工程流体力学第3章 流体动力学理论基础

合集下载

流体动力学基础

流体动力学基础

流体动力学基础第3章流体动力学基础一、单项选择题1、当液体为恒定流时,必有()等于零。

A .当地加速度 B.迁移加速度 C.向心加速度 D.合加速度2、均匀流过流断面上各点的()等于常数。

A.p B.z+g p ρ C. g p ρ+g u 22 D. z+g p ρ+gu 223、过流断面是指与()的横断面。

A .迹线正交 B.流线正交 C.流线斜交 D.迹线斜交4、已知不可压缩流体的流速场为Ux=f(y,z),Uy=f(x),Uz=0,则该流动为()。

A.一元流B.二元流C.三元流D.均匀流5、用欧拉法研究流体运动时,流体质点的加速度a=( ). A. 22dtr d B.t u ?? C.(u ·▽)u D. t u ??+(u ·▽)u 6、在恒定流中,流线与迹线在几何上()。

A.相交B.正交C.平行D.重合7、控制体是指相对于某个坐标系来说,( ).A .由确定的流体质点所组成的流体团B.有流体流过的固定不变的任何体积 C.其形状,位置随时间变化的任何体积 D.其形状不变而位置随时间变化的任何体积.8、渐变流过流断面近似为( ).A.抛物面B.双曲面C.对数曲面D.平面9、在图3.1所示的等径长直管流中,M-M 为过流断面,N-N 为水平面,则有( ).A.p1=p2B.p3=p4C.z1+g p ρ1 =z2+g p ρ2D.z3+g p ρ3 =z4+gp ρ4 10、已知突然扩大管道突扩前后管段的管径之比21d d =0.5, 则突扩前后断面平均流速之比v1:v2=( ).A. 4B.2C.1D.0.511、根据图3.2 所示的三通管流,可得()。

A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 12、根据图3.3 所示的三通管流,可得()。

A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 13、测压管水头坡度Jp=()。

工程流体力学--第三章--流体动力学基础ppt课件

工程流体力学--第三章--流体动力学基础ppt课件
当地加速度和迁移加速度的理解,现举例说明这两个加速
度的物理意义。如图3-1所示,不可压缩流体流过一个中 间有收缩形的变截面管道,截面2比截面1小,则截面2的 速度就要比截面1的速度大。所以当流体质点从1点流到2 点时,由于截面的收缩引起速度的增加,从而产生了迁移
加速度,如果在某一段时间内流进管道的流体输入量有变
第三章 流体动力学基础
§1–1 描述流体运动的两种方法
§1–2 流体运动的一些基本概念
§1–3 流体运动的连续性方程
§1–4 理想流体的运动微分方程
§1–5 理想流体微元流束的伯努力方程
§1–6 伯努利(Bernoulli)方程的应用
§1–7 定常流动的动量方程和动量矩方程
§1–8 液体的空化和空蚀现象
拉格朗日方法又称随体法,是从分析流场中个别流体 质点着手来研究整个流体运动的。这种研究方法,最基本
2021/4/19
3
的参数是流体质点的位移,在某一时刻,任一流体质点的
位置可表示为:
X=x (a,b,c,t)
y=y (a,b,c,t)
z=z (a,b,c,t)
(3-1)
式中a、b、c为初始时刻任意流体质点的坐标,即不同的a、 b、c代表不同的流体质点。对于某个确定的流体质点,a、 b、c为常数,而t为变量,则得到流体质点的运动规律。 对于某个确定的时刻,t为常数,而a、b、c为变量,得到 某一时刻不同流体质点的位置分布。通常称a、b、c为拉
(3-2) (3-3)
az w t t22 zaz(a,b,c,t)
2021/4/19
5
式(3-6)是流体质点的运动轨迹方程,将上式对时间 求导就可得流体质点沿运动轨迹的三个速度分量
u dx dt

第3章流体力学连续性方程微分形式

第3章流体力学连续性方程微分形式

第四节 欧拉运动微分方程的积分
du p p p du d y x 1 z ( Xdx Y Zdz dy ) ( dx dy dz ) dx dy d x y z dt dt d
<I> <II> <III>
p 2、均匀不可压缩流体,即=Const; <II>= d ( )
中心的微元六面体为控制体,边 长为dx,dy,dz,中心点压强为 p(x,y,z) 。 受力分析(x方向为例): 1.表面力
z
A'
D' M p(x,y,z) B' N
C'
p dx p x 2
dz dx D dy A
O
o’
p dx p Cx 2
B
x
∵理想流体,∴=0
左表面
y
p dx P p A ( p ) dydz M M 2 x p dx 右表面 P p A ( p ) dydz N N 2 x
2 2 2 2 2 2 ,例: 拉普拉斯算符 x y z 2
2 2 2 u u u x x x u x 2 2 2 x y z 2

第三节 流体动力学基本方程式
第四节 欧拉运动微分方程的积分
由于欧拉运动微分方程是一个一阶非线性偏微分方程组(迁移加速度的三 项中包含了未知数与其偏导数的乘积),因而至今还无法在一般情况下积分, 只能在一定条件下积分。 欧拉运动微分方程组各式分别乘以dx,dy,dz(流场任意相邻两点间距ds 的坐标分量),然而相加得:
du p p p du du y x 1 z ( Xdx Y Zdz dy ) ( dx dy dz ) dx dy d x y z dt dt dt

流体力学基础-第三章-一维流体动力学基础

流体力学基础-第三章-一维流体动力学基础

1Q1dt 2Q2dt
1. 微小流束连续性方程
1Q1 2Q2 11dA1 22dA2
对不可压缩流体:
1 2 , Q1 Q2 1dA1 2dA2
1. 微小流束连续性方程 推而广之,在全部流动的各个断面上:
Q1 Q2 ~ Q
拉格朗日法(Lagrange method)—“跟踪”法
拉格朗日法是将流场中每一流体质点作为研究对象, 研究每一个流体质点在运动过程中的位置、速度、加 速度及密度、重度、压强等物理量随时间的变化规律。 然后将所有质点的这些资料综合起来,便得到了整 个流体的运动规律。即将整个流体的运动看作许多流 体质点运动的总和。
d 2 4A d 4R d x
非圆形截面管道的当量直径 x
D 4A 4R x
R
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
五、一维流动模型
一维流动: 流动参数是一个坐标的函数; 二维流动: 流动参数是两个坐标的函数; 三维流动: 流动参数是三个坐标的函数。
二维流动→一维流动
(1)(a,b,c)=const ,t 为变数,可以 得出某个指定质点在任意时刻所处的位置。 (2)(a,b,c)为变数,t =const,可以得 出某一瞬间不同质点在空间的分布情况。
流体质点速度为: x a,b,c,t
流体质点加速度为:
v x x a,b,c,t a x t t 2 v y 2 y a,b,c,t a y 2 t t vz 2 z a,b,c,t a z t 2 t
动方向的横断面, 如图中的 1-1,2-2 断面。又称为有效 截面,在流束中与各流线相垂直,在每一个微元流束的过 水断面上,各点的速度可认为是相同的。

工程流体力学 - 第3章 - M

工程流体力学 - 第3章 - M

2 、 水力半径 Rh :在总流的过流断面上与流
体相接触的固体边壁周长称为湿周,用χ表 示。总流过流断面面积与湿周χ之比称为水 力半径R,即
R
A

3、当量直径de=4Rh
五、流量与平均流速
1、流量
单位时间内通过过流断面的流体量称为流量。 流体量可以用体积、质量和重量表示,其相应的流量 分别是体积流量qv (m3/s)、质量流量qm (kg/s)和重量 流量Qg(N/s)。
v1 A1 v 2 A 2 q v
上式为一维流动连续性方程。
§3.6理想流体一维稳定流动的伯努里方程 一、欧拉方程
如图,在微元流管中 取一圆柱流体微团, 考察理想流体在重 力场中的一维流动。
轴向长度:δs,
端面面积:δA,
端面⊥轴线,
侧面∥轴线。

流体微团受力分析: 方向:垂直向下
质量力:重力,大小:ρgδAδs 表面力:
一.拉格朗日方法
拉格朗日方法着眼于流体质点,跟踪每个 流体质点的运动全过程及描述运动过程中各质 点、各物理量随时间变化的规律。又称轨迹法。 设t=t0时,流体质点的坐标值是(a,b,c)。 流体质点的空间位置、密度、压强和温度 可表示为: r r a,b,c,t = a,b,c,t p p a,b,c,t T T a,b,c,t
第三章 流体动力学

流体运动学是用几何学的观点来研究流体的运动 规律,是流体力学的一个组成部分。 掌握描述流动的两种方法(拉格朗日法及欧拉

法),结合迹线,流线,流体线等显示流动特性 的曲线图谱研究流动特性。

掌握流体动力学的基本方程,即质量守恒方程, 能量守恒方程动量定理,动量矩定理,重点是关 于控制体的欧拉型方程。

083一元流体动力学基础.

083一元流体动力学基础.
基本要求:理解连续性微分方程、理想液体运动微分方程、实际流体的运动微分方程;牢固掌握,并灵活应用恒定总流连续性方程、理想液体元流的能量方程与实际液体总流的能量方程、恒定总流动量方程以及恒定平面势流。
重点
重点:连续性微分方程,理想液体运动微分方程,实际流体的运动微分方程,恒定总流连续性方程,理想液体元流的能量方程与实际流体总流的能量方程、恒定总流动量方程以及恒定平面势流。
闻德荪等,《工程流体力学(水力学)》,高等教育出版社,1992.9
蔡增基,龙天渝,《流体力学》,中国建筑工业出版社,1999.12
教具
电子教案,
电子课件
教学后记
本章教学方式(手段)及教学过程中应注意的问题:
教学方式:讲授——提问——讲授——习题课——实验
注意问题:1)概念、原理、计算方法的理解、掌握。注意实际流体能量方程和动量方程计算断面的选取,以及解题步骤与方法;注意有涡流与势流
2)注意复习高等数学的导数、微分与曲线积分等基本方法
本章的思考题和习题等:
思考题:3-1、3-3、3-10、3-13、3-24、3-26、3-30、3-31、3-38、3-39、3-41
习题:3-2、3-5、3-6、3-7、3-8、3-11、3-17、3-19、3-22、3-23、3-26、3-29、3-31、、3-32、3-37、3-39、3-40、3-42、3-43
§3-9能量方程的应用1学时
§3-10总水头线和测压管水头线1学时
§3-11恒定气体伯诺里方程1学时
§3-12总压线和全压线1学时
§3-13恒定总流动量方程2学时
§习题课4学时
共18学时
本章教学内容的深化和拓宽:
深化:理想液体元流的能量方程的推广,实际流体总流的能量方程在实际工程中的应用,恒定总流动量方程在实际工程中的应用。

工程流体力学第三章

工程流体力学第三章

物理量
比起流体质点本身, 比起流体质点本身,工程上我们更关心某一 时刻流体质点上所携带的一些特征参量,比如: 时刻流体质点上所携带的一些特征参量,比如: 速度、压强、温度、电流等。 速度、压强、温度、电流等。 我们把这些流体具有的特征参量统称为物理 我们把这些流体具有的特征参量统称为物理 流体具有的特征参量 流动参数。 也成为流动参数 量,也成为流动参数。 流体的流动是由流体具有的物理量来表征的, 流体的流动是由流体具有的物理量来表征的, 因此,描述流体的运动也就是表达流动参数在不 因此,描述流体的运动也就是表达流动参数在不 同空间位置上随时间的变化规律。 同空间位置上随时间的变化规律。
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
L M’ M
V (M , t ) V ( M ' , t + ∆t )
3.1.3随体导数 随体导数
这里用 D 表示这种导数不同于牛顿定律 Dt 对速度的简单导数
L M’ M
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
速度的变化有两方面的原因:
一方面的原因, 质点由M 点运动至M 点时,
'
时间过去了∆t,由于场的时间非定常性引 起速度的变化
另一方面, 质点由M 点运动至M '点时, 位置 发生了变化,由于场的空间不均匀性引起 速度的变化
3.1.3随体导数 随体导数
按照时间和空间引起速度变化,把极限分为两部分
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t

工程流体力学课件3流体动力学基础

工程流体力学课件3流体动力学基础

恒质





恒能
恒 定
量 守

恒动


程连
续 方
程恒 定

程能 量 方
流 三

程动



• v1 A1 = v2 A2
说明流量不变时,过流断面越小, 流速越大 —— 水射器原理
Φ
D
小头
大头
消防水枪喷嘴
收缩段 亚音速
喉部 音速
扩散段 超音速
拉瓦尔喷管
由拉瓦尔喷管可获得超音速气流,其原理广泛应用 于超音速燃气轮机中的叶栅,冲压式喷气发动机,火箭 喷管及超音速风洞等处。
3)在恒定流情况下,当判别第II段管中是缓变 流还是急变流时,与该段管长有无关系?
区分均匀流及非均匀流与过流断面上流速 分布是否均匀有无关系?是否存在“非恒定 均匀流”与“恒定急变流”?
当水箱水面恒定时: a)为恒定均匀流;b)为恒定非均匀流。 当水箱水面不恒定时: a)为非恒定均匀流;b)为非恒定非均匀流。
uz F3(x, y, z,t)
x,y,z,t —欧拉变量

dux
ux t
dt
ux x
dx
ux y
dy
ux z
dz
a
x
a y
az
dux
dt du y
dt duz
dt
dF1
dt dF2
dt dF3
dt
ux t
ux
ux x
uy
ux y
uz
ux z
u y t
ux
u y x
uy
u y y
重、难点

工程流体力学课后习题答案(第二版)

工程流体力学课后习题答案(第二版)

第一章 绪论1-1.20℃的水2。

5m3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1—2.当空气温度从0℃增加至20℃时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度增加了3.5%1—3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中、分别为水的密度和动力粘度,为水深。

试求m h 5.0=时渠底(y =0)处的切应力。

[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当=0.5m,y=0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1—4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm ,斜坡角22。

620(见图示),求油的粘度。

[解] 木块重量沿斜坡分力F 与切力T平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1—5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y方向的分布图。

[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。

已知导线直径0。

工程流体力学课件3流体动力学基础

工程流体力学课件3流体动力学基础
总结词
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解

05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源

流体动力学基础(工程流体力学).ppt课件

流体动力学基础(工程流体力学).ppt课件

dV
II '
t t
dV
II '
t
dt t0
t
lim
dV
III
t t
dV
I
t
t 0
t
δt→0, II’ → II
x
nv
z
III
v II ' n
I
o y
20 20
dV
dV
II
tt II
t
lim t t0
t
dV
dV
lim III
t t
t0
t
v cosdA
质点、质点系和刚体 闭口系统或开口系统
均以确定不变的物质集协作为研讨对象!
7 7
定义:
系统(质量体)
在流膂力学中,系统是指由确定的流体质点所组成的流 体团。如下图。
系统以外的一切统称为外界。 系统和外界分开的真实或假象的外表称为系统的边境。
B C
A
D
Lagrange 方法!
系统
8
8
特点:
(1) 一定质量的流体质点的合集 (2) 系统的边境随流体一同运动,系统的体积、边境面的
31 31
固定的控制体
对固定的CV,积分方式的延续性方程可化为
CS
ρ(
vn
)dA
CV
t
dV
运动的控制体
将控制体随物体一同运动时,延续性方程方式不变,只
需将速度改成相对速度vr
t
dV
CV
CS (vr n)dA 0
32 32
延续方程的简化
★1、对于均质不可压流体: ρ=const
dV 0
令β=1,由系统的质量不变可得延续性方程

《工程流体力学》 杨树人 第2-4章 课件

《工程流体力学》 杨树人 第2-4章 课件
《工程流体力学》 杨树人 第2-4章 课 件
目录
• 第2章 流体静力学 • 第3章 流体动力学基础 • 第4章 流体阻力和水头损失 • 第5章 量纲分析与相似原理
01
第2章 流体静力学
流体静力学基本概念
流体
流体是气体和液体的总称,具有流动性和可压缩 性。
静止流体
不发生宏观运动的流体。
平衡状态
流体处于静止状态时的受力平衡状态。
流体静力学基本方程
流体静力学基本方程
p + ρgh + p0 = 常数(适用于不可 压缩流体)。
p
流体压强;ρ:流体密度;g:重力加 速度;h:流体高度;p0:大气压强 。
静水压强分布及特性
静水压强
液体静止时对固体表面的压力。
静水压强特性
静水压强随深度增加而增大,在同一深度上,各方向静水压强相等 。
静水压强分布规律
在重力场中,静止液体内部压强随深度增加而线性增大。
02
第3章 流体动力学基 础
流体动力学基本概念
流体
在任何外力作用下都不能保持 其固有形状和体积的物质。
流体静力学
研究流体处于静止状态时的平 衡规律及其作用力的科学。
流体动力学
研究流体运动规律及其作用力 的科学。
牛顿流体
流体的应力与应变率成正比的 流体。
湍流阻力与水头损失
湍流阻力
当流体在管道中以湍流状态流动时,由于流体质点间的相互碰撞、混合,会产生较大的阻力。湍流阻 力和流速、管道长度、管道直径等因素有关。
水头损失
在湍流状态下,由于流体分子间的内摩擦力和流体质点间的相互碰撞、混合,使得流体机械能减小, 称为水头损失。水头损失与流速、管道长度、管道直径等因素有关。

流体动力学理论基础第三章解析

流体动力学理论基础第三章解析

az= x
uy
ux y
uz
ux z
ay
u y t
ux
u y x
uy
u y y
uz
u y z
az
uz t
ux
uz x
uy
uz y
uz
uz z
式中第一项叫时变加速度或当地加速度 (Local Acceleration),流动过程中流体由于速度 随时间变化而引起的加速度;第二项叫位变速度 ,流动过程中流体由于速度随位置变化而引起的 加速度(Connective Acceleration)。
uz uz (x、y、z、t)
(x,y,z,t)—欧拉变量
考察不同时刻液体质点通过流场中固定空间点 的运动情况,综合足够多的固定空间点的运动情 况,得到整个液流的运动规律。——流场法
欧拉法不直接追究质点的运动过程,而是研究各时 刻质点在流场中的变化规律。将个别流体质点运动过程 置之不理,而固守于流场各空间点。通过观察在流动空 间中的每一个空间点上运动要素随时间的变化,把足够 多的空间点综合起来而得出的整个流体的运动情况。
显然,在欧拉描述中,各空间点上的物理量(实际上是通 过此点的流体质点所具有的物理量)是随时间变化的。因此, 流体的运动参数应该是空间坐标和时间的函数。如流体的速 度、压强和密度可以表示为
z
t时刻
M (x,y,z) O
x
y
ux ux (x, y, z,t) uy uy (x, y, z,t) uz uz (x, y, z,t)
算子
全质 导点 数导

d dt
=
t
+ (u )
时变导数 当地导数 局部导数
位变导数 迁移导数 对流导数

流体力学讲义 第三章 流体动力学基础

流体力学讲义 第三章 流体动力学基础

第三章流体动力学基础本章是流体动力学的基础。

主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。

此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。

第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

图3-1为流线谱中显示的流线形状。

(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。

流线是欧拉法分析流动的重要概念。

图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。

图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。

b.流线不能是折线,而是一条光滑的曲线。

因为流体是连续介质,各运动要素是空间的连续函数。

c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。

因为对不可压缩流体,元流的流速与其过水断面面积成反比。

(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。

所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。

图3-5中烟火的轨迹为迹线。

(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。

大学课程《工程流体力学》PPT课件:第三章

大学课程《工程流体力学》PPT课件:第三章

§3.1 研究流体运动的方法
➢ 欧拉法时间导数的一般表达式
d (v ) dt t
d :称为全导数,或随体导数。
dt
:称为当地导数。
t
v
:称为迁移导数。
例如,密度的导数可表示为: d (v )
dt t
§3.1 研究流体运动的方法
3.1.2 拉格朗日法
拉格朗日法的着眼点:特定的流体质点。
lim t0
(
dV
III
)
t
t
t
CS2 vndA
单位时间内流入控制体的物理量:
z

Ⅱ’

y
lim
t 0
(IdV )t t t CS1vndA
x
§3.3 雷诺输运方程
➢ 雷诺输运方程
dN dt
t
CV dV
CSvndA
雷诺输运方程说明,系统物理量 N 的时间变化率,等于控 制体该种物理量的时间变化率加上单位时间内经过控制面 的净通量。
d dt
V
dV
t
CV
dV
CS
vndA
0
因此,连续性方程的一般表达形式为:
t
CV
dV
CS
vndA
0
连续性方程是质量守恒定律在流体力学中的表现形式。
对定常流动,连续性方程简化为:
CS vndA 0
§3.4 连续性方程
对一维管流,取有效截面 A1 和 A2,及
v2
管壁 A3 组成的封闭空间为控制体:
ay
dv y dt
v y t
vx
v y x
vy
v y y
vz
v y z
az

流体动力学理论基础

流体动力学理论基础

第3章 流体动力学理论基础
§3-2 研究流体运动的若干基本概念

定常流动与非定常流动 一元流动、二元流动、三元流动 流线与迹线 定义
u6 5
u1 1 2
u2 3
u3
6 u5
u4
4
第3章 流体动力学理论基础

基本方程
迹线:
dx dy dz dt ux uy uz
流线

性质 一般情况,流线不能相交,且只能是一条光滑曲线。
程,整理得
F t V udV A udA
上式即为欧拉型积分形式的动量方程。
第3章 流体动力学理论基础
二、定常不可压缩总流的动量方程
对于恒定 () 0 不可压缩
t

c 总流,欧拉型
积分形式的动量方程可简化为
F A uudA A u2u2dA2 u1u1dA1
du f p dt 1
1
各项点乘单位线段 ds ,得
du f ds p ds ds dt
第3章 流体动力学理论基础
为积分上式,现附加限制条件:
() •定常流 ( 0) : t
p ds dp
p •不可压缩流体( c ) : p ds dp d 1 1
•质量力只有重力 :f·s = -gdz d •沿流线积分 :
u du ds ds du u du d 2 dt dt
2
第3章 流体动力学理论基础
代入
或沿同一流线
du f ds p ds ds dt p u2 z C g 2 g
例题5

水力学:第三章 流体动力学理论基础

水力学:第三章 流体动力学理论基础

若过水断面为渐变流,则在断面上 得
g
积分可
p

(z
p
Q
g
) gdQ ( z
p
g
) g dQ ( z
u x t p t 0 u y t 0 t u z
非恒定流:流场中任何点上有任何一个运动要素是随 时间而变化的。
6
二、 迹线与流线
拉格朗日法研究个别流体质点在不同时刻的运动情况 ,引出了迹线的概念。 欧拉法考察同一时刻流体质点在不同空间位置的运动 情况引出了流线的概念。
u x x
t
0

0

u y y
常数
u z z 0
22

二、 恒定不可压缩总流的连续性方程
液流的连续性方程是质量守恒定律的一种特殊方式。 取恒定流中微小流束如图所示: 因液体为不可压缩的连续介质,有

1 2
根据质量守恒定律在dt时段内
流入的质量应与流出的质量
)于1738年首先推导出来的。
28
二、实际流体恒定元流的能量方程
理想流体没有粘滞性无须克服内摩擦力而消耗能量,
其机械能保持不变。
对实际流体,令单位重量流体从断面1-1流至断面2-2
所失的能量为
hw
'
。则1-1断面和2-2断面能量方程为:
p1
z1
g

u1
2
2g
z2
p2
g

u2
2
2g
hw
相等。
u 1 dA 1 dt u 2 dA 2 dt u 1 dA 1 u 2 dA 2

第三章流体动力学理论基础

第三章流体动力学理论基础
连续性方程说明了流速与过水断面的关系,是运 动学方程;能量方程则是从动力学的观点讨论 流体各运动要素之间的关系。
一、理想流体恒定元流的能量方程 (伯诺里方程)
依据:动能定理
运动流体的动能增量等于作用 在它上面各力做功的代数和。
动能增量
dA1
1
1’
u1
dm dl1dA1 dl2dA2

uy
ux y

uz
ux z
法有, 加将速度(a分xy ,y量,dz)u的y (看x表d,ty成达, z是,式t) 时间=t的ut函y 数, u则x uxy

uy
uy y

uz
uy z
az

duz (x, y, dt
z,t)
uz t
ux
uz x
6.断面平均流速
若过流断面上各点的流 ω 速都相等(等于v), 此时通过的流量与实际 流速为不均匀分布时通 过的流量相等,v就叫 做断面平均流速。
x
不均匀分布
Q ud
断面平均流速v
Q vd v
Q ud vd v
vQ

四、均匀流与非均匀流
1.均匀流
流体静力学
关于流体平衡的规律 ,它研究流体处于静 止(或相对平衡)状 态时,作用于流体上 的各种力之间的关系 。
流体动力学
关于流体运动的规律, 它研究流体在运动状 态时,作用于流体上 的力与运动要素之间 的关系,以及流体的 运动特性与能量转换 等等。
第一节 描述流体运动的两种方法
流体运动时,表征运动特征的运动要素一般随 时空而变,而流体又是众多质点组成的连续介质
③在恒定流条件下,流线的形状及位置以及流谱不随时 间发生变化,且流线与迹线重合。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
施工组 织计划
☆流线充满整个流场。 ☆恒定流动时,流线的形状、位置不随时间变化, 且与迹线重合。 ☆流线愈密,流速愈大。
§3-2 研究流体运动的若干基本概念
【例1】 已知平面流动的流速分布为 ux kx, uy ky 其中y≥0,k为常数。试求:①流线方程;②迹线方程。 【解】据y≥0知,流体流动仅限于xy半平面内,因 运动要素与时间t无关,故该流动为恒定二元流。
◇断面平均流速 ☆不管是管流还是渠流,过流断面上实际流速分布均是 非均匀的。
u
v
☆在流体力学中,为方便应用,常引入断面平均流速概 念。
Q v A

A
udA A
§3-2 研究流体运动的若干基本概念
均匀流与非均匀流、渐变流 ◇均匀流:各流线为平行直线的流动 ☆均匀流的迁移加速度等于零 ◇非均匀流:各流线或为曲线,或为彼此不相互平行 施工进度图 Text 的直线,其迁移加速度不等于零。 Text ☆天然河流为典型的非均匀流动 Text ☆非均匀流视其流线弯曲程度又可分为渐变流和急 变流。
§3-1 描述流体运动的方法
拉格朗日法 ◇研究对象——流体质点或质点系 ☆固体运动常采用拉格朗日法研究,但流体运动一般较 固体运动复杂,通常采用欧拉法研究。
运动流体
§3-1 描述流体运动的方法
欧拉法 修正施 ◇研究对象——流场(某时刻充满运动流体质点的
固定空间)

☆当地加速度(时变加速度) ☆迁移加速度(位变加速度)
§3-2 研究流体运动的若干基本概念
基本方程
迹线方程
流线方程
dx dy dz dt ux u y uz
时间t是变量
u ds 0
dx dy dz ux u y uz
时间是参变量
§3-2 研究流体运动的若干基本概念
流线的性质 ☆一般情况,流线不能相交,且只能是一条光滑曲 线。
§3-3 流体运动的连续性方程
y 方向: my
( u y ) y
dxdydzdt
z 方向: m ( u z ) dxdydzdt z z
据质量守恒定律:单位时间内流进、流出控制体 的流体质量差等于控制体内流体面密度发生变化所引 起的质量增量。即:
mx my mz dxdydzdt t
☆对于恒定流 (
0) ,连续性方程简化为 t ( u x ) ( u y ) ( u z )
x y z 0

( u) 0
☆对于不可压缩流体 ( C ) ,连续性方程简化为
u x u y u z 0 x y z

☆流线方程:
dx dy kx ky
积分得:
xy c
该流线为一组等角双曲线。
§3-2 研究流体运动的若干基本概念
☆迹线方程: dx dy dt
kx
ky
积分得: x c1e , y c2e
kt
kt
xy c1c2ekt ekt c1c2 c
与流线方程相同,说明恒定流动时,流线与迹线在几 何上完全重合。
§3-3 流体运动的连续性方程
将 mx、my、mz 代入上式,化简得:
( u x ) ( u y ) ( u z ) 0 t x y z

( u ) 0 t
上式即为流体运动的连续性微分方程的一般形式。
§3-3 流体运动的连续性方程
u 0
§3-3 流体运动的连续性方程
【例2】假设不可压缩流体的流速场为
ux f ( y, z), uy uz 0
试判断该流动是否可能存在。 【解】判断流动是否可能存在,主要看其是否满足连续 性微分方程。
本题 满足
u x u y u z 0 x y z
u x u y u z 0 x y z
第3章流体动力学 理论基础
第3章 流体动力学理论基础
研究思路: 理想流体→实际流体 修正施 研究内容: 压强、流速分布 工 理论基础: 质量守恒定律 牛顿第二定律 重点掌握: 恒定总流的三大基本方程
施工组 织设计
第3章 流体动力学理论基础
编制依据 目录 §3-1 §3-2 §3-3 §3-4 §3-5 §3-6 描述流体运动的方法 研究流体运动的若干基本概念 流体运动的连续性方程 理想流体运动微分方程及其积分 伯努利方程 动量方程
施工组 织设计
§3-2 研究流体运动的若干基本概念
恒定流与非恒定流 ◇恒定流:运动要素不随时间变化的流动 ☆恒定流动的当地加速度等于零 一元流、二元流、三元流 流线与迹线 ◇流线定义 某时刻流场中所有流体质点的速度矢量与其相切 u6 的一条空间曲线。 6 u5 2 u 3 u u1 5 u4 2 3 4 1
Text 急变 流
§3-2 研究流体运动的若干基本概念
渐变流定义
◇流线近似为平行直线的流动;或流线的曲率半径R 足够大而流线之间的夹角β足够小的流动。
β
R
§3-2 研究流体运动的若干基本概念
渐变流过流断面 性质
☆渐变流过流断面近似为平面 ☆渐变流过流断面上流体动压强近似按流体静压强分 布,即 p z C g
§3-3 流体运动的连续性方程
★连续性方程是质量守恒定律在流体力学中的数学表达式 一、连续性微分方程 TEXT TEXT 取如图所示微小六面体为控制体,分析在 dt时间内流 进、流出控制体的质量差:
§3-3 流体运动的连续性方程
◇ x 方向:
1 1 ux mx ( dx)(ux dx)dydzdt 2 x 2 x 1 1 ux ( dx)(ux dx)dydzdt 2 x 2 x ( ux ) dxdydzdt x
§3-2 研究流体运动的若干基本概念
流管、元流、总流、过流断面
ห้องสมุดไป่ตู้
§3-2 研究流体运动的若干基本概念
流量、断面平均流速 ◇流量——单位时间通过过流断面的流体量
dQ udA(元流) Q ud(总流) A
A
☆常用单位:m3/s或L/s(体积流量) ☆换算关系:1m3=1000L
§3-2 研究流体运动的若干基本概念
相关文档
最新文档