运用SPSS建立多元线性回归模型并进行检验_-_副本[1]

合集下载

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表Variables Entered/Removed aModel Variables Entered Variables Removed Method1 城市人口密度(人/平方公里) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).2 城市居民人均可支配收入(元) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。

SPSS多元线性回归分析

SPSS多元线性回归分析

SPSS多元线性回归分析[转载]SPSS19.0实战之多元线性回归分析(2016-08-12 20:31:47)[删除]转载▼标签:转载原文地址:SPSS19.0实战之多元线性回归分析作者:建模手线性回归数据(全国各地区能源消耗量与产量)来源,可点击协会博客数据挖掘栏:国泰安数据服务中心的经济研究数据库。

1.1 数据预处理数据预处理包括的内容非常广泛,包括数据清理和描述性数据汇总,数据集成和变换,数据归约,数据离散化等。

本次实习主要涉及的数据预处理只包括数据清理和描述性数据汇总。

一般意义的数据预处理包括缺失值填写和噪声数据的处理。

于此我们只对数据做缺失值填充,但是依然将其统称数据清理。

1.1.1 数据导入与定义单击“打开数据文档”,将xls格式的全国各地区能源消耗量与产量的数据导入SPSS中,如图1-1所示。

图1-1 导入数据导入过程中,各个字段的值都被转化为字符串型(String),我们需要手动将相应的字段转回数值型。

单击菜单栏的“”-->“”将所选的变量改为数值型。

如图1-2所示:图1-2 定义变量数据类型1.1.2 数据清理数据清理包括缺失值的填写和还需要使用SPSS分析工具来检查各个变量的数据完整性。

单击“”-->“”,将检查所输入的数据的缺失值个数以及百分比等。

如图1-3所示:图1-4 描述性数据汇总得到如表1-2所示的描述性数据汇总。

N极小值极大值均值标准差方差能源消费总量30911261649638.506175.92438142034.412煤炭消费量30332290019728.997472.25955834651.378焦炭消费量30195461874.611053.0081108824.853原油消费量30055551099.011273.2651621202.562汽油消费量3018771230.05170.27028991.746煤油消费量30026242.3764.8964211.520柴油消费量30271368392.34300.97990588.441燃料油消费量3001574141.00313.46798261.261天然气消费量30110619.5622.044485.947电力消费量30983004949.64711.664506464.953原煤产量300581427909.1711741.388 1.379E8焦炭产量3009202992.281707.9982917256.193原油产量2904341637.121085.3791178048.432燃料油产量30049775.60126.79116075.971汽油产量3001032186.49208.77143585.122煤油产量30021932.3055.3943068.535柴油产量3001911388.52420.216176581.285天然气产量30016419.5242.3711795.341电力产量30972536954.74675.230455935.003有效的N (列表状态)29表1-2 描述性数据汇总标准化后得到的数据值,以下的回归分析将使用标准化数据。

运用SPSS做多元回归分析

运用SPSS做多元回归分析

结果二:方差分析表
• 表中显著度(Sig)<0.001,表明整个方程是显著的,也 就是说自变量与因变量之间具有显著的线性关系。 • 但这并不意味着每个自变量与因变量都具有显著的线性关 系,具体的结论还需要看后面对每个自变量的回归系数的 检验结果。
结果三:回归系数表
• 表中B栏的非标准化回归系数表明:
FOR EXAMPLE
一个变量的变化直接与另一组变量的变化有关:
人的体重与身高、胸围 血压值与年龄、性别、劳动强度、饮食习惯、吸烟 状况、家族史 糖尿病人的血糖与胰岛素、糖化血红蛋白、血清总 胆固醇、甘油三脂
多元回归分析数据格式
编号 1 2 ┇ i ┇ n
X1
X 11
X2
X 12
┅ ┅ ┅ ┇ ┅ ┇ ┅
多元回归模型必须满足的假定条件
1. 2.
因变量是连续随机变量; 自变量是固定数值型变量,且相互独立;
3.
4. 5. 6.
每一个自变量与因变量呈线性关系;
每一个自变量与随机误差相互独立; 观察个体的随机误差之间相互独立; 残差是随机变量,均值为零。
不良贷款(亿元)各项贷款余额(亿元)本年累计应收贷款(亿元)贷款项目个数(个) 本年固定资产投资额(亿元) 0.9 67.3 6.8 5 51.9 1.1 111.3 19.8 16 90.9 4.8 173 7.7 17 73.7 3.2 80.8 7.2 10 14.5 7.8 199.7 16.5 19 63.2 12.5 185.4 27.1 18 43.8 1 96.1 1.7 10 55.9 2.6 72.8 9.1 14 64.3 0.3 64.2 2.1 11 42.7 4 132.2 11.2 23 76.7 0.8 58.6 6 14 22.8 3.5 174.6 12.7 26 117.1 10.2 263.5 15.6 34 146.7 0.2 14.8 0.6 2 42.1 0.4 73.5 5.9 11 25.3 1 24.7 5 4 13.4 6.8 139.4 7.2 28 64.3 11.6 368.2 16.8 32 163.9 1.6 95.7 3.8 10 44.5 1.2 109.6 10.3 14 67.9 7.2 196.2 15.8 16 39.7

【精品】SPSS统计实验报告多元线性回归分析

【精品】SPSS统计实验报告多元线性回归分析

【精品】SPSS统计实验报告多元线性回归分析
本文旨在通过多元线性回归分析,深入研究X、Y、Z三个变量之间的关系,以探究这三个变量对结果的影响。

本实验中样本数量为100人,本文采用SPSS22.0计算软件进行多元线性回归分析,统计计算结果如下:
(一)检验变量X、Y、Z三个变量是否有关:
Sig.=.633。

结果显示,该值大于0.05,表明X、Y、Z三者之间没有显著统计关系;
(二)确定拟合模型:
以X、Y、Z三个变量回归拟合,得出模型为:y=1.746+0.660X+0.783Y+0.430Z。

(三)检验回归模型的有效性:
1. 回归系数的统计量检验
模型的R方为.668,该值表明,X、Y、Z三个自变量可以解释本回归模型的67.0%的变化量;
2.F检验
结果显示,f分数为20.670,Sig.=.000,结果显示,f分数小于阈值0.05,因此可以接受回归模型;
检验结果显示,当其他X、Y、Z三个自变量的条件不变的情况下,X、Y、Z三个自变量对Y的影响是有显著性的。

综上所述,本文使用SPSS22.0计算软件进行多元线性回归分析,探究X、Y、Z三个变量之间的关系。

结果显示,X、Y、Z三者之间没有显著统计关系;拟合模型为:
y=1.746+0.660X+0.783Y+0.430Z;最后,证实X、Y、Z三个自变量对Y的影响是有显著性的。

运用SPSS建立多元线性回归模型并进行检验副本

运用SPSS建立多元线性回归模型并进行检验副本

运用S P S S建立多元线性回归模型并进行检验副本集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#计量经济学实验报告一.实验目的:1、学习和掌握用SPSS做变量间的相关系数矩阵;2、掌握运用SPSS做多元线性回归的估计;3、用残差分析检验是否存在异常值和强影响值4、看懂SPSS估计的多元线性回归方程结果;5、掌握逐步回归操作;6、掌握如何估计标准化回归方程7、根据输出结果书写方程、进行模型检验、解释系数意义和预测;二.实验步骤:1、根据所研究的问题提出因变量和自变量,搜集数据。

2、绘制散点图和样本相关阵,观察自变量和因变量间的大致关系。

3、如果为线性关系,则建立多元线性回归方程并估计方程。

4、运用残差分析检验是否存在异常值点和强影响值点。

5、通过t检验进行逐步回归。

6、根据spss输出结果写出方程,对方程进行检验(拟合优度检验、F检验和t检验)。

7、输出标准化回归结果,写出标准化回归方程。

8、如果通过检验,解释方程并应用(预测)。

三.实验要求:研究货运总量y与工业总产值x1,农业总产值x2,居民非商品支出x3,之间的关系。

详细数据见表:(1)计算出y,x1,x2,x3的相关系数矩阵。

(2)求y关于x1,x2,x3的三元线性回归方程(3)做残差分析看是否存在异常值。

(4)对所求方程拟合优度检验。

(5)对回归方程进行显着性检验。

(6)对每一个回归系数做显着性检验。

(7)如果有的回归系数没有通过显着性检验,将其剔除,重新建立回归方程,在做方程的显着性检验和回归系数的显着性检验。

(8)求标准化回归方程。

(9)求当x1=75,x2=42,x3=时y。

并给出置性水平为99%的近似预测区间。

(10)结合回归方程对问题进行一些基本分析。

四.绘制散点图或样本相关阵相关性货运总量工业总产值农业总产值居民非商品支出货运总量Pearson 相关性 1 .556 .731*.724*显着性(双侧).095 .016 .018 N 10 10 10 10工业总产值Pearson 相关性.556 1 .155 .444 显着性(双侧).095 .650 .171 N 10 11 11 11农业总产值Pearson 相关性.731*.155 1 .562 显着性(双侧).016 .650 .072 N 10 11 11 11居民非商品支出Pearson 相关性.724*.444 .562 1 显着性(双侧).018 .171 .072N 10 11 11 11*. 在水平(双侧)上显着相关。

SPSS多元线性回归

SPSS多元线性回归

如何用SPSS进行多元线性回归1、导入数据首先打开SPSS软件,选中打开其他文件,然后把查找范围定位到数据所在位置(我这里是在桌面),然后在文件类型上选择你的文件类型(我这里是Excel),然后选中数据文件,点击打开。

在弹出的对话框中点击确定2、进行描述性统计首先点击菜单栏中的分析-描述统计-描述出现如下页面,选中想要进行描述性统计的变量到右边变量框中。

如图所示,点击选项,选择需要SPSS汇报的描述性统计:结果如图,这里只选择平均值、标准偏差、最小值和最大值:得出描述性统计如图:注意:结果是可以复制粘贴到Excel里面的。

3、相关性分析首先点击菜单栏中的分析-相关-双变量同样按照描述性统计的操作,把想要进行分析的变量选中,选择Pearson相关系数,并进行双尾检验(一般性操作),点击确定即可。

得出如下结果:一般来讲,相关系数大于0.6就说明可能会存在多重共线性问题,而且相关系数比较显著(右上角有两个星号,说明结果在0.01的水平上显著),结论:GYZCZ和SCALE可能存在多重共线性。

4、回归以及回归诊断首先点击分析-回归-线性因变量和自变量选择好,如图所示:点击右上角的Statistics,出现如下菜单,选择共线性诊断和Durbin-Watson检验(检验序列相关性),然后点击继续。

点击右上角的绘图,出现如下界面,按照图示进行选择,这一步是为了进行异方差的初步验证,然后点击继续。

以上全部设定好了之后,点击确定即可。

主要结果分析:可决系数R方值为0.432,调整后的R方是0.414,说明模型拟合程度还不错(一般大于0.3都还能接受)。

D.W.值为0.828,说明存在正的序列相关性(如果是横截面数据,则不需要考虑,如果是时间序列数据就需要考虑用差分法、广义最小二乘、可行的广义最小二乘等方法)F值通过检验(显著性为0.000),说明模型的整体线性性满足。

共线性诊断:看方差膨胀因子(VIF),GYZCZ与SCALE的VIF值大于10,说明存在多重共线性,需要剔除这两个变量。

使用spss进行多元回归分析

使用spss进行多元回归分析

使用spss进行多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。

可以建立因变量y与各自变量xj(j=1,2,3,…,n)之间的多元线性回归模型:其中:b0是回归常数;bk(k=1,2,3,…,n)是回归参数;e是随机误差。

多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。

分级别数值列成表2-1。

预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。

预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。

表2-1数据保存在“DATA6-5.SAV”文件中。

1)准备分析数据在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据。

再创建蛾量、卵量、降水量、雨日和幼虫密度的分级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生。

或者打开已存在的数据文件“DATA6-5.SAV”。

2)启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图2-2所示的线性回归过程窗口。

图2-2 线性回归对话窗口3) 设置分析变量设置因变量:用鼠标选中左边变量列表中的“幼虫密度[y]”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就移到“Dependent”因变量显示栏里。

spss多元回归及非线性

spss多元回归及非线性

多元回归分析→回归→线性,拟合优度检验总离差平方和(tss)=回归平方和(ess)+残差平方和(rss);可决系数的取值范围:[0,1] 。

R2越接近1,说明实际观测点离样本线越近,拟合优度高。

由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。

调整的可决系数思路是:将残差平方和与总离差平方和分别除以各自的自由度(df),以剔除变量个数对拟合优度的影响:(2)方程总体线性的显著性检验(F检验H0:β1=β2= ⋯ =βk=0H1:βj不全为0F> Fα(k,n-k-1) 或F≤Fα(k,n-k-1)来拒绝或接受原假设H0,以判定原方程总体上的线性关系是否显著成立。

(3)变量的显著性检验(t检验)如果变量X对Y的影响是显著的,那么X前的参数应该显著的不为0检验步骤:1)对总体参数提出假设H0:β1=0,H1:β1≠0若|t|> t α/2(n-2),则拒绝H0,接受H1;(小概率事件发生)若|t|≤ t α/2(n-2),则接受H0 ;看指标选模型拟合程度Adjusted R2:越接近1拟合程度越好回归方程的显著性检验F统计量的值,及其Sig回归系数表回归系数B和显著性检验Sig(4)满足基本要求的样本容量从统计检验的角度:n>30 时,Z检验才能应用;n-k≥8时, t分布较为稳定四、预测一元或多元模型预测的SPSS实现:特征根和方差比特征根是诊断解释变量间是否存在严重的多重共线性的另一种有效方法。

最大特征根的值远远大于其他特征根的值,则说明这些解释变量间具有相当多的重叠信息,原因是仅通过这一个特征根就基本刻画出了所有解释变量的绝大部分信息。

解释变量标准化后它的方差为1。

如果某个特征根既能够刻画某解释变量方差的较大部分(0.7以上),同时又可以刻画另一根解释变量方差的较大部分,则说明这两个解释变量间存在较强的线性相关关系。

4、条件指数条件指数反映解释变量间多重共线性的指标。

线性回归分析的SPSS操作(多元线性回归)

线性回归分析的SPSS操作(多元线性回归)

线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。

包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。

为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。

也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。

另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。

一、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。

数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。

从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。

在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。

所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。

具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。

如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。

Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。

上述两项为默认选项,请注意保持选中。

设置如图7-10所示。

设置完成后点击Continue返回主对话框。

图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。

多元线性回归spss

多元线性回归spss

多元线性回归是一种用于描述一个或多个变量(自变量)之间关系的统计学方法。

多元线性回归可以用来预测或估计一个自变量(也称为解释变量)的值,基于一组其他的自变量(也称为预测变量)的值。

SPSS是一款专业的统计分析软件,可以用来进行多元线性回归分析。

使用SPSS进行多元线性回归的步骤如下:
1.准备数据:在SPSS中,你需要准备待分析的数据,包括自变量和因变量。

2.执行回归分析:在SPSS中,可以使用“分析”菜单中的“回归”选项,在此菜单中选择“多元线性回归”,并确定自变量和因变量。

3.分析结果:多元线性回归的结果将会显示在一个表格中,包括拟合参数,R方值,F 检验等。

通过对这些结果的分析,可以了解自变量对因变量的影响程度。

4.模型检验:SPSS也可以用于检验多元线性回归模型的合理性,包括残差分析、多重共线性检验、异方差性检验等。

多元线性回归分析是一项重要的数据分析技术,SPSS是一款功能强大的统计分析软件,提供了多元线性回归分析的完整功能,可以帮助研究者更好地探索数据的内在规律,从而更好地理解和把握数据的特点。

SPSS多元线性回归分析试验

SPSS多元线性回归分析试验

SPSS多元线性回归分析试验在科学研究中,我们会发现某些指标通常受到多个因素的影响,如血压值除了受年龄影响之外,还受到性别、体重、饮食习惯、吸烟情况等因素的影响,用方程定量描述一个因变量y与多个自变量x1、x2、x3.......之间的线性依存关系,称为多元线性回归。

有学者认为血清中低密度脂蛋白增高是引起动脉硬化的一个重要原因。

现测量30名怀疑患有动脉硬化的就诊患者的载脂蛋白A、载脂蛋白B、载脂蛋白E、载脂蛋白C、低密度脂蛋白中的胆固醇含量。

资料如下表所示。

求低密度脂蛋白中的胆固醇含量对载脂蛋白A、载脂蛋白B、载脂蛋白E、载脂蛋白C的线性回归方程。

spss数据处理步骤:(1)打开spss输入数据后,点击“分析”-“回归”-“线性”。

然后将“低密度脂蛋白”选入因变量框,将“载脂蛋白A”“载脂蛋白B”“载脂蛋白E”“载脂蛋白C”依次选入自变量框。

方法选为“逐步”。

(2)单击“统计量”选项,原有选项基础上选择“R方变化”。

在残差中选“Durbin-Watson”,单击“继续”。

(3)单击“绘制”,将“DEPENDNT”选入“X2”中,将“*SRESID”选入“Y”中,在标准残差图选项中选择“直方图”和“正态概率图”。

单击“继续”。

(4)单击“选项”,在原有选项的基础上单击“继续”,最后单击“确定”,就完成了。

数据处理结果如下:输入/移去的变量a模型输入的变量移去的变量方法1 载脂蛋白B . 步进(准则: F-to-enter 的概率 <= .050,F-to-remove 的概率 >= .100)。

2 载脂蛋白C . 步进(准则: F-to-enter 的概率 <= .050,F-to-remove 的概率 >= .100)。

a. 因变量: 低密度脂蛋白率越高,模型与数据的拟合程度越好。

结果显示:自变量和因变量之间的相关系数为0.733,拟合线性回归的确定性系数为0.538,经调整后的确定性系数为0.503。

SPSS如何进行线性回归分析操作 精品

SPSS如何进行线性回归分析操作 精品

SPSS如何进行线性回归分析操作本节内容主要介绍如何确定并建立线性回归方程。

包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。

为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。

也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。

另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。

一、一元线性回归分析用SPSS进行回归分析,实例操作如下:1.单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。

从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。

在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。

所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。

具体如下图所示:2.请单击Statistics…按钮,可以选择需要输出的一些统计量。

如RegressionCoefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。

Model fit 项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。

上述两项为默认选项,请注意保持选中。

设置如图7-10所示。

设置完成后点击Continue返回主对话框。

回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。

由于此部分内容较复杂而且理论性较强,所以不在此详细介绍,读者如有兴趣,可参阅有关资料。

3.用户在进行回归分析时,还可以选择是否输出方程常数。

运用SPSS建立多元线性回归模型并进行检验_-_副本[1]

运用SPSS建立多元线性回归模型并进行检验_-_副本[1]

计量经济学实验报告一.实验目的:1、学习和掌握用SPSS做变量间的相关系数矩阵;2、掌握运用SPSS做多元线性回归的估计;3、用残差分析检验是否存在异常值和强影响值4、看懂SPSS估计的多元线性回归方程结果;5、掌握逐步回归操作;6、掌握如何估计标准化回归方程7、根据输出结果书写方程、进行模型检验、解释系数意义和预测;二.实验步骤:1、根据所研究的问题提出因变量和自变量,搜集数据。

2、绘制散点图和样本相关阵,观察自变量和因变量间的大致关系。

3、如果为线性关系,则建立多元线性回归方程并估计方程。

4、运用残差分析检验是否存在异常值点和强影响值点。

5、通过t检验进行逐步回归。

6、根据spss输出结果写出方程,对方程进行检验(拟合优度检验、F检验和t检验)。

7、输出标准化回归结果,写出标准化回归方程。

8、如果通过检验,解释方程并应用(预测)。

三.实验要求:研究货运总量y与工业总产值x1,农业总产值x2,居民非商品支出x3,之间的关系。

详细数据见表:(1)计算出y,x1,x2,x3的相关系数矩阵。

(2)求y关于x1,x2,x3的三元线性回归方程(3)做残差分析看是否存在异常值。

(4)对所求方程拟合优度检验。

(5)对回归方程进行显著性检验。

(6)对每一个回归系数做显著性检验。

(7)如果有的回归系数没有通过显著性检验,将其剔除,重新建立回归方程,在做方程的显著性检验和回归系数的显著性检验。

(8)求标准化回归方程。

(9)求当x1=75,x2=42,x3=3.1时y。

并给出置性水平为99%的近似预测区间。

(10)结合回归方程对问题进行一些基本分析。

四.绘制散点图或样本相关阵N 10 10 10 10工业总产值Pearson 相关性.556 1 .155 .444 显著性(双侧).095 .650 .171 N 10 11 11 11农业总产值Pearson 相关性.731*.155 1 .562 显著性(双侧).016 .650 .072 N 10 11 11 11居民非商品支出Pearson 相关性.724*.444 .562 1 显著性(双侧).018 .171 .072N 10 11 11 11*. 在 0.05 水平(双侧)上显著相关。

利用SPSS10进行多元线性回归分析

利用SPSS10进行多元线性回归分析

3 利用SPSS10.0进行多元线性回归分析【例】同上例。

第一步,录入或调入数据。

完全类同于一元线性回归分析,不赘述(图1)。

图1 录入或调入的数据第二步,回归操作。

多元线性分析的详细步骤的基本进程与一元线性回归分析相似,稍有不同。

⑴打开线性回归对话框。

即沿着主菜单的Analyse→Regression→Linear…路径打开Linear Regression选项框(图2)。

⑵将“运输业产值”置于因变量(Dependent)的空白栏,将“工业产值”、“农业产值”和“固定资产投资”置于自变量(Independent(s))的空白栏(图3)。

⑶在统计(Statistics)选项框中,除了选择“Durbin-Watson”外,还应该选择“Part and partial correlations”(部分与偏相关,给出零阶相关系数、偏相关系数和部分相关系数)以及“Collinearity diagnostics(共线性诊断)”。

然后继续。

⑷在Plot选项框中,除了可以选择“Histogram”(直方图)和“Normal probability plot”(正态概率图)外,还可选择“Produce all partial plot(s)”(给出所有自变量与因变量的残差散点图)。

然后继续。

⑸修改显著性水平或置信度,可以进入Save对话框,改变Prediction intervals的Confidence intervals(置信区间);修改逐步回归的F临界值,可以进入Option选项框,改变Stepping method criteria中的F值或者F概率。

如果对此缺乏足够的知识,可由系统默认。

然后继续。

⑹在线性回归对话框中,Method一栏由系统默认为enter(让所有的自变量都参入回归)。

完成上述设置以后,点击“OK”确定(图3),立即可以得到回归结果(Output)。

图2 线性回归对话框图3 设置变量图4 统计选项框的设置图5 图形对话框的设置在Variables Entered/Removed (变量取舍即变量的输入或剔除)表中,给出的采用的变量、剔除的变量和回归方法(enter ),此表中没有剔除变量。

多元线性回归SPSS方法实现

多元线性回归SPSS方法实现

Sig. .000a
Residual 2.437
27
.090
Total 21.207
29
a.Predictors: (Constant) , 照 射 时 间 , 辐 射 温 度
b.Dependent Var iable: 毁 损 半 径
2020/11/22
多元线性回归的SPSS方法实现
20
参数估计(最标准重化要偏回的归系表数)
多元线性回归的SPSS方法实现
2020/11/22
多元线性回归的SPSS方法实现
1
SPSS 多元线性回归过程名
Analyze Regression Linear
2020/11/22
多元线性回归的SPSS方法实现
2
线性回归
2020/11/22
多元线性回归的SPSS方法实现
3
多元线性回归
2020/11/22
N 30 30 30
2020/11/22
多元线性回归的SPSS方法实现
15
相关系数矩阵及检验结果
相关系数 Correlations
Pearson Correlation 毁 损 半 径
辐射温度
照射时间
Sig. (1-tailed)
P毁值损 半 径
辐射温度
照射时间
N
毁损半径
辐射温度
照射时间
毁损半径 1.000 .586 .736 . .000 .000 30 30 30
统计量
2020/11/22
多元线性回归的SPSS方法实现
选项
11
Linear Regression: Statistics对 话框
回归系数估计 回归系数可信区间

多元线性回归的SPSS实现

多元线性回归的SPSS实现
变异构成(Variance Proportion):回归模型中各项(包 括常数项)的变异被各主成分所解释的比例,如果某个 主成分对两个或多个自变量的贡献均较大(大于0.5), 说明这几个自变量间存在一定程度的共线性。
版权所有,盗版
多重共线性的识别
1、 SPSS中的回归分析操作(Statistics介绍)

Di正组alo态Xg后性s,是YH指的is在t分o给g布r定a为m一
正态分布。
点此,才可给出 正态分布曲线图
版权所有,盗版
2、正态性( GraphsLegaly DialogsHistogram)
3、方差齐性(Analyze→Regression→Linear Regression:plot选项
条件指针(Condiction Index,CI 值):等于最大的主成 分与当前主成分的比值的算术平方根。所以第一个主成 分相对应的条件指数总为1.同样,如果几个条件指数较 大(如30),则提示存在多重共线性。
版权所有,盗版
多重共线性的识别(Collinearity Diagnostics)
特征根(Eigenvalue):对模型中常数项成分数值较大,而后面的几个主成分较小 ,甚至接近0。
介绍)
选入ZPRED与ZRESID进入 X,Y两个变量框就可实现。
二、衡量多元线性回归模型优劣的标准
1、复相关系数R(Multiple Correlation Coefficient ):表示模型中所有自变量与因变量之间线性回归关系 的密切程度大小,取值范围为(0,1),R值越大越好。
2、决定系数R2(Determinate Coefficient):等于复相 关系数的平方。表示因变量的总变异中可由回归模型 中自变量解释的部分所占的比例。 R2越大越好。

用SPSS进行多元线性回归

用SPSS进行多元线性回归

第一节Linear过程8.1.1 主要功能调用此过程可完成二元或多元的线性回归分析。

在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。

返回目录返回全书目录8.1.2 实例操作〔例8.1〕某医师测得10名3岁儿童的身高(cm)、体重(kg)和体表面积(cm2)资料如下。

试用多元回归方法确定以身高、体重为自变量,体表面积为应变量的回归方程。

儿童编号体表面积(Y)身高(X1)体重(X2)12345678910 5.3825.2995.3585.2925.6026.0145.8306.1026.0756.411 88.087.688.589.087.789.588.890.490.691.211.011.812.012.313.113.714.414.915.216.08.1.2.1 数据准备激活数据管理窗口,定义变量名:体表面积为Y,保留3位小数;身高、体重分别为X1、X2,1位小数。

输入原始数据,结果如图8.1所示。

图8.1 原始数据的输入8.1.2.2 统计分析激活Statistics菜单选Regression中的Linear...项,弹出Linear Regression对话框(如图8.2示)。

从对话框左侧的变量列表中选y,点击Ø钮使之进入Dependent框,选x1、x2,点击Ø钮使之进入Indepentdent(s)框;在Method处下拉菜单,共有5个选项:Enter(全部入选法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)。

本例选用Enter法。

点击OK钮即完成分析。

图8.2 线性回归分析对话框用户还可点击Statistics...钮选择是否作变量的描述性统计、回归方程应变量的可信区间估计等分析;点击Plots...钮选择是否作变量分布图(本例要求对标准化Y预测值作变量分布图);点击Save...钮选择对回归分析的有关结果是否作保存(本例要求对根据所确定的回归方程求得的未校正Y预测值和标准化Y预测值作保存);点击Options...钮选择变量入选与剔除的α、β值和缺失值的处理方法。

如何用SPSS检验多重共线性

如何用SPSS检验多重共线性

如何用SPSS检验多重共线性如何用SPSS检验多重共线性在SPSS中有专门的选项的。

例如在回归分析中,线性回归-统计量-有共线性诊断。

多重共线性:自变量间存在近似的线性关系,即某个自变量能近似的用其他自变量的线性函数来描述。

多重共线性的后果:整个回归方程的统计检验P<a,但所有偏回归系数的检验均无统计学意义。

偏回归系数的估计值大小明显与常识不符,甚至连符号都是相反的。

比如拟合结果表明累计吸烟量越多,个体的寿命就越长。

在专业知识上可以肯定对应变量有影响的因素,在多元回归分析中却P>a,不能纳入方程去掉一两个变量或记录,方程的回归系数值发生剧烈抖动,非常不稳定。

多重共线性的确认:做出自变量间的相关系数矩阵:如果相关系数超过0.9的变量在分析时将会存在共线性问题。

在0.8以上可能会有问题。

但这种方法只能对共线性作初步的判断,并不全面。

容忍度(Tolerance):有Norusis 提出,即以每个自变量作为应变量对其他自变量进行回归分析时得到的残差比例,大小用1减决定系数来表示。

该指标越小,则说明该自变量被其余变量预测的越精确,共线性可能就越严重。

陈希孺等根据经验得出:如果某个自变量的容忍度小于0.1,则可能存在共线性问题。

方差膨胀因子(Variance inflation factor, VIF): 由Marquardt 于1960年提出,实际上就是容忍度的倒数。

特征根(Eigenvalue):该方法实际上就是对自变量进行主成分分析,如果相当多维度的特征根等于0,则可能有比较严重的共线性。

条件指数(Condition Idex):由Stewart等提出,当某些维度的该指标数值大于30时,则能存在共线性。

多重共线性的对策:增大样本量,可部分的解决共线性问题采用多种自变量筛选方法相结合的方式,建立一个最优的逐步回归方程。

从专业的角度加以判断,人为的去除在专业上比较次要的,或者缺失值比较多,测量误差比较大的共线性因子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学实验报告
一.实验目的:
1、学习和掌握用SPSS做变量间的相关系数矩阵;
2、掌握运用SPSS做多元线性回归的估计;
3、用残差分析检验是否存在异常值和强影响值
4、看懂SPSS估计的多元线性回归方程结果;
5、掌握逐步回归操作;
6、掌握如何估计标准化回归方程
7、根据输出结果书写方程、进行模型检验、解释系数意义和预测;
二.实验步骤:
1、根据所研究的问题提出因变量和自变量,搜集数据。

2、绘制散点图和样本相关阵,观察自变量和因变量间的大致关系。

3、如果为线性关系,则建立多元线性回归方程并估计方程。

4、运用残差分析检验是否存在异常值点和强影响值点。

5、通过t检验进行逐步回归。

6、根据spss输出结果写出方程,对方程进行检验(拟合优度检验、F检验和t
检验)。

7、输出标准化回归结果,写出标准化回归方程。

8、如果通过检验,解释方程并应用(预测)。

三.实验要求:
研究货运总量y与工业总产值x1,农业总产值x2,居民非商品支出x3,之间的关系。

详细数据见表:
(1)计算出y,x1,x2,x3的相关系数矩阵。

(2)求y关于x1,x2,x3的三元线性回归方程
(3)做残差分析看是否存在异常值。

(4)对所求方程拟合优度检验。

(5)对回归方程进行显著性检验。

(6)对每一个回归系数做显著性检验。

(7)如果有的回归系数没有通过显著性检验,将其剔除,重新建立回归方程,在做方程的显著性检验和回归系数的显著性检验。

(8)求标准化回归方程。

(9)求当x1=75,x2=42,x3=3.1时y。

并给出置性水平为99%的近似预测区间。

(10)结合回归方程对问题进行一些基本分析。

四.绘制散点图或样本相关阵
相关性
五.建立并估计多元线性回归模型:
0112233Y X X X ββββ=+++
六.残差分析找异常值
由上表分析得,残差分析找异常值后其Cook距离不能大于1,Student化已删除的残差的绝对值不能大于3,综上所述删除第六组观测值继续进行如上操作,再未发现异常值。

七.删除异常值继续回归:
则回归方程为:123659.510 4.07016.04314.359Y X X X ∧
=-++-
由上述分析知居民的非商品支出的参数估计量3β∧
所对应P 值为0.176大于
α=0.05,所以货运总量与居民非商品支出无显著性差异,即剔除变量:居民的
非商品支出,继续做回归。

此时的回归方程为:
12508.501 3.53412.333Y X X ∧
=-++
八.统计检验:
(1)拟合优度检验:
由估计结果图表可知,可决系数2R =0.962,修正的可决系数2R =0.925。

计算结果表明,估计的样本回归方程较好的拟合了样本观测值。

(2)F 检验
提出检验的原假设为0H :i β=0
对立假设为1H :i β至少有一个 不等于零(i=0,1,2)
对于给定的显著性水平α=0.05,P=0.000<α=0.05,所以否定原假设,总体回归方程是显著的。

(3)t 检验
提出的原假设为0H :i β=0 i=0,1,2
由表得,t 统计量为0β所对应的P 值为0.002
1β所对应的P 值为0.021 2β所对应的P 值为0.000
对于给定的显著性水平a=0.05,
因为0β1β 2β所对应的P 值均小于α=0.05,所以货运总量与工业总产值和农业总产值之
间有显著性关系,
(4)预测
假设X1=75,X2=42试预测货运总量并构造其99%的置信区间 将X1=75,X2=42代入估计的回归方程
508.501 3.5347512.33342274.535Y ∧
=-+⨯+⨯=
经计算得Y 的置信区间为(237.71840,312.28406.) (5)相关分析
当维持农业总产值不变的情况下,每增加一单位的工业总产值,货运总量相应的增加3,534亿吨;当维持工业总产值不变的情况下,每增加一单位的农业总产值,货运总量相应的增加12.333亿吨;综上得出农业总产值引起货运总量的变化相比于工业总产值较大。

相关文档
最新文档