ 四边形 BPCO
Rt BPE
直角梯形 PEOC
(2) 存在
理由如下:由题知 A、 B 两点关于抛物线的对称轴 x 1 对称 ∴直线 BC与 x 1 的交点即为 Q点, 此时△ AQC周长最小
∵y
2
x 2x 3
∴ C 的坐标为: (0 , 3)
直线 BC解析式为: y x 3
x1
Q 点坐标即为
的解
y x3
x1

y2
∴Q(- 1, 2)
y
C Q
B
∴ 存在 P( 1, –1),( 2, 1)满足条件
2.( 本小题满分 12 分)
如图①, 已知抛物线 y ax 2 bx 3 ( a≠ 0)与 x 轴交于点 A(1 , 0) 和点 B ( - 3, 0) ,
与 y 轴交于点 C.
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与 x 轴交于点 N ,问在对称轴上是否存在点
(3) 延长 BC 到 P,使 CP = BC,连结 AP, 则△ ACP 为以 AC 为直角边的等腰直角三角形 过 P 作 PF ⊥ x 轴于 F ,易证△ BEC≌△ DFC ∴ CF = CE = 2 PF= BE = 1 ∴ P( 1,–1) 将( 1, –1)代入抛物线的解析式满足 若 CAP 90 , AC = AP 则四边形 ABCP 为平行四边形 过 P 作 PG⊥y 轴于 G,易证△ PGA≌△ CEB ∴ PG = 2 AG = 1 ∴ P( 2,1)在抛物线上
图②
(1) 设每年的平均增长率为 x,144(1+x) 2 =225,x=1/4 或 x=-9/4 ( 舍去 )
( 2)
225× (1+1/4)=281
(2)
(1) 设可建室内车位个,露天车位 b 个,
3a ≤ b≤ 4.5a
6000a+2000b=250000
50 ≤ a≤ 125
3
6
a=17,b=74; a=18,b=71; a=19,b=68; a=20,b=65
抛物线上一个动点,连接 OM 。
( 1) 当 M 为抛物线的顶点时,求 △ OMB 的面积;
_y
( 2) 当点 M在抛物线上, △ OMB 的面积为 10 时,求点 M 的坐标;
( 3) 当点 M 在直线 AB 的下方且在抛物线对称轴的右侧, M运动到何
处时, △ OMB 的面积最大; 09
_O _A
)
(4)
3
(3) S=1/2 × 3× (-x 2 -2x+3)+ 1/2 × 3× (-x)
S=-3/2(x+3/2) 2 +63/8
X=-3/2 , S=63/8 E(-3/2,-15/4)
(5) (1)
3. (本小题满分 12 分)(原创) 如图,在平面直角坐标系中,抛物线
y x 2 - 2x - 4 与直线 y x 交于点 A 、 B, M 是
相关文档
最新文档