2015重庆大学数理统计大作业综述
数理统计中期报告
研究生课程考核试卷(适用于课程论文、提交报告)科目:数理统计教师:李曼曼姓名:XXX学号:XXXXXXX专业:XXXXXXXXX类别:学术型硕士上课时间:2016年2月至2016年4月考生成绩:阅卷评语:阅卷教师(签名)重庆大学研究生《数理统计》课程考核要求注:1、要有明确的课程考核要求:如课程论文(报告)题目(范围)、篇幅(字数)、必须的参考资料、提交时间等。
并提前将课程考核试卷发给学生。
2、提交课程论文撰写格式参考《重庆大学博士、硕士学位论文撰写格式标准》。
基于多元线性回归对河北省GDP影响因素的研究摘要:经济发展是社会稳定的重要前提,是改善民生的需要。
河北省作为实现京津冀一体化的重要省份,其经济状况一直以来是国家关注的焦点。
众所周知,投资、消费、出口比喻为拉动GDP增长的“三驾马车”,对拉动经济发展起到至关重要的作用。
研究投资、消费、出口与GDP的关系可以有效地指导政府制定经济政策,促进经济快速增长。
本文采用多元线性回归的分析方法,分析投资、消费、出口与GDP的线性关系,用居民最终消费支出表示消费,城镇固定资产投资额表示投资,货物和服务净出口表示出口,得到模型,采用F检验的方法检验投资、消费、出口与GDP线性关系的显著性,得出结论消费、出口与GDP有显著的线性关系,最后根据投资、消费、出口与GDP的线性关系为政府制定经济政策提出合理化建议。
关键字:GDP 多元线性回归影响因素线性关系1 问题提出,问题分析一个国家的经济状况是一个国家生存发展的支柱,提高国家的经济水平是每个国家的首要任务。
我国共有34个省级行政区域,其中包括23个省、5个自治区、4个直辖市、2个特别行政区,国家的经济发展是靠各个省的经济发展带动起来的,所以,对于一个省来说,提高经济水平也是省的首要任务。
在34个省中,河北省作为京津冀一体化的重要参与者,其经济发展水平一直是国家关注的对象,研究河北省经济发展的影响因素可以有效地指导河北省制定经济发展政策,发展河北省经济,故本研究具有很强的实践意义。
重庆大学研究生数理统计习题答案
()(){}{}()22222111221121221164~,~(8),89111,01(1)11~(0,1)1.28 1.280.281(2)0.261 1.8360.2619818ni i n X N S S X S n X X X X E X X n n n n n D X X DX DX DX X X N n n n P X X P U X P X S P μχσμ=-=--=--=---⎛⎫-=+==⇒- ⎪⎝⎭->=>=⎛ -⎧⎫ <-+<=<⎨⎬ ⎩⎭⎝∑解:由题可知(,)且与相互独立(){}22222222241164. 1.836896464 = 2.08814.688=~(9)991188= 2.08814.688=0.90.01=0.89423948i i i S X X P S S P X X χχχμ=⎧⎫⎫⎪⎪⎪⎪⎪⎪+<⎨⎬⎪⎪⎪⎪⎪⎪⎭⎩⎭⎧⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪--⎪⎪⎪ ⎪<+<+⎨⎬ ⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎭<<-⎛⎫- ⎪⎝⎭=⋅∑,其中原式()()()()(){}24882255448822554821584~(0,1)=~4998244~(4)8944 2.132= 2.132=0.1i ii i i i i i i i i ii i N X X X t t X XP X XP t μμχμμμμμμ======⎛⎫ ⎪⎛⎫⎛⎫ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭⎛⎫⎛⎫⎛⎫-- ⎪⎪⎪⎝⎭⎝⎭==--⎧⎫⎛⎫⎪⎪-≤-≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭∑∑∑∑∑∑∑∑∑()则,()()()(){}222222222891(4)=8~1~(1,8)6498911=(1,8)58.82(8,1)10.90.158.8258.82XXX F FSSXP P F P FSμμμχμ-⎛⎫⎪--==⎧⎫-⎪⎪⎧⎫<<=<=-=⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭(),则也可以用T分布与F分布的关系.0020001111()()1ln(1)11,,ˆˆˆ1ln(1),,ln(1)ln(1)2(;,...,)(;)ln (;,...,)=01ˆ=()()似然方程:得到参数的极大似然估计,再由i A nnx n n xn i i i n P X A F A e p p A EX DX A EX p EX X A EX p X p L x x f x e e d L x x nnx d Xλλλλλλλλλλλλλλλ---==<==-=-=-===--=∴=--=--====-∏∏ 0000010000ln(1)ˆln(1)ˆln(1)ˆ(3)=ln(1)=ln(1)==ˆln (;,...,)ln(1){[ln(1)][]}ln(1)ˆ()ln(1)ˆˆ极大似然估计的不变性,推出的极大似然估计为是的无偏估计且是的无偏估计是有效n A p A X p p EA E X p p EX A AA d L x x p n n nx X p d p n AA p AA A λλλλλλ-=-=----⎡⎤----⎣⎦∴-=-=-----=--∴ ()202ˆlim ln(1)ˆlim lim 0ˆ估计又是相合估计量n n n EA A p DA n Aλ→∞→∞→∞⎧=⎪⎨-⎪==⎩∴221212121222122222222221222121.422,2~222(1)(1)~01~(2) (1)(1)(1)(1)2=222X YX Y X YX X X X Nn mX X n S m SU N n mn S m S n S m S X X Sn mX Xtωσσμμμμμμχχσσσσ+++++-+--==++----+-+++-+-+==的无偏估计为且(,+)(,)又且与独立,记则()()()()()()()121212212121211221212122222=22=22222=12122t n mP t t n mX XP t n m t n mP X X t n m S X X t n m SX X t n m Sαααααωαμμμμαμμα-----+-⎧⎫≤+-⎨⎬⎩⎭⎧⎫⎪⎪+-+⎪⎪+-≤≤+-⎨⎬⎪⎪⎪⎪⎩⎭⎧⎪+-+-≤+≤+++-⎨⎪⎩-+-+±+-因此构造的置信区间为{}{}121201212120121212121212.222=022,22=02=02=0=的无偏估计为,在:成立的条件下,大于某个常数应该是小概率事件,因此构造拒绝域:以下确定常数由X X H X X c K X X c cP X X c P P t t μμμμμμμμμμα+++++>+>+⎧⎫⎪⎪⎪=>+⎬⎪⎪⎭⎧⎫⎪⎪⎪⎪=>+=⎨⎬⎪⎪⎪⎪⎩⎭()()122n m c t n m S ααω--+-⇒=+-拒绝域为:3133011331122333333111~(1,).~(3)220.220.230.20.20.80.20.104220.4因为所以,类错误(弃真):为真类错误(纳伪):为真i i i i i i i i i i i i i i X B p X B p P X H P X p P X p P X p C C P X H P X p αβ=======I ⎧⎫⎧⎫=≥=≥=⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫===+==⎨⎬⎨⎬⎩⎭⎩⎭=+=II ⎧⎫⎧=<=<=⎨⎬⎨⎩⎭⎩∑∑∑∑∑∑∑313311223333120.4120.430.410.40.60.40.648i i i i i i P X p P X p P X p C C ===⎫⎬⎭⎧⎫=-≥=⎨⎬⎩⎭⎧⎫⎧⎫=-==-==⎨⎬⎨⎬⎩⎭⎩⎭=--=∑∑∑()()221221111211=200ˆnE i i i n n nEi i i i i i i i i ni ii nii S y x dS y x x y x x d x yxββββββ======-=--=⇒-==∑∑∑∑∑∑解:()利用最小二乘估计使残差平方和最小参数的最小二乘估计量为2211222111111221111ˆ2=~(,)ˆˆˆ~(,)111ˆ===11ˆ(),由正态分布的性质推知服从正态分布ni ii i i i ni ii nnni i iiiinnni i i i i ii i i ni i nn i i i i i x YY x N x xN E D E E x Y x EY x x x x xD D x Y x x ββεβσβββββββ============+⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎛⎫⎛ ⎪ ⎪ == ⎪ ⎪⎝⎭⎝∑∑∑∑∑∑∑∑∑∑∑()()()()()222211221222111112211ˆ~(,)ˆˆˆ3=ˆˆˆ2(,)ˆ(,)(,)因此,()nii ni ii n i i nnE i iiiiii i nni i i i i ii i ni ii ii i i i nniii i xDY xN x ES E Y x D Y x E Y x D Y x DY D x Cov Y x x Yx Cov Y x Cov Y x C xxσσβββββββββ==========⎫⎪⎪=⎪ ⎪⎭⎡⎤-=-+-⎣⎦⎡⎤=-=+-⎣⎦==∑∑∑∑∑∑∑∑∑∑()222221112222222222221111(,)(,)221则ni i i i i i i nni iii i nni i Enni i iii i x x ov Y x Y Cov Y Y xxx x ESn n n xxσσσσσσσσ==========+-=+-=-∑∑∑∑∑∑∑因素:车型水平:3种不同的车型A,B,C方差分析前提假设:正态性,方差齐次性,独立性对比分位数:0.95(2,9) 4.26F F >=,拒绝原假设0123:H μμμ==,认为这三种车型耗油量有显著差异。
重庆大学数理统计试题3
n Xi
i 1 m n m
( 1 ) Y1
m
2
i m 1
X
; ( 2 ) Y2
2 i
n X i 2 m Xi
i m 1 i 1 mn 2
n n 2 i 1 2 1 e 2 ) ( 2 2 ) 2 e 2 2 n xi2
xi2
n
L( 2 , X 1 , X 2 ,
Xn) (
i 1
ln( L( 2 , X 1 , X 2 , ln( L( 2 , X 1 , X 2 , d 2
xi2 n X n )) ln( 2 ) ln 2 i 1 2 2 2 X n )) n 1 n 1 n 2 i 1 ( xi 2 ) 2 2 2 4 2 2( ) 2 n i 1
s
2
c1
1 1 2 (n 1), c2 2 (n 1) n 1 2 n 1 1 2 s2
k0 :{
2
c2或
s2
2
c1}
(2) H0 : 2 1, H1 : 2 2
2 拒绝域 k0 : (n 1)s 2 12 (n 1);22s 2 0.95 (22) 33.92; :
m
2 i m1
X
n X i 2 m Xi
i m 1 i 1 mn 2
Y2 ~ F (m, n)
2 i
n
Xi
(3)
i 1
m
m n
m
~ N (0,1),
重庆大学研究生数理统计大作业
NBA球员科比单场总得分与上场时间的线性回归分析摘要篮球运动中,球员的上场时间与球员的场上得分的数学关系将影响到教练对每位球员上场时间的把握,若能得到某位球员的上场时间与场上得分的数据关系,将能更好的把握该名球员的场上时间分配。
本次作业将针对现役NBA球员中影响力最大的球员科比布莱恩特进行研究,对其2012-2013年赛季常规赛的每场得分与出场时间进行线性回归,得到得分与出场时间的一元线性回归直线,并对显著性进行评估和进行区间预测。
正文一、问题描述随着2002年姚明加入NBA,越来越多的中国人开始关注篮球这一项体育运动,并使得篮球运动大范围的普及开来,尤其是青年学生。
本着学以致用的原则,希望将所学理论知识与现实生活与个人兴趣相结合,若能通过建立相应的数理统计模型来做相应的分析,并且从另外一个角度解析篮球,并用以指导篮球这一项运动的更好发展,这也将是一项不同寻常的探索。
篮球运动中,得分是取胜的决定因素,若要赢得比赛,必须将得分超出对手,而影响一位球员的得分的因素是多样的,例如:情绪,状态,体力,伤病,上场时间,防守队员等诸多因素,而上场时间作为最直接最关键的因素,其对球员总得分的影响方式有着重要的研究意义。
倘若知道了其分布规律,则可从数量上掌握得分与上场时间复杂关系的大趋势,就可以利用这种趋势研究球员效率最优化与上场时间的控制问题。
因此,本文针对湖人当家球星科比布莱恩特在2012-2013年赛季常规赛的每场得分与上场时间进行线性回归分析,并对显著性进行评估,以巩固所学知识,并发现自己的不足。
二、数据描述抽出科比布莱恩特2012-2013年常规赛所有82场的数据记录(原始数据见附录),剔除掉其中没有上场的部分数据,得到有参考实用价值的数据如表2.1所示:以上数据由腾讯篮球中心提供,特此说明。
三、模型建立(1)假设条件假定球员每场的发挥均为独立同分布事件, (2)模型构建以上场时间为自变量Xi ,单场得分为应变量Yi ,建立正态线性模型式:()012,1,2,,;0,,,,,i i i ii i i Y x i n N ββεεσεεε=++=⎧⎪⎨⎪⎩且相互独立 其中β0、β1为模型参数。
数理统计第一次大作业
2010 29723.12 27279.79 21870
70073 216961
39.46 27745.38
2011
39692
35239
24747
88604 230920
39.87
34552.1
2012
47339.6 42266
28344 109870 244395
39.87 41557.15
2013 56894.4 48966 32777.2 137239 261239 40.24 51043.71
中央政府为了缓解钢铁行业面临的巨大压力,将巨额“救市”资金投向钢铁 行业,另外政府还通过大力发展用钢量较大的行业 如铁路、房地产行业等 间接 拉动钢铁行业的“复苏”。基于目前特殊的经济背景和钢铁行业的重要地位,对 钢铁行业的发展水平、与其他产业的关联特征以及影响钢铁行业发展的因素进行 再认识具有重要的理论和实际意义。
X5
26.57372 92.71114 0.286629 0.7793
X6
0.015459 0.125003 0.123667 0.9036
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
《钢铁产业调整和振兴规划》阐明,我国是钢铁生产和消费大国,粗钢产量 连续 13 年居世界第一。进入 21 世纪以来,我国钢铁产业快速发展,粗钢产量年 均增长 21.1%。2008 年,粗钢产量达到 5 亿吨,占全球产量的 38%,国内粗钢表 观消费量 4.53 亿吨,直接出口折合粗钢 6000 万吨,占世界钢铁贸易量的 15%。 2007 年,规模以上钢铁企业完成工业增加值 9936 亿元,占全国 GDP 的 4%,实现 利润 2436 亿元,占工业企业利润总额的 9%,直接从事钢铁生产的就业人数 358 万。钢铁产品基本满足国内需要,部分关键品种达到国际先进水平。钢铁产业有 力支撑和带动了相关产业的发展,促进了社会就业,对保障国民经济又好又快发 展做出了重要贡献。
重庆大学概率与数理统计课后答案第二章
3 0.1 4 0.3 5
4 6 ; 10 10
P
2)
0.6
x3 0, 0.1, 3 x 4 F ( x) P{ X x} 0.4, 4 x 5 x5 1,
3. 设一学生用同一台机床接连独立地制造 3 个同种零件,第 i 个为不合格品的概率为
1 ,以 X 表示汽车停下时通过的交通岗个数,求 X 的分布律。 2
X 的可能取值:0,1,2,3,4 1 P( X 0) 2 1 1 P( X 1) ( ) 2 2 4 1 1 P( X 2) ( )3 2 8 1 1 P( X 3) ( ) 4 2 16 1 1 2 1 3 1 4 1 P( X 4) 1 ( ) ( ) ( ) 2 2 2 2 16
1
所以 A (2)
f x dx Ae|x|dx 2 Ae x dx 2 A
0
1 ; 2 P 0 X 1 f x dx
0 1 11 1 | x| e dx e x dx 0.316 0 2 0 2 1
解:设 X 为同一时刻使用的设备数,可能取值为:0,1,2,3,4,5, 则 X ~ B(5, 0.2) , (1) P{ X 2}
P{ X k} C
k 0 k 0
2
2
k 5
0.2 k 0.85 k 0.9421 ;
(2) P{X 2} 1 P{X 0,1} 1 0.85 5 0.2 0.84 0.2627 6.一电话总机每分钟收到呼唤次数 X 服从参数为 4 的泊松分布。求(1)某一分钟恰有 8 次 呼唤的概率; (2)某一分钟的呼唤次数大于 3 的概率。 解: (1) X ~ P(4)
重庆大学硕士研究生《数理统计》课程大作业(论文)
一、问题提出和问题分析今天的重庆,肩负着中央赋予的历史重任——着力打造西部地区的重要增长极、长江上游地区的经济中心、成为统筹城乡发展的试验者、在西部地区率先实现全面建设小康社会的目标。
2010年初,又一重要规划将重庆发展提升到国家战略——重庆被确定为国家五大中心城市之一,是中西部地区唯一入选的城市。
这说明,重庆未来的发展不可限量。
自1997年直辖以来,重庆市的经济社会发展极为迅猛。
全市的GDP由1997年的1360.24亿元增长至2010年的7894.2亿元,而整个社会的发展进步也有目共睹。
在重庆过去、现在和未来的发展进程中,在重庆的各种发展规划的要求下,建设必将成为山城的另一个符号。
过去十多年中的大规模、大范围的建设成就了现在的重庆,而重庆未来的发展将需要更多的建设。
作为重庆建设中最重要的一环,建筑业在重庆显然有着重要的地位。
建筑业这种专门从事土木工程、房屋建设和设备安装以及工程勘察设计工作的生产部门,为重庆的发展建设提供着众多的基础设施,满足着居住、工业、商业、办公等各种城市需求。
数据显示,在过去的数年中,重庆市建筑业的总产值占全市GDP的7%-8%,是名副其实的支柱产业。
因此建筑业的发展情况,可以从侧面反映出整个重庆社会经济的发展情况,对重庆建筑业的研究就有了很大的现实意义。
建筑企业是建筑业的主体。
众多的建筑企业的良好发展构成了建筑业的良好发展。
对于建筑企业来说,要实现企业的良好经营和发展,必须要有良好的收入来支撑。
在建筑企业收入的众多影响因素中,企业的劳动生产率无疑是值得关注的一个。
企业都在致力于提高自身的劳动生产效率,而不断提高的劳动生产率,可使得企业的生产经营行为更具效率,因而获得更多的收入,实现更好的发展。
所以,研究重庆市建筑企业劳动生产率与企业收入的关系,可从一个角度来了解重庆市建筑企业的发展情况,从而了解到了重庆建筑业的发展以至于重庆市的经济发展情况。
为了找出二者之间的关系或者规律性,本文采用2001-2010这十年中重庆建筑企业劳动生产率和企业平均收入的数据,通过数学分析,找出二者关系。
2015重庆大学数理统计大作业
研究生课程考核试卷(适用于课程论文、提交报告)科目:数理统计教师:刘琼荪姓名:xxx 学号:20150702xxx 专业:机械工程类别:学术上课时间:2016 年 3 月至2016 年 4 月考生成绩:卷面成绩平时成绩课程综合成绩阅卷评语:阅卷教师(签名)我国上世纪70-90年代民航客运量回归分析摘要:中国民航从上实际50年代发展至今已有60多年的历史,这期间中国民航经历了曲折的发展。
随着改革开发以来,中国人民的生活水平日渐提高,出行坐乘飞机逐渐人们可选的交通方式。
我国民航客运量逐年提高,为了研究其历史变化趋势及其成因,现以民航客运量作为因变量y,假设以国民收入x1、消费额x2、铁路客运量x3、民航航线里程x4、来华旅游入境人数x5为影响民航客运量的主要因素。
利用SPSS和excel软件通过建立回归模型分析我国民航客运量主要受到其中哪些因素的影响,并就回归模型分析具体可能的成因。
关键词:民航客运量影响因素回归模型一、问题提出及问题分析2004年,民航行业完成运输总周转量230亿吨公里、旅客运输量1.2亿人、货邮运输量273万吨、通用航空作业7.7万小时。
截止2004年底,我国定期航班航线达到1200条,其中国内航线(包括香港、澳门航线)975条,国际航线225条,境内民航定期航班通航机场133个(不含香港、澳门),形成了以北京、上海、广州机场为中心,以省会、旅游城市机场为枢纽,其它城市机场为支干,联结国内127个城市,联结38个国家80个城市的航空运输网络。
民航机队规模不断扩大,截止至2004年底,中国民航拥有运输飞机754架,其中大中型飞机680架,均为世界上最先进的飞机。
2004年中国民航运输总周转量达到230亿吨公里(不包括香港、澳门特别行政区以及台湾省),在国际民航组织188个缔约国中名列第3位。
从上述事实可以看出我国民航的发展所取得的成果显著。
当前我国民航客运量相当巨大,而影响我国航运客运量的因素有很多,例如第三产业增加值(亿元),城市居民消费水平(绝对元),定期航班航线里程(万千里)等[1]。
重庆大学2013-2014学年(上)数理统计试题及参考答案
重庆大学全日制学术型硕士研究生 《数理统计》(A )课程试卷2013-2014学年第一学期(秋)请保留四位小数,部分下侧分位数为:0.95 1.65u =,0.99 2.33u =,20.95(1) 3.841χ=,0.95(3,6)9.78f =一、(18分)设1X ,2X ,…,64X 是来自总体N (0,2σ)的样本,X ,2S 分别是样本均值和样本方差:(1)求参数c 满足{}0.1P X S c >⋅=;(2)求概率22122234{1}X X P X X +>+;(3)求322321(2)i i i D X X X +=⎡⎤+-⎢⎥⎣⎦∑。
(请写出计算过程) 解:(1)~(1)t n-{}}0.1P X S c P c ∴>⋅=>=得0.95(63)c t = 故 1.650.20638c ==(2)2~(0,)X N σ22212(/)(/)~(2)X X σσχ∴+ 同理22234(/)(/)~(2)X X σσχ+2222223412122234(/)(/)(/)(/)/~(2,2)22X X X X X X F X X σσσσ+++∴=+ 22122234{1}{(2,2)1}X X P P F X X +>=>+ 且0.50.50.51(2,2)(2,2)1(2,2)F F F =⇒= 得2222121222223434{1}1{1}0.5X X X X P P X X X X ++>=-≤=++ (3)令2~(2,2)i i n i Y X X N μσ+=+,112n i i Y Y X n ===∑ 221()(1)ni Y i T Y Y n S =∴=-=-∑3232223211(2)[()]i i i i i D X X X DT D Y Y +==⎡⎤+-==-⎢⎥⎣⎦∑∑2~(0,2(11/))i Y Y N n σ-+~(0,1)Y N=3222422421[2(11/)4(11/)((32))256(11/32)i Y D n n D σσχσ=+=+=+∑二、(26分)设1X ,2X ,…,n X 是来自总体2~(2,)(0)X N σσ>的样本,{}0.95P X A <=。
(完整word版)数理统计大作业1
研究生课程考核试卷科目:数理统计教师: 李寒宇姓名: 蔡亚楠学号:20131102015t 专业:高电压与绝缘技术类别:学术型上课时间: 2014年3月至2014年5月考生成绩:卷面成绩平时成绩课程综合成绩阅卷评语:阅卷教师(签名)相对地过电压数据的统计分析摘要:过电压是指超过正常运行电压并可使电力系统绝缘或保护设备损坏的电压升高。
电力系统的过电压分布情况决定了电气设备的绝缘水平。
变电站过电压由于影响因素的随机性,使得过电压数据复杂且具有随机性。
本文结合电气工程专业的背景,分析了相对地过电压数据的分布规律。
首先对三相的过电压数据分别进行双样本同分布检验,采用两总体分布比较的假设检验方法。
检验结果显示三相的样本具有相同的分布规律,因此将三相的过电压数据合并进行总体的分布规律检验。
文中运用拟合优度2 检验法检验总体分布是否福才能够正态分布。
检验结果表明样本总体分布不服从正态分布,而是服从切断正态分布.针对相对地过电压数据的统计分析有助于确定设备的绝缘水平,具有一定的研究价值.关键词:过电压;假设检验;统计分布一、问题提出过电压是指超过正常运行电压并可使电力系统绝缘或保护设备损坏的电压升高。
电力系统的过电压分布情况决定了电气设备的绝缘水平.由于过电压数据出现的随机性较大,且有明显的统计特征,因此在对单次过电压数据进行统计分析的同时,还可以用数理统计的方法对系统采集的多次样本进行统计分析研究,并预测过电压的概率分布规律,以便将所得结论用于确定设备及线路的绝缘水平,合理解决绝缘配合问题,使设备绝缘故障率或停电故障率降低到经济上和安全运行上可以接受的水平.二、数据描述本次研究以TR2000过电压在线监测装置在某变电站实地运行所采集的过电压数据进行分析。
该变电站的等级为110kV/38.5kV/10。
5kV,以往的运行经验发现,35kV侧事故频繁,属第一、二类等级符合用户较集中,故在35kV侧安装了一台TR2000过电压在线监测装置.通过对监测装置中导出的数据进行进制转换、图形显示、统计分析等手段,分析变电战过电压的规律,由此可以对电力系统设计、改造和故障分析等工作提供可靠的依据.根据现场情况,将暂态过电压记录倍率设定为1。
重庆大学数理统计试题(四套)
X (4)分析随机变量 S
24 的分布。
2
二 ( . 20 分) 设总体分布 X 的密度函数为 f x; c x 未知,求 (1)参数 的矩估计量 ˆ1 ; 1 ˆ ; (2)参数 g 的极大似然估计 g ˆ 无偏性,有效性和相合性。 (3)试分析 g
4
四、某公司的考勤员试图证实星期一的缺勤是其他四个工作日缺勤的两倍,已有三 月的缺勤记录如下表所示: 星期 缺勤数 给定显著水平 一 二 304 176 ,请用检验证实。 三 139 四 141 五 130
五、(20 分)合成纤维抽丝工段第一导丝盘的速度 y 对丝的质量是很重要的因素。如 由生产记录得相关数据 ( xi , yi ) ,i 1,2,...,10 , 今发现它与电流的周波 x 有密切的关系, 计算得到 x 49.61 , y 16.86 , l xx 1.989 , l xy 0.674 l yy 0.244 。 (1)求第一导丝盘的速度 y 与电流的周波 x 的经验回归直线方程; (2)在显著水平 0.05 下,检验 y 与 x 是否有显著的线性关系; (3)求 ,并求回归系数 1 的置信度为 95% 的置信区间。
六、设组观测数据(xi , yi )(i =1,2,…, n) 满足 yi =β0+β1(x- x ) +εi , 1 n εi ~ N (0,σ 2) (i =1,2,…, n)(其中 x= X i )且 ε1,ε2,…,εn 相互独立。 n 1 ˆ , ˆ; (1) 求系数 β0,β1 的最小二乘估计量
2 2 2 (1)当 n=17 时,求常数 k 使得 P( X Y 1 2 k S X SY 2S X ,Y ) 0.95
重庆大学2015概率论与数理统计试题及解答
《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________.2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________.4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________.5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________.解:1.3.0)(=+B A B A P即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P . 2.λλλλλ---==+==+==≤e X P e e X P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22即 0122=--λλ 解得 1=λ,故161)3(-==e X P . 3.设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y X y f y F y f <<'===⎩其它另解 在(0,2)上函数2y x =严格单调,反函数为()h y =所以04,()0,.Y X y f y f <<==⎩其它4.2(1)1(1)P X P X e e λ-->=-≤==,故 2λ={min(,)1}1{min(,)1}P X Y P X Y ≤=->1(1)(1)P X P Y =->>41e -=-. 5.似然函数为 111(,,;)(1)(1)(,,)nn n i n i L x x x x x θθθθθ==+=+∏1ln ln(1)ln nii L n xθθ==++∑1ln ln 01ni i d L nx d θθ==++∑解似然方程得θ的极大似然估计为 1111ln ni i x n θ==-∑.二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则AC 与B 也独立.(C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立. ( ) 2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为 (A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. ( ) 3.设随机变量X 和Y 不相关,则下列结论中正确的是(A )X 与Y 独立. (B )()D X Y DX DY -=+.(C )()D X Y DX DY -=-. (D )()D XY DXDY =. ( ) 4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==. ( ) 5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. ( )解:1.因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ). 3.由不相关的等价条件知应选(B ). 4.若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+ ∴29α=, 19β= 故应选(A ).5.1EX μ=,所以1X 是μ的无偏估计,应选(A ).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. 解:设A =‘任取一产品,经检验认为是合格品’ B =‘任取一产品确是合格品’则(1) ()()(|)()(|)P A P B P A B P B P A B =+ 0.90.950.10.020.857.=⨯+⨯= (2) ()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数,求X 的分布列、分布函数、数学期望和方差. 解:X 的概率分布为 3323()()()0,1,2,3.55kkkP X k C k -=== 即01232754368125125125125XPX 的分布函数为0,0,27,01,12581(),12,125117,23,1251,3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩ 263,55EX =⨯=231835525DX =⨯⨯=.五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关于X 的边缘概率密度;(2)Z X Y =+的分布函数与概率密度.(1)(,)X Y 的概率密度为 2,(,)(,)0,.x y Df x y ∈⎧=⎨⎩其它22,01()(,)0,X x x f x f x y dy +∞-∞-≤≤⎧==⎨⎩⎰其它(2)利用公式()(,)Z f z f x z x dx +∞-∞=-⎰其中2,01,01(,)0,x z x x f x z x ≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z ≤≤≤≤⎧=⎨⎩其它.当 0z <或1z >时()0Z f z = 01z ≤≤时 00()222z zZ f z dx x z ===⎰故Z 的概率密度为2,01,()0,Z z z f z ⎧≤≤⎪=⎨⎪⎩其它.Z 的分布函数为200,00,0,()()2,01,01,1, 1.1,1z z Z Z z z f z f y dy ydy z z z z z -∞<⎧<⎧⎪⎪⎪==≤≤=≤≤⎨⎨⎪⎪>⎩>⎪⎩⎰⎰或利用分布函数法10,0,()()()2,01,1, 1.Z D z F z P Z z P X Y z dxdy z z ⎧<⎪⎪=≤=+≤=≤≤⎨⎪⎪>⎩⎰⎰20,0,,01,1, 1.z z z z <⎧⎪=≤≤⎨⎪>⎩2,01,()()0,Z Z z z f z F z ≤≤⎧'==⎨⎩其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标Y 相互独立,且均服从2(0,2)N 分布. 求(1)命中环形区域22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离Z =的数学期望.1){,)}(,)DP X Y D f x y dxdy ∈=⎰⎰2222288111248x y r De dxdy erdrd πθππ+--==⋅⎰⎰⎰⎰2221122888211()8r r red ee e ------=-=-⎰;(2)22818x y EZ E e dxdy π+-+∞-∞-∞==⎰⎰2222881184r r rerdrd e r dr πθπ--+∞+∞==⎰⎰⎰2228882r r r reedr dr +∞---+∞+∞-∞=-+==⎰⎰七、(11分)设某机器生产的零件长度(单位:cm )2~(,)X N μσ,今抽取容量为16的样本,测得样本均值10x =,样本方差20.16s =. (1)求μ的置信度为0.95的置信区间;(2)检验假设20:0.1H σ≤(显著性水平为0.05).(附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t ===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===解:(1)μ的置信度为1α-下的置信区间为 /2/2(((X t n X t n αα--+-0.02510,0.4,16,0.05,(15) 2.132X s n t α===== 所以μ的置信度为0.95的置信区间为(9.7868,10.2132)(2)20:0.1H σ≤的拒绝域为22(1)n αχχ≥-.221515 1.6240.1S χ==⨯=,20.05(15)24.996χ= 因为 220.052424.996(15)χχ=<=,所以接受0H .《概率论与数理统计》期末试题(3)与解答一、填空题(每小题3分,共15分)(1) 设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________.(2) 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________. (3) 设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其它, 现对X 进行四次独立重复观察,用Y 表示观察值不大于的次数,则2EY =___________. (4) 设二维离散型随机变量(,)X Y 的分布列为(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y Pa b若0.8EXY =,则Cov(,)X Y =____________.(5) 设1217,,,X X X 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________.(注:20.01(17)33.4χ=, 20.005(17)35.7χ=, 20.01(16)32.0χ=, 20.005(16)34.2χ=)解:(1)()()()P ABC ABC P ABC P ABC +=+因为 A 与C 不相容,B 与C 不相容,所以,A C B C ⊃⊃,故ABC C = 同理 ABC AB =.()()()0.20.50.50.45P ABC ABC P C P AB +=+=+⨯=. (2)设A =‘四个球是同一颜色的’,1B =‘四个球都是白球’,2B =‘四个球都是黑球’ 则 12A B B =+. 所求概率为 22212()()(|)()()()P AB P B P B A P A P B P B ==+ 22223322122222555533(),()100100C C C C P B P B C C C C =⋅==⋅=所以 21(|)2P B A =.(3)~(4,),Y B p其中 10.52201(0.5)24p P X xdx x=≤===⎰, 113341,44444EY DY =⨯==⨯⨯=, 2215()144EY DY EY =+=+=.(4)(,)X Y 的分布为这是因为 0.4a b +=,由0.8EXY = 得 0.220.8b += 0.1,0.3a b ∴==0.620.4 1.4EX =+⨯=,0.5EY =故 cov(,)0.80.70.1X Y EXY EXEY =-=-=.(5)2216(){4}0.014S P S a P a >=>= 即 20.01(16)4a χ=,亦即 432a = 8a ∴=.二、单项选择题(每小题3分,共15分)(1)设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有 (A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤(C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥ ( )(2)设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞且~(0,1)Y aX b N =+,则在下列各组数中应取(A )1/2, 1.a b == (B )2,a b ==(C )1/2,1a b ==-. (D )2,a b == ( )(3)设随机变量X 与Y 相互独立,其概率分布分别为010.40.6XP010.40.6Y P则有(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == ( ) (4)对任意随机变量X ,若EX 存在,则[()]E E EX 等于(A )0. (B ).X (C ).EX (D )3().EX ( ) (5)设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为(A)/2/2(x u x u αα-+ (B)1/2/2(x u x u αα--+ (C)(x u x u αα-+ (D)/2/2(x u x u αα-+ ( ) 解 (1)由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+-应选C. (2)22(2)4()x f x +-==即~(2,)X N -故当a b ===时 ~(0,1)Y aX b N =+ 应选B.(3)()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.(4)[()]E E EX EX = 应选C.(5)因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D.三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都 是一等品,求丢失的也是一等品的概率。
“数理统计”综合作业解析
“数理统计”综合作业解析“数理统计”课程综合作业作业要求为了考核同学们综合运⽤统计⽅法解决实际问题的过程,请同学们结合当前社会⽣活实际中的问题,⾃⼰拟定⼀个研究题⽬,并应⽤参数估计、假设检验、回归分析、⽅差分析、正交设计(这些⽅法中⾄少选择两个)对其进⾏分析。
要求:(⼀)内容必须涵盖以下⼏个⽅⾯:1.题⽬;2.研讨的问题是什么;3.相关的数据及来源;4.建⽴的统计模型和统计问题是什么,样本数据是什么;5.使⽤的统计⽅法是什么?使⽤的统计分析软件是什么?5.计算过程(若统计软件,其计算结果是什么)6.对计算结果的说明或解释。
(⼆)格式包括报告题⽬、摘要、正⽂、参考⽂献和附录五个部分。
正⽂内容⼀般包括问题描述、数据描述、模型建⽴、统计⽅法选择和问题求解、结果分析等内容。
报告⽤Word ⽂本格式,中⽂字使⽤宋体、⼩四号字,英⽂⽤Roman 字体5 号字,数学符号⽤MathType 输⼊。
题⽬(⿊体,三号)摘要:(200-400字)(⿊体,⼩四)正⽂(正⽂标题:宋体,粗体,⼩四)⼀、问题提出。
(正⽂内容:宋体,五号)⼆、数据描述(⽤表格表达数据信息,指出数据来源或提供原始数据)三、建⽴统计模型四、统计⽅法设计和⽅法使⽤的条件,计算⼯具的选择。
五、计算过程和计算结果。
六、结果分析。
参考资料(标题:宋体,粗体,⼩四,内容:宋体,五号)附录(标题:宋体,粗体,⼩四,内容:宋体,五号)(三)课外作业提交形式纸质材料和电⼦⽂档注意:纸质材料打印内容从封⾯开始,包括作业要求,直⾄作业的所有内容。
电⼦⽂档:先提交给班长,再由班长将压缩⽂件提交给⽼师。
特别注意电⼦⽂档的名称,按如下模板写:2011级某班“数理统计”综合作业——姓名,学号。
(四)课外作业提交时间参加课程考试那天上午提交纸质材料,当天班长提交电⼦⽂档给⽼师。
请注意:不能复制现有成果,同学之间也不能相互复制内容。
股票市场中变量之间的关系摘要:在经济飞速发展的当代,⾦融市场占据着半壁江⼭,⽽在⾦融市场中股票作为公司筹资的重要来源,它占据着重要的地位,我接下来就是要研究股票市场中变量之间的关系,通过统计分析⽅法还原⼤数据时代海量数据所反映的事实,以及数据之间的规律性。
重庆大学数理统计试题答案版
涉及到的有关分位数:()()()()()()()()()()()()20.950.950.950.9750.9750.9752222220.9750.0250.0250.9750.950.97520.95 1.645,16 1.746,15 1.753,16 2.12,15 2.131,1628.851527.49,16 6.91,15 6.26,1 5.02,1 3.84,27.382 5.99u t t t t χχχχχχχχ=============一、设123,,X X X 是来自总体~(0,3)X N 的样本。
记()2332i 1111,32i i i X X S X X====-∑∑,试确定下列统计量的分布:(1)3113i i X =∑;(2)23119i i X =⎛⎫⎪⎝⎭∑;(3)()23113i i X X=-∑;(4X解:(1)由抽样分布定理,311~(0,1)3i i X X N ==∑(2)因311~(0,1)3i i X N =∑,故223321111~(1)39i i i i X X χ==⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∑∑(3)由抽样分布定理,()()()2223321131211~(2)3323i i i i S X X X X χ==-=⋅-=-∑∑(4)因()222~(0,1),~23X N S χ,X 与2S独立,故()~2X t 。
二、在某个电视节目的收视率调查中,随机调查了1000人,有633人收看了该节目,试根据调查结果,解答下列问题:(1)用矩估计法给出该节目收视率的估计量;(2)求出该节目收视率的最大似然估计量,并求出估计值;(3)判断该节目收视率的最大似然估计是否是无偏估计;(4)判断该节目收视率的最大似然估计是否是有效估计。
解:总体X 为调查任一人时是否收看,记为~(1,)X B p ,其中p 为收视率(1)因EX p =,而^E X X =,故收视率的矩估计量为^Xp =(2)总体X 的概率分布为()1()1,0,1xxf x p p x -=-=1111()(1)(1)(1)ln ()ln (1)ln(1)ln ()(1)01nniii ii i nx n x x x n X n n Xi L p p p pp p p L p nX p n X p d L p nX n X dp p p==---=∑∑=-=-=-=+---=-=-∏解得收视率p 的最大似然估计量为^Xp =现有一参量为1000的样本121000,,X X X ……,,且10001633ii X==∑则6330.6331000X ==,故收视率的极大似然估计值为0.633.(3)因E X p =,故^X p =是无偏估计(4)因()ln ()(1)1(1)d L p nX n X nX p dp p p p p -=-=---,又E X p=故收视率的最大似然估计X 是p 的有效估计。
重庆大学数理统计课程大作业上证指数与多因素的多元线性回归分析解析
上证指数与多因素的多元线性回归分析摘要中国的股票市场自1990年成立以来发展迅速,对我国经济的各个方面都产生了深远的影响,从1990年的100点到2007年的6124.17点,增长了60倍,平均年增长3.5倍,以及从2008年到2014年的3234.7点降低了1倍,可见虚拟经济增长和降低速度之快已经超出了人们的想象,为了研究指数增长与股票的一些基本因素的关系,建立了多元线性回归模型,来分析影响上证指数的因素的影响程度大小。
一、问题描述为探究影响上证指数的主要因素,文章选取十一个最具代表性经济指标。
股票市场作为金融市场的重要组成部分,不仅承担着融资和资源配置的资本媒介职能,同时作为经济发展的“晴雨表”也发挥着经济预测等功能。
金融危机过后,我国资本市场正处在关键的转型阶段,我国股票市场的走向都吸引了无数注视目光,甚至在世界范围内目光。
在实际经济运行中,影响股票指数的因素非常复杂。
宏观经济因素是股价波动的大环境,只有从分析宏观经济发展的大方向着手,才能把握住股票市场的总体变动趋势。
虽然现实生活中存在许多不可预测或无法量化的因素,统计模型也不能百分之百地预测指标的下跌或上涨,但可以提供一个基本的预测趋势。
如果将模型的定量分析和市场的定性分析相结合,一定会帮助股民更好地分析股市做出相对明智的决定,还能帮助人们及时发现我国经济的发展中出现的问题解决问题从而实现我国经济又快又好发展。
自2014年底上证指数从2200点到2015年5月底的5000点,涨速可谓迅速,股民数量呈指数形式上涨,人们在大街小巷谈论股票,在这一时段里,中国股市最受世界关注,但是2015年5月底上证指数跌幅巨大,致使大部分股民亏损严重,与上一段时间形成鲜明的对比。
股民亏损的原因有很多方面,其中一个很重要的方面是对股票的基本情况不够了解,不能区分哪些因素是主要的,哪些因素是次要的,同时股票指数可以反映经济发展的状况。
本文选取的数据是1993年到2014年的数据,来进行多元线性回归分析,一方面分析上证指数与相关因素的相关关系,另一方面,巩固老师讲的基本知识。
重庆大学研究生数理统计课程设计大作业(化学化工类)
β-葡聚糖对乳酸菌生长状况的影响一元线性回归模型分析摘要:在人们生活水平不断提高的今天,由于人们的饮食结构和生活环境的变化,一些营养素缺乏而引起的疾病相对减少,而冠心病,糖尿病等发病率则越来越高。
因此,对于这些疾病的预防和治疗受人们的关注,已成为医药和食品工作者研究的热点。
β-葡聚糖是用独特的工艺开发的一种新的产品,其来源于新鲜的食品啤酒酵母。
它是一种多糖,主要化学结构β-1,3 葡聚糖和β-1,6葡聚糖,其中前者具有抗肿瘤性质,而且能够极大地提高人体自然免疫力。
本文应用紫外-可见分光光度计测定加入不同量的β-葡聚糖标准溶液的吸光度。
在建立β-葡聚糖与吸光度之间的线性方程中,采用一元线性回归分析的分析方法,并建立分析β-葡聚糖对乳酸菌生长状况曲线模型。
关键字:β-葡聚糖吸光度一元线性回归分析生长状况曲线模型一、问题提出,问题分析设置对照实验,在实验“β-葡聚糖对乳酸菌生长状况的影响”中,实验通过设置不同的β-葡聚糖浓度,研究相同浓度不同量对乳酸菌生长的影响。
在实验中,由于加入的β-葡聚糖的量不同,通过测定培养基溶液吸光度不同,反映不同培养基中的乳酸菌的生长状况是不同的,通过各实验组的对照,加入的β-葡聚糖浓度与乳酸菌的生长是有关系的。
实验中β-葡聚糖的浓度为75g/L,加入的量设置依次为:0μL、10μL、30μL、45μL、60μL、75μL。
培养12h后,用752紫外可见分光光度计进行检测,测定结果对应的吸光度-加入量关系表(如表1所示)已知朗伯——比尔定律的数学表达式为A=kn, k为摩尔吸收系数,A为吸光度,n为吸光物质的量。
根据此定律设想铬离子浓度与其吸光度存在线性相关关系。
二、数据描述表2.1 β-葡聚糖加入量与其吸光度(β-葡聚糖浓度:75g/L ,培养时间12h )以上数据来自重庆大学本科生马晶晶在做毕业论文《β-葡聚糖对乳酸菌生长状况的影响》数据,实验数据利用用752紫外可见分光光度计测定,真实可靠。
重庆大学2015概率论与数理统计试题及解答
《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________. 4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________.5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________.解:1.3.0)(=+B A B A P即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P . 2.λλλλλ---==+==+==≤e X P e e X P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22即 0122=--λλ 解得 1=λ,故161)3(-==e X P . 3.设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y X y f y F y f <<'===⎩其它另解 在(0,2)上函数2y x =严格单调,反函数为()h y =所以04,()0,.Y X y f y f <<==⎩其它4.2(1)1(1)P X P X e e λ-->=-≤==,故 2λ={min(,)1}1{min(,)1}P X Y P X Y ≤=->1(1)(1)P X P Y =->>41e -=-.5.似然函数为 111(,,;)(1)(1)(,,)nn n i n i L x x x x x θθθθθ==+=+∏1ln ln(1)ln nii L n xθθ==++∑1ln ln 01ni i d L nx d θθ==++∑解似然方程得θ的极大似然估计为1111ln ni i x n θ==-∑.二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则AC 与B 也独立.(C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立. ( ) 2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为 (A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. ( ) 3.设随机变量X 和Y 不相关,则下列结论中正确的是(A )X 与Y 独立. (B )()D X Y DX DY -=+.(C )()D X Y DX DY -=-. (D )()D XY DXDY =. ( ) 4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A)12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==. ( )5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. ( )解:1.因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ). 事实上由图 可见A 与C 不独立.2.~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ). 3.由不相关的等价条件知应选(B ). 4.若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+ ∴29α=, 19β= 故应选(A ).5.1EX μ=,所以1X 是μ的无偏估计,应选(A ).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设A =‘任取一产品,经检验认为是合格品’ B =‘任取一产品确是合格品’则(1) ()()(|)()(|)P A P B P A B P B P A B =+ 0.90.950.10.020.857.=⨯+⨯= (2) ()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数,求X 的分布列、分布函数、数学期望和方差. 解:X 的概率分布为 3323()()()0,1,2,3.55kkkP X k C k -=== 即01232754368125125125125XPX 的分布函数为0,0,27,01,12581(),12,125117,23,1251, 3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩263,55EX =⨯=231835525DX =⨯⨯=.五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关)Z X Y =+的分布函数与概率密度.(1)(,)X Y 的概率密度为2,(,)(,)0,.x y Df x y ∈⎧=⎨⎩其它22,01()(,)0,X x x f x f x y dy +∞-∞-≤≤⎧==⎨⎩⎰其它(2)利用公式()(,)Z f z f x z x dx +∞-∞=-⎰其中2,01,01(,)0,x z x x f x z x ≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z ≤≤≤≤⎧=⎨⎩其它.当 0z <或1z >时()0Z f z =01z≤≤时()222z zZf z dx x z===⎰故Z的概率密度为2,01,()0,Zz zf z⎧≤≤⎪=⎨⎪⎩其它.Z的分布函数为20,00,0,()()2,01,01,1, 1.1,1z zZ Zz zf z f y dy ydy z z zzz-∞<⎧<⎧⎪⎪⎪==≤≤=≤≤⎨⎨⎪⎪>⎩>⎪⎩⎰⎰或利用分布函数法10,0,()()()2,01,1, 1.ZDzF z P Z z P X Y z dxdy zz⎧<⎪⎪=≤=+≤=≤≤⎨⎪⎪>⎩⎰⎰20,0,,01,1, 1.zz zz<⎧⎪=≤≤⎨⎪>⎩2,01,()()0,Z Zz zf z F z≤≤⎧'==⎨⎩其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从2(0,2)N分布. 求(1)命中环形区域22{(,)|12}D x y x y=≤+≤的概率;(2)命中点到目标中心距离Z=的数学期望.1){,)}(,)DP X Y D f x y dxdy∈=⎰⎰22222880111248x y rDe dxdy e rdrdπθππ+--==⋅⎰⎰⎰⎰2221122888211()8r rre d e e e------=-=-⎰;(2)22818x yEZ E e dxdyπ+-+∞+∞-∞-∞==⎰⎰2222880001184r rre rdrd e r drπθπ--+∞+∞==⎰⎰⎰222888r r rre e dr dr+∞---+∞+∞-∞=-+==⎰七、(11分)设某机器生产的零件长度(单位:cm)2~(,)X Nμσ,今抽取容量为16的样本,测得样本均值10x=,样本方差20.16s=. (1)求μ的置信度为0.95的置信区间;(2)检验假设2:0.1Hσ≤(显著性水平为0.05).(附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===解:(1)μ的置信度为1α-下的置信区间为/2/2(((X t n X t n αα--+- 0.02510,0.4,16,0.05,(15) 2.132X s n t α===== 所以μ的置信度为0.95的置信区间为(9.7868,10.2132)(2)20:0.1H σ≤的拒绝域为22(1)n αχχ≥-.221515 1.6240.1S χ==⨯=,20.05(15)24.996χ= 因为 220.052424.996(15)χχ=<=,所以接受0H .《概率论与数理统计》期末试题(3)与解答一、填空题(每小题3分,共15分)(1) 设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________.(2) 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________. (3) 设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其它,现对X 进行四次独立重复观察,用Y 表示观察值不大于0.5的次数,则2EY =___________. (4) 设二维离散型随机变量(,)X Y 的分布列为(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y Pa b若0.8EXY =,则Cov(,)X Y =____________.(5) 设1217,,,X X X 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________.(注:20.01(17)33.4χ=, 20.005(17)35.7χ=, 20.01(16)32.0χ=, 20.005(16)34.2χ=)解:(1)()()()P ABC ABC P ABC P ABC +=+因为 A 与C 不相容,B 与C 不相容,所以,A C B C ⊃⊃,故ABC C = 同理 ABC AB =.()()()0.20.50.50.45P ABC ABC P C P AB +=+=+⨯=. (2)设A =‘四个球是同一颜色的’,1B =‘四个球都是白球’,2B =‘四个球都是黑球’ 则 12A B B =+. 所求概率为 22212()()(|)()()()P AB P B P B A P A P B P B ==+ 22223322122222555533(),()100100C C C C P B P B C C C C =⋅==⋅=所以 21(|)2P B A =.(3)~(4,),Y B p其中 10.52201(0.5)24p P X xdx x=≤===⎰, 113341,44444EY DY =⨯==⨯⨯=, 2215()144EY DY EY =+=+=.(4)(,)X Y 的分布为这是因为 0.4a b +=,由0.8EXY = 得 0.220.8b += 0.1,0.3a b ∴==0.620.4 1.4EX =+⨯=,0.5EY =故 cov(,)0.80.70.1X Y EXY EXEY =-=-=.(5)2216(){4}0.014S P S a P a >=>= 即 20.01(16)4a χ=,亦即 432a = 8a ∴=.二、单项选择题(每小题3分,共15分)(1)设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有 (A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤(C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥ ( )(2)设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞且~(0,1)Y aX b N =+,则在下列各组数中应取(A )1/2, 1.a b == (B )2,a b ==(C )1/2,1a b ==-. (D )2,a b == ( )(3)设随机变量X 与Y 相互独立,其概率分布分别为 010.40.6X P010.40.6Y P则有(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == ( ) (4)对任意随机变量X ,若EX 存在,则[()]E E EX 等于(A )0. (B ).X (C ).EX (D )3().EX ( ) (5)设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为(A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+(C)(x u x u αα-+ (D)/2/2(x u x u αα-+ ( ) 解 (1)由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+-应选C. (2)22(2)4()x f x +-==即~(2,)X N -故当a b ===时 ~(0,1)Y aX b N =+ 应选B.(3)()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.(4)[()]E E EX EX = 应选C.(5)因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D.三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率。
重庆大学硕士研究生数理统计课外大作业
重庆大学硕士研究生“数理统计”课外作业学生:学号:201510****专业:动力工程专业重庆大学动力工程学院二O一五年十二月学号201510******* 姓名**** 学院****学院专业****专业成绩一元线性回归分析在风力发电中的应用摘要:能源短缺和环境恶化日益严重,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,风力发电的装机容量也越来越大。
风力机是风力发电机组重要的组成部分,实现风能向机械能的转化,机械能再通过直流发电机转发为电能,其中直流发电机输出的直流电压和风速紧密相关。
本文以课题研究中测得的实验数据为基础,对风力发电直流电输出和风速的线性相关关系进行计算分析,运用数理统计中一元线性回归分析及假设检验的相关知识,采用EXCEL软件进行辅助计算,最终得到了风力发电的直流电输出和风速的线性关系显著,对以后的课题研究具有一定的借鉴作用。
1 问题提出与分析在能源短缺和环境趋向恶化的今天,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,也越来越多地被应用到风力发电中。
风力机和发电机是风力发电机组中将风能转化为电能的重要装置,它们不仅直接关系到输出电能的质量和效率,也影响着整电量输出和风速的相关性。
风力机是风力发电机组重要的组成部分,其实现了风动能到风轮机轴机械能的转化,机械能通过直流电动机转发为电能,其中直流电动机产生的直流电压和风力紧密相关。
风力发电的设计和评价和电量输出与风速的关系密不可分,其中对于数学知识要求很高。
本文以课题研究中实验测得的数据为基础,对风力发电直流电输出和风速是否存在线性关系进行分析,运用数理统计中一元线性回归及非参数检验的相关知识,结合EXCEL软件进行辅助计算分析,最终得到了风力发电的直流电输出和风速关系,为以后科研工作和风力发电的应用具有指导意义。
综上所述,对风力发电的直流电输出和风速的研究,具有理论与实践的重要意义。
2 数据描述本文以风力发电的直流输出和风速的关系为研究对象,采用实验中观察得出的直流电输出和风速的部分数值进行计算分析,风力发电的直流电输出y(单位:MW)和风速x(单位:nmile/h)的数据如表1所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生课程考核试卷(适用于课程论文、提交报告)科目:数理统计教师:刘琼荪姓名:xxx 学号:20150702xxx 专业:机械工程类别:学术上课时间:2016 年 3 月至2016 年 4 月考生成绩:卷面成绩平时成绩课程综合成绩阅卷评语:阅卷教师(签名)我国上世纪70-90年代民航客运量回归分析摘要:中国民航从上实际50年代发展至今已有60多年的历史,这期间中国民航经历了曲折的发展。
随着改革开发以来,中国人民的生活水平日渐提高,出行坐乘飞机逐渐人们可选的交通方式。
我国民航客运量逐年提高,为了研究其历史变化趋势及其成因,现以民航客运量作为因变量y,假设以国民收入x1、消费额x2、铁路客运量x3、民航航线里程x4、来华旅游入境人数x5为影响民航客运量的主要因素。
利用SPSS和excel软件通过建立回归模型分析我国民航客运量主要受到其中哪些因素的影响,并就回归模型分析具体可能的成因。
关键词:民航客运量影响因素回归模型一、问题提出及问题分析2004年,民航行业完成运输总周转量230亿吨公里、旅客运输量1.2亿人、货邮运输量273万吨、通用航空作业7.7万小时。
截止2004年底,我国定期航班航线达到1200条,其中国内航线(包括香港、澳门航线)975条,国际航线225条,境内民航定期航班通航机场133个(不含香港、澳门),形成了以北京、上海、广州机场为中心,以省会、旅游城市机场为枢纽,其它城市机场为支干,联结国内127个城市,联结38个国家80个城市的航空运输网络。
民航机队规模不断扩大,截止至2004年底,中国民航拥有运输飞机754架,其中大中型飞机680架,均为世界上最先进的飞机。
2004年中国民航运输总周转量达到230亿吨公里(不包括香港、澳门特别行政区以及台湾省),在国际民航组织188个缔约国中名列第3位。
从上述事实可以看出我国民航的发展所取得的成果显著。
当前我国民航客运量相当巨大,而影响我国航运客运量的因素有很多,例如第三产业增加值(亿元),城市居民消费水平(绝对元),定期航班航线里程(万千里)等[1]。
为了研究过去的情况,从中国统计年鉴[2]得到1994年统计摘要,分析类似因素对我国航空客运量的影响。
二、数据描述如下为所得统计数据:表1 1978-1993年统计数据年份y民航客运量(万人)x1国民收入(亿元)x2消费额(亿元)x3铁路客运量(万人)x4民航航线里程(万公里)x5来华旅游入境人数(万人)1978231 301018888149114.89180.92 1979298 335021958638916420.39 1980343 368825319220419.53570.25 1981401 394127999530021.82776.71 1982445 425830549992223.27792.43 1983391 4736335810604422.91947.7 1984554 5652390511035326.021285.22 1985744 7020487911211027.721783.3 1986997 7859555210857932.432281.95 19871310 9313638611242938.912690.23 19881442 11738803812264537.383169.48 19891283 13176900511380747.192450.14 19901660 1438496639571250.682746.2 19912178 16557109699508155.913335.65 19922886 20223129859969383.663311.5 19933383 248821594910545896.084152.7三、模型建立:(1)提出假设条件,明确概念,引进参数;参考相关书籍[3],设随机变量民航客运量为Y (万人),解释变量1X ,2X ,3X ,4X ,5X 分别为国民收入(亿元),消费额(亿元),铁路客运量(万人),民航航线里程(万公里),来华旅游入境人数(万人),且回归函数11225501155(|,,,)E Y X x X x X x x x βββ==⋅⋅⋅==++⋅⋅⋅+,称201155,0,Y x x E D DY βββεεεσ=++⋅⋅⋅++===,为多元线性回归模型,015,,,βββ⋅⋅⋅为回归系数,ε为随机误差。
125(,,,,),1,2,,5i i i i x x x y i ⋅⋅⋅=⋅⋅⋅为上述来自多元线性回归模型的样本值,满足:201155125,0,,1,2,,5,,,,i i i i i i y x x E D i βββεεεσεεε⎧=++⋅⋅⋅++===⋅⋅⋅⎨⋅⋅⋅⎩相互独立为了便于对模型进行参数估计、模型检验、变量选择等,有必要对模型作如下一些基本假定。
1. 解释变量1X ,2X ,3X ,4X ,5X 是可控制的、非随机变量,互不相关。
2. 随机误差项具有零均值和同方差的性质,即2,1,2,,5i D i εσ==⋅⋅⋅,并且125,,,εεε⋅⋅⋅相互独立,则有(),0,,,1,2,5i j Cov i j i j =≠=…,εε。
3. 随机变量误差项服从正态分布,即()2~0,,1,2,5i N i =…εσ (2)模型构建:由表1通过EXCEL 绘制变量,1,2,,5i X i =⋅⋅⋅对因变量Y 的关系散点图如下:图1 民航客运量与国民收入关系图图2 民航客运量与消费额关系图图3 民航客运量与铁路客运量关系图图4 民航客运量与民航航线里程关系图图5 民航客运量与来华旅游入境人数关系图由以上的散点图看出:y 与3x 存在非线性关系,但与其它几个变量基本是线性相关的。
所以首先考虑回归模型为多元线性模型。
四、模型求解。
采用最小二乘估计法求解模型参数,采用SPSS 软件计算,得到如下结果:表2 拟合过程小结RR 平方调整后的 R 平方标准估算的错误Durbin-Watson(U)1.999a.998.99749.492401.993模型摘要b模型a. 预测变量:(常量),x5, x3, x4, x2, x1b. 因变量:y表3 方差分析平方和自由度均方F显著性回归13818876.76952763775.3541128.303.000b残差24494.981102449.498总计13843371.75015b. 预测变量:(常量),x5, x3, x4, x2, x1ANOVA a模型1a. 因变量:y表4 回归过程统计量标准系数B标准错误贝塔容许VIF (常量)450.909178.0782.532.030x2-.561.125-2.485-4.478.001.0011740.508x1.354.085 2.447 4.152.002.0011963.337x3-.007.002-.083-3.510.006.315 3.171x421.5784.030.5315.354.000.01855.488x5.435.052.5648.440.000.04025.1931a. 因变量:y系数a模型非标准化系数t 显著性共线性统计图6 残差图则回归方程为12345450.9090.3540.5610.00721.5780.435y x x x x x =+--++五、模型分析检验(1)决定系数由决定系数2R =0.998看出回归方程高度显著。
(2)方差分析表123451128.303=0.000,,,y F P x x x x x =,值,这说明,整体上对有高度显著的影响。
(3)回归系数的显著性检验(t 检验):回归系数的显著性检验由显著性一列看出自变量的回归系数都通过了t 检验(即收尾概率小于规定的显著性水平0.05),说明5个自变量对y 的影响显著。
其中3x 铁路客运量的显著性为0.006最大,但仍小于5%。
(4)检验残差序列的自相关性(D-W 检验):D-W=1.993≈2,所以认为模型不存在序列的自相关性。
(6)异方差检验从残差图看出所有点落在±2之间,没有明显变化趋势,所以认为()2~0,,1,2,5i N i =…εσ综上,认为用最小二乘估计的方法估计的模型理论上是有效的。
(7) 模型进一步分析虽然,模型通过了检验,但是由之前的图可知2x 与y 正相关,但2x (国民消费额)的回归系数是负值,显然是矛盾的,同时1x 和2x 的VIF 很大,4x ,5x 的VIF 也大于10,其原因是自变量之间的共线性,因而回归模型还要就共线性问题进行谈论。
如下表是各变量之间的相关系数:表5 相关系数表yx1x2x3x4x5相关系数 1.000.933**.933**.367*.933**.933**显著性(双尾).000.000.048.000.000N161616161616相关系数.933**1.0001.000**.400*.967**.933**显著性(双尾).000.031.000.000N161616161616相关系数.933**1.000**1.000.400*.967**.933**显著性(双尾).000.031.000.000N161616161616相关系数.367*.400*.400*1.000.367*.400*显著性(双尾).048.031.031.048.031N161616161616相关系数.933**.967**.967**.367*1.000.900**显著性(双尾).000.000.000.048.000N161616161616相关系数.933**.933**.933**.400*.900**1.000显著性(双尾).000.000.000.031.000N161616161616**. 相关性在 0.01 级别显著(双尾)。
*. 相关性在 0.05 级别显著(双尾)。
相关性肯德尔tau_byx1x2x3x4x5可以看出, y 与1x ,2x ,4x ,5x 的相关系数都在0.9以上,说明所选自变量与y 高度线性相关,验证之前的散点图。
用y 与自变量作多元线性回归是适合的。
另一方面,3x 与各变量的相关系数均小于0.5,而1x ,2x ,4x ,5x 之间的相关系数均达到0.9以上,所以应尝试解决它们之间的共线性。
首先剔除VIF 最大的1x ,计算剩余变量参与的回归方程。
结果如下:表6 统计量表标准系数B标准错误贝塔容许VIF (常量)695.039264.5252.627.024x2-.053.042-.233-1.262.233.01377.546x3-.012.003-.134-4.207.001.431 2.319x432.037 4.951.788 6.471.000.03033.812x5.399.080.5174.988.000.04124.4691a. 因变量:y系数a模型非标准化系数t 显著性共线性统计可以看出,当前2x 的VIF 最大,同时2x 也没通过t 检验,其显著性0.233远大于0.05,故继续剔除2x 。