晶体结构,配合物结构知识点与习题1-1

合集下载

专题十二 晶体结构与性质(试题部分)

专题十二 晶体结构与性质(试题部分)

专题十二晶体结构与性质【考情探究】课标解读考点晶体常识晶体结构与性质解读1.了解晶体与非晶体的概念2.了解晶胞的概念,能根据晶胞确定晶体的组成并进行相关的计算3.了解金属晶体常见的堆积方式1.了解晶体的类型,了解不同类型晶体中结构微粒、微粒间作用力的区别2.了解晶格能的概念,了解晶格能对离子晶体性质的影响3.了解分子晶体结构与性质的关系4.了解共价晶体的特征,能描述金刚石、二氧化硅等共价晶体的结构与性质的关系考情分析本专题作为高考题中的重要题型,多在综合题中进行考查,由前面定性考查转向定量考查,是反映考生理解能力和计算能力的重要依据,试题难度大备考指导关注晶胞模型与微粒数目和化学式之间的关系,掌握晶体密度计算方法,不同类型晶体微粒间作用力以及晶体性质与晶体结构的关系【真题探秘】基础篇固本夯基【基础集训】考点一晶体常识1.有关晶体的结构如下图所示,下列说法中不正确的是()A.在图A晶体中,距粒子B最近且相等的粒子A有6个B.在CO2晶体中,每个晶胞平均占有4个原子C.在金刚石晶体中,碳原子与碳碳键个数比为1∶2D.该气态团簇分子的分子式为E4F4答案B2.石墨能与熔融金属钾作用,形成石墨间隙化合物,钾原子填充在石墨各层碳原子中。

比较常见的石墨间隙化合物是青铜色的化合物,其化学式可写作C x K,其平面图形如图,则x值为()答案A3.铁和钴是两种重要的过渡元素。

(1)钴位于元素周期表的第族,其基态原子中未成对电子个数为。

(2)[Fe(H2NCONH2)6](NO3)3的名称是三硝酸六尿素合铁(Ⅲ),是一种重要的配合物。

该化合物中Fe3+的核外电子排布式为,所含非金属元素的电负性由大到小的顺序是。

(3)尿素[CO(NH2)2]分子中,碳原子为杂化,分子中σ键与π键的数目之比为。

(4)Co(NH3)5BrSO4可形成两种钴的配合物,结构分别为[Co(NH3)5Br]SO4和[Co(SO4)(NH3)5]Br。

章习题及答案

章习题及答案

8. 试从离子极化观点解释,HgCl 为白色,溶解度较大,HgI 为黄色或红色,溶解度较小。
答:Hg 为 18e 构型的,极化力较强,变形性也比较强,而 Cl 与 I 相比,I 离子半径更大,变形性更强,
所以 Hg 与 I 间附加极化作用很强,其结果使晶体中共价成分增大,而难溶于水和颜色加深。
9. 试比较下列两组化合物中正离子极化能力的大小。<1>. ZnCl、CaCl、FeCl、KCl
10. 下列化合物熔点最高的是( B )
A. MgCl
Hale Waihona Puke B. NaCl C. ZnCl D. AlCl
11. 下列化合物在水中溶解度最大的是( A )
A. AgF
B. AgCl
C. AgBr
D. AgI
12. 下列化合物哪个熔沸点最低( D )
A. KCl
B. CaCl
C. AlCl D. GeCl
13. 下列氧化物属于离子型的是( D )
3. 石墨晶体是( D ) A. 原子晶体 B. 金属晶体 C. 分子晶体 D. 前三种晶体的混合型
4. 关于离子晶体的性质,以下说法中不正确的是( A ) A. 所有高熔点的物质都是离子型的物质; B. 离子型物质的饱和水溶液是导电性很好的溶液;
C. 熔融的碱金属氯化物中,导电性最好的是 CsCl;
9. 填下表:
物质 晶格结点上质点 质点内作用力 晶体类型 预测熔点高低
CaO 离子.Ca .O
离子键
离子晶体 高
SiC
Si.C
共价键
原子晶体 很高
HF
极性分子.HF
分子间力.氢键 分子晶体 低
10. 离子的极化力是某种离子使异号离子被极化而变形的能力,极化力与离子电荷,离子半径 ,以及

化学第五讲晶体结构与性质

化学第五讲晶体结构与性质

第五讲分子结构、性质与晶体结构、性质知识点一配位化合物理论1、配位键〔1〕配位键的形成:成键原子一方提供,另一方提供形成共价键。

〔2〕配位键的表示:为了区别于普通共价键与离子键,配位键用A“→〞B表示,A提供_________,B提供____________ 。

NH4+的结构式可表示为:从形成过程看,尽管一个N-H键与其它的三个不同,但形成NH4+后,这四个共价键无论从、、三个参数看都是完全相同的,表现的化学性质也完全相同,所以NH4+空间构型为____________。

2、配合物[Co(NH3)5Cl]Cl2这种配合物的中心离子是,配位体是__,中心离子和配位体构成了配合物的,配位数是____。

Cl-称为,内外界之间形成了键,在水中_____电离。

[Co(NH3)5Cl]Cl2的电离方程式为3、在CuSO4溶液中逐滴滴加氨水的现象是,对应的离子方程式为;再参加乙醇静置后的现象是,其名称为。

【练习】1.F-、K+和Fe3+三种离子组成的化合物K3FeF6,其中化学键的类型有________;该化合物中存在一个复杂离子,该离子的化学式为________,配位体是________。

2.一项科学研究成果说明,铜锰氧化物(CuMn2O4)能在常温下催化氧化空气中的一氧化碳和甲醛(HCHO)。

(1)向一定物质的量浓度的Cu(NO3)2和Mn(NO3)2溶液中参加Na2CO3溶液,所得沉淀经高温灼烧,可制得CuMn2O4。

①写出基态Mn原子的价电子排布式为____________________________________。

②CO2-3的空间构型是__________________(用文字描述)。

(2)在铜锰氧化物的催化下,CO被氧化为CO2,HCHO被氧化为CO2和H2O。

①甲醛分子中碳原子轨道的杂化类型为___________;甲醛分子的空间构型___________;②CO2分子中C原子轨道的杂化类型为____________________________________。

配合物化学-1-基础知识

配合物化学-1-基础知识

第一章 基础知识
④ 配位数
配位数指中心离子所结合的配位原子的总数。
中心离子最常见的配位数一般是4和6,少数是2和8;更高配 位数的情况少见。
影响配位数的因素:
几何因素(中心离子半径、配体的大小及几何构型) 静电因素(中心离子与配体的电荷) 中心离子的价电子层结构 外界条件(浓度、温度等)
化学式
第一章 基础知识
(b)配位原子
表1-1 配位原子
C
N P As Sb
O S Se Te
H F Cl Br I
第一章 基础知识
(C)按配位原子分类的常见配体
配位原子
卤素 O
配体举例
F -,Cl - ,Br - , I H2O,OH- ,ONO-,RCOO-,C2O42-
N
C S
NH3,NO,NO2-,NH2-CH2-CH2-NH2(乙二胺)
第一章 基础知识
1 配合物的生成与发现 2 配合物的组成与结构 3 配合物的类型 4 配合物的命名
5 配位个体的立体结构
6 配合物的异构现象
第一章 基础知识
1 配合物的生成与发现
Tassaert在从事钴的重量分析的研究过程中,偶用氨水代替 氢氧化钠加入CoCl2溶液中,由于加入过量氨水后得不到他预期 的Co(0H)2沉淀,他便将所得溶液放置过夜,以待第二天继续进 行实验,在这放置过程中,有关物质间继续缓慢地反应(空气参 加了反应)。 到第二天,在该体系中出现了一种橙黄色的晶体,后来经化 学分析确定,其组成为上述的CoCl36NH3。随后又陆续制得了 CoCl35NH3(紫红色)和CoCl3· 5NH3· H2O(红色)等。这些物质在当 时被称为复杂化合物。
第一章 基础知识

晶体结构与性质 晶体结构与性质知识点

晶体结构与性质 晶体结构与性质知识点

晶体结构与性质晶体结构与性质知识点第34讲晶体结构与性质(一)(考纲要求)1、理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。

2、了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。

3、理解金属键的含义,能用金属键理论解释金属的一些物理性质。

4、了解化学键和分子间作用力的区别。

5、了解氢键的存在对物质性质的影响,能列举含有氢键的物质。

6、了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。

7、了解简单配合物的成键情况。

(课前预习区)一、认识晶体1、晶体的定义:微观粒子在空间按一定规律做周期性重复排列构成的固体物质2、晶体的特性:(1)有规则的几何外形(自范性:在适宜的条件下,晶体能够自发的呈现封闭的、规则的多面体外形。

)(2)有确定的熔点(3)各向异性:在不同的方向上表现不同的性质(4)具有特定的对称性3、晶体是由晶胞堆积得到的,故晶胞就能反映整个晶体的组成。

利用晶胞可以求化学式——均摊法。

均摊法是指每个晶胞平均拥有的粒子数目。

若某个粒子为N 个晶胞所共有,则该粒子有1/N属于此晶胞。

以正方体晶胞为例,晶胞中不同位置的粒子对晶胞的贡献为:顶点原子_______属于此晶胞棱上原子_______属于此晶胞面上原子_______属于此晶胞体内原子完全属于此晶胞若晶胞为六棱柱,则顶点原子有________属于此晶胞,棱上有________属于此晶胞。

练习、硼镁化合物刷新了金属化合物超导温度的最高记录。

该化合物晶体结构中的重复结构单元如图所示。

十二个镁原子间形成正六棱柱,两个镁原子分别在棱柱上底、下底的中心;六个硼原子位于棱柱内。

则该化合物的化学式可表示为A 、Mg 14B 6 B 、MgB 2 ()● ○ Mg BC 、Mg 5B 12D 、Mg 3B 2二、晶体结构1、金属晶体(1)金属键:_____________________________________________________________成键微粒:________________________特征:影响金属键强弱因素及对金属性质的影响:(2)金属晶体:(3)金属晶体物理性质的解释2、离子晶体(1)离子键:____________________________________________________________成键微粒:_________________ 特征:____________________________影响离子键强弱因素:(2)离子晶体定义:(3)晶格能:①影响因素②与离子晶体性质的关系:晶格能越大,形成的离子晶体越,且熔点越,硬度越。

高中化学晶胞的相关计算专项训练知识点及练习题及答案

高中化学晶胞的相关计算专项训练知识点及练习题及答案

高中化学晶胞的相关计算专项训练知识点及练习题及答案一、晶胞的相关计算1.铁(Fe)、铜(Cu)、银(Ag)是常见的金属元素,它们的单质及其化合物在生活中有广泛应用。

(1)Ag 与 Cu 在同一族,则 Ag 在周期表中________ (填“s”、“p”、“d”或“ds”)区;[Ag(NH3)2]+中Ag+空的 5s 轨道和 5p 轨道以sp 杂化成键,则该配离子的空间构型是________。

(2)基态 Cu+的简化电子排布式为________。

(3)表中是 Fe 和 Cu 的部分电离能数据:请解释 I2(Cu)大于 I2(Fe)的主要原因:________。

元素Fe Cu第一电离能 I1/kJ·mol-1759746第二电离能 I2/kJ·mol-115611958(4)亚铁氰化钾是食盐中常用的抗结剂,其化学式为 K4[Fe(CN)6]。

①CN-的电子式是________;1mol 该配离子中含σ 键数目为________。

②该配合物中存在的作用力类型有________ (填字母)。

A.金属键 B.离子键 C.共价键 D.配位键 E.氢键 F.范德华力(5)氧化亚铁晶体的晶胞结构如图所示。

已知:氧化亚铁晶体的密度为ρg•cm﹣3,N A代表阿伏加德罗常数的值。

在该晶胞中,与 Fe2+紧邻且等距离的 Fe2+数目为________,Fe2+与O2﹣最短核间距为________pm。

2.国庆70周年阅兵式展示了我国研制的各种导弹。

导弹之所以有神奇的命中率,与材料息息相关,镓(Ga)、锗(Ge)、硅(Si)、硒(Se)的单质及某些化合物(如砷化镓、磷化镓等)都是常用的半导体材料。

回答下列问题:(1)硒常用作光敏材料,基态硒原子的核外电子排布式为[Ar]__。

(2)根据元素周期律,原子半径Ga__As,第一电离能Ga__As。

(填“大于”或“小于”)(3)水晶的主要成分是二氧化硅,在水晶中硅原子的配位数是__。

【人教版】高中化学选修3知识点总结:第三章晶体结构与性质

【人教版】高中化学选修3知识点总结:第三章晶体结构与性质

【人教版】高中化学选修3知识点总结:第三章晶体结构与性质第一篇:【人教版】高中化学选修3知识点总结:第三章晶体结构与性质第三章晶体结构与性质课标要求1.了解化学键和分子间作用力的区别。

2.理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。

3.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。

4.理解金属键的含义,能用金属键理论解释金属的一些物理性质。

5.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。

要点精讲一.晶体常识 1.晶体与非晶体比较2.获得晶体的三条途径①熔融态物质凝固。

②气态物质冷却不经液态直接凝固(凝华)。

③溶质从溶液中析出。

3.晶胞晶胞是描述晶体结构的基本单元。

晶胞在晶体中的排列呈“无隙并置”。

4.晶胞中微粒数的计算方法——均摊法如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。

中学中常见的晶胞为立方晶胞立方晶胞中微粒数的计算方法如下:注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状二.四种晶体的比较2.晶体熔、沸点高低的比较方法(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。

金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。

(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。

(4)分子晶体①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。

②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。

③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。

④同分异构体,支链越多,熔、沸点越低。

(5)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。

人教版初中高中化学选修二第三章《晶体结构与性质》知识点总结(含答案解析)(1)

人教版初中高中化学选修二第三章《晶体结构与性质》知识点总结(含答案解析)(1)

一、选择题1.下列关于C、Si及其化合物结构与性质的论述错误的是A.键能 C-C>Si-Si、C-H>Si-H ,因此C2H6稳定性大于Si2H6B.立方型SiC是与金刚石成键、结构均相似的共价晶体,因此具有很高的硬度和熔点C.常温下C、Si的最高价氧化物晶体类型相同,性质相同。

—键D.Si原子间难形成双键而C原子间可以,是因为Si的原子半径大于C,难形成p pπ答案:C解析:A.原子半径越小、共价键键能越大,物质越稳定,原子半径Si>C,所以键能C-C >Si-Si、C-H>Si-H,C2H6稳定性大于Si2H6,故A正确;B.由于立方型SiC是与金刚石成键、结构均相似的共价晶体,由于SiC是共价晶体,所以立方型SiC具有很高的硬度和熔点,故B正确;C.C、Si所形成的最高价氧化物分别为CO2和SiO2,CO2空间构型是直线型,属于分子晶体,SiO2空间构型是空间网状结构,属于共价晶体,二者晶体类型不同,故C错误;D.Si的原子半径较大,原子间形成的σ键较长,p-p轨道重叠程度很小,难以形成π键,所以Si原子间难形成双键而C原子间可以,故D正确;答案为C。

2.下列叙述不正确的是①离子化合物中一定有离子键,可能有共价键②熔点: Al>Na>K③第IA、IIA族元素的阳离子与同周期稀有气体元素的原子具有相同的核外电子排布④元素周期表中从Ⅲ B族到II B族10个纵行的元素都是金属元素⑤沸点: NH3<PH3<AsH3⑥NaCl和HCl溶于水破坏相同的作用力⑦因为常温下白磷可燃,而氮气须在放电时才与氧气反应,所以非金属性:P>NA.②④⑥B.③⑤⑥⑦C.②④⑥⑦D.⑤⑥⑦答案:B解析:①离子化合物中一定有离子键,可能有共价键,如氢氧化钠是离子化合物,含有离子键和共价键,故①正确;②离子半径越小、离子电荷越大,金属键越强,金属晶体的熔点越高;离子所带电荷Al3+>K+=Na+,离子半径:Al3+<K+<Na+,故金属性Al>Na>K,则熔点: Al>Na>K,故②正确;③第ⅠA. ⅡA族元素金属原子失去最外层电子形成阳离子,与上周期稀有气体元素的原子具有相同的核外电子排布,故③错误;④元素周期表中从ⅢB族到ⅡB族10个纵行的元素为过渡元素,过渡元素都是金属元素,故④正确;⑤均形成分子晶体,氨气分子之间形成氢键,沸点最高,AsH3的相对分子质量比PH3的大,AsH3分子间作用力更强,AsH3的沸点高于PH3的,故沸点:PH3<AsH3<NH3,故⑤错误;⑥NaCl是离子化合物,溶于水破坏的是离子键,HCl是共价化合物,溶于水破坏的是共价键,二者溶于水破坏的作用力不相同,故⑥错误⑦同主族自上而下非金属性减弱,非金属性:N>P,故⑦错误;上述说法错误的有③⑤⑥⑦,故答案选B。

配合物结构-晶体分子

配合物结构-晶体分子

14000
13600
[MoCl6]319200
● 配位体的影响:光谱化学序列 (ectrochemical series)
o /cm-1
[CoF6]313000
[Co(H2O)6]3+ [Co(NH3)6]3+ [Co(CN)6]3-
18600
22900
34000
各种配பைடு நூலகம்对同一M产生的晶体场分裂能的值由小到大的顺序:
Et2=1.78Dq,
Ee=-2.67Dq
E = 12.28 Dq
d x 2 y2
d E = 6 Dq

E = 1.78 Dq

d
E = 0 Dq
= 4.45 Dq
= 10 Dq
d
E = -2.67 Dq
E = -4 Dq
四面体场
d
八面体场
E = 2.28 Dq d xy s = 17.42Dq
dx2-y2 极大值指向面心
dxy
c
极大值指向棱的中点
x y
d 轨道在四面体场中的能级分裂
能级计算:
Es
1.78Dq 2.67Dq
t2 (dxy, dyz, dxz)
t=
4
9
10Dq
e(dx2-y2, dz2)
自由离子 球形场 四面体场
配体相同,中心离子与配体距离相同时,分裂 能Δt=4/9Δo
μ 0
4d
Ag
4d
[Ag(NH 3 ) 2 ]
5s
5p
sp 5p
[
]
NH3 NH3
四 配
1s Be 2
位 的
1s [BeX 4 ]2

1215高二【化学(人教版)】晶体结构与性质复习(第一课时)-课件

1215高二【化学(人教版)】晶体结构与性质复习(第一课时)-课件

多形成2 mol“氢键”
冰晶体结构
高中化学
冰晶体结构
高中化学
冰晶体结构
高中化学
高中化学
共价晶体
概念 晶体粒子
粒子间 相互作用
物理性质 典型实例
原子间以共价键结合而成的晶体 原子 共价键
金刚 石
熔点高、硬度大
每个C与周围紧邻的4个C结合; 晶体中最小C环由6个C构成
SiO2
α-SiO2 有顶角相连的硅
共价晶体 金属晶体 离子晶体

配合物

配位化合物
超分子 超分子的特征
高中化学
内容结构
晶体的特征 自范性
晶胞
晶 体 晶体结构的测定
分子晶体
晶 体 结 构 与
四类典型晶体 过渡和混合型晶体 配位键
共价晶体 金属晶体 离子晶体

配合物

配位化合物
超分子 超分子的特征
高中化学
内容结构
晶体的特征 自范性
晶胞
高中化学
实例分析
例2.钡在氧气中燃烧时得到一种钡的氧化物晶体,结构如图所示, 有关说法不正确的是
A.该晶体属于离子晶体 B.该晶体的化学式为Ba2O2 C.该晶体晶胞结构与NaCl相似 D.与每个Ba2+距离相等且最近的Ba2+共有12个
高中化学
实例分析
例2.钡在氧气中燃烧时得到一种钡的氧化物晶体,结构如图所示,
实例分析
例1.如图所示是从NaCl或CsCl晶体结构中分割出来的部分结构图, 其中属于从NaCl晶体中分割出来的结构图是
A.(1)和(3) C.(1)和(4)
B.(2)和(3) D.只有(4)
高中化学
实例分析

高二化学晶体结构与性质(配合物与超分子)

高二化学晶体结构与性质(配合物与超分子)

[解析] (1)[Zn(NH3)4]Cl2 中[Zn(NH3)4]2+与 Cl-形成离子键,而 1 个 [Zn(NH3)4]2+中含有 4 个 N→Zn 键(配位键)和 12 个 N—H 键,共 16 个 σ 键, 故 1 mol 该配合物中含有 16 mol σ 键,即 16NA。
(2)Zn2+的配位原子个数是 4,所以其配位数是 4,故 A 错误;该配合物 中氮原子提供孤电子对,所以 NH3 是配体,故 B 错误;[Zn(NH3)4]Cl2 中外 界是 Cl-,内界是[Zn(NH3)4]2+,故 C 正确;该配合物中,锌离子提供空轨道, 氮原子提供孤电子对,所以 Zn2+和 NH3 以配位键结合,属于特殊共价键, 不属于离子键,故 D 错误。
(2)配合物的形成
实验操作
实验现象
有关离子方程式
滴加氨水后,试管中首
先出现蓝色沉淀,氨水 过量后沉淀逐渐溶解, Cu2++2NH3·H2O===Cu(OH)2↓
+2NH+ 4 、Cu(OH)2+4NH3===
滴加乙醇后析出深蓝 [Cu(NH3)4]2++2OH-
色晶体
[Cu(NH3)4]SO4·H2O
A.Ag+、NH3
B.H2O、H+
C.Co3+、CO
D.Ag+、H+
D [配位键的形成条件必须是一方能提供孤电子对,另一方能 提供空轨道,A、B、C 三项中,Ag+、H+、Co3+能提供空轨道,NH3、 H2O、CO 能提供孤电子对,所以能形成配位键,而 D 项 Ag+与 H+ 都只能提供空轨道,而无法提供孤电子对,所以不能形成配位键。]
第三章 晶体结构与性质 第四节 配合物与超分子
一、配合物 1.配位键 (1)概念:成键原子一方提供 孤电子对,另一方提供空轨道 形成 的共价键。

第三章晶体结构及配位化学

第三章晶体结构及配位化学

第三章:晶体结构及配位化学1.配合物的组成(1)配位体:是含有孤电子对的分子或离子,如NH 3、Cl -、CN -等。

配位体中直接同中心原子配合的原子,叫做配位原子。

如上例[Cu(NH 3)4]2+配离子中,NH 3是配位体,其中N 原于是配位原子。

配位原子经常是含有孤对电子的原子。

(2)中心离子(或原子):一般是金属离子,特别是过渡金属离子,但也有电中性的原子为配合物的中心原子,如Ni(CO)4、Fe(CO)5中的Ni 和Fe 都是电中性的原子。

此外,少数高氧化态的非金属元素也能作为中心原子存在,如SiF 62-中的Si(Ⅳ)及PF 6-中的P(V)等。

(3)配位数:直接同中心离子(或原子)配合的配位原子的数目,叫做该中心离子(或原子)的配位数,一般中心离子的配位数为2、4、6、8(较少见),如在[Pt(NH 3)6]C14中,配位数为6,配位原子为NH 3分子中的6个氮原子。

(4)配离子的电荷:配离子的电荷数等于中心离子和配位体电荷的代数和。

如[Cu(NH 3)4]2+的电荷是+2+(0)×4=+2。

2.配合物的分类配位化合物的范围极广,主要可以分为以下几类:(1)单核配合物 这类配合物是指一个中心离子或原子的周围排列着一定数量的配位体。

中心离子或原子与配位体之间通过配位键而形成带有电荷的配离子或中性配合分子。

如[Cu(NH 3)4]SO 4、K 4[Fe(CN)6]等皆属于此类配合物。

(2)螯合物 这类配合物是由多齿配位体以两个或两个以上的配位原子同时和一个中心离子配合并形成具有环状结构的配合物。

例如乙二胺H 2N-CH 2-CH 2-NH 2和Cu 2+形成的如下螯合物:3.配合物的命名配合物的命名与一般无机化合物的命名原则相同。

若配合物的外界是一简单离子的酸根,便叫某化某;若外界酸根是一个复杂阴离子,便叫某酸某(反之,若外界为简单阳离子,内界为配阴离子的配合物也类似这样叫法)。

第五章第四节晶体结构与性质考点(一)晶体常识晶体结构模型课件新高考化学一轮复习

第五章第四节晶体结构与性质考点(一)晶体常识晶体结构模型课件新高考化学一轮复习

() () () () ()
2.关于晶体的自范性,下列叙述中,正确的是
()
A.破损的晶体能够在固态时自动变成规则的多面体
B.缺角的氯化钠晶体在饱和 NaCl 溶液中慢慢变为完美的立方体块
C.圆形容器中结出的冰是圆形的,体现了晶体的自范性 D.由玻璃制成规则的玻璃球体现了晶体的自范性
答案:B
3. 在高温超导领域中,有一种化合物叫钙钛矿,其晶胞如图 所示。试回答: (1)在该晶体中每个钛离子周围与它最近且相等距离的钛离 子有______个。 (2)在该晶胞中氧、钙、钛的粒子个数比是________。
4.共价晶体——金刚石与 SiO2
(1)金刚石晶体 ①金刚石晶体中,每个 C 与另外 4 个 C 形成共价键,碳原子采取sp3杂化,C—C—C 夹角是 109°28′,最小的环是 6 元环。每个 C 被 12 个六元环共用。含有 1 mol C 的金刚石中形成的 C—C 有 2 mol。
1 ②在金刚石的晶胞中,内部的 C 在晶胞的体对角线的 4 处。每个晶胞含有 8 个 C。
4×78 (4)0.545×10-73NA
8.(2020·全国卷Ⅰ·节选)LiFePO4 的晶胞结构示意图如(a)所示。其中 O 围绕 Fe 和 P 分别形成正八面体和正四面体,它们通过共顶点、共棱形成空间链 结构。每个晶胞中含有 LiFePO4 的单元数有________个。
解析: D 选项,NaCl 晶体中 Cl-配位数为 6,晶体中每个 Cl-周围有 6 个 Na+,D 错误。 答案:D
6.温度升高时,NaCl 晶体出现缺陷(如图 1 所示,某一个顶点没有 Na+,出 现空位),晶体的导电性大大增强。该晶体导电时,Na+在电场作用下迁移 到空位上形成电流。迁移的途径有两条(如图 1 中箭头所示)。

化学选修3晶体结构练习题

化学选修3晶体结构练习题

化学选修三《晶体结构》练习题1.纳米材料的表面粒子数占总粒子数的比例极大,这是它具有许多特殊性质的原因。

假设某氯化钠纳米颗粒的大小和形状恰好与氯化钠晶胞的大小和形状(如图所示)相同。

则这种纳米颗粒的表面粒子数占总粒子数的百分数为( )A.87.5% B.92.9% C.96.3%ﻩ D.100%2.下列关于晶体的说法中,不正确的是( )①晶体中粒子呈周期性有序排列,有自范性;而非晶体中原子排列相对无序,无自范性;②含有金属阳离子的晶体一定是离子晶体;③共价键可决定分子晶体的熔、沸点;④MgO和NaCl两种晶体中,MgO的晶格能较小,所以其熔点比较低⑤晶胞是晶体结构的基本单元,晶体内部的微粒按一定规律作周期性重复排列;⑥晶体尽可能采取紧密堆积方式,以使其变得比较稳定;⑦干冰晶体中,一个CO2分子周围有12个CO2分子紧邻;CsCl和NaCl晶体中阴、阳离子的配位数不同A.①②③ﻩB.②③⑦ﻩ C.④⑤⑥ﻩﻩ D.②③④3.下面有关晶体的叙述中,错误的是( )A.金刚石网状结构中,碳原子和共价键的个数比为1:2B.氯化钠晶体中,每个Na+周围紧邻且等距离的Cl-构成的空间结构为立方体C.氯化铯晶体中,每个Cs+周围紧邻6个Cs+D.干冰晶体中,每个CO2分子周围紧邻12个CO2分子4.金属晶体、离子晶体、分子晶体和原子晶体的根本区别是( )A.基本构成微粒和微粒间的作用力不同 B.外部形状不同C.金属晶体和原子晶体属于单质,分子晶体和离子晶体属于化合物D.基本构成微粒做周期性重复排列所遵循的规律不同5.下列四种晶体,它们的熔点按由低到高的顺序排列正确的是( )①金刚石②氯化钠③干冰ﻩ④钠A.④②③①ﻩ B.③①②④ C.④②①③ D.③④②①6.最近科学家成功制成了一种新型的碳氧化合物,该化合物晶体中每个碳原子均以四个共价单键与氧原子结合为一种空间网状的无限伸展结构,下列对该晶体叙述错误的是( )A.该晶体类型是原子晶体 B.该晶体中碳原子和氧原子的个数比为1∶2 C.晶体中碳原子数与C—O化学键数之比为1∶4 D.晶体的空间最小环共有6个原子构成7.下列叙述错误的是 ( )(1)所有的碱性氧化物都是金属氧化物(2)H2S水溶液是弱酸,HCl水溶液是强酸,可以验证硫元素的非金属性比氯元素弱(3)H2O、H2S、H2Se的相对分子质量增大,所以熔沸点依次升高(4)液态氟化氢中存在氢键,所以其分子比氯化氢更稳定(5)都是由非金属元素形成的化合物只能是共价化合物A.全部 B.(1)(2)(3)(4) C.(1)(2)(3)(5)D.(2)(3)(4)(5)8.下面有关晶体的叙述中,不正确...的是( )A.氯化钠晶体中,每个Na+周围紧邻6个Cl-B.氯化铯晶体中,每个CS+周围紧邻8个Cl-C.氟化钙晶胞中,每个F-周围紧邻8个Ca2+、每个Ca2+周围紧邻8个F-D.干冰晶体中,每个CO2分子周围紧邻12个CO2分子9.宇航员在升空、返回或遇到紧急情况时,必须穿上10公斤重的舱内航天服,神舟系列宇航员所穿舱内航天服是我国科学家近年来研制的新型“连续纤维增韧”航空材料做成,其主要成分是由碳化硅(SiC)、陶瓷和碳纤维复合而成,下列相关叙述错误是( )A.它耐高温 B.它没有固定熔点C.它是由多种材料组成的复合材料 D.它是一种新型有机材料10.下列性质比较中不正确...的是()A.沸点的高低: B.熔点:SiO2>CsCl>CBr4>CF4C.硬度:镁>铝>镁铝合金D. 水溶性:HF>Br211.以下几种物质:①白磷、②单晶硅、③甲烷、④四氯化碳,具有正四面体构型的分子的是( )A.①②③ﻩB.①③④ C.②③④ﻩD.①②③④12.正硼酸(H3BO3)是一种层状结构的白色晶体,层内的H3BO3分子通过氢键相连(如图)。

知识点1 配合物的组成及命名

知识点1 配合物的组成及命名

第三章配合物结构主要内容:1.配合物价键理论的基本要点、配合物的几何构型与中心离子杂化轨道的关系。

2.内轨型、外轨型配合物的概念;中心离子价电子排布与配离子稳定性、磁性的关系。

3.配合物晶体场理论的基本要点;高自旋、低自旋配合物等;推测配合物的稳定性、磁性。

4.配合物的颜色与 d-d 跃迁的关系。

配合物的组成配合物:是由中心离子(或原子)与一定数目的阴离子或中性分子形成具有一定的空间构型和稳定性的复杂化合物。

例如: [Ag(NH3)2]OH, [Cu(NH3)4]SO4,Ni(CO)41.中心离子(或原子)中心离子(或原子)也称为形成体,具有空的价电子轨道,通常是金属离子和原子,也有少数是非金属元素。

例如:Cu2+,Ag+,Fe3+,Fe,Ni,BⅢ,PⅤ……配位体简称配体,通常是非金属的阴离子或分子,例如:F-,Cl-,Br-,I-,OH-,CN-,H2O,NH3,CO……2.配位体和配位原子单齿配体:配体中只有一个配位原子。

多齿配体:具有两个或多个配位原子的配体。

例如:乙二胺(en ) 2 2 2 2H N CH CH N H ∙∙∙∙乙二酸根(草酸根) -242O C 乙二胺四乙酸根 EDTA (Y 4-)配位原子:与形成体成键的原子。

配位数:配位原子数单齿配体:形成体的配位数等于配体的数目;多齿配体:形成体的配位数等于配体的数目与基数的乘积。

3. 中心离子(或原子)的配位数[] Cu(en)22+Cu 2+的配位数等于4。

例如:CH N H NH C H CuCH N H NH C H 2222222 22+Ca2+的配位数为6,配位原子分别是4个O,2个N。

从溶液中析出配合物时,配离子常与带有相反电荷的其他离子结合成盐,这类盐称为配盐。

配盐的组成可以划分为内层和外层。

配离子属于内层,配离子以外的其他离子属于外层。

外层离子所带电荷总数等于配离子的电荷数。

配合物的化学式和命名配酸:×××酸配碱:氢氧化×××配盐:先阴离子后阳离子,简单酸根加“化”字,复杂酸根加“酸”字。

人教版高中化学选择性必修二第3章晶体结构与性质第4节配合物与超分子练习含答案

人教版高中化学选择性必修二第3章晶体结构与性质第4节配合物与超分子练习含答案

第四节配合物与超分子课后·训练提升基础巩固1.配位化合物[Cu(NH3)4]SO4中,不含有的化学键是()。

A.离子键B.极性键D.配位键[Cu(NH3)4]SO4中含有配离子[Cu(NH3)4]2+和S O42-之间的离子键,NH3和S O42-中都有极性键,Cu2+和NH3之间以配位键结合,不含非极性键。

2.许多过渡金属离子对多种配位体有很强的结合力,能形成种类繁多的配合物。

下列说法不正确的是()。

A.向配合物[TiCl(H2O)5]Cl2·H2O溶液中加入足量的AgNO3溶液,所有的Cl-均被完全沉淀B.配合物Ni(CO)4常温下呈液态,易溶于CCl4、苯等有机溶剂,则固态Ni(CO)4属于分子晶体C.配合物[Cu(NH3)4]SO4·H2O的配位体为NH3,配位数为4D.配合物[Ag(NH3)2]OH在水溶液中电离出的)2]+具有氧化性3项,加入足量的AgNO3溶液,外界Cl-与Ag+反应形成AgCl沉淀,内界配体Cl-与Ag+不能反应,错误;B项,配合物Ni(CO)4常温下呈液态,易溶于CCl4、苯等有机溶剂,根据“相似相溶”规律可知,固态Ni(CO)4属于分子晶体,正确;C项,配合物[Cu(NH3)4]SO4·H2O的配体为NH3,配位数为4,正确;D项,配合物[Ag(NH3)2]OH在水溶液中电离出的[Ag(NH3)2]+能氧化—CHO,具有氧化性,正确。

3.冠醚是皇冠状的分子,可有不同大小的空穴适配不同大小的碱金属离子。

18-冠-6与钾离子形成的超分子结构如图所示。

下列说法正确的是()。

A.含该超分子的物质其晶体类型属于分子晶体B.冠醚可用于识别不同的碱金属离子C.中心碱金属离子的配位数是不变的,该物质是离子晶体,不是分子晶体,故A项错误;有不同大小的空穴适配不同大小的碱金属离子,可用于识别不同的碱金属离子,故B项正确;中心碱金属离子的配位数是随着空穴大小不同而改变的,故C项错误;冠醚与碱金属离子之间的配位键属于共价键,不是离子键,故D项错误。

配合物习题1

配合物习题1

Cl H2O H2O Ru Cl B OH2 + OH2 H2O H2O
OH2 Ru OH2 A Cl Cl + H2O H2O
Cl Cl H2O Ru Cl H2O OH2 C
Cl Ru Cl D OH2 Cl
2011全国初赛试题
重键,更有利于结构的稳定,而交叉式不能

[Re2Cl8]2-的结构图
(Re2Cl8)2-
含金属-金属多重键的双核卤素簇中,最 典型的实例是[Re2Cl8]2-。该离子具有两个重要 特点:①Re-Re键特别短,约224pm,而在金 属铼中Re-Re键长为271.4pm;②两组氯原子 为重叠型,这种排列使Re-Cl键处于排斥最大 的位置,从能量上讲显然不利,但Re-Re键的 缩短使金属-金属键增强。Re的dx2-y2轨道用来 同Cl形成金属-配体σ键,dx2-y2与s、px、py轨 道杂化,产生四条dsp2杂化轨道,用来接受四 个Cl-配体的孤对电子,形成四条正常的σ键。 其余的d轨道相互重叠形成Re-Re金属键,分 别为一个σ键,两个π键,一个δ键。
b=1/2(18×4 -60)=6
即四个Co原子形成六个金属键轨道,几何构型应为四面体骨架。
g=6×9+15×2+4+2=90
价电子总数包括六个Rh的价电子,15个羧基提供的电子, Rh6骨架中C的四个价电子和簇合物带的二价负电荷,总计 为90个电子
b=1/2(18×6 -90)=9
六个Rh之间形成九个金属键,该金属簇合物的骨架结构 为三棱柱。
配合物部分习题
赵波 南京师范大学
(1)判断结构 V2(CO)12、 Ir4(CO)12、Re4(CO)162- 、
Ni(CO)4(C5H5)2(羰基成桥)、 [H3Re3(CO)10]2Os4(CO)16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

117晶体结构一、基本概念(The Basic Concepts ): 1.晶体(Crystals ):(1)物质的质点(分子、离子或原子)在空间有规则地排列而成的、具有整齐外形的、以多面体出现的固体物质,称为晶体。

(2) 晶体有同质多象性 由同样的分子(或原子)可以以不同的方式堆积成不同的晶体,这种现象叫做同质多象性。

但同一种物质的气态、液态只存在一种结构。

(3) 晶体的几何度量和物理效应常随方向不同而表现出量上的差异,这种性质称为各向异性。

2.晶格(Crystal lattices )(1) 以确定位置的点在空间作有规则的排列所具有一定的几何形状,称为晶体格子,简称为晶格。

Fig. 8.10 The 14 Bravais unit cells3.晶胞(Unit cells )(1) 在晶格中,含有晶体结构,具有代表性的最小单元,称为单元晶胞,简称晶胞。

(2) 在晶胞中的各结点上的内容必须相同。

(3) 晶胞参数 晶胞参数:a、b、c、α、β、γ (4) 分数坐标 用来表示晶胞中质点的位置例如: 简单立方 立方体心 立方面心(0, 0, 0) , (0, 0, 0), (21,21,21) (0, 0, 0) (21,21,0), (21,0,21), (0,21,21) αβγbc a118在分数坐标中,绝对不能出现1,因为1即0。

这说明晶胞是可以前后、左右、上下平移的。

等价点只需要一个坐标来表示即可,上述三个晶胞中所含的质点分别为1、2、4,所以分数坐标分别为1组、2组和4组。

(5) 晶面指数 晶面在三维空间坐标上的截距的倒数(h 、k 、l )来表示晶体中的晶面,称为晶面指数,如立方晶系中(100),(110),(111)面分别为(100) (110)(111)lFig. 8.12 Selected planes and their Miller indices for cubic system用X-ray 的衍射可以测量晶体中的面间距,2d ·sin θ = n ·λ。

d -晶体的面间距,θ-衍射角,n -衍射级数,λ-X-ray 的波长。

对于立方晶系,面间距(d )晶胞参数(a )之间的关系式:222l k,h,/l k h a d ++=4.根据晶体中质点内容的不同,晶体可分类成:金属晶体(metallic crystals )、离子晶体(ionic crystals)、原子晶体(atomic crystals)、分子晶体(molecular crystals)、混合晶体(mixture crystals) 二、金属键与金属晶体(Metallic Bond and Metallic Crystals ) 1.金属键理论(Metallic bond ) (1) 改性的共价键理论(2) 能带理论(band theory )(以分子轨道理论为基础)(a) 能带理论的基本要点(i) 按照分子轨道理论,把整个金属晶体看作一个大分子,把金属中能级相同的原子轨道线性组合(原子轨道重叠)起来,成为整个金属晶体共有的若干分子轨道,合称为能带(energy band),即金属晶体中的n 个原子中的每一种能量相等的原子轨道重叠所形成的n 个分子轨道,称为一个能带;Fig. 8.15 Bands of molecular orbitals in a metal crystal.Fig 8.14 Arrangement of atoms in a lithium crystal119Fig. 8.16 The partially filled band of “molecular orbitals ” in a metal. (Left) The highest filled level is referred to as the Fermi level. (Right) The electrons are freer to move in the now partially filled levels, this property accounts for the electrical conductivity of metals.Fig. 8.17 Band theory applied to semiconductors and insulators. In contrast to metals, the band of filled levels (the valence band) is separated from the band of empty levels (the conduction band) by a band gap. The band gap canrange from just a few kJ ·mol -1 to 500 kJ ·mol -1or more.(ii) 按照分子轨道法,金属晶体中的多原子形成多原子离域键,n 个原子轨道线性组合成n 个分子轨道,其中有n /2个成键分子轨道,有n /2个反键分子轨道(图8.15);(iii) 由n 个相同的充满电子的原子轨道重叠所形成的能带,称为满带(filled band );由n 个相同的未充满电子的原子轨道重叠所形成的高能量能带,称为导带(conduction band ),能带与能带之间的间隔是电子不能存在的区域,称为禁带(forbidden band )。

凡无电子的原子轨道重叠所形成的能带,称为空带(empty bond );凡价电子所在的能带,称为价带(valence band )。

满带与空带相互重叠,会使满带变成导带(conduction bond )(图8.16,8.17)。

(b) 能带理论的应用(i) 可以区别导体、绝缘体和半导体 −− 决定于禁带宽度(E g )。

E g ≤0.3eV 的物质属于导体,0.3eV <E g ≤3eV 的物质属于半导体,E g ≥5eV 的物质属于绝缘体。

(ii) 可以说明金属的导电性随电性随温度的升高而降低。

这是因为温度升高,金属中的原子或离子振动加剧,电子在导带中跃迁受到的阻力加大的缘故。

(iii) 可以解释金属具有光泽。

这是由于金属中的价电子可吸收波长范围很广的光子射线而跳到较高能级,当跳回到较低能级时又可将吸收的光子发射出来的缘故。

2.金属晶体(Metallic crystals ):(1) 金属晶体是以紧密堆积方式排列,此种排列方式的势能低,晶体较稳定,而且空间利用率大。

空间利用率 = 晶胞中球所占的体积 / 晶胞的体积(2) 平面密堆积(密置单层)把金属原子看作等径的圆球,按右图方式堆积,此种堆积称为密置单层(图8.18)。

在密置单层中,球数︰三角形空穴数=1︰2。

证明:在ABCD 中,球数=4×(1/4),三角形空穴数=2,故证得。

另证:在正六边形中,三角形空穴数=6,球数=6 × (1/3) + 1=3, ∴球数︰三角形空穴数=3︰6=1︰2Fig. 8.18 Closest-packing of spheres of one layer. Fig. 8.19 Closest-packing of spheres of two layers.(3) 密置双层:第二密置层的球必须排在第一密置层的三角形空穴上(图8.19)。

a .密置双层中的空隙种类:(i) 正四面体空隙 第一层的三个相切的球与第二层在其三角形空穴上的一个球组成(图8.20);(ii) 正八面体空隙 第一层的三个相切的球与第二层的三个相切的球,但上、下球组成的两个三角形方向必须相反(图8.21)。

120Fig. 8.20 Tetrahedral holes are surrounded Fig. 8.21 Octahedral holes in a closest packed structureby four atoms arranged toward are surrounded by six atoms arranged towardthe corners of a tetrahedron the corners of an octahedron b .证明:球数︰正四面体空隙︰正八面体空隙 = 2︰2︰1上下两层各取四个球(图8.22),其中有两个正四面体空隙(5-1、2、3;4-6、7、8),一个正八面体空隙(3-5、2、平行四边形的贡献4、7-6),球数为4 × (1/4) + 4 × (1/4) = 2(因为平行四边形顶点上的球对为1/4,即每个顶点上的球为四个平行四边形共享)故证得。

(4) 在密置双层上加第三层、第四层……(立体结构)a .第一种密置方法:第三层与第一层(A 层)平行,第四层与第二层(B 层)平行,形成ABABAB ……型(图8.23),称为透光型(或A 3型)的六方最紧密堆积 (hcp ,hexagonal closest packing )。

(i) 晶胞:六方晶胞如图8.23中的实线部分 (ii) 晶胞参数:a , c(iii) 球数︰正四面体空隙︰正八面体空隙 = 1︰2︰1Fig. 8.23 Hexagonal closest packing (ABAB ……)证明(两种方法)方法一:A 层与B 层构成密置双层,所以球数︰正四面体空隙︰正八面体空隙 = 2︰2︰1,而B 层与下一个A 层又构成密置双层,所以球数︰正四面体空隙︰正八面体空隙 = 2︰2︰1,即每一层都用了两次或者说每层球对密置双层的贡献为1/2,球数减半,所以,球数︰正四面体空隙︰正八面体空隙 = 1︰2︰1。

方法二:在六方晶胞中,球数 = 8 × (1/8) + 1 = 1 + 1 = 2;晶胞内有两个正四面体空隙,c 轴的每条棱上都有2个正四面体空隙(图8.24),所以正四面体空隙 = 2 + 8 × (1/4) = 2 + 2 = 4;正八面体空隙 = 2(图8.25),故球数︰正四面体空隙︰正八面体空隙= 2︰4︰2 = 1︰2︰1。

Fig. 8.24 The site of tetrahedral holes in A 3 type Fig. 8.25 The site of octahedral holes in A 3 typeb .第二种密置方法:第三层(C 层)不与第一层平行,而是盖在一、二两层未复盖的另一组三角形空穴上(图8.26),第四层与第一层平行,组成ABCABCABC ……型,称为不透光型(或A 1型)的立方面心最紧密堆积(ccp )。

相关文档
最新文档