各地中考数学填空题精选及答案-

合集下载

2024浙江省中考数学真题试卷及答案

2024浙江省中考数学真题试卷及答案

2024浙江省中考数学真题试卷一、选择题(每题3分)1.以下四个城市中某天中午12时气温最低的城市是( ).A.北京B.济南C.太原D.郑州2.5个相同正方体搭成的几何体主视图为()A. B.C. D.3.2024年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( ) A.920.13710⨯B.80.2013710⨯C.92.013710⨯D.82.013710⨯4.下列式子运算正确的是( ) A.325x x x +=B.326x x x ⋅=C.329()x x =D.624x x x ÷=5.有5位学生参加志愿者,服务次数为:7,7,8,10,13.则这5位学生志愿服务次数的中位数为( ) A.7B.8C.9D.106.如图,在平面直角坐标系中,△ABC 与'''A B C ∆是位似图形,位似中心为点O .若点(3,1)A -的对应点为'(6,2)A -,则点B (-2,4)的对应点'B 的坐标为( )A.(-4,8)B.(8,-4)C.(-8,4)D.(4,-8)7.不等式组2113(2)6x x -≥⎧⎨->-⎩的解集在数轴上表示为( )A.B.C. D.8.如图,正方形ABCD 由四个全等的直角三角形(△ABE ,△BCF ,△CDG ,△DAH )和中间一个小正方形EFGH 组成,连接DE .若AE=4,BE =3,则DE=( )A.5B.6 17 D.49.反比例函数4y x=的图象上有12(,),(4,)P t y Q t y +两点.下列正确的选项是( ) A.当4t <-时,210y y << B.当40t -<<时,210y y << C.当40t -<<时,120y y <<D.当0t >时,120y y <<10.如图,在▱ABCD 中,AC ,BD 相交于点,2,3O AC BD ==过点A 作AE BC ⊥的垂线交BC 于点E ,记BE 长为x ,BC 长为y .当x ,y 的值发生变化时,下列代数式的值不变的是( )A.x y +B.x y -C.xyD.22x y +二、填空题(每题3分)11.因式分解:27a a -=____________. 12.若211x =-,则x =____________. 13.如图,AB 是O 的直径,AC 与O 相切,A 为切点,连接BC .已知050ACB ∠=,则B ∠的度数为___________.14.有8张卡片,上面分别写着数1,2,3,4,5,6,7,8.从中随机抽取1张,该卡片上的数是4的整数倍的概率是_________.15.如图,D ,E 分别是△ABC 边AB ,AC 的中点,连接BE ,DE .若,2AED BED DE ∠=∠=,则BE 的长为_______________.16.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与''A B 关于过点O 的直线l 对称,点B 的对应点'B 在线段OC 上,''A B 交CD 于点E ,则△'B CE 与四边形'OB ED 的面积比为___________.三、解答题(17-21每题8分,22,23每题10分,24题12分)17.计算:11()54--18.解方程组:254310x y x y -=⎧⎨+=-⎩.19.如图,在△ABC 中,AD ⊥BC ,AE 是BC 边上的中线,AB =10,AD =6,tan 1ACB ∠=. (1)求BC 的长 (2)求sin DAE ∠的值.20.某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:根据以上信息.解答下列问题:(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?(2)菜鸡学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数. 21.尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦……我明白了!(1)证明AF∥CE(2)指出小丽作法中存在的问题.22.小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小明跑步时中间休息了两次.跑步机上C档比B档快40米/分,B档比A档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s(米)与小明跑步时间t(分)的函数关系如图所示.时间 里程分段 速度档 跑步里程 小明16:00~16:50不分段 A 档 4000米 小丽 16:10~16:50 第一段B 档 1800米第一次休息第二段 B 档 1200米第二次休息第三段C 档 1600米(1)求A ,B ,C 各档速度(单位:米/分) (2)求小丽两次休息时间的总和(单位:分)(3)小丽第二次休息后,在a 分钟时两人跑步累计里程相等,求a 的值.23.已知二次函数2y x bx c =++(b ,c 为常数)的图象经过点(2,5)A -,对称轴为直线12x =-.(1)求二次函数的表达式(1)若点(1,7)B 向上平移2个单位长度,向左平移(0)m m >个单位长度后,恰好落在2y x bx c =++的图象上,求m 的值(3)当2≤a ≤n 时,二次函数2y x bx c =++的最大值与最小值的差为94,求n 的取值范围. 24.如图,在圆内接四边形ABCD 中,AD<AC ,ADC BAD ∠<∠,延长AD 至点E ,使AE=AC ,延长BA 至点F ,连结EF ,使AFE ADC ∠=∠.(1)若60O AFE ∠=,CD 为直径,求ABD ∠的度数.(2)求证:①EF ∥BC ②EF=BD .2024浙江省中考数学真题试卷答案一、选择题二、填空题 三、解答题. 17.【答案】718.【答案】124x y ⎧=⎪⎨⎪=-⎩19.【答案】(1)14 (2)3720.【答案】(1)32 (2)324 21.【答案】证明略22.【答案】(1)80米/分,120米/分,160米/分 (2)5分 (3)42.523.【答案】(1)23y x x =++ (2)4m = (3)112n -≤≤。

中考填空题集锦及答案(数学)

中考填空题集锦及答案(数学)

一1.若(其中),则__________. 35a c b d ==0b d +≠a c b d+=+2.若线段AB 长为2cm ,P 是AB 的黄金分割点,则较长线段PA = cm .3.如图,点G 为△ABC 重心,若AG =1,则AD 的长度为_________. 4.求值:ºº_________.cot 30sin 60-=5.在Rt△ABC 中,∠C =90º,若,则的值为_________.1tan 3A =cot A 6.如图,在△ABC 中,点D 、E 分别在AB 、,DE =2,则BC 13AD BD =的长为7.如图,∥∥,AB =2,AC =5,DF =7.5,则DE =_________.1l 2l 3l 8.如图,在平行四边形ABCD 中,点E 、F 是边CD 、BC 边的中点,若,,AD a =u u u r r AB b =u u u r r则___________.(结果用、表示)EF =u u u r a r br 9.如图,已知AB ∥CD ,AD 与BC 交于点O ,若AD ∶BC = 5∶4,BO =1,DO =2.5,则AD =___________.10.如图,在△ABC 的边BC 上,若,DAC B ∠=∠且BD =5,AC=6,则CD 的长为(第13题图)BC(第9题图)B(第12题图)A(第14题图)AC(第18题图)BDB’A’(第16题图)C___________.17.在△ABC 中,点D 、E 分别在AB 、AC 边上,若,2AD =,,且△ADE 与ABC 相似,则AE 的长为4BD =4AC =___________.11.在答题纸的方格图中画出与矩形ABCD 相似的图形(其中AB 的对应边''''A B C D 已在图中给出).''A BC(第15题图)ACC BA二1.反比例函数图象如图所示,则随的增(0)ky x x=>y x 大而.2.若x+3xy-2y=0,那么= .22yx3.写出抛物线与抛物线的两个共同点 432-+=x x y 322+--=x x y 4.正方形网格中,小格的顶点叫做格点。

通用版中考数学填空题专题训练(附答案)

通用版中考数学填空题专题训练(附答案)

通用版中考数学填空题专题训练(附答案)一、填空题1.某射手在一次训练中共射出了10发子弹,射击成绩如图所示,则射击成绩的中位数是__环.2.跳高训练时,甲、乙两名同学在相同条件下各跳了10次,统计他们的平均成绩都是1.36米,且方差为,,则成绩较为稳定的是________(填“甲”或“乙”).3.某校航模小组进行航模训练,如图,A,B,C三只小船在平面直角坐标系中的坐标分别为(1,1),(﹣1,3),(﹣2,1),一段时间后,小船A到达A′(4,﹣1)的位置,为了保持队形不变,此时小船B所到达的位置B′的坐标是________.4.某学校足球兴趣小组的五名同学在一次射门训练中,射进球门的次数分别为:6,7,7,8,9.这组数据的众数是___.5.2020年,全市中小学生田径运动会,甲、乙、丙、丁四位运动员在“100米短跑”训练中,每人各跑5次,据统计,平均成绩都是13.8秒,方差分别是=0.11,=0.03,,,则四人的训练成绩最稳定的是________6.为了在体育中考中取得更好的成绩,小明积极训练,体育老师对小明投掷铅球的录像进行技术分析,如图,发现铅球在行进过程中高度y(m)与水平距离x(m)之间的关系为,由此可知小明此次投掷的成绩是___.7.为增强学生体质,感受中国的传统文化,某校将“抖空竹”定为特色体育项目每天大课间进行训练,某同学“抖空竹”的一个瞬间如图①所示,若将图①抽象成图①的数学问题:,,,则的大小是____________度.8.甲、乙、丙、丁四位同学在相同条件下进行“立定跳远”训练,每人各跳10次,统计他们的平均成绩(单位:米)和方差如下表所示:则这四名同学“立定跳远”成绩波动最大的是______.9.2022年冬奥会北京赛区,共举办包括滑冰(含短道速滑、速度滑冰、花样滑冰)、冰球、冰壶在内的3个大项5个分项的所有冰上项目比赛,为了迎接2022年的冬奥会,中小学都积极开展冰上运动.小聪和小明进行500米短道速滑训练,他们的五次成绩如表所示:设两个人的五次成绩的平均数依次为小聪,小明,方差依次为S2小聪,S2小明,你认为两人中技术更好的是,你的理由是____.10.甲、乙、丙三人进行羽毛球比赛赛前训练,每局两人进行比赛,第三个人做裁判,每一局。

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案)1.-8的绝对值是8.2.若∠α=35°,则∠α的补角为55°。

3.若分式(x-1)/(x-3)有意义,则实数x的取值范围是x≠3.4.若分式5/(x+3)有意义,则x的取值范围是x≠-3.5.二次根式的自变量x的取值范围是x≥0.6.若在实数范围内有意义,则x的取值范围是x≥1.7.在函数y=x中,自变量x的取值范围是(-∞,+∞)。

8.函数y=x-1的自变量x的取值范围是(-∞,+∞)。

9.函数y=x+3的自变量x的取值范围是(-∞,+∞)。

10.若二次根式√(x-1)有意义,则x的取值范围是x≥1.11.函数y=(x-1)/x中,自变量x的取值范围是x≠0.12.若x-y-3和x-2y+9互为相反数,则x+y的值为-6.13.已知点P(-2,1),则点P关于x轴对称的点的坐标是(-2,-1)。

14.地球与月球的平均距离大约km,用科学计数法表示这个距离为3.84×10^5 km。

15.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为xxxxxxx 米,将xxxxxxx用科学记数法表示为6.7×10^6 m。

16.目前,世界上能制造出的最小晶体管的长度只有0.xxxxxxxxm,将0.xxxxxxxx用科学记数法表示为4×10^-8 m。

17.在人体血液中,红细胞的直径约为7.7×10^-4 cm,7.7×10^-4用小数表示为0. cm。

18.已知圆锥的底面直径为6,母线长为4,则它的侧面积等于12π。

19.一个多边形每个外角都是36°,则这个多边形的边数是10.20.已知菱形的两条对角线分别为2cm,3cm,则它的面积是3 cm^2.21.若点P(x,y)是平面直角坐标系xOy中第四象限内的一点,且满足2x-y=4,x+y=m,则m的取值范围是m>0.22.真命题的有①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等,即命题①、②、③、④都是真命题。

2022中考数学全国各地真题分类汇编-与圆有关的填空题(附解析)

2022中考数学全国各地真题分类汇编-与圆有关的填空题(附解析)

2022中考数学全国各地真题分类汇编-与圆有关的填空题(附解析)1. (2020广元)在同一平面上,⊙O外一点P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为▲cm【答案】2。

【考点】点与圆的位置关系。

【分析】当点P在圆外时,直径=6 cm-2 cm =4cm,因而半径是2cm。

2.(2020•南通)如图,在⊙O中,∠AOB=46º,则∠ACB=23º.【考点】圆周角定理.【分析】由⊙O中,∠AOB=46°,依照在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠ACB的度数.【解答】解:∵⊙O中,∠AOB=46°,∴∠ACB=1 2 ∠AOB=1 2 ×46°=23°.故答案为:23.【点评】此题考查了圆周角定理.此题比较简单,注意把握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用,注意数形结合思想的应用.3.(2020•益阳)如图,点A、B、C在圆O上,∠A=60°,则∠BOC=120度.考点:圆周角定理。

分析:欲求∠BOC,已知了同弧所对的圆周角∠A的度数,可依照圆周角定理求出∠BOC的度数.解答:解:∵∠BAC和∠BOC是同弧所对的圆周角和圆心角,∴∠BOC=2∠BAC=2×60°=120°.故答案为120.点评:此题要紧考查的是圆周角定理:同弧所对的圆周角是圆心角的一半.比较简单,属于基础题.4.(2020铜仁)已知圆O1和圆O2外切,圆心距为10cm,圆O1的半径为3cm,则圆O2的半径为.考点:圆与圆的位置关系。

解答:解:∵圆O1和圆O2外切,圆心距为10cm,圆O1的半径为3cm,∴圆O2的半径为:10﹣3=7(cm).故答案为:7cm.OBAC5.(2020广东)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50.考点:圆周角定理。

中考初三数学试题及答案

中考初三数学试题及答案

中考初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 1/3答案:B2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1/5答案:A3. 一个等腰三角形的顶角为40°,那么它的底角是:A. 70°B. 40°C. 50°D. 60°答案:D4. 下列哪个方程是一元二次方程?A. 2x + 3 = 0B. x² - 4x + 4 = 0C. 3x - 2 = 0D. x² - 2xy + y² = 0答案:B5. 一个数的平方根是2,那么这个数是:A. 4C. 2D. -2答案:A6. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B7. 一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是:A. 5B. 7C. 6答案:A8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π答案:C9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C10. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. -3D. -1/3答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是7,这个数是________。

答案:±712. 一个数的平方是16,这个数是________。

答案:±413. 一个数的立方根是-2,这个数是________。

答案:-814. 一个三角形的内角和是________。

答案:180°15. 一个等差数列的首项是2,公差是3,那么它的第5项是________。

答案:1716. 一个等比数列的首项是3,公比是2,那么它的第4项是________。

答案:4817. 一个二次函数y = ax² + bx + c的顶点坐标是(-2, 3),那么a 的值是________。

中考数学-圆-填空题答案

中考数学-圆-填空题答案

中考数学-圆-填空题1.(黑龙江哈尔滨)如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是 .62.(黑龙江鸡西)如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm .43.(黑龙江大庆)如图,已知O 是ABC △的内切圆,且50BAC ∠=°,则BOC ∠为 度.4.(黑龙江大庆)如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm 的等边三角形ABC ,点D 是母线AC 的中点,一只蚂蚁从点B 出发沿圆锥的表面爬行到点D 处,则这只蚂蚁爬行的最短距离是 cm .5(吉林长春)⊙O 的半径为3cm ,点M 是⊙O 外一点,OM =4 cm ,则以M 为圆心且与⊙O 相切的圆的半径是cm.1或76.(辽宁十二市)一个圆锥底面周长为4πcm ,母线长为5cm ,则这个圆锥的侧面积是 .210cm π(丢单位扣1分)7.(天津市卷)如图①,1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .OB A 第4题图5cm (第16题)(第14题)第(18)题图① 第(18)题图②1O ,3O ,如图① (提示:答案不惟一,过31O O 与42O O 交点O 的任意直线都能将四个圆分成面积相等的两部分);5O ,O ,如图② (提示:答案不惟一,如4AO ,3DO ,2EO ,1CO 等均可).8.(河北省卷)如图7,AB 与O 相切于点B ,AO 的延长线交O 于点C ,连结BC .若36A ∠=,则______C ∠= .279.(内蒙赤峰)九年级三班共有学生54人,学习委员调查了班级学生参加课外活动情况(每人只参加一项活动),其中:参加读书活动的18人,参加科技活动的占全班总人数的16,参加艺术活动的比参加科技活动的多3人,其他同学参加体育活动.则在扇形图中表示参加体育活动人数的扇形的圆心角是 度.10010.(内蒙乌兰察布)两圆有多种位置关系,图中不存在的位置关系是 .内切11.(内蒙乌兰察布)工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小孔的直径AB 是 mm .812.(山西太原)已知圆锥的底面半径为2cm ,母线长为4cm ,则圆锥的侧面积为 cm 2.8π13.(山西太原)如图,AB 是O 的直径,CD 是O 的弦,连接AC AD ,, 若35CAB ∠=,则ADC ∠的度数为 .55°第(18)题图②B 图7读书体育科技 艺术 (13题图)B A8mm(17题图) D14.(山东济宁)如图,在ABC △中,90A ∠=,4BC =cm ,分别以B C ,为圆心的两个等圆外切,则图中阴影部分的面积为 2cm .π15.(山东聊城)在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 3 cm .16.(山东青岛)如图,AB 是O 的直径,弦CD AB ⊥于E ,如果10AB =,8CD =,那么AE 的长为 .217.(山东青岛)如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线()OE OF 长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为 cm .41218.(山东威海)如图,在平面直角坐标系中,点A 1是以原点O 为圆心,半径为2的圆与过点(0,1)且平行于x 轴的直线l 1的一个交点;点A 2是以原点O 为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l 2的一个交点;……按照这样的规律进行下去,点A n 的坐标为 .(12+n ,n )19.(山东潍坊)如图,正六边形内接于圆O ,圆O 的半径为10,则圆中阴影部分 的面积为 .20.(山东枣庄)如图,在△ABC 中,AB =2,AC =2,以A 为圆心,1为半径的圆与边BC 相切,则BAC ∠的度数是 .105A F EO 第14题图ABC第20题图21.(江苏常州)已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是______cm2,扇形的圆心角为______°.22.(江苏淮安)已知⊙O1与⊙O2的半径分别为2cm和3cm,当⊙O1与⊙O2外切时,圆心距O1O2=____23.(江苏连云港)如图,扇形彩色纸的半径为45cm,圆心角为40 ,用它制作一个圆锥形火炬模型的侧面(接头忽略不计),则这个圆锥的高约为 44.7 cm.(结果精确到0.1cm1.414≈,1.732≈2.236≈,π 3.142≈)24.(江苏南京)已知1O和2O的半径分别为3cm和5cm,且它们内切,则圆心距12O O等于 cm.225.(江苏南京)如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65 .为了监控整个展厅,最少需在圆形边缘上共安装...这样的监视器台.326.(江苏宿迁)用圆心角为︒120,半径为cm6的扇形做成一个无底的圆锥侧面,则此圆锥的底面半径为cm____.227.(江苏泰州)分别以梯形ABCD的上底AD、下底BC的长为直径作⊙1O、⊙2O,若两圆的圆心距等于这个梯形的中位线长,则这两个圆的位置关系是____________.相外切(如写相切不给分)28.(江苏泰州)若O为ABC∆的外心,且60=∠BOC,则__________=∠BAC30°或150°29.(江苏无锡)已知:如图,边长为a的正ABC△内有一边长为b的内接正DEF△,则AEF△的内切圆半径为.)a b-40(第15题图)SBA45cm(第16题)30(江苏徐州)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =_____________.126°31.(江苏盐城)如图,⊙O 的半径OA=10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为 cm .632.(江苏盐城)如图,⊙O 的半径为3cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以πcm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为 s 时,BP 与⊙O 相切.1或533.(江苏镇江)如图,O 是等腰三角形ABC 的外接圆,AB AC =,45A ∠=,BD 为O的直径,BD =CD ,则D ∠= 45 ,BC = 2 .34.(江苏镇江)圆柱的底面半径为1,母线长为2,则它的侧面积为 4π (结果保留π).35.(浙江杭州) 如图,大圆O 的半径OC 是小圆O 1的直径,且有OC 垂直于⊙O 的直径AB 。

(必考题)中考数学填空题专项练习经典测试题(含答案解析)

(必考题)中考数学填空题专项练习经典测试题(含答案解析)

一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .20192.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4 4.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点5.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°6.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=8.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-= 9.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-10.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1211.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π-B .8433π-C .8233π-D .843π- 13.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9-14.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).17.已知二次函数y =(x −2)2+3,当x _______________时,y 随x 的增大而减小.18.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____.19.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.20.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.21.一元二次方程22x 20-=的解是______.22.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 23.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.24.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.25.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于_____.三、解答题26.如图,斜坡AB 长10米,按图中的直角坐标系可用353y x =-+表示,点A ,B 分别在x 轴和y 轴上,且30OAB ︒∠=.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?27.在平面直角坐标系中,已知二次函数y=ax2﹣2ax﹣3a(a>0)图象与x轴交于点A,B (点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B的坐标;(2)若M为对称轴与x轴交点,且DM=2AM.①求二次函数解析式;②当t﹣2≤x≤t时,二次函数有最大值5,求t值;③若直线x=4与此抛物线交于点E,将抛物线在C,E之间的部分记为图象记为图象P(含C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b 与图象P,图象Q都相交,且只有两个交点,求b的取值范围.28.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?29.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.30.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.B4.D5.C6.D7.B8.C9.B10.D11.D12.C13.C14.C15.B二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x 的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值23.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D(024.(22)或(2-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-∴设点A坐标为(2m)如图所示作AP⊥y轴于点P作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°25.-1【解析】由题意得ABBC于DBC于EBC交BC于FAB=勾股定理得AE=AD=1DB=-1三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 2.A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.B解析:B【解析】【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选B .本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 5.C解析:C【解析】试题解析:∵CC′∥AB ,∴∠ACC′=∠CAB=65°,∵△ABC 绕点A 旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C .6.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确.故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 8.C解析:C【解析】【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x ,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 9.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 10.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°,∵BC 是⊙O 内接正六边形的一边,∴∠BOC =360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.11.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12=(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD2223OD OC+∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.13.C解析:C【解析】由题意得:2a 2-a-3=0,所以2a 2-a=3,所以6a 2-3a=3(2a 2-a)=3×3=9, 故选C.14.C解析:C【解析】【分析】根据等弧概念对A 进行判断,根据垂径定理对B 、C 、D 选项进行逐一判断即可. 本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B 错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C 正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误. 故选C.15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤【解析】【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案.【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大,且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤,∴当21x -<≤时,y 的取值范围是:35y -≤≤.故答案为:35y -≤≤.【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键.19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P (摸到白球)== 解析:38【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P (摸到白球)=353+ =38. 20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x 的值直接计算【详解】∵一元二次方程x2﹣2x ﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x 的值,直接计算.【详解】∵一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),∴x 1+x 2=2,x 1x 2=﹣3,则x 1﹣x 2=﹣√(x 1+x 2)2−4x 1x 2=﹣√4+12=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s 取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。

(必考题)中考数学填空题专项练习习题(答案解析)

(必考题)中考数学填空题专项练习习题(答案解析)

一、选择题1.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4 2.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣1 3.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540D .(32﹣x )(20﹣x )+x 2=5404.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55° 5.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>6.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A.6B.8C.10D.127.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1128.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.43B.63C.23D.89.如图,A、D是⊙O上的两个点,BC是直径,若∠D=34°,则∠OAC等于()A.68°B.58°C.72°D.56°10.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-11.如图,某中学计划靠墙围建一个面积为280m的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A .4m 或10mB .4mC .10mD .8m 12.当﹣2≤x≤1时,二次函数y=﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( ) A .74- B .3或3- C .2或3- D .2或3-或74- 13.设,a b 是方程2320170x x +-=的两个实数根,则22a a b +-的值为( ) A .2017 B .2018 C .2019 D .202014.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A .4-9πB .4-89π C .8-49π D .8-89π 15.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2二、填空题16.如图,将半径为6的半圆,绕点A 逆时针旋转60°,使点B 落到点B′处,则图中阴影部分的面积是_____.17.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.18.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.19.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:_______.20.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.21.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1_____y2.(用“>”、“<”、“=”填空)22.四边形ABCD内接于⊙O,∠A=125°,则∠C的度数为_____°.23.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.24.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为_______.25.在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=_____m2.(2)如图2,现考虑在(1)中矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,边BC 的长为____m .三、解答题26.已知x =n 是关于x 的一元二次方程mx 2﹣4x ﹣5=0的一个根,若mn 2﹣4n+m =6,求m 的值.27.如图,平面直角坐标系中,每个小正方形边长是1.(1)画出△ABC 关于原点中心对称的得到△A 1B 1C 1;(2)画出△ABC 关于C 点顺时针旋转90°的△A 2B 2C 2;(3)在(2)的条件下,求出B 点旋转后所形成的弧线长.28.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.29.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作EF ⊥AC 于点E ,交AB 的延长线于点F .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE 的长.30.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.B3.B4.C5.A6.D7.C8.A9.D10.C11.C12.C13.D14.B15.D二、填空题16.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋17.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离18.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y =0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=19.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二20.【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系列方程求解【详解】设此圆锥的底面半径为r根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr解得:r=1故答案为:1【点睛】本题考查了圆锥21.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上22.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性23.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小24.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变25.88π;【解析】【分析】(1)小狗活动的区域面积为以B为圆心10m为半径的圆以C为圆心6m为半径的圆和以A为圆心4为半径的圆的面积和据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心10为半三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.2.B解析:B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.3.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x ,根据题意得:(32-x )(20-x )=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.4.C解析:C【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.5.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.6.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.7.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126=.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.8.A解析:A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=323,∴3.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.9.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12=(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.11.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x 值.12.C解析:C【解析】【分析】根据对称轴的位置,分三种情况讨论求解即可.【详解】二次函数的对称轴为直线x=m ,①m <﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m )2+m 2+1=4,解得m=74-,与m <﹣2矛盾,故m 值不存在; ②当﹣2≤m≤1时,x=m 时,二次函数有最大值,此时,m 2+1=4,解得m=③当m >1时,x=1时二次函数有最大值,此时,﹣(1﹣m )2+m 2+1=4,解得m=2,综上所述,m 的值为2或﹣故选C .13.D解析:D【解析】【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a 是方程2320170x x +-=的实数根,可得2320170a a +-=,据此求出232017a a +=,利用根与系数关系得:+a b =-3,22a a b +- 变形为(2a 3a +)-(+a b ),代入即可得到答案.【详解】解:∵a 、b 是方程2320170x x +-=的两个实数根,∴+a b =-3;又∵2320170a a +-=,∴232017a a +=,∴22a a b +-=(2a 3a +)-(+a b )=2017-(-3)=2020即22a a b +-的值为2020.【点睛】本题考查了根与系数的关系与一元二次方程的解,把22a a b +-化成(2a 3a +)-(+a b )是解题的关键.14.B解析:B【解析】试题解析:连接AD ,∵BC 是切线,点D 是切点,∴AD ⊥BC ,∴∠EAF=2∠EPF=80°,∴S 扇形AEF =280?283609ππ=, S △ABC =12AD•BC=12×2×4=4, ∴S 阴影部分=S △ABC -S 扇形AEF =4-89π. 15.D解析:D【解析】【分析】根据已知图象可以得到图象与x 轴的交点是(-1,0),(2,0),又y >0时,图象在x 轴的上方,由此可以求出x 的取值范围.【详解】依题意得图象与x 轴的交点是(-1,0),(2,0),当y >0时,图象在x 轴的上方,此时x <-1或x >2,∴x 的取值范围是x <-1或x >2,故选D .【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x 轴的交点,然后由图象找出当y >0时,自变量x 的范围,注意数形结合思想的运用.16.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆A B而根据旋解析:24π【解析】【分析】根据整体思想,可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′,再利用扇形面积公式计算即可.【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋转的性质可知S半圆AB′=S半圆AB∴S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′而由题意可知AB=12,∠BAB′=60°即:S阴影=2 6012360π⋅⋅=24π故答案为24π.【点睛】本题考查了扇形面积的相关计算,根据整体思想求出表示阴影部分面积的方法,再用公式计算扇形的面积即可.17.相离【解析】r=2d=3则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离18.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y=0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=解析:4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE,即可求解.【详解】令y=0,则:x=±1,令x=0,则y=2,则:OB=1,BD=2,OB=2,S阴影部分图形=S四边形BDFE=BD×OE=2×2=4.故:答案为4.【点睛】本题考查的是抛物线性质的综合运用,确定S阴影部分图形=S四边形BDFE是本题的关键.19.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二解析:(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差,据此即可列出方程.【详解】根据题意得:(x+1)2 -1=24,即:(x+1)2 =25.故答案为(x+1)2 =25.【点睛】本题考查了一元二次方程的应用——图形问题,解题的关键是明确图中不规则图形的面积计算方法.20.【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系列方程求解【详解】设此圆锥的底面半径为r根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr解得:r=1故答案为:1【点睛】本题考查了圆锥解析:【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr1203180π⨯=,解得:r=1.故答案为:1.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.21.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上解析:<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为<.22.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性解析:【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=55°,故答案为:55.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键. 23.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小解析:30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数.【详解】解:∵三角板是两块大小一样且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE´是△ABC的中线.24.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变解析:(-1010,10102)【解析】【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【详解】∵A点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2019(-1010,10102),故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.25.88π;【解析】【分析】(1)小狗活动的区域面积为以B为圆心10m为半径的圆以C为圆心6m为半径的圆和以A为圆心4为半径的圆的面积和据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心10为半解析:88π;5 2【解析】【分析】(1)小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4为半径的14圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的34圆,以A为圆心、x为半径的1 4圆、以C为圆心、10-x为半径的30360圆的面积和,列出函数解析式,由二次函数的性质解答即可.【详解】解:(1)如图,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10m为半径的34圆,以C为圆心、6m为半径的14圆和以A为圆心、4m为半径的14圆的面积和,∴S=34×π•102+14•π•62+14•π•42=88π;(2)如图,设BC=x ,则AB=10-x ,∴S=34•π•102+14•π•x 2+30360•π•(10-x)2 =π3(x 2-5x+250) =π3(x-52)2+325π4, 当x=52时,S 取得最小值, ∴BC=52. 故答案为:(1)88π;(2)52. 【点睛】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.三、解答题26.1【解析】【分析】把x=n 代入方程求出mn 2-4n 的值,代入已知等式求出m 的值即可.【详解】依题意,得2450mn n --=.∴245mn n -=.∵246mn n m -+=,∴56m +=.∴1m =.【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握运算法则是解本题的关键.27.(1)图见详解;(2)图见详解;(3)32π. 【解析】【分析】(1)利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案;(3)利用弧长公式计算即可得出结果.【详解】解:(1)如图示,△A 1B 1C 1为所求;(2)如图示,△A 2B 2C 2为所求;(3)∵△ABC 关于C 点顺时针旋转90°得到的△A 2B 2C 2,每个小正方形边长是1, 由题图可知,半径3BC =,根据弧长的公式得:2239036320BB . 【点睛】此题主要考查了平移变换、旋转变换,正确得出对应点位置和熟悉弧长公式是解题关键. 28.()1证明见解析;()2BEF 67.5∠=.【解析】【分析】()1由题意可知:CD CE =,DCE 90∠=,由于ACB 90∠=,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD ≌BCE ; ()2由ACD ≌()BCE SAS 可知:A CBE 45∠∠==,BE BF =,从而可求出BEF ∠的度数.【详解】()1由题意可知:CD CE =,DCE 90∠=,ACB 90∠=,ACD ACB DCB ∠∠∠∴=-,BCE DCE DCB ∠∠∠=-,ACD BCE ∠∠∴=,在ACD 与BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ACD ∴≌()BCE SAS ;()2ACB 90∠=,AC BC =,A 45∠∴=,由()1可知:A CBE 45∠∠==,AD BF =,BE BF ∴=,BEF 67.5∠∴=.【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.29.(1)相切,理由见解析;(2)DE=125. 【解析】【分析】(1)连接AD ,OD ,根据已知条件证得OD ⊥DE 即可;(2)根据勾股定理计算即可. 【详解】解:(1)相切,理由如下:连接AD ,OD ,∵AB 为⊙O 的直径,∴∠ADB=90°.∴AD ⊥BC .∵AB=AC ,∴CD=BD=12BC .∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得,==4.∵S ACD=12AD•CD=12AC•DE,∴12×4×3=12×5DE.∴DE=125.【点睛】本题主要考查直线与圆的位置关系,等腰三角形的性质、勾股定理等知识.正确大气层造辅助线是解题的关键.30.(1)20%;(2)每千克应涨价5元.【解析】【分析】(1)设每次下降的百分率为x,根据相等关系列出方程,可求每次下降的百分率;(2)设涨价y元(0<y≤8),根据总盈余=每千克盈余×数量,可列方程,可求解.【详解】解:(1)设每次下降的百分率为x根据题意得:50(1﹣x)2=32解得:x1=0.2,x2=1.8(不合题意舍去)答:每次下降20%(2)设涨价y元(0<y≤8)6000=(10+y)(500﹣20y)解得:y1=5,y2=10(不合题意舍去)答:每千克应涨价5元.【点睛】此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可.。

2023年山东省临沂市中考数学真题(答案解析)

2023年山东省临沂市中考数学真题(答案解析)

2023年临沂市初中学业水平考试试题数学一、选择题1.【答案】C【解析】解:2(7)(5)()57=----+=-;故选C .2.【答案】C【解析】解:由题意,可得130ABC ∠=︒,故选:C .3.【答案】B【解析】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .4.【答案】A【解析】解:由题意,得:点B 的坐标为(6,2);故选A .5.【答案】C【解析】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .6.【答案】D【解析】解:A 选项,32a a a -=,故选项错误,不符合题意;B 选项,222()2a b a ab b -=-+,故选项错误,不符合题意;C 选项,()2510a a =,故选项错误,不符合题意;D 选项,325326a a a ⋅=,故选项正确,符合题意;故选D .7.【答案】B【解析】解:正六边形的中心角的度数为:360606︒=︒,∴正六边形绕其中心旋转60︒或60︒的整数倍时,仍与原图形重合,∴旋转角的大小不可能是90︒;故选B .8.【答案】B【解析】解:m ====-∵=<<∴54-<-<-,即54m -<<-,故选:B .9.【答案】D【解析】解:设两名男生分别记为A ,B ,两名女生分别记为C ,D ,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123=,故选:D .10.【答案】A【解析】解:由题意,得:105V t=,∴V 与t 满足反比例函数关系.故选A .11.【答案】C【解析】解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .12.【答案】A【解析】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a -->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .二、填空题13.【答案】24【解析】解:根据菱形面积等于两条对角线乘积的一半可得:面积168242=⨯⨯=,故答案为:24.14.【答案】()()111n n -++【解析】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++15.【答案】14【解析】解:如图,由题意得13AD AB =,四边形DECF 是平行四边形,∴DF BC ∥,DE AC ∥,∴ ∽ADF ABC ,BDE BAC ∽△△,∴13DF AD BC AB ==,23DE BD AC AB ==,∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是()23414+=,故答案为:14.16.【答案】②③④【解析】解:列表,x L 2.5-2-1-0.5-0.512L yL5.4531- 3.75- 4.2535L描点、连线,图象如下,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.三、解答题17.【答案】(1)3x >(2)从第①步开始出错,过程见解析【解析】解:(1)1522xx --<,去分母,得:1041x x -<-,移项,合并,得:39x -<-,系数化1,得:3x >;(2)从第①步开始出错,正确的解题过程如下:()()22111111a a a a a a a a +---=----22111a a a a -=---11a =-.18.【答案】(1)见解析(2)①90.5;②测试成绩分布在9195 的较多(不唯一);(3)估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【解析】(1)解:数据从小到大排列:81、82、83、85、86、87、87、88、89、90、91、92、92、92、93、94、95、96、99、100最大值是100,最小值为81,极差为1008119-=,若组距为5,则分为4组,频数分布表成绩分组8185 8690 9195 96100划记正一频数4673频数分布直方图,如图;;(2)解:①中位数是909190.52+=;故答案为90.5;②测试成绩分布在9195 的较多(不唯一);(3)解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.19.【答案】渔船没有触礁的危险【解析】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,6BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴6BD x =+,在Rt ADB 中,tan 0.6256AD xABD BD x ∠==≈+,∴10x =,∴10AD =,∵109>,∴渔船没有触礁的危险.20.【答案】(1)这台M 型平板电脑的价值为2100元(2)她应获得120m 元的报酬【解析】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:15003003020x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.21.【答案】(1)见解析(2)43π【解析】(1)证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;(2)解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴ CD的长为120241803ππ⨯=.22.【答案】(1))21AB BD =,(2)见解析(3)见解析【解析】(1)解:∵90,A AB AC ∠=︒=∴2BC =,∵BC AB BD =+2AB BD =+即)21AB BD =;(2)证明:如图所示,∴90,A AB AC ∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC =∴CBD CEF ≌∴=45E DBC ∠=∠︒∴EF BD ∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG ∠=∠∴EG EC =∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AHHF=23.【答案】(1)见解析(2)售价每涨价2元,日销售量少卖4盆(3)①定价为每盆25元或每盆35元时,每天获得400元的利润;②售价定为30元时,每天能够获得最大利润【解析】(1)解:按照售价从低到高排列列出表格如下:售价(元/盆)1820222630日销售量(盆)5450463830【小问2详解】由表格可知,售价每涨价2元,日销售量少卖4盆;(3)①设:定价应为x 元,由题意,得:()()181********x x -⎡⎤--⨯=⎢⎥⎣⎦,整理得:2212017500x x -+-=,解得:1225,35x x ==,∴定价为每盆25元或每盆35元时,每天获得400元的利润;②设每天的利润为w ,由题意,得:()()22120135018155442x w x x x -⎡⎤=--⨯+⎣--=⎢⎥⎦,∴()2221201350230450w x x x -+---+==,∵20-<,∴当30x =时,w 有最大值为450元.答:售价定为30元时,每天能够获得最大利润.。

2024年陕西省中考数学真题试卷及答案

2024年陕西省中考数学真题试卷及答案

2024年陕西省中考数学真题试卷一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的) 1.-3的倒数是( )A.13-B.13C.3-D.32.如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )3.如图,//AB DC ,//,145O BC DE B ∠=,则D ∠的度数为( )第3题图A.25oB.35oC.45oD.55o4.不等式2(1)6x -≥的解集是( ) A.2xB.2x ≥C.4xD.4x ≥5.如图,在ABC ∆中,90,BAC AD ︒∠=是BC 边上的高,E 是DC 的中点,,连接AE ,则图中的直角三角形有( )第5题图A.2个B.3个C.4个D.5个6.一个正比例函数的图象经过点(2,)A m 和点(,6)B n -,若点A 于点B 关于原点对称,则这个正比例函数的表达式为( ) A.3y x =B.3y x =-C.13y x =D.13y x =-7.如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上AF 与DC 交于点H ,若6,2,AB CE ==则DH 的长为( )第7题图A.2B.3C.52D.838.已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表( )A.图象的开口向上B.当0x >时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线1x =第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分) 9.分解因式:2a ab -=______.10.小华探究“幻方”时,提出了一个问题:如图,将0,-2,-1,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是___________.(写出一个符合题意的数即可)第10题图 第11题图 第13题图 11.如图,BC 是O 的弦,连接,,OB OC A ∠是BC 所对的圆周角,则A ∠与OBC ∠的和的度数是_________.12.已知点1(2,)A y -和点2(,)B m y 均在反比例函数5y x=-的图象上,若01m <<,则12_____0y y +.13.如图,在ABC ∆中,,AB AC E =是边AB 上一点,连接CE ,在BC 右侧作//BF C ,且BF AE =,连接CF .若13,10AC BC ==,则四边形EBFC 的面积为___________. 三、解答题(共13小题,计81分.解答题应写出过程) 14.(本题满分5分)计算0(7)(2)3-+-⨯. 15.(本题满分5分)先化简,再求值:2()(2),x y x x y ++-其中1,2x y ==- 16.(本题满分5分) 解方程:22111xx x +=-- 17.(本题满分5分)如图,已知直线l 和l 外一点A ,请用尺规作图法,求作一个等腰直角ABC ∆,使得顶点B 和顶点C 都在直线l 上.(作出符合题意的一个等腰直角三角形即可,保留作图痕迹,不写作法)18.(本题满分5分)=.如图,四边形ABCD是矩形,点E和点F在边BC上,且BE CF求证:AF DE=.19.(本题满分5分)一个不透明的袋子中共装有五个小球,其中3个红球,1个白球,1个黄球.这些小球除颜色外都相同.将袋中小球摇匀,从中随机摸出一个小球记色后放回,记作随机摸球一次.(1)随机摸球10次,其中摸出黄球3次,则这10次摸球摸出黄球的频率是________.(2)随机摸球2次,画树状图或列表的方法,求这两次摸出的小球都是红球的概率20.(本题满分5分)星期天,妈妈做饭,小峰和爸爸进行一次家庭卫生大扫除.根据这次大扫除的任务量,若小峰单独完成,需4h;爸爸单独完成,需2h.当天,小峰先单独打扫了一段时间后,去参加篮球训练,接着由爸爸单独完成剩余的打扫任务.小峰和爸爸这次一共打扫了3h,求这次小峰打扫了多长时间.21.(本题满分6分)如图所示,一座小山顶的水平观景台的海拔高度为1600m,小明想利用这个观景台测量对面山顶C点处的海拔高度,他在该观景台上选定了一点A,在点A处测得C点的仰角CAE ∠42︒=,再在AE 上选一点B ,在点B 处测得C 点的仰角45a ︒=,10AB =m.求山顶C 点处的海拔高度.(小明身高忽略不计,参考数据:420.67,420.74,420.90o o o sin cos tan ≈≈≈)22.(本题满分7分)我国新能源汽车快速健康发展,续航里程不断提升,王师傅驾驶一辆纯电动汽车从A 市前往B 市,他驾车从A 市一高速公路入口驶入时,该车的剩余电量是80kw·h,行驶了240km 后,从B 市一高速公路出口驶出,已知该车在高速公路上行驶的过程中,剩余电量y (kw·h)与行驶路程x (km)之间的关系如图所示(1)求y 与x 之间的关系式;(2)已知这辆车的“满电量”为100kW·h,求王师傅驾车从B 市这一高速公路出口驶出时,该车的剩余电量占“满电量”的百分之多少. 23.(本题满分7分)水资源问题是全球关注的热点,节约用水已成为全民共识.某校课外兴趣小组想了解居民家庭用水情况,他们从一小区随机抽取了30户家庭,收集了这30户家庭去年7月份的用水量,并对这30个数据进行整理,绘制了如下统计图表:根据以上信息,解答下列问:(1)这30个数据的中位数落在组(填组别); (2)求这30户家庭去年7月份的总用水量;(3)该小区有1000户家庭,若每户家庭今年7月份的用水量都比去年7月份各自家庭的用水量节约10%,请估计这1000户家庭今年7月份的总用水量比去年7月份的总用水量节约多少m³? 24.(本题满分8分)如图,直线l 与O 相切于点A ,AB 是O 的直径,点C ,D 在l 上,且位于点A 两侧 连接,BC BD ,分別与O 交于点,E F ,连接,EF AF .(1)求证:BAF CDB ∠=∠.(2)若O 的半径6,9,12r AD AC ===,求EF 的长. 25.(本题满分8分)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线'FF 为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100OC m =,17AO BC m ==,缆索1L 的最低点P 到$FF$的距离2PD m =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式.(2)点E 在缆索2L 上,EF FF '⊥,且 2.6EF m =,FO OD <,求FO 的长. 26.(本题满分10分) 问题提出(1)如图1,在ABC ∆中,15,30AB C ︒=∠=,作ABC 的外接圆.O 则ACB 的长为______.(结果保留π) 问题解决(2)如图2所示,道路AB 的一侧是湿地.某生态研究所在湿地上建有观测点,,D E C ,线段,AD AC 和BC 为观测步道,其中点A 和点B 为观测步道出入口,已知点E =在AC =上,且,60,120,1200AE EC DAB ABC AB m ︒︒=∠=∠==,,900AD BC m ==,现要在湿地上修建一个新观测点P ,使60.DPC ︒∠=再在线段AB 上选一个新的步道出入口点F ,并修通三条新步道,,PF PD PC ,使新步道PF 经过观测点E ,并将五边形ABCPD 的面积平分请问:是否存在满足要求的点P 和点F ?若存在,求此时PF 的长;若不存在,请说明理由.(点,,,,A B C P D 在同一平面内,道路AB 与观测步道的宽、观测点及出人口的大小均忽略不计,结果保留根号)2024年陕西中考数学真题试卷参考答案一、选择题.二、填空题三解答题.14. 2-15. 222,6x y+16. 3x=-是原分式方程的解.17.(1)在l上取点,P Q分别以,P Q为圆心,,PA QA为半径画圆,得另一交点D.连接AD交l于B,则AB l⊥.(2)以B为圆心,BA为半径画圆,交l于C,则ABC∆即为所求.18.略19. (1)310(2)92520. 2小时21. 1690米22. (1)1805y x =-+ (2)32%23. (1)B (2)3255m (3)3850m24. (1)略 (2)525. (1)23(50)2500y x =-+或233175005y x x =-+ (2)40米26. (1)25π (2)米。

中考数学几何填空题精选(含答案)

中考数学几何填空题精选(含答案)

中考数学几何填空题精选1(08浙江杭州)12. 在Rt ΔABC 中,∠C 为直角,CD⊥AB 于点D ,BC=3,AB=5,写出其中的一对相似三角形是__________和__________;并写出它们的面积比_________ ; 9:16 或 ; 9:25 或; 16:252(08浙江杭州)15. 如图,大圆O 的半径OC 是小圆O 1的直径,且有OC 垂直于⊙O 的直径AB 。

⊙O 1的切线AD 交OC 的延长线于点E ,切点为D 。

已知⊙O 1的半径为r ,则AO 1=________;DE_________3(08浙江杭州)16. 如图,一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个5×3的矩形用不同的方式分割后,小正方形的个数可以是_______4或7或9或12或15______4(08浙江湖州)14.已知等腰三角形的一个底角为70,则它的顶角为 度.405(08浙江湖州)15.利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .勾股定理,222a b c +=6(08浙江湖州)16.如图,AB 是O 的直径,CB 切O 于B ,连结AC 交O 于D ,若8cm BC =,DO AB ⊥,则O 的半径OA = cm .17.一个长、宽、高分别为15cm ,10cm ,5cm 的长方体包装盒的表面积为 cm 2.4BCD ∆CAD ∆BCD ∆BAC ∆CAD ∆BAC ∆r r 34;57(08浙江嘉兴)13.如图,菱形ABCD 中,已知20ABD ∠=,则C ∠的大小是 .1408(08浙江嘉兴)15.一个几何体的三视图如图所示,则这个几何体的名称是 .直三棱柱9(08浙江嘉兴)16.定义1:与四边形四边都相切的圆叫做四边形的内切圆.定义2:一组邻边相等,其他两边也相等的凸四边形叫做筝形.探究:任意筝形是否一定存在内切圆?答案: 是 .(填“是”或“否”)10(08浙江金华)12、相交两圆的半径分别是为6cm 和8cm ,请你写出一个符合条件的圆心距为 cm 。

中考数学试题及答案

中考数学试题及答案

中考数学试题及答案一、选择题1. 已知一个圆的直径为10厘米,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π2. 一个直角三角形的两条直角边分别为3厘米和4厘米,那么这个三角形的斜边长度是多少厘米?A. 5B. 6C. 7D. 83. 一个数的平方是16,这个数是多少?A. 2B. 4C. -2D. -44. 一个等腰三角形的底边长度为6厘米,如果腰长是底边的两倍,那么这个三角形的周长是多少厘米?A. 18B. 24C. 30D. 365. 一个数的立方是-27,这个数是多少?A. -3B. 3C. -2D. 2答案:1. B2. A3. A, D4. B5. A二、填空题1. 一个数的绝对值是5,这个数可以是______。

2. 如果一个数的相反数是-7,那么这个数是______。

3. 一个数的平方根是4,那么这个数的立方根是______。

4. 一个数的立方是64,那么这个数是______。

5. 如果一个数的1/4与它的2倍的和是10,那么这个数是______。

答案:1. 5 或 -52. 73. ∛164. 45. 3三、解答题1. 已知一个长方体的长、宽、高分别为3厘米、4厘米和5厘米,求这个长方体的体积。

2. 一个圆环的内圆半径为4厘米,外圆半径为6厘米,求这个圆环的面积。

3. 一个数列的前三项为2,4,8,求这个数列的第10项。

4. 一个直角三角形的两条直角边长分别为6厘米和8厘米,求这个三角形的斜边长。

5. 一个数的5倍加上这个数的2倍等于这个数的8倍,求这个数。

答案:1. 长方体的体积 = 长× 宽× 高= 3 × 4 × 5 = 60立方厘米。

2. 圆环的面积= π × (外圆半径² - 内圆半径²) = π × (6²- 4²) = π × 20 = 20π平方厘米。

中考数学试卷大题及答案

中考数学试卷大题及答案

一、填空题(每空2分,共20分)1. 若等差数列{an}的首项为2,公差为3,则第10项an=__________。

答案:an = 2 + (10 - 1) × 3 = 2 + 27 = 29。

2. 已知二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(1, -4),则a=__________,b=__________,c=__________。

答案:a > 0,因为开口向上,所以a=1;b=-2a=-2;c=-a+b-4=-1。

3. 在△ABC中,∠A=60°,AB=8,AC=10,则BC=__________。

答案:由余弦定理,BC^2 = AB^2 + AC^2 - 2 × AB × AC × cosA = 64 + 100 - 2 × 8 × 10 × cos60° = 196 - 80 = 116,所以BC = √116。

4. 已知等比数列{an}的首项为3,公比为2,则第5项an=__________。

答案:an = 3 × 2^(5-1) = 3 × 2^4 = 3 × 16 = 48。

5. 若方程x^2 - 4x + 3 = 0的两个根分别为a和b,则a+b=__________,ab=__________。

答案:由韦达定理,a+b=4,ab=3。

二、选择题(每题3分,共30分)6. 下列选项中,不是函数图象平移的是()A. y = x^2B. y = (x+1)^2C. y = x^2 + 2D. y = x^2 - 3x + 2答案:C7. 若m和n是方程x^2 - 5x + 6 = 0的两个根,则m^2 + n^2 = _________A. 16B. 20C. 25D. 30答案:B8. 在直角坐标系中,点P(2, -3)关于原点对称的点为()A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)答案:B9. 已知函数y = 2x - 1在x=3时的函数值为5,则该函数的解析式为()A. y = 2x + 3B. y = 2x - 3C. y = x + 3D. y = x - 3答案:B10. 在△ABC中,∠A=90°,∠B=30°,AB=6,则AC=__________。

中考数学题库(含答案和解析)

中考数学题库(含答案和解析)

中考数学题库(含答案和解析)一、选择题(本题有10小题.每小题3分.共30分) 1.实数﹣2的绝对值是A .﹣2B .2C .12D .12-【答案】B【解析】22-=.故选B 2A .4B .±4C .D .±【答案】C=故选C .3.不等式315x ->的解集是A .2x >B .2x <C .43x > D .43x < 【答案】A【解析】315x ->.移项得36x >.解得2x >.故选A . 4.下列事件中.属于不可能事件的是 A .经过红绿灯路口.遇到绿灯 B .射击运动员射击一次.命中靶心 C .班里的两名同学.他们的生日是同一天D .从一个只装有白球和红球的袋中摸球.摸出黄球 【答案】D【解析】从一个只装有白球和红球的袋中摸球.可能摸出白球或红球.不可能摸出黄球.故选D.5.将如图所示的长方体牛奶包装盒沿某些棱剪开.且使六个面连在一起.然后铺平.则得到的图形可能是【答案】A【解析】本题考查长方体的展开图问题.属于基础题.选项A符合题意.6.如图.已知点O是△ABC的外心.∠A=40°.连结BO.CO.则∠BOC 的度数是A.60°B.70°C.80°D.90°【答案】C【解析】本题考查同弧所对圆周角与圆心角的关系.∠BOC=2∠A=80°.选C.1<b.则a.b分别是7.已知a.b是两个连续整数.a≈.与0.7相邻的连续整数是0和1.选C.10.78.如图.已知在△ABC中.∠ABC<90°.AB≠BC.BE是AC边上的中线.按下列步骤作图:①分别以点B.C为圆心.大于线段BC长度一半的长为半径作弧.相交于点M.N;②过点M.N作直线MN.分别交BC.BE于点D.O;③连结CO.DE.则下列结论错误的是A.OB=OC B.∠BOD=∠COD C.DE∥AB D.DB=DE【答案】D【解析】∵OD垂直平分BC.所以OB=OC.故A正确;根据三线合一可知OD平分∠BOC.故B正确;易知DE是三角形的中位线.所以有DE∥AB.故C正确.综上.选D.9.如图.已知在矩形ABCD中.AB=1.BC点P是AD边上的一点C1也随之运动.若点P从点A运动到点D.则线段CC1扫过的区域的面积是A.πB.πC D.2π【答案】B【解析】如图.C1运动的路径是以B 为圆心.圆心角为120°的弧上运动.故线段CC 1扫过的区域是一个圆心角为120°的扇形+一个以为边长的等边三角形.故S =2π=.故选B .10.已知抛物线2y ax bx c =++(a ≠0)与x 轴的交点为A(1.0)和B(3.0).点P 1(1x .1y ).P 2(2x .2y )是抛物线上不同于A.B 的两个点.记△P 1AB 的面积为S 1.△P 2AB 的面积为S 2.有下列结论:①当122x x >+时.12S S >;②当122x x <-时.12S S <;③当1x 2221x ->->时.12S S >;④当12221x x ->+>时.12S S <.其中正确结论的个数是A .1B .2C .3D .4 【答案】A【解析】由于1S .2S 的底相同.当1x 2221x ->->时.P 1到AB 的距离>P 2到AB 的距离.故③正确.其他选项无法比较P 1.P 2与x 轴距离的远近.故选A .卷 II二、填空题(本题有6小题.每小题4分.共24分) 11.计算:122-⨯= . 【答案】1【解析】111022221--⨯===.12.如图.已知在Rt △ABC 中.∠ACB =90°.AC =1.AB =2.则sinB 的值是 .【答案】12【解析】sinB =AC 1AB2=.13.某商场举办有奖销售活动.每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位.设5个一等奖.15个二等奖.不设其他奖项.则只抽1张奖券恰好中奖的概率是 . 【答案】150【解析】设恰好中奖为时间A.则P(A)=5151100050+=. 14.为庆祝中国共产党建党100周年.某校用红色灯带制作了一个如图所示的正五角星(A.B.C.D.E 是正五边形的五个顶点).则图中∠A 的度数是 度.【答案】36【解析】首先根据正五边形的内角和计算公式.求出每个内角的度数为108°.即∠ABC =∠BAE =108°.那么等腰△ABC 的底角∠BAC =36°.同理可求得∠DAE =36°.故∠CAD =∠BAE ﹣∠BAC ﹣∠EAD =108°﹣36°﹣36°=36°.其实正五角星的五个角是36°.可以作为一个常识直接记住.15.已知在平面直角坐标系xOy 中.点A 的坐标为(3.4).M 是抛物线22y ax bx =++(a ≠0)对称轴上的一个动点.小明经探究发现:当b a的值确定时.抛物线的对称轴上能使△AOM 为直角三角形的点M 的个数也随之确定.若抛物线22y ax bx =++(a ≠0)的对称轴上存在3个不同的点M.使△AOM 为直角三角形.则b a的值是 .【答案】2或﹣8【解析】由题意知.以OA 的直径的圆与直线2bx a=-相切.则35222b a --=.解得b a=2或﹣8.16.由沈康身教授所著.数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图.三姐妹为了平分一块边长为1的祖传正方形地毯.先将地毯分割成七块.再拼成三个小正方形(阴影部分).则图中AB 的长应是 .1【解析】如图.CD =1.DG .则求得CG .根据△CDG ∽△DEG.可求得DE.∴AE =1.∴AB AE 1.三、解答题(本题有8小题.共66分) 17.(本小题6分)计算:(2)(1)(1)x x x x +++-. 【答案】21x +【解析】解:原式2221x x x =++-21x =+.18.(本小题6分)解分式方程:2113x x -=+.【答案】4x =【解析】解:213x x -=+4x =.经检验.4x =是原方程的解.19.(本小题6分)如图.已知经过原点的抛物线22y x mx =+与x 轴交于另一点A(2.0). (1)求m 的值和抛物线顶点M 的坐标; (2)求直线AM 的解析式.【答案】(1)﹣4.(1.﹣2);(2)24y x =-. 【解析】解:(1)∵抛物线22y x mx =+过点()2,0A .22220m ∴⨯+=.解得4m =-.224y x x ∴=-. 22(1)2y x ∴=--∴顶点M 的坐标是()1,2-.(2)设直线AM 的解析式为()0y kx b k =+≠. ∵图象过()()2,0,1,2A M -.202k b k b +=⎧∴⎨+=-⎩.解得24k b =⎧⎨=-⎩. ∴直线AM 的解析式为24y x =-.20.(本小题8分)为了更好地了解党的历史.宣传党的知识.传颂英雄事迹.某校团支部组建了:A .党史宣讲;B .歌曲演唱;C .校刊编撰;D .诗歌创作等四个小组.团支部将各组人数情况制成了如下统计图表(不完整).根据统计图表中的信息.解答下列问题:(1)求a和m的值;(2)求扇形统计图中D所对应的圆心角度数;(3)若在某一周各小组平均每人参与活动的时间如下表所示:求这一周四个小组所有成员平均每人参与活动的时间.【答案】(1)20.20;(2)36°;(3)2.6小时.【解析】解:(1)由题意可知四个小组所有成员总人数是1530%50÷=(人).∴=---=.a501015520m=÷⨯=.%1050100%20%m∴=.20(2)55036036÷⨯︒=︒.∴扇形统计图中D所对应的圆心角度数是36︒.(3)1(10 2.520315253) 2.6x=⨯⨯+⨯+⨯+⨯=(小时).50∴这一周四个小组所有成员平均每人参与活动的时间是2.6小时.21.(本小题8分)如图.已知AB是⊙O的直径.∠ACD是AD所对的圆周角.∠ACD =30°.(1)求∠DAB的度数;(2)过点D 作DE ⊥AB.垂足为E.DE 的延长线交⊙O 于点F .若AB =4.求DF 的长.【答案】(1)60°;(2)【解析】解:(1)连结BD .30ACD ∠=︒. 30B ACD ∴∠=∠=︒.AB 是O 的直径.90ADB ∴∠=︒.9060DAB B ∴∠=︒-∠=︒.(2)90,30,4ADB B AB ∠=︒∠=︒=.122AD AB ==. 60,DAB DE AB ∠=︒⊥.且AB 是直径.sin 60EF DE AD ︒∴===2DF DE =∴=22.(本小题10分)今年以来.我市接待的游客人数逐月增加.据统计.游玩某景区的游客人数三月份为4万人.五月份为5.76万人.(1)求四月和五月这两个月中.该景区游客人数平均每月增长百分之几;(2)若该景区仅有A.B 两个景点.售票处出示的三种购票方式如下表所示:据预测.六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时.丙种门票价格每下降1元.将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元.求景区六月份的门票总收人;②问:将丙种门票价格下降多少元时.景区六月份的门票总收入有最大值?最大值是多少万元? 【答案】(1)20%;(2)①798;②24.817.6【解析】解:(1)设四月和五月这两个月中.该景区游客人数的月平均增长率为x .由题意.得24(1) 5.76x +=解这个方程.得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中.该景区游客人数平均每月增长20%.(2)①由题意.得()()()()1002100.06803100.0416*******.06100.04⨯-⨯+⨯-⨯+-⨯+⨯+⨯=(万元)798答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m元.景区六月份的门票总收人为W 万元.由题意.得()()()() =-+-+-++W m m m m m10020.068030.0416020.060.04化简.得2=--+.W m0.1(24)817.6-<.0.10∴当24m=时.W取最大值.为817.6万元.答:当丙种门票价格降低24元时.景区六月份的门票总收人有最大值.为817.6万元.23.(本小题10分)已知在△ACD中.P是CD的中点.B是AD延长线上的一点.连结BC.AP.(1)如图1.若∠ACB=90°.∠CAD=60°.BD=AC.AP求BC的长;(2)过点D作DE∥AC.交AP延长线于点E.如图2所示.若∠CAD=60°.BD=AC.求证:BC=2AP;(3)如图3.若∠CAD=45°.是否存在实数m.当BD=m AC时.BC =2AP?若存在.请直接写出m的值;若不存在.请说明理由.【答案】(1)(2)略;(3. 【解析】(1)解:90,60ACB CAD ∠=∠=︒︒.2cos60ACAB AC ︒==. BD AC =. AD AC ∴=.ADC ∴是等边三角形. 60ACD ∴∠=︒Р是CD 的中点.AP CD ∴⊥.在Rt APC 中.AP =2sin 60APAC ∴==︒.tan 60BC AC =︒=∴(2)证明:连结BE .DE AC ∥.CAP DEP ∴∠=∠.,CP DP CPA DPE =∠=∠.()CPA DPE AAS ∴≌. 1,2AP EP AE DE AC ∴===. BD AC =.BD DE ∴=.又DE AC ∥.60BDE CAD ∴∠=∠=︒.BDE ∴是等边三角形.,60∴=∠=︒BD BE EBD=.BD ACAC BE∴=.又60,∠=∠=︒=.CAB EBA AB BA()∴≌. AE BCCAB EBA SAS∴=.BC AP∴=.2(3)存在这样的m m=,24.(本小题12分)已知在平面直角坐标系xOy中.点A是反比例函数1=(x>0)图象yx上的一个动点.连结AO.AO的延长线交反比例函数ky=(k>0.x<0)的x图象于点B.过点A作AE⊥y轴于点E.(1)如图1.过点B作BF⊥x轴于点F.连结EF.①若k=1.求证:四边形AEFO是平行四边形;②连结BE.若k=4.求△BOE的面积.(2)如图2.过点E作EP∥AB.交反比例函数k=(k>0.x<0)的yx图象于点P.连结OP.试探究:对于确定的实数k.动点A在运动过程中.△POE的面积是否会发生变化?请说明理由.【答案】(1)①略;②1;(2)不变.【解析】解:(1)①证明 设点A 的坐标为1(,)a a.则当1k =时.点B 的坐标为1(,)a a--.AE OF a ∴==.AE y ⊥轴.AE OF ∴∥.∴四边形AEFO 是平行四边形. ②解 过点B 作BD y ⊥轴于点D .AE y ⊥轴.AE BD ∴∥.AEO BDO ∴∽.2()AEO BDOS AO SBO∴=. ∴当4k =时.212()2AOBO=.即12AO BO =. 21BOEAOESS∴==.(2)解:不改变.理由如下:过点P 作PH x ⊥轴于点,H PE 与x 轴交于点G . 设点A 的坐标为1(,)a a.点P 的坐标为(,)k b b. 则1,,,k AE a OE PH ab ===-.由题意.可知AEO GHP ∽.四边形AEGO 是平行四边形.,AE EOGH b a GH PH=--=. 即1a a kb a b=---. 1b a k a b += 2()0b bk a a∴+-=.解得12b a -±=. ,a b 异号.0k ≥.12b a -∴=.1111()224POEb Sb a a ∴=⨯⨯-=-⨯=. ∴对于确定的实数k .动点A 在运动过程中.POE 的面积不会发生变化.。

全国各地中考数学真题汇编:圆(填空选择46题)

全国各地中考数学真题汇编:圆(填空选择46题)

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学真题汇编:圆(填空+选择46题)一、选择题1.已知的半径为,的半径为,圆心距,则与的位置关系是()A. 外离B. 外切C. 相交D. 内切【答案】C2.如图,为的直径,是的弦,,则的度数为()A. B. C. D.【答案】C3.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A. B. C. D.【答案】C4.如图,在中,,的半径为3,则图中阴影部分的面积是()A. B. C. D.【答案】C5.如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°【答案】D6.如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.B.40πm2C.D.55πm2【答案】A7.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.【答案】A8.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内【答案】D9.如图,AB是圆锥的母线,BC为底面直径,已知BC=6cm,圆锥的面积为15πcm2,则sin∠ABC的值为()A. B. C. D.【答案】C10.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B 等于()。

A.27°B.32°C.36°D.54°【答案】A11.如图,过点,,,点是轴下方上的一点,连接,,则的度数是()A. B. C. D.【答案】B12.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A. 3cmB. cmC. 2.5cmD. cm【答案】D13.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为()A.B.C.D.【答案】C14.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A. 75°B. 70°C. 65°D. 35°【答案】B15.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A.3B.C.D.【答案】D16.如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD的垂线交PD的延长线于点C,若的半径为4,,则PA的长为()A. 4B.C. 3D. 2.5【答案】A17.在中,若为边的中点,则必有成立.依据以上结论,解决如下问题:如图,在矩形中,已知,点在以为直径的半圆上运动,则的最小值为()A. B. C. 34 D. 10【答案】D18.如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=AED=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC= AB∴2CB2=CP•CM所以③正确A. ①②③B. ①C. ①②D. ②③【答案】A二、填空题19.已知扇形的弧长为2 ,圆心角为60°,则它的半径为________.【答案】620.一个扇形的圆心角是120°,它的半径是3cm,则扇形的弧长为________cm.【答案】21.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________ cm。

中考数学填空题专项练习经典习题(含答案解析)

中考数学填空题专项练习经典习题(含答案解析)

一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( )A .()1119802x x +=B .()1119802x x -= C .()11980x x +=D .()11980x x -= 2.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2B .1C .0D .﹣1 3.一元二次方程的根是( ) A .3x = B .1203x x ==-, C .1203x x ==, D .1203x x ==,4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .2 5.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点6.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32×20﹣32x ﹣20x =540 B .(32﹣x )(20﹣x )=540 C .32x +20x =540 D .(32﹣x )(20﹣x )+x 2=5407.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( )A .13B .14C .15D .168.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )A .59B .49C .56D .139.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根10.下列函数中是二次函数的为( )A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 3+2x -3 11.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >4 12.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( )A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 13.如图,AOB 中,30B ∠=︒.将AOB 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒ 14.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <1 15.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D.230++-=有两个不相等的实数根ax bx c二、填空题16.若直角三角形两边分别为6和8,则它内切圆的半径为_____.17.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.18.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1_____y2.(用“>”、“<”、“=”填空)19.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.20.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.21.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.22.已知二次函数y=a(x+3)2﹣b(a≠0)有最大值1,则该函数图象的顶点坐标为_____.23.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将BD绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为_____.24.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y =−140x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米.(精确到1米)25.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_________.三、解答题26.用你喜欢的方法解方程(1)x 2﹣6x ﹣6=0(2)2x 2﹣x ﹣15=027.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m 的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.28.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表:x…1-12-0123…y (35)401-0m…(1)直接写出此二次函数的对称轴;(2)求b的值;(3)直接写出表中的m值,m= ;(4)在平面直角坐标系xOy中,画出此二次函数的图象.29.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.30.在平面直角坐标系xOy中,抛物线y=a2x-4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,-32a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.D4.D5.D6.B7.A8.B9.A10.B11.B12.A13.D14.D15.C二、填空题16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′CB是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小20.(2)【解析】由题意得:即点P的坐标21.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1男2)(男1女122.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y23.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB =2BC∠ACB=90°弓形BD与弓形AD完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB =8AC=4∴阴影部24.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平25.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,∴全班共送:(x-1)x=1980,故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.2.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A .【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.3.D解析:D【解析】x 2−3x=0,x(x−3)=0,∴x 1=0,x 2=3.故选:D.4.D解析:D【解析】【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--, 利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意.【详解】解:由韦达定理,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--,所以,()2142(2)3k k ----+=-,化简,得:24k =,解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根,所以,△=()214(2)k k ---+=227k k +-〉0,k =-2不符合,所以,k =2故选:D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键. 5.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 6.B解析:B【解析】【分析】先将图形利用平移进行转化,可得剩余图形的长等于原来的长减去小路的宽,剩余图形的宽等于原来的宽减去路宽,然后再根据矩形面积公式计算.【详解】利用图形平移可将原图转化为下图,设道路的宽为x ,根据题意得:(32-x )(20-x )=540.故选B.【点睛】本题考查的是一元二次方程的实际运用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.7.A解析:A【解析】【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.B解析:B【解析】【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49. 【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.9.A解析:A 【解析】 【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可. 【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根, 1+8﹣c =0,解得c =9, ∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0, ∴方程有两个不相等的实数根. 故选:A . 【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.10.B解析:B 【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y =(x +1)2−x 2不含二次项,故C 错误;D. y =x 3+2x −3是三次函数,故D 错误; 故选B.11.B解析:B【解析】【分析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.12.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.13.D解析:D【解析】【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得∠'的度数.A CO【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.14.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.C解析:C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.二、填空题 16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆解析:2-1 【解析】 【分析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8是直角边,则该三角形的斜边的长为:226+8=10,∴内切圆的半径为:6+810=22-;若8是斜边,则该三角形的另一条直角边的长为:228627=-,∴内切圆的半径为:6+278=712--.故答案为2或7-1.【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x2-4x-1=(x-2)2-5可知其图象开口向上解析:<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小. 【详解】由二次函数y=x 2-4x-1=(x-2)2-5可知,其图象开口向上,且对称轴为x=2, ∵1<x 1<2,3<x 2<4,∴A 点横坐标离对称轴的距离小于B 点横坐标离对称轴的距离, ∴y 1<y 2. 故答案为<.19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线可得△E′CB 是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE 旋转的度数【详解】解:∵三角板是两块大小解析:30 【解析】 【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线,可得△E′CB 是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE 旋转的度数. 【详解】解:∵三角板是两块大小一样且含有30°的角, ∴CE′是△ACB 的中线, ∴CE′=BC =BE′, ∴△E′CB 是等边三角形, ∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°, 故答案为:30. 【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE ´是△ABC 的中线.20.(2)【解析】由题意得:即点P 的坐标解析: ,2). 【解析】由题意得:441a a =⇒= 2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.21.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1男2)(男1女1解析:2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y解析:(﹣3,1)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),即可求解.【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1,∴﹣b=1,根据二次函数的顶点式方程y=a(x+3)2﹣b(a≠0)知,该函数的顶点坐标是:(﹣3,﹣b),∴该函数图象的顶点坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了二次函数的性质,解答该题时,需熟悉二次函数的顶点式y=a (x-h )2+k 中的h 、k 所表示的意义.23.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB =2BC∠ACB=90°弓形BD 与弓形AD 完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB=8AC =4∴阴影部解析:83π. 【解析】 【分析】 根据题意,用ABC 的面积减去扇形CBD 的面积,即为所求.【详解】 由题意可得,AB =2BC ,∠ACB =90°,弓形BD 与弓形AD 完全一样, 则∠A =30°,∠B =∠BCD =60°, ∵CB =4,∴AB =8,AC =,2604360π⨯⨯-=83π,故答案为:83π. 【点睛】本题考查不规则图形面积的求法,属中档题.24.85【解析】由于两盏EF 距离水面都是8m 因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平解析:8√5 【解析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就 是直线y=8与抛物线两交点的横坐标差的绝对值. 故有−140x 2+10=8,即x 2=80,x 1=4√5,x 2=−4√5.所以两盏警示灯之间的水平距离为:|x 1−x 2|=|4√5−(−4√5)|=8√5≈18(m )25.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:解析:56【解析】 【分析】 【详解】解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是56故答案为:56.三、解答题 26.(1)x 1=x 2=32)x 1=﹣2.5,x 2=3 【解析】 【分析】(1)先求出b 2﹣4ac 的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】 x 2﹣6x ﹣6=0, ∵a=1,b=-6,c=-6,∴b 2﹣4ac =(﹣6)2﹣4×1×(﹣6)=60,x =632±=x 1=x 2=3 (2)2x 2﹣x ﹣15=0, (2x +5)(x ﹣3)=0, 2x +5=0,x ﹣3=0, x 1=﹣2.5,x 2=3. 【点睛】此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.27.(1)60,10;(2)96°;(3)1020;(4)23【解析】 【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案; (4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可. 【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒, 故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为:1020; (4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种, ∴恰好抽到1名男生和1名女生的概率为82123=. 【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.28.(1)对称轴x =1;(2)b=-2;(3)m=3;(4)见解析 【解析】 【分析】(1)根据图表直接写出此二次函数的对称轴即可; (2)图象经过点(1,-1),代入求b 的值即可;(3)由题意将x=3代入解析式得到并直接写出表中的m 值; (4)由题意采用描点法画出图像即可. 【详解】解:(1)观察图像直接写出此二次函数的对称轴x=1.(2)∵二次函数2y x bx =+的图象经过点(1,-1),∴2b =-.(3)将x=3代入解析式得m=3.(4)如图.【点睛】本题考查了二次函数的图象和性质,根据二次函数的图象和性质分析是解此题的关键.29.(1)相切,证明见解析;(2)62.【解析】【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=OB CDEB DE=,推出348CD=,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)设⊙O的半径为r,在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,AB=2r=6,∵tan ∠E=OB CD EB DE=, ∴348CD =, ∴CD=BC=6,在Rt △ABC 中,=【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键. 30.(1)A (0,0),B (4,0);(2)①Q 点的纵坐标为3+3a ,②符合题意的a 的取值范围是 -1≤a <0.【解析】【分析】(1)令y =0,则a 2x -4ax =0,可求得A 、B 点坐标;(2)①设直线PC 的解析式为,将点P (1,-32a ),C (2,1)代入可解得31,13.2k a b a =+=-- ()3113.2y x a =+-- 由于Q 点的横坐标为4,可求得Q 点的纵坐标为3+3a ②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0,可求出a 的取值范围.【详解】(1)令y =0,则a 2x -4ax =0.解得 120, 4.x x ==∴ A (0,0),B (4,0)(2)①设直线PC 的解析式为.y kx b =+将点P (1,-32a ),C (2,1)代入上式, 解得31,13.2k ab a =+=-- ∴y=(1+32a)x-1-3a. ∵点Q 在直线PC 上,且Q 点的横坐标为4,∴Q 点的纵坐标为3+3a②当a >0时,如图1,不合题意;当a <0时,由图2,图3可知,3+3a≥0.∴a≥-1.∴符合题意的a的取值范围是 -1≤a<0.图1 图2 图3【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.。

中考数学试题及答案新疆

中考数学试题及答案新疆

中考数学试题及答案新疆一、选择题(每题3分,共30分)1. 以下哪个选项是新疆的首府?A. 乌鲁木齐B. 喀什C. 伊犁D. 阿克苏答案:A2. 一个长方形的长是宽的两倍,如果宽是x厘米,那么长是:A. 2x厘米B. x厘米C. x/2厘米D. 4x厘米答案:A3. 一个数的平方等于9,这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 以下哪个选项是新疆的著名景点?A. 天山天池B. 故宫C. 长城D. 黄山答案:A5. 一个圆的半径是5厘米,那么它的周长是:A. 31.4厘米B. 62.8厘米C. 314厘米D. 628厘米答案:B6. 以下哪个选项是新疆的特产?A. 哈密瓜B. 龙井茶C. 普洱茶D. 荔枝答案:A7. 一个等腰三角形的底边长为6厘米,如果它的高是底边长的一半,那么它的面积是:A. 9平方厘米B. 18平方厘米C. 27平方厘米D. 36平方厘米答案:B8. 以下哪个选项是新疆的少数民族?A. 汉族B. 维吾尔族C. 藏族D. 壮族答案:B9. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C10. 一个直角三角形的两条直角边长分别为3厘米和4厘米,那么它的斜边长是:A. 5厘米B. 7厘米C. 9厘米D. 12厘米答案:A二、填空题(每题3分,共30分)11. 新疆位于中国的______部。

答案:西北12. 一个数的相反数是-7,那么这个数是______。

答案:713. 一个数的倒数是2,那么这个数是______。

答案:1/214. 如果一个数的平方根是4,那么这个数是______。

答案:1615. 新疆的总面积是______万平方千米。

答案:16616. 一个数的立方是-8,那么这个数是______。

答案:-217. 新疆的主要气候类型是______。

答案:温带大陆性气候18. 如果一个数的平方是25,那么这个数的立方是______。

【精选试卷】中考数学填空题专项练习经典题(含答案解析)(1)

【精选试卷】中考数学填空题专项练习经典题(含答案解析)(1)

一、填空题1.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)2.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号). 3.使分式x 2−1x+1的值为0,这时x=_____.4.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______ 5.当m =____________时,解分式方程533x mx x-=--会出现增根. 6.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 . 7.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____. 8.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页 共1页
2020年宁夏课改区中考数学填空题
1(07年宁夏课改)9.分解因式:2
2
4x y -= .
2(07年宁夏课改)10.计算:2
2
(96)(3)a b ab ab -÷= .
3(07年宁夏课改)11.在一次校园朗诵比赛中,七位评委给小丽打分的成绩如下:8.6,9.7,8.5,8.6,9.6,8.6,7.2,则这组数据的中位数是 .
4(07年宁夏课改)12.如图是弧长为8πcm 扇形,如果将OA OB ,重合围成一个圆锥,那么圆锥底面的半径是 cm .
5(07年宁夏课改)13.一块正方形钢板上截去3cm 宽的长方形钢条,剩下的面积是254cm ,则原来这块钢板的面积是 2cm .
6(07年宁夏课改)14.如图,O 的半径为5,弦53AB C =,是圆上一点,则
ACB ∠= .
7(07年宁夏课改)15.在平面直角坐标系中,点A 的坐标为(12),,将OA 绕原点
O 按顺时针方向旋转90 得到OA ',则点A '的坐标是 .
8(07年宁夏课改)16.如图,网格中的小正方形边长均为1,ABC △的三个顶点在格点上,则ABC △ 中AB 边上的高为 .
2007年宁夏课改区中考数学选择题答案:
题号 9
10
11
12 13 14
15
16
答案
(2)(2)x y x y +-
32a b - 8.6 4
81
60°
(21)-,
5
13 51313⎛⎫
⎪ ⎪

⎭或
O
A
B
C
B
O
A
A
B
C。

相关文档
最新文档