苏教版第一学期期中学情分析七年级数学试卷附答案
苏教版七年级数学上册期中考试试卷附参考答案
苏教版七年级数学上册期中考试测试卷(考试时间:120分钟 满分150分)一、选择题(下列各题中只有一个答案是正确的,每题3分,共18分) 1.3的相反数是(▲) A .31 B .3- C .31- D .3 2.下列各式中,次数为3的代数式是 (▲)A .xy 2B .x 4+y 3C .x 3yD .3xy 3.面积是10的正方形,边长最接近下列哪个数(▲)A .2.8B .3C .3.2D .3.4 4.下列各式运算正确的是 (▲) A .3a +4b =7abB .5y 2-2y 2=3C . 7a +a =8aD .4x 2y -2xy 2=2xy5.不论a 取什么值,代数式2--a 的值总是(▲)A .正数B .负数C .非负数D .不能确定 6.如果3,,+--+b a b a b a 中,b a +的值最大,则b 的值可以是(▲)A .-1B .0C .1D .2二、填空题(本大题共10小题,每小题3分,满分30分.请把答案填在题中的横线上) 7.2-的绝对值是_______.8.满足条件大于1-且小于π的整数共有_______个.9.2013年第一季度,泰州市共完成工业投资022********元,022********这个数可用科学记数法表示为_____ ___.10.已知a 、b 互为倒数,d c 、互为相反数,则代数式ab d c 2-+的值为_______. 11.三个连续整数中中间一个数是n ,那么它们的和等于_______. 12.写出b a 32-的一个同类项______ __.13.某公交车原来坐有24人,经过4个站点时上下车情况如下(上车为正,下车为负): (+4,-8),(-5,+6),(-3,+2),(+1,-7),现在车上还有 人. 14.若,,且00<<ab a 化去绝对值符号=--7b a ______.15.如果b -2= a 2,那么代数式b 2-b (a 2+2)+2的值等于________.16.已知整数,,,,4321a a a a …满足下列条件:01=a ,112+-=a a ,223+-=a a ,334+-=a a ,445+-=a a ,…,100100101+-=a a ,则101a 的值为_______.三、解答题(解答需写出必要的文字说明或演算步骤.) 17.(本题满分8分)请把下列各数填在相应的集合内+4,0.333……,-⎪⎪⎪⎪-12,-(+27),π,-(-2),0,2.5,-1.232232223……, 正有理数集合:{ …} 非负整数集合:{ …} 负分数集合:{ …} 无理数集合:{ …}18.(本题满分8分) 画一条数轴,在数轴上把下列各数表示出来,并用“<”连接各数.5.2--,—4.5, 2,0,99)1(-,3--19.(本题满分18分,每小题3分)计算: (1)4-(-4)+(-3); (2) 3125317++-(3)])2(3[134---- (4))31()3(3)31(-⨯-÷⨯-(5)-2×(-216)+(-7)×216+5×136 (6))412(]8.0)31(3[21422-÷--⨯-⨯20.(本题满分10分,每小题5分)先化简,再求值:(1)先化简,再求值:)42()34(22a a a a --+-,其中a =2-;(2)22225(37)(25)x y xy y x -++-,其中2,1-==y x .21.(本题满分9分)邮递员骑车从邮局出发,先向西骑行3km 到达A村,继续向西骑行2km 到达B 村,然后向东骑行7km 到达C 村,再继续向东骑行3km 到达D 村,最后骑回邮局. (1)C 村离A 村有多远? (2)邮递员一共骑行了多少千米?22.(本题满分9分)如果2.2=a ,8.3=b . (1)试求b a 、的值;(2)如果b a 、的和值为整数,试求a -b 的值;23.(本题满分9分)(1)写出一个含有字母x 的代数式,当x =1时,代数式的值等于2;(2)写出一个含有字母x 的代数式,当x =4和x =4-时,代数式的值都等于5; (3)写出两个含有字母x 的三项式,且它们的次数都是2,当x 不论取什么值时,这两个多项式的和总是等于3(列式表示).24.(本题满分9分)请你揭秘:刘谦的魔术表演风靡全国,小亮同学也学起了刘谦,运用所学知识设计了一个魔术节目.他请同学想一个数,然后将这个数按以下步骤操作:乘以3 减去9 除以3 加上2 告诉小亮结果小亮立刻说出同学想的那个数.(1)如果同学小明想的数是-1,那么他告诉小亮的结果应该是;(2)如果小聪想了一个数并告诉小亮结果为2012,那么小亮立刻说出小聪想的那个数是;(3)同学们又进行了几次尝试,小亮都能立刻说出他们想的那个数,请你说出其中的奥妙.(要求:用所学的数学知识写出掲秘的过程.......).25.(本题满分10分)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,第一级:小于或等于25立方米(吨),按正常居民用水价格3元/立方米收费;第二级:超过25立方米且小于或等于35立方米用水区间,其中的25立方米仍按3元/立方米收费,超过部分按4元/立方米收费;第三级:超过35立方米,其中的35立方米仍按第二级方案收费,超过部分按5元/立方米收费. 设每户家庭用水量为x 立方米时,应交水费y 元.(1)当250≤≤x 时, y = 元(用含x 的代数式表示);当3525≤<x 时,y = 元(用化简了的含x 的代数式表示); 当35>x 时,y = 元(用化简了的含x 的代数式表示); (2)小明家十月份缴纳水费95元,那么小明家十月份共用水多少立方米?26.(本题满分12分)如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是60千米/小时,BC段为上山路,车速是45千米/小时,CD段为下山路,车速是72千米/小时,已知下山路的长是上山路的2倍.(1)若AB=12千米,老王开车从A到D共需多少小时?(2)若AB=6千米,老王开车从A到D共需多少小时?(3)当AB的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)D答案一、选择题 BACCBD二、填空题(本大题共10小题,每小题3分)7. 2 8. 4 9. 101023.2⨯ 10. -2 11.3n 12. b a 3(答案不唯一) 13. 14 14. b -a +7 15. 2 16. -50三、解答题(本大题共6小题,共60分. 解答需写出必要的文字说明或演算步骤.) 17.(每空2分)请把下列各数填在相应的集合内正数集合:{+4,0.333……,-(-2), 2.5 …} 非负整数集合:{ +4,-(-2),0, …} 负分数集合:{ -⎪⎪⎪⎪⎪⎪-12,-(+27), …}无理数集合:{π,-1.232232223…… …} 18.(本题8分) 在数轴上把下列各数表示出来,并用“<”连接各数。
江苏省2024--2025学年七年级上学期苏科版数学期中调查试卷(含答案)
0ba 七年级第一学期期中调查试卷(苏教版)(满分:120;考试时间:100分钟)亲爱的同学,你步入初中的大门已经半学期了,一定会有很多的收获吧,现在是你展示自我的时候了。
相信自己,定会成功!考试内容:数学与我们同行、有理数、代数式一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入答题纸相应的空格中)1.的相反数是( ).A .B .C .D . 2.下列各数-5,,4.12112111211112…,0,中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个3. 下列关于单项式的说法中,正确的是( ) A .系数是-,次数是3 B .系数是-,次数是4 C .系数是-5,次数是3 D .系数是-5,次数是44.下列为同类项的一组是( )A .与B .与C .7与D .5.下列计算正确的是 ( )A . B .C .D . 6.若x =1是方程2x +m -6 =0的解,则m 的值是 ( )A .4B .-4C . 8D .-87.有理数、在数轴上的位置如图所示,则化简的结果为( )A .B .C .D .8.一列单项式按以下规律排列:x ,3x 2,5x 2,7x ,9x 2,l1x 2,13x ,…,则第2014个单项式应是 ( )A .4027xB .4027x 2C .4029xD .4029x 25-51-515-53π227253xy -52523x 322xy -241yx 31-a ab 7与ab b a 523=+3332a a a =+3433=-m m xyxy y x 22422=-a b a b a b -++2a -2ab 22b -二、填空题:(本大题共10小题,每小题3分,共30分,请把正确的答案填在答题纸对应= .17.若,那么 。
18. 一种新运算,规定有以下两种变换:①.如;②,如. 按照以上变换有,那么等于 .三、解答题(本题共10小题,共66分,解答时应写出必要的计算过程,推理步骤或文字说明.)19.(本题16分,每小题4分)计算:(1) (2)0.35+(-0.6)+0.25+ (-5.4)23-=-y x 的值是y x 623-+),(),(n m n m f -=)2,3()2,3(-=f ),-(),(n m n m g -=)2,3()2,3(--=g [])4,3()4,3(4,3-=--=f g f )([])(6-,5f g 3 5.37 5.3-++-(3) (4) (4分)20.化简..(4分)21.先化简,再求值,,其中(8分)22.如图,在正方形与正方形中,点在边的延长线上,若,(其中).(1)请用含有,的式子表示图中阴影部分的面积.(2)当,时,求阴影部分的面积.23.(本题9分)学校图书馆平均每天借出图书50册,如果某天借出53册,就记作+3;如果某天借出40册,就记作-10.上星期图书馆借出图书记录如下:(1)上星期三借出图书多少册?(2)如果上星期五比上星期四多借出图书24册。
苏教版七年级数学上册期中考试质量测试卷附参考答案
苏教版七年级数学上册期中考试测试卷一、选择题(每小题2分,共12分)1.据测算,我国如果每年减少10%的包装纸用量,那么可减排二氧化碳3120000吨,将3120000吨用科学记数法表示为(▲).A .51012.3⨯吨 B .61012.3⨯吨 C .5102.31⨯吨 D .710312.0⨯吨2.把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果为(▲). A .5)2()3(+=+++ B .1)2()3(+=-++ C .5)2()3(-=+-- . D .1)2()3(-=++- 3.下列四个数中,无理数是(▲).A .3.14B .0.33030030003…C .0.3333…D .722 4.下图表示某地区早晨、中午和午夜的的温度(单位:℃),则下列说法正确的是(▲).A .中午和早晨的温差是11℃B .中午和早晨的温差是3℃C .中午和午夜的温差是0℃D .午夜和早晨的温差是11℃5.小明要为自己和弟弟各买一套相同的运动服.已知甲、乙两家商店该种运动服每套的售 价相同, 但甲店规定:若一次买两套,则其中一套可享受七折优惠;乙店规定:若一 次买两套,则可按总价的54收费.下列判断正确的是( ▲). A .甲店比乙店优惠 B .乙店比甲店优惠C .甲、乙两店收费相同D .以上都有可能6.已知整数1234,,,,a a a a ⋅⋅⋅,满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则20a 的值为( ▲). A .8- B .9- C . 10- D .20-二、填空题(每小题2分,共20分)7.如果a 与-3互为倒数,那么a 等于 .-4-7午夜+1输入x( )2输出25(第11题)(第12题)abr8.在有理数2)1(,5,310,31,5.0,4-----中,负整数是.9.计算:233)3(÷-=.10.单项式-3x y的系数是,次数是.11.如图(单位:㎝),用代数式表示三角尺(阴影部分)的面积是㎝2.12.如图是数值转换机的示意图,若输出的数是25,则输入的数x的值为.13.已知2a-3b2=5,则10-2a+3b2的值是.14.代数式“0.8a”可以解释为:一件商品原价为a元,现按原价的八折出售,这件商品现售价是0.8a元.请你对“0.8a”再赋予另一个实际含义:.15.按如图的计算程序计算,若开始输入的数为2-,则最后输出的结果是 . 16.观察下列等式:11122=+=-;3121222=+=-;5232322=+=-;7343422=+=-;……若字母n表示自然数,把你观察到的规律用字母n的式子表示出来为: .三、计算与求解(共29分)17.(3分)17)25()12(14--+--18.(3分))15(60)3(4-÷+-⨯19.(4分)32)154(21÷-⨯20.(5分))57()4()2(83+-⨯-÷-+21.(3分))3(25b a b a -++22.(4分))63(3132y y -++23.(7分)先化简 ,再求值:mn mn m mn m 2)32(3)54(22----,其中m =21-,n =2-.四、解下列各题(共39分)24.(6分)如图,正方形的边长为a .(1)用代数式表示阴影部分的面积;(2)当a =8m ,π取3.14时,计算阴影部分的面积.25.(7分)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足用正数或负数表示,记录如下表: (1)这批样品的平均质量比标准质量多还是少?多或少几克? (2)若每袋标准质量为250克,则抽样检测的总质量是多少?26.(8分)做大小两个长方体纸盒,尺寸如图(单位:㎝)与标准质量的差值(单位:g )-4 -3 0 1 2 6 袋 数143453aa(第24题)a1.5ac2cb2b(第26题)(1)用a、b、c的代数式表示做这两个纸盒各需用料多少㎝2?(2)当a=10㎝,b=8㎝,c=6㎝时,试计算做大纸盒比做小纸盒多用料多少㎝2?27.(10分)平安加气站某日7︰00前的储气量为10000立方米.加气站在加气过程中每把加气枪均以每小时200立方米的速度为汽车加气.设加气站从7︰00开始加气总时间为x(小时)(加气期间关闭加气枪的时间忽略不计).另外,加气站在不同时间段加气枪的使用数量如下:(1)7︰30时加气站的储气量为立方米;(2)当x>1时,试用含x的代数式表示加气站加气x小时后的储气量(答案要求化简);(3)若每辆车的加气量均为20立方米,试说明前70辆车能否在当天8︰30之前加完气?若能,请加以说明;若不能,则8︰00以后至少还需添加几把枪加气才能保证在当天8︰30之前加完气?28.(8分)(1)阅读下面问题的解法,并填空:4位朋友在一起,每两人握一次手,共握多少次手?小莉是这样分析的:每一位朋友都与其他3位握手,共握3次手,则4位朋友共与其他3人握手3×4次.但以上算法中,将每两位朋友的1次握手重复计算成了2次,因此4 位朋友实际共握手243=6次.用上面的方法思考:n位朋友在一起,每两人握一次手,共握多少次手?每一位朋友都与其他(n-1)位握手,共握(n-1)次手,则n位朋友共与其他(n-1)人握手次.但以上算法中,将每两位朋友的1次握手重复计算成了2次,因此n位朋友实际共握手次.(2)试解决与上面类似的问题:在平面内画50条直线,最多有多少个交点?(要求:写出说理过程)答案一、选择题(每小题2分,共12分)题号 1 2 3 4 5 6 答案 BDBABC二、填空题(每小题2分,共20分)7.31-; 8.5--; 9. 3-; 10.-1、4; 11.)21(2r ab π-;12.4和-6(写一个得1分); 13.5; 14.略; 15.-10; 16.)(121)1(22为自然数n n n n n n +=++=-+.三、计算与求解(共29分)17.解:原式=17251214--+ (1分) 18.解:原式=)4(12-+- (2分)= 26-42 (2分) =16- (3分) =16- (3分)19.解:原式=23)154(21⨯-⨯(1分) 20.解:原式=)2()4()8(8-⨯-÷-+(2分)= 2315421⨯⨯- (2分) =)2(28-⨯+ (3分) = 51-(4分) =4 (5分)21.解:原式= b a b a 325-++ (1分) 22. 解:原式= y y 2132-++(2分)= b b a a 325-++ = 1322++-y y = b a -6 (3分) = 4 (4分)23.解:原式= mn mn m mn m 2965422-+-- (2分)= mn mn mn m m 2956422-+-- = mn m 222+- (4分)当m =21-,n =2-时. 原式= = )2()21(2)21(22-⨯-⨯+-⨯- (5分) =2412+⨯-= 23(7分) 四、解下列各题(共39分)24.解:①阴影部分的面积为22)2(a a π- (3分)②当a =8m ,π取3.14时,22)2(aa π-=22414.38⨯-=13.76 (6分)25.解: (1) 1663251403)3(4)4(1=⨯+⨯+⨯+⨯+-⨯+-⨯, (2分)8.02016= (3分) 所以这批样品的平均质量比标准质量多0.8克 (4分)(2)若每袋标准质量为250克,则抽样检测的总质量=250×20+16=5016克.(7分)26. (1)小长方体用料为:ac bc ab 222++ (2分)大长方体用料为:c a c b b a 25.1222225.12⨯⨯+⨯⨯+⨯⨯= ac bc ab 686++ (4分)(2)(ac bc ab 686++))222(ac bc ab ++-=ac bc ab 464++ (6分)当a =10 ,b =8 ,c =6 时,ac bc ab 464++=61046868104⨯⨯+⨯⨯+⨯⨯=848答:做大纸盒比小纸盒多用料多848㎝2. (8分)27.(1) 9800 (2分)(2)加气x 小时(x >1)加气站的储气量为:)1(620021420021220010000-⨯-⨯⨯-⨯⨯-x =-1200x +10600 . (6分)(3)不能. 因为(2×12×200+4×12×200+6×12×200)÷20=60<70,所以前70辆车不能在8:30之前加完气. (8分)多余车还需要加气:20020)6070(=⨯-, 2)21200(200=⨯÷即8︰00以后至少还需添加2把枪加气才能保证在当天8︰30之前加完气.(10分)28.(8分) (1) 2)1(-n n 次 (2)法一:每一直线都与其它49直线相交,共有49个交点, (4分)则50条直线共与其它49直线相交有49×50个交点, (6分) 但以两条直线相交的每个交点被重复计算了2次,因此平面内画50条直线,最多有25049⨯=1225 个交点. (8分) 法二:当每两条直线都相交且交点不重合时,交点的个数最多. (4分) 此时,求50条直线两两相交有多少个交点个数问题,相当于求50个朋友每两位握 手一次,共握多少次手的问题. (6分) 由(1)当50=n 时,握手次数为12252)150(50=- 即50多直线两两相交,最多共有1225个交点. (8分)法三:可用归纳法得出最多共有1+2+3+…+49个交点.(参照给分)n (n -1) ,; (第1空1分,第2空2分,共3分)。
2021-2022学年江苏省苏州市七年级(上)期中数学试卷(附答案详解)
2021-2022学年江苏省苏州市七年级(上)期中数学试卷一、选择题(本大题共10小题,共20.0分)1.−2021的绝对值是()A. −2021B. 2021C. 12021D. −120212.2021年7月24日,中共中央办公厅、国务院办公厅印发了《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,为贯彻落实“双减政策”,各地出台了相关措施,据基础教育“双减”工作监测平台数据显示,截至9月22日,全国有10.8万义务教育学校已填报课后服务信息,10.8万用科学记数法可表示为()A. 1.08×104B. 1.08×105C. 10.8×104D. 10.8×1053.下列人或物中,质量最接近1吨的是()A. 1000枚1元硬币B. 25名小学生C. 5000个鸡蛋D. 10辆家用轿车4.下列说法错误的是()A. −13的倒数是−3 B. 无限不循环小数叫做无理数C. a2+b2表示a、b两数和的平方D. πr2是2次单项式5.甲、乙、丙三人分一筐梨,准备按3:2:5或1:2:3分配,这两种分法中分得梨一样多的人是()A. 甲B. 乙C. 丙D. 甲和丙6.下列问题情境,不能用加法算式−3+10表示的是()A. 数轴上表示−3与10的两个点之间的距离B. 某日最低气温为−3℃,温差为10℃,该日最高气温C. 用10元纸币购买3元文具后找回的零钱D. 水位先下降3cm,再上升10cm后的水位变化情况7.如图,正方体的6个面上分别标有字母A,B,C,D,E,F,将该正方体按图示方式转动,根据图形可得,与字母F相对的是()A. 字母AB. 字母BC. 字母CD. 字母E8.下列图形中,三角形ABC和平行四边形ABDE面积相等的是()A. ②③B. ③④C. ②③④D. ①②③④9.如果|a+3|+(b−2)2=0,那么代数式(a+b)2021的值是()A. −2021B. 2021C. −1D. 110.小赵是一位自行车运动爱好者,小赵在一次秋游时的路程与时间变化情况如图所示,从图中可以看出平均车速为每小时10千米的时段是()A. 前3小时B. 第3至5小时C. 最后1小时D. 后3小时二、填空题(本大题共8小题,共16.0分)11.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.2020年我国对“一带一路”沿线国家的直接投资额达八千一百零八亿二千万元,横线上的数改写成用“亿”作单位的数是______亿.12.比较大小(用“>”“=”“<”连接):−(−2)______−|−3|.13.写出一个含字母x的代数式,使得当x=4时,该代数式的值为−9,这个代数式可以是______.(本题答案不唯一,填一个正确的即可)14.华为是中国大陆首个进入“最佳全球品牌”排行榜单的企业,拥有全球最领先的自动化生产线.如果该自动化生产线在手机电路板上插入1个某种零件的时间为0.01秒,那么1分钟可以插入该种零件______个.15.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为______.16.若m2+mn=1,n2−2mn=10,则代数式m2+5mn−2n2的值为______.17.幻方是中国古代传统游戏,多见于官府、学堂.如图,有一个类似于幻方的“幻圆”,将−2,−4,−6,0,3,5,7,9分别填入图中的圆圈内,使横、竖,以及内、外两圈上的4个数字之和都相等.现已完成了部分填数,则图中x+y的值为______.18.学校举行“请党放心,强国有我”主题朗诵比赛.张老师准备为同学们购买某种奖品,她观察如下价格表后发现,购买奖品的份数越多,每份奖品的平均价格就越便宜.如果以这种方式购买8份奖品,那么总价是______元.数量(份)12345总价(元)8.5016.5024.0031.0037.50三、解答题(本大题共10小题,共64.0分)+72÷1.5.19.计算:72×29|.20.计算:23÷(−4)2×3.2−|1−13521.先化简,再求值:5(3a2b−ab2)−2(−ab2+3a2b),其中a=−2,b=−3.22.为庆祝建党一百周年,电影公司举行“学党史,悟初心”有奖观影活动.公司拟从5种观影代金券中挑选3种作为奖品,奖品总价值不超过1000元.5种观影代金券分别是:A券499元/张,B券399元/张,C券299元/张,D券99元/张,E券19元/张.活动设一等奖1名,二等奖5名,三等奖10名.试确定三个等级奖品的名称,并简要说明理由.23.如图,正方形与等腰直角三角形的一边在同一条水平直线上,现保持三角形不动,正方形以2厘米/秒的速度向右匀速运动.(1)在图中画出第8秒时,正方形所在的位置;(2)计算第11秒时,正方形与等腰直角三角形重叠部分的面积.24.如图,数轴上的点A,B,C分别表示有理数a,b,c.(1)比较大小:a______b,b______−1(填“>”、“<”或“=”);(2)化简:|−a|+|b−a|−|a+c|.25.用长方形和三角形按图示排列规律组成一连串图形.(1)当某个图形中长方形个数为5时,三角形个数为______;(2)设某个图形中长方形个数为x,三角形个数为y.①y与x的数量关系为y=______(用含x的代数式表示);②若某个图形中长方形与三角形个数之和为28,求该图中长方形个数.26.如表是苏州市地铁收费标准:分段乘坐里程(公里)单程票票价10<里程≤62元26<里程≤113元311<里程≤164元416<里程≤235元523<里程≤306元6里程20公里以上,每9公里分段加1元备注:普通乘客刷卡乘车可享受单程票票价9.5折优惠小明的妈妈每天乘坐地铁上下班,单程12公里,每月按22天上下班计算.(1)求小明的妈妈刷卡乘车一个月的地铁交通费;(2)地铁公司有三种计次月票可供选择,A月票60元/20次,B月票85元/30次,C月票130元/50次.月票仅限当月使用,每次不限里程,月底清零,小明的妈妈每月用于上下班的地铁交通费最少是多少元?请说明理由.27.规定一种“⊕”运算:a⊕b=ab+a+b+1,如3⊕4=3×4+3+4+1=20.(1)①计算:(−5)⊕3=______,3⊕(−5)=______;②说明“⊕”运算具有交换律;(2)①计算:(−3)⊕(4⊕2)=______,[(−3)⊕4]⊕2=______;②由计算结果可得“⊕”运算______结合律(填“具有”或“不具有”).28.【操作感知】如图①,长方形透明纸上有一条数轴,AB是周长为4的圆的直径,点A与数轴原点重合,将圆从原点出发沿数轴正方向滚动1周,点A落在数轴上的点A′处;将圆从原点出发沿数轴负方向滚动半周,点B落在数轴上的点B′处,折叠长方形透明纸,使数轴上的点A′与点B′重合,此时折痕与数轴交点表示的数为______.【建立模型】折叠长方形透明纸,使得数轴上表示数a的点M与表示数b的点N重合,则折痕与数轴交点表示的数为______(用含a,b的代数式表示).【问题解决】(1)若C,D,E为数轴上不同的三点,点C表示的数为−4,点D表示的数为2,如果C,D,E三点中的一点到其余两点的距离相等,求点E表示的数;(2)如图②,若AB是周长为l的圆的直径,点A与数轴原点重合,将圆从原点出发沿数轴正方向滚动2周,点A落在数轴上的点Q处;将圆从原点出发沿数轴负方向滚动1周,点A落在数轴上的点P处.将此长方形透明纸沿P,Q剪开,将点P,Q之间一段透明纸对折,使其左、右两端重合,这样连续对折n次后,再将其展开,求最右端折痕与数轴交点表示的数.答案和解析1.【答案】B【解析】解:−2021的绝对值为2021,故选:B.根据绝对值的定义即可得出答案.本题考查了绝对值,掌握负数的绝对值等于它的相反数是解题的关键.2.【答案】B【解析】解:10.8万=108000=1.08×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:1吨=1000千克,A、1元硬币1个大约6g,1000×6g=6000g=6kg,故此选项不符合题意;B、六年级的学生体重大约40kg,25×40kg=1000kg,故此选项符合题意;C、1个鸡蛋大约50g,5000×50g=250000g=250kg,故此选项不符合题意;D、1辆家用轿车大约2000kg,10×2000kg=20000kg,故此选项不符合题意.故选:B.质量单位有:吨、千克、克,本题中结合实际情况选择合适的计量单位即可判断出答案.例如:1名六年级的学生大约重40kg,求出25名学生的重量;1个鸡蛋大约50g,求出5000个鸡蛋的重量等等.本题考查数学常识.解题的关键是熟练掌握质量单位与实际生活的联系.4.【答案】C【解析】解:A、−13的倒数是−3,正确,不符合题意;B、无限不循环小数叫做无理数,正确,不符合题意;C、a2+b2表示a、b两数的平方和,故原说法错误,符合题意;D、πr2是2次单项式,正确,不符合题意;故选:C.根据倒数、无理数、代数式表示的意义与单项式的定义分别对每一项进行分析,即可得出答案.此题考查了实数与单项式,掌握倒数、无理数、代数式表示的意义与单项式的定义是解题的关键.5.【答案】C【解析】解:按3:2:5分配时,甲分得整筐梨的33+2+5=310,乙分得整筐梨的23+2+5=210=15,丙分得整筐梨的53+2+5=510=12,按1:2:3分配时,甲分得整筐梨的11+2+3=16,乙分得整筐梨的21+2+3=26=13,丙分得整筐梨的31+2+3=12,∴这两种分法中分得梨一样多的人是丙,故选:C.根据题意可知,这一筐梨为单位“1”不变,只是分的份数不同,因此求出每个人两次分得这筐梨的几分之几,分率一样的即可判断分得一样多.本题考查有理数除法的应用,将整筐梨的重量看作单位“1”,求得两次分配时每人分得的份数分别占总份数的几分之几是解题关键.6.【答案】A【解析】解:A.数轴上−3与10的两个点之间的距离是10−(−3),故本选项符合题意;B.−3+10可以表示某日最低气温为−3℃,温差为10℃,该日最高气温,故本选项不合题意;C.−3+10可以表示用10元纸币购买3元文具后找回的零钱,故本选项不合题意;D.水位先下降3cm,再上升10cm后的水位变化情况,能用加法算式−3+10表示,故本选项不合题意.故选:A.根据有理数的加减法的意义判断即可.本题考查有理数的加减法,解题关键是知道数轴上两个点之间的距离等于这两个点表示的数的差的绝对值.7.【答案】C【解析】解:由此正方体的不同放置可知:与字母F相对的是字母C.故选:C.由此正方体的不同放置可知:D与E相对,F相对的是C,由此得出答案.本题正方体相对两个面上的文字,同时也考查了空间想象能力和推理能力,属于基础题.8.【答案】C×2×4=4,平行四边形ABDE的面积=4×2=8,【解析】解:①三角形ABC的面积=12不相等;×4×4=8,平行四边形ABDE的面积=4×2=8,相等;②三角形ABC的面积=12×4×4=8,平行四边形ABDE的面积=4×2=8,相等;③三角形ABC的面积=12×4×4=8,平行四边形ABDE的面积=4×2=8,相等;④三角形ABC的面积=12故选:C.根据三角形的面积公式和平行四边形的面积公式解答即可.此题考查平行四边形的性质,关键是根据三角形的面积公式和平行四边形的面积公式解答.9.【答案】C【解析】解:∵|a+3|+(b−2)2=0,∴a+3=0,b−2=0,∴a=−3,b=2,∴(a+b)2021=(−3+2)2021=(−1)2021=−1,故选:C.先求出a、b的值,再代入计算即可.本题考查非负数的和为0及代数式求值,解题的关键是根据非负数的和为0,求出a和b的值.10.【答案】D(千米/时);【解析】解:前3小时的平均速度为:40÷3=403第3至5小时的平均速度为:(50−40)÷2=5(千米/时);最后1小时的平均速度为:(70−50)÷1=20(千米/时);后3小时的平均速度为:(70−40)÷3=10(千米/时);故选:D.根据题意和函数图象中的数据,利用“速度=路程÷时间”解答即可.本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】8108.2【解析】解:八千一百零八亿二千万元,横线上的数改写成用“亿”作单位的数是8108.2亿.故答案为:8108.2.改写成用“亿”作单位的数在亿位的右下角点上小数点,再写上亿即可求解.本题考查了近似数和有效数字,关键是熟悉整数改写的方法.12.【答案】>【解析】解:∵−(−2)=2,−|−3|=−3,∴−(−2)>−|−3|.故答案为:>.先化简,再比较两个数的大小即可本题考查了有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键.13.【答案】x−13【解析】解:∵4−13=−9,∴这个代数式为:x−13.故答案为:x−13(答案不唯一).利用题意写出一个简单的代数式即可.本题主要考查了求代数式的值,理解题意是解题的关键.14.【答案】6000【解析】解:1分钟=60秒,60÷0.01=6000(个),答:1分钟可以插入该种零件6000个.故答案为:6000.先把1分钟化成60秒,再根据插入1个某种零件的时间为0.01秒,即可得出1分钟可以插入该种零件的个数.此题考查了有理数的除法,掌握有理数的除法法则是解题的关键.15.【答案】(8,6)【解析】解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),∴点D坐标为(8,6);故答案为:(8,6).根据平行四边形的性质:对边平行且相等,解答即可.此题考查平行四边形的性质,关键是根据平行四边形的性质:对边平行且相等解答.16.【答案】−19【解析】解:∵m2+mn=1,n2−2mn=10,∴原式=m2+mn+4mn−2n2=(m2+mn)−2(n2−2mn)=1−2×10=1−20=−19,故答案为:−19.根据整式的加减运算法则即可求出答案.本题考查整式的加减,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.17.【答案】−10或5【解析】解:设小圈上的数为c,大圈上的数为d,−2+(−4)+(−6)+0+3+5+7+9=12,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是6,横、竖的和也是6,则0+c+5+3=6,得c=−2,−2+7+5+y=6,得y=−4,x+(−4)+7+d=6,x+d=3,∵当x=−6时,d=9,则x+y=−6+(−4)=−10,当x=9时,d=−6,则x+y=9+(−4)=5.故答案为:−10或5.由于八个数的和是12,所以需满足两个圈的和是6,横、竖的和也是6.列等式可得结论.本题考查了规律型:数字的变化类,解决本题的关键是知道横竖两个圈的和都是6.18.【答案】54【解析】解:根据题意得:37.5+6+5.5+5=54(元),则以这种方式购买8份奖品,那么总价是54元.根据表格中的数量与总价的关系确定出所求即可.此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.19.【答案】解:原式=72×29+72×23=72×(29+23)=72×89=64.【解析】原式变形后,逆用乘法分配律计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】解:原式=8÷16×3.2−|−85|=12×3.2−1.6=1.6−1.6=0.【解析】原式先计算乘方及绝对值,再计算乘除,最后算加减即可求出值.此题考查了有理数的混合运算,以及绝对值,熟练掌握运算法则是解本题的关键.21.【答案】解:原式=15a2b−5ab2+2ab2−6a2b=9a2b−3ab2,当a=−2,b=−3时,原式=9×(−2)2×(−3)−3×(−2)×(−3)2=−108+54=−54.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.22.【答案】解:一等奖为C券,二等奖为D券,三等奖为E券,理由:当一等奖为C券,二等奖为D券,三等奖为E券时,总的价值为:299×1+99×5+ 19×10=984(元),∵984<1000,∴当一等奖为C券,二等奖为D券,三等奖为E券时,符合题意;很显然,当其他情况时总价值都大于1000元,故一等奖为C券,二等奖为D券,三等奖为E券.【解析】根据题意,可以先算出价值最低的情况,然后再观察奖券的价值,即可得到三个等级奖品的名称,并说明理由.本题考查有理数的混合运算,解答本题的关键是明确题意,求出最低总价值.23.【答案】解:(1)正方形运动8秒时,运动的距离为8×2=16(cm),∴第8秒时正方形的位置如图1所示.(2)正方形运动11秒时,运动的距离为11×2=22(cm),∴第11秒时正方形的位置如图2所示,记正方形ABCD与等腰直角三角形的交点分别为E、F,∴△EBF为等腰直角三角形,且EB=22−16=6(cm),∴BF=6(cm),∴S△EBF=12EB⋅BF=12×6×6=18(cm2),∴重叠部分的面积为18cm2.【解析】(1)先计算8秒的运动距离,然后画出第8秒时正方形的位置;(2)先计算11秒的运动距离,画出第11秒时的位置,然后求得重叠部分的面积.本题考查了图形的平移,等腰直角三角形的性质,解题的关键是作出正方形平移后的位置图.24.【答案】<<【解析】解:(1)由题意可知,a<b,b<−1;故答案为:<;<;(2)由题意可知a<0,b−a>0,a+c<0,∴|−a|+|b−a|−|a+c|=−a+b−a−(−a−c)=−a+b−a+a+c=−a+b+c.(1)根据当数轴方向朝右时,右边的数总比左边的数大判断即可;(2)根据题意判断出b−a和a+c的符号,再绝对值性质去绝对值符号化简可得.此题主要考查了有理数大小的比较,学生对数轴和绝对值的理解,学生要对这些概念性的东西牢固掌握.25.【答案】82(x−1)【解析】解:(1)∵长方形个数为2时,三角形个数为2个,即2=2×1=2;长方形个数为3时,三角形个数为4个,即4=2×2=4;长方形个数为4时,三角形个数为6个,即6=3×2=6.∴当某个图形中长方形个数为5时,三角形个数为4×2=8,故答案为:8;(2)①∵长方形个数为2时,三角形个数为2个,即2=2×1=2;长方形个数为3时,三角形个数为4个,即4=2×2=4;长方形个数为4时,三角形个数为6个,即6=3×2=6.…∴长方形个数为x,三角形个数为y时,y与x的数量关系为y=2(x−1)(用含x的代数式表示);故答案为:2(x−1);②当x+y=28时,2(x−1)+x=28,解得:x=10,答:该图中长方形个数为10.(1)根据图形直接可得;(2)①由图可知每个图形中三角形的个数为长方形个数与1的差的2倍,据此可得;②根据①中所得结果,求出x的值即可.本题主要考查规律型:图形的变化类,解答的关键是由所给的图形总结出所存在的规律.26.【答案】解:(1)由表格可知,小明的妈妈每次单程票票价为4元,故小明的妈妈刷卡乘车一个月的地铁交通费为:4×2×22×0.95=167.2(元),即小明的妈妈刷卡乘车一个月的地铁交通费是167.2元;(2)小明的妈妈每月用于上下班的地铁交通费最少是130元,理由:∵小明妈妈一个月需要坐地铁22×2=44(次),∴当选择A月票时较低的费用为:60×2+4×4×0.95=135.2(元),当选择B月票时较低的费用为:85+(44−30)×4×0.95=138.2(元),当选择C月票时的费用为130元;∵130<135.2<138.2,∴小明的妈妈每月用于上下班的地铁交通费最少是130元.【解析】(1)根据题意和表格中的数据,可以计算出小明的妈妈刷卡乘车一个月的地铁交通费;(2)根据题意,利用分类讨论的方法,分别求出购买各种月票的较低费用,然后比较大小即可.本题主要考查了分段函数的应用问题,根据条件确定对应的分段函数关系,分别进行计算是解决本题的关键.27.【答案】−16−16−32−27不具有【解析】解:(1)①∵a⊕b=ab+a+b+1,∴(−5)⊕3=(−5)×3+(−5)+3+1=(−15)+(−5)+3+1=−16;3⊕(−5)=3×(−5)+3+(−5)+1=−15+3+(−5)+1=−16;故答案为:−16,−16;②∵a⊕b=ab+a+b+1,b⊕a=ab+a+b+1,∴a⊕b=b⊕a,∴“⊕”运算具有交换律;(2)①(−3)⊕(4⊕2)=(−3)⊕(4×2+4+2+1)=(−3)⊕(8+4+2+1)=(−3)⊕15=(−3)×15+(−3)+15+1=−45+(−3)+15+1=−32;[(−3)⊕4]⊕2=[(−3)×4+(−3)+4+1]⊕2=[(−12)+(−3)+4+1]⊕2=(−10)⊕2=(−10)×2+(−10)+2+1=−20+(−10)+2+1=−27;故答案为:−32,−27;②由计算结果可得“⊕”运算不具有结合律,故答案为:不具有.(1)①根据a⊕b=ab+a+b+1,可以计算出所求式子的值;②根据a⊕b=ab+a+b+1,可以写出b⊕a=ab+a+b+1,然后即可说明;(2)①根据a⊕b=ab+a+b+1,可以计算出所求式子的值;②根据①中的结果可以得到“⊕”运算是否具有结合律.本题考查有理数的混合运算、新定义,解答本题的关键是会用新定义解答问题.28.【答案】1a+b2【解析】解:【操作感知】由已知得A′表示的数是4,B′表示的数是−2,∵折叠长方形透明纸,使数轴上的点A′与点B′重合,∴A′与点B′关于折痕对称,即A′B′中点为折痕与数轴的交点,=1,而A′B′中点表示的数为−2+42故答案为:1;【建立模型】∵MN关于折痕对称,∴MN的中点即是折痕与数轴交点,,而MN的中点表示的数是 a+b2∴折痕与数轴交点表示的数为a+b,2;故答案为:a+b2【问题解决】(1)设点E表示的数是x,=−1,当E到C、D距离相等,即E是CD中点时,x=−4+22当C到E、D距离相等,即C是ED中点时,−4=2+x,解得x=−10,2,解得x=8,当D是C、E距离相等,即D是CE中点时,2=−4+ x2综上所述,点E表示的数为−1或−10或8;(2)由已知得Q表示的数是2,P表示的是−1,∴PQ=3,,而对折n次后,每两条相邻折痕间的距离相等,这个距离是32 n∴最右端的折痕与数轴的交点表示的数为2−3.2 n【操作感知】由已知得出A′、B′表示的数,再求出A′B′中点即可得答案;【建立模型】求出MN的中点表示的数即可得到答案;【问题解决】(1)分三种情况分别列出方程,即可得答案;(2)先求出PQ的长度,再根据每两条相邻折痕间的距离为3,即可得最右端的折痕与数2 n轴的交点表示的数.本题考查数轴上点表示的数;熟练掌握中点坐标公式,根据图形对称的性质解决问题是解题的关键.第21页,共21页。
苏教版七年级数学上册第一学期期中考试试卷及答案
(第6题)cB A C苏教版七年级数学上册第一学期期中考试试卷(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共12分)1.如果向东走3 km 记作+3 km ,那么向西走5 km 记作( )A .-5 kmB .-2 kmC .+5 kmD .+8 km2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为( )A .110.510⨯千克B .95010⨯千克C .9510⨯千克D . 10510⨯千克.3.下列各式中结果为负数的是( )A .(3)--B .2(3)-C .3--D .3- 4.设边长为a 的正方形的面积为2.下列关于a 的三种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③0<a <1.其中,所有正确的序号是 ( ) A .①② B .①③ C .②③ D .①②③5.下列关于单项式-352xy 的说法中,正确的是( ) A .系数是25-,次数是3 B .系数是25-,次数是4 C .系数是5-,次数是4 D .系数是5-,次数是36.如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,点A 与点C 到点B 的距离相等,如果||a >||c >||b ,那么该数轴的原点O 的位置应该在( ) A .点A 的左边 B .点A 与点B 之间 C .点B 与点C 之间 D .点C 的右边二、填空题(每小题2分,共20分)7. 13的相反数是 ,倒数是 .8.比较大小:109- 1110-.9.用代数式表示“m 与n 积的平方”: .10.数轴上点A 表示-1,到点A 距离3个单位长度的点B 所表示的数是_________. 11.如果x -y =3,m +n =2,则 (y +m )-(x -n )的值是 .12.若单项式n y ax 275与457y ax m -的差仍是单项式,则n m 2-=_________. 13.某超市的苹果价格如图所示,试说明代数式100-9.8x 的实际意义 .14.如图所示2014年11月份的日历,在日历上任意圈出一个竖列上相邻的3个数.如果被圈出的三个数的和为51,则这三个数中最后一天为2014年11月 号.15.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:……第一个 第二个 第三个 …… 第n 个图案中有白色纸片 张.16.如图所示的运算程序中,若开始输入的x 值为32,我们发现第一次输出的结果为16,第二次输出的结果为8,…,则第2014次输出的结果为 .三、解答题(本大题共9小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.计算(每题5分,共15分)(1))16()7(1723-+---; (2)123(24)(1)238-⨯--; (3)4211(10.4)(2)63⎡⎤---÷⨯--⎣⎦.苹果:9.8元/斤(第13题)x 21 输出输入xx +3x 为偶数x 为奇数(第16题)(第14题)19.(5分) 化简:2(2x 2-9x ) -3(3x 2+4x -1) .20.(5分) 先化简,再求值:)4(3)32(2722222ab b a ab b a b a ---+,其中2-=a ,21=b .21.(6分)已知10箱苹果,以每箱15千克为标准,超过15千克的千克数记为正数,不足15千克的千克数记为负数,称重记录如下:+0.2,-0.2,+0.7,-0.3,-0.4,+0.6,0,-0.1,+0.3,-0.2 (1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为(15±0.5)千克,则这10箱有几箱不符合标准的?22.(6分)如图,长方形内有两个四分之一圆.(1) 用代数式表示阴影部分的面积;(2) 当a =10,b =4时,阴影部分的面积是多少(π取值为3.14)?23.(7分)(南京青奥会期间,某数学兴趣小组调查了奥运村某个体水果店经销香蕉情况,每千克进价4.5元,售价6.5元,8月16日至8月20日经销情况如下表:日期 16日 17日 18日 19日 20日 购进(kg ) 55 50 50 55 50 售出(kg ) 44.5 51 38 50.5 51 损耗(kg )52126(1)若8月15日晚库存为0,则8月16日晚库存 kg ;(2)从8月18日这一天的香蕉经销情况看,规定赚钱为正,当天是赚钱还是赔钱?说明理由;(3)青奥会期间8月16日至8月20日,该个体户卖香蕉共赚了多少钱?24.(7分)如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b是直角边.正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积: 方法一: ; 方法二: ;(2)观察图②,试写出222(),,2,a b a ab b +这四个代数式之间的等量关系; (3)利用你发现的结论,求:299769979+⨯+的值.25.(7分)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额. 注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000⨯(1-80%)+60=260(元). (1)购买一件标价为1600元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x 元(x >1250)的商品,那么该顾客获得的优惠额为多少?(用含有x 的代数式表示)(3)若顾客在该商场第一次购买一件标价x 元(x >1250)的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为 元.①苏教版七年级数学上册第一学期期中考试试卷参考答案一、选择题(每小题2分,共12分)二、填空题(每小题2分,共20分)7.31-;3 8. < 9.(mn )2 10. –4或2 11. -1 12. –6 13. 用100元买每斤9.8元的苹果x 斤余下的钱 14. 24 15. 3n +1 16. 2 三、解答题(本大题共9小题,共68分)17.(1)解:原式23-177-16 =+……………………………………3分-3 = ……………………………………5分(2)解:原式153242424238=-⨯+⨯+⨯ ……………………………………3分12409=-++ ……………………………………4分37= ……………………………………5分(3)解:原式3135=--⨯⨯(46-) ……………………………………2分3135=--⨯⨯(2-) ……………………………………3分1=--(185-) ……………………………………4分135= ……………………………………5分 18.(1)解: 463x x -=- ……………………………………2分22x = ……………………………………4分 1x = ……………………………………5分(2)解:6-3(1x +)2=(2x -) ……………………………………1分6-3342x x -=- ……………………………………2分1x -= ……………………………………4分1x =- ……………………………………5分19.解:原式=4x 2-18x -9x 2-12x +3 ……………………………………3分=-5x 2-30x +3 ……………………………………5分20.解:原式22222746123a b a b ab a b ab =+--+ ……………………………………2分223a b ab =-- ……………………………………3分 当2-=a ,21=b 时, 原式=-(2-)212⨯3-⨯(2-)⨯(12)2 ……………………………………4分1432=-⨯-⨯(2-)14⨯322=-+12=- ……………………………………5分21.解:(1) (+0.2)+(—0.2)+(+0.7)+(—0.3)+(—0.4)+( +0.6)+0+(—0.1)+(+0.3)+(—0.2) = 0.6(千克) ……………………………………………………………………………………………2分因此,这10箱苹果的总质量为15×10+0.6 =150.6(千克) ……………………………4分 (2)这10箱有2箱不符合标准. ………………………………………………………6分 22.解:(1)22b ab π-……………………………………………………………….3分(2)14.88 ………………………………………………………….6分 23.(1)5.5 kg ……………………………………………2分 (2)当天赚钱因为38 6.5247⨯=元 4.550225⨯=元则247>225,所以当天赚钱. ……………………………………………4分(3)(5055505550++++)-(44.5513850.551++++)-(521260++++)0=所以该个体户最后一天香蕉全部售完. ……………………………………………5分 (44.5513850.551++++) 6.5⨯-(5055505550++++) 4.5⨯357.5=元 答:该个体户卖香蕉共赚了357.5元钱. ……………………………………………7分24.(1)(a b +)2;222a ab b ++ ……………………………………………2分(2)(a b +)2=222a ab b ++ ……………………………………………4分(3)解:299769979+⨯+22997299720133=+⨯⨯+=(9973+)2210001000000== ……………………………………………7分(特别说明:本题第(1)问的添法不唯一,只要两种不同的方法填写正确均得2分) 25.解:(1)标价为1600元的商品按80%的价格出售,消费金额为1440元,消费金额1440元在1000﹣1500之间,返还金额为100元, 则顾客获得的优惠额是:1600×(1﹣80%)+100=420(元)………………………………2分 (2)当1000<0.81500x ≤时,(0.2100x +)元;……………………………………………3分当0.8x >1500时,(0.2150x +)元; ……………………………………………4分(3)2000 (当1250<x ≤1875时,0.2x+100+500×0.2=650,得x=2250不合题意;当x>1875时,0.2x+150+500×0.2=650,得x=2000符合)……………………………………………7分。
新苏教版七年级数学上册期中考试测试卷附参考答案
cab苏教版七年级数学上册期中考试测试卷(本卷满分:150分 考试时间:120分钟)一、选择题(每题3分,共24分,每题中只有一个选项正确)1、下列各数22200923122(3) ,0 ,() , ,(1) ,2 ,(8) , 274---------中,负数有 ( ▲ )A .2个B .3个C .4个D .5个2、地球离太阳约有一亿五千万千米,用科学记数法表示这个数是( ▲ ).A .1.5×107 千米B .1.5×108 千米C .15×107 千米D .0.15×109 千米 3、在式子x+y ,0,-a ,-3x 2y ,13x +,1x,单项式的个数为 ( ▲ ) A .5 B .4 C .3 D .2 4、已知:x =3,y =2,且x >y ,则x+y 的值为( ▲ )A .5B .1C .5或1D .-5或-1 5、下列说法:①a 为任意有理数时,21a 总是正数; ②方程x+2=x1是一元一次方程;③若0ab,0a b ,则0a ,0b; ④代数式2t 、3a b 、2b都是整式 ; ⑤若a 2=(-2)2, 则a=-2.其中错误..的有( ▲ ) A .4个 B .3个 C .2个 D .1个6、火车站、机场、邮局等场所都有为旅客提供打包服务的 项目.现有一个长、宽、高分别为a 、b 、c 的箱子,按 如图所示的方式打包,则打包带的长(不计接头处的长) 至少应为 ( ▲ )A.c b a 32++B. c b a 864++C.c b a 4104++D. c b a 642++7、已知:230x y -+=,则代数式2(2)241y x x y --+-的值为( ▲ ).A .5B .14C .13D .78、如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN =NP =PR =1.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若a +b =3,则原点是 ( ▲ ) A .M 或R B .M 或N C. N 或PD. P 或R二、填空题(每题3分,共30分) 9、 -2的倒数是 ▲ .10、-1减去65-与61的和,所得的差....是 ▲ . 11、单项式 y x -5352的系数与次数的和是 ▲ .12、在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是 ▲ . 13、若4x 2mym +n与-3x 6y 2的和是单项式,则mn = ▲ .14、关于x 的方程(a -2)x 1||-a -2=0是一元一次方程,则a = ▲ . 15、关于x 的方程26=-ax 的解为2=x ,则a = ▲ .16、在数轴上的-7与37之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 ▲ .17、已知:2+=x x ,那么273192011++x x 的值为 ▲ .18、定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为53+n ;②当n 为偶数时,结果为kn 2(其中k 是使kn 2为奇数的正整数),并且运算重复进行.例如,取26=n ,则:若420=n ,则第2015次“F 运算”的结果是 ▲ . 三、解答题(共10题,满分96分)26F ② 13F ① 44F ② 11第1次第2次第3次19、计算(1).20(14)1813------ (2).(3).312(10.5)(3)3--+÷⨯-20、解方程(1) ()34254x x x -+=+ (2) 121146x x -+=+(3)20.310.20.30.1x x +--= .21、先化简,再求值:(1))4(3)125(23m m m -+--,其中m 是最大的负整数。
新课标-最新苏科版七年级数学第一学期期中学业质量检测及答案解析-精编试题
最新苏科版七年级上学期期中学业质量测试一、选择题(本大题共6小题,每小题3分,共18分.)1.下列数中与-2互为倒数的是 ( ▲ ) A .-2 B .-21C .21D .2 2.(+3)+(-5)= ( ▲ ) A.-8 B .+8 C .-2 D .+2 3.从图中的车票上得到的下列信息正确的是 ( ▲ ) A .车从济南开往兴化 B .座位号是8C .乘车时间是2016年9月28日D .票价是192元4.下列式子,符合代数式书写格 式的是( ▲ ) A .a+b 人 B .131a C .a ×8D .ab(第3题图) 5.下列运算中,正确的是( ▲ )A .b a b a b a 2222=+-B .22=-a aC .422523a a a =+D .ab b a 22=+6. 如图,四个有理数数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n +q =0, 则m ,n ,p ,q 四个有理数中,绝对值最小的一个是 ( ▲ )A .pB .qC .mD .n 二、填空题(本大题共10小题,每小题3分,共30分)7.小明的身份证号码是321281************,他出生日期是▲年▲ 月▲ 日 . 8.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg 的煤所 产生的能量.把130 000 000kg 用科学记数法可表示为 ▲ kg .9.某市2016年国庆节这天的最高气温是8℃,最低气温是-2℃,则该市这天的最高气温比最低气温高___▲___°C. 10. 在有理数-65,2,0,-43中,最小的数是__▲___. 11.小丽去糖果店买糖果,她买n 斤硬糖,每斤a 元,买m 斤软糖,每斤b 元,则她共需付 ▲ 元.12.如果单项式3ax y -与bx y 是同类项,那么2017)2(b a -=▲.13. 当1<a <2时,代数式|a -2|+|1-a|的值是 ▲ 元.14.某商店举办促销活动,促销的方法是将原价x 元的衣服以45(x -10)元出售,则下列说法:①原价减去10元后再打8折;②原价打8折后再减去10元;③原价减去10 元后再打2 折;④原价打2折后再减去10元;其中能正确表达该商店促销方法的应该是▲(请填序号). 15.已知231a a +=,则代数式2261a a +-的值为___▲___.16.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若 第n 个图案中有2017个白色纸片,则n 的值为▲.(第16题图)三、解答题(本大题共10小题,共102分))17.(本题满分12分)请将下列各数填入相应的集合内:-47,1.010010001,0,π,113355,-2.626626662…(每2个2之间依次多1个6),-⋅21.0.正数集合:( ▲…);负数集合:( ▲…); 有理数集合:( ▲…);无理数集合:( ▲…).18.(本题满分8分)在数轴上画出表示下列各数的点,并用“<”号将这些数按从小到大的顺序连接起来: -21,0,2,-(+3),|-5|,-1.5.19.(本题满分8分)计算题:(1))()()(7565-72-61++++; (2))5(3243-⨯++-. 20.(本题满分8分)小民读一本书共m 页,第一天读了该书的31,第二天读了该书的51.(1)用代数式表示小民两天共读了多少页?还剩多少页? (2)求当m=120时,求小民两天读的页数.21.(本题满分10分)小明从家出发(记为原点0)向东走3m ,他把数轴上+3的位置记为点A ,他又东走了5m ,记为点B ,点B 表示什么数?接着他又向西走了10m 到点C ,点C 表示什么数?请你画出数轴,并在数轴上标出点A 、点B 的位置,这时如果小明要回家,则小明应如何走? 22.(本题满分10分)先化简,再求值:(1)3c 2-8c+2c 3-13c 2+2c -2c 3+3,其中c=-4;(2))2(2)3(22222b a ab b a ab b a ---+-,其中1=a ,2-=b .23.(本题满分10分)解答下列问题:(1)计算:6÷(-21+31). 方方同学的计算过程如下:原式=6÷(-21)+6÷31=-12+18=6. 请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程. (2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程): ①999×(-15);②999×41185+333×(-53)-999×3185. 24.(本题满分10分)在如图所示的某年12月份日历中,用长方形的方框圈出任意3×3个数.(1)如果从左下角到右上角的“对角线”上的3个数字的和为54,那么这9个数的和为▲,在这9个日期中,最后一天是▲号;(2)在这个月的日历中,用方框能否圈出“总和为171”的9个数?如果能,请求出 这9个日期最后一天是几号;如果不能,请推测下个月的日历中,能否用方框圈出,如果能,请推测圈出的9个数中最后一天是星期几?25.(本题满分12分)把几个数用大括号围起来,中间用逗号断开,如:{}123-,,、⎭⎬⎫⎩⎨⎧-19,43,7,2,我们称之为集合,其中的数称其为集合的元素,一个给定集合中的元素是互不相同....的. (1)类比有理数加法运算,集合也可以“相加”.定义:集合A 与集合B 中的所有元素组成的集合称为集合A 与集合B 的和,记为A+B.如A={2,-1},B ={-1,4},则A+B ={2,-1,4}.现在A={-2,0,1,5,7},B ={-3,0,1,3,5},则A+B =▲.(2)如果一个集合满足:当有理数a 是集合的元素时,有理数6a -也必是这个集合的元素,这样的集合我们称为好的集合.①请你判断集合{}12, ,{}21358-, , , , 是不是好的集合?②请你写出满足条件的两个好的集合的例子.星期日 星期一 星期二 星期三 星期四 星期五 星期六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021222324252626.(本题满分14分)某人去水果批发市场采购苹果,他看中了A、B两家苹果.这两家苹果品质都一样,零售价都为6元/千克,但批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~500 500以上~1500 1500以上~2500 2500以上价格(元)零售价的95% 零售价的85% 零售价的75% 零售价的70% 【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则总费用=6×95%×500+6×85%×1000+6×75%×(2100-1500)】根据上述信息,请解答下列问题:(1)如果他批发1000千克苹果,则他在A 家批发需要▲元,在B家批发需要▲元;(2) 如果他批发x千克苹果(1500<x<2000),则他在A 家批发需要▲元,在B家批发需要▲元(用含x的代数式表示);(3) 现在他要批发不超过1000千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由.七年级数学参考答案一、选择题(本大题共有6小题,每小题3分,共18分) 1.B 2.C 3.D 4.D 5.A 6.C二、填空题(本大题共有10小题,每小题3分,共30分) 7. 1992,2,3(全部正确得3分) 8.1.3×1089.10 10. -6511.(an+bm ) (没有括号不给分) 12.-1 13.1 14.① 15.116. 672三、解答题(共102分,下列答案仅供参考........,学生如有其它答案或解法...........,请参照标准给分........) 17.(本题12分)正数集合(1.010010001,113355,…)(2分),负数集合(-47,-2.626626662…(每2个6之间依次多1个6),-⋅21.0 ,…)(5分),有理数集合(-47,1.010010001,0, 113355, -⋅21.0,…)(10分),无理数集合(π,-2.626626662…(每2个6之间依次多1个6),…)(12分)18.(本题8分)见课本第21页例4.标注正确每个数得1分,大小比较正确2分. 19.(本题8分)(1)原式=[)(65-61+]+[)()(7572-++]=(-32)+(+73)(2分)=-215(4分);(2)原式=4+8+(-15)(3分)=-3(4分).20.(本题8分)⑴小民两天共读了 (1135m m +)页或m 158页(2分);【m-(1135m m +)】页或m 157页(4分);⑵当m=120时,1135m m +=1112012040246435⨯+⨯=+=(7分), 答;小民两天读了64页书(8分).21.(本题10分)画出数轴如图(1分),A 点表示的数为3,标出A 点(3分),再向东走了5m到点B ,由数轴可知点B 表示的数是8(5分),标出B 点(6分);从点B 向西走了10m 到点C ,由数轴可知点C 表示的数是-2(.8分);小明向东走2m (10分).22.(本题10分)(1)原式=-10c 2-6c+3(3分),当c=-4时,原式=-133(5分);(2)原式=2ab -(8分),当a=1,b=-2时,原式=-4(10分).23.(本题满分10分)(1)不正确(2分),正确解法:原式=6÷(-61)=6×(-6)=-36(4分);(2)①原式=(1000-1)×(﹣15)(6分)=﹣15000+15=-14985(7分);②原式=999×[11845+(15-)-1835](9分)=999×100=99900(10分)(评分说明:结果正确,没有过程只给结果分). 24.(本题10分)(1)54÷3×9=162(2分),54÷3+8=26(4分);(2)171÷9=19,故不能(6 分),如下表所示,能(8分),星期三(10分)(评分说明:只要结论正确即可).25(本题12分){-3,-2,0,1,3,5,7}(3分);(2)①{}12, 不是好的集合(5分),{}21358-, , , , 是好的集合(7分);②答案不唯一,如:{}7,1,4,2-;{}11,5,1,5,9,3--(12分,一个正确得3分,两个正确得5分).26.(本题14分)(1)A 家费用=6×92%×1000=5520(2分),B 家费用=6×95%×500+6×85%×500=2850+2550=5400(4分);(2)A 家费用=6×90%x=5.4x (6分),B 家费用=6×95%×500+6×85%×1000+6×75%×(x -1500)=4.5x+1200 (9分);(3) 当他要批发不超过500千克苹果时,很明显在A 家批发更优惠(10分);当他要批发超过500千克但不超过1000千克苹果时,设批发x 千克苹果,则A 家费用=92%×6x=5.52x ,B 家费用=6×95%×500+6×85%×(x-500)=5.1x+2850(12分),A 家费用-B 家费用=0.42x-2850,当0.42x=2850,即x=75000(千克)时,两家的费用相同.因此,当他要批发75000千克苹果时,到两家的费用相同;当他要批发少于75000千克苹果时,在A 家批发更优惠;当他要批发多于75000千克苹果时,在B 家批发更优惠(14分).星期日 星期一 星期二 星期三 星期四 星期五 星期六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31。
苏科版七年级上册数学《期中考试卷》附答案解析
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷一、选择题(每小题2分,共16分)1.0.5-的倒数是( )A. 0.5B. 2C. -2D. 12-2.下列各题中合并同类项,结果正确的是( ) A 222347a a a += B. 222236a a a +=C. 532xy xy -=D. 336235a a a +=3.在下列五个数中:23,0,2π,1.3,-1.212212221…(两个1之间依次多一个2)有理数个数为( )A. 4B. 3C. 2D. 14.若代数式a 2+2b 的值为4,则代数式3a 2+6b-3的值为( ) A. 3B. -9C. -3D. 95.我市某文具店进行促销活动,决定将单价为a 元的笔记本降价10%销售,降价后的销售价为( ) A. 10%aB. a -10%C. (1-10%)aD. (1+10%)a6.a ,b 是有理数,且|a |=-a ,|b |=b ,|a |>|b |,用数轴上的点来表示a ,b ,正确的是( ) A.B.C.D.7.无论a 取什么值,下列哪个代数式的值一定是正的?( ) A. 21a +B. 8a +C. 2(3)a +D. 3100a +8.一家商店以每包a 元的价格进了20包甲种茶叶,又以每包b 元的价格买进30包乙种茶叶(a <b ),如果以每包2a b+元的价格卖出这两种茶叶,则卖完后,这家商店( ) A. 赚了B. 赔了C. 不赔不赚D. 不能确定赚或赔二、填空题(每小题2分,共20分)9.-12的相反数为_______,-12的绝对值等于_______. 10.据报道,春节期间微信红包收发高达3280000000次,数字3280000000用科学记数法表示为___________. 11.比较大小,用“<”“>”或“=”连接: (1)-|23-| ___-(34-); (2)-3.14___-|-π|.12.若312a x y -与223bx y -的和仍是单项式,则-a b =_________.13.袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克) 代号 ① ② ③ ④ ⑤ 质量 -2+4-1+5-6其中,质量最接近标准的是__________号(填写序号).14.定义一种新的运算“*”,并且规定:a*b =a 2-2b .则(-3)*(-1)=_______. 15.如图,用代数式表示图中阴影部分的面积为___________________.16.已知x =5,y =4,且x >y ,则x -y =_________. 17.已知2a +b =23,a +2b =25,则代数式a +b =________.18.如图所示的运算程序中,若开始输入的x 值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为_________.三、计算题(每小题4分,共16分)19.(1)14―25+12―17; (2)113()(60)234--+⨯-;(3)54(25)(32)45-÷⨯÷-; (4)22123(3)6⎡⎤--⨯--⎣⎦. 四、计算与化简(20题每小题5分,21题6分,共16分)20.化简下列各式:(1)324576x y x y -+---+; (2)4(32)3(52)x y y x ----.21.化简求值22225(3)4(3),2, 3.a b ab ab a b a b ---+=-=其中,五、解答题(共32分)22.列式计算:已知三角形的第一条边长为5a +3b ,第二条边比第一条边短2a -b ,第三条边比第二条边短a -b .(1)求第二条边长; (2)求这个三角形的周长.23.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.…第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形; 第(4)个图形有25小正方形; ……(1)根据上面发现我们可以猜想:1+3+5+7+...+(2n -1)的结果(用含n 的代数式表示); (2)请根据你的发现计算:① 1+3+5+7+...+99; ② 101+103+105+ (199)24.某市为鼓励居民节约用水,采用分段计费方法按月计算每户家庭的水费,月用水量不超过30立方米时,按2元/立方米计费;月用水量超过30立方米时,其中的30立方米仍按2元/立方米收费,超过部分按2.5元/立方米计费.设每户家庭月用水量为x 立方米.(1)当x不超过30时,应收多少水费(用x的代数式表示);当x超过30时,应收多少水费(用x的代数式表示);(2)小明家四月份用水20立方米,五月份用水36立方米,请帮小明计算一下他家这两个月一共应交多少元水费?25.阅读材料:如图(1),在数轴上A示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.解决问题:如图(2),数轴上点A表示的数是-4,点B表示的数是2,点C表示的数是6.(1)若数轴上有一点D,且AD=3,求点D表示的数;(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.求点A表示的数(用含t的代数式表示),BC等于多少(用含t的代数式表示).(3)请问:3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.答案与解析一、选择题(每小题2分,共16分)1.0.5-的倒数是( ) A. 0.5 B. 2C. -2D. 12-【答案】C 【解析】 【分析】根据倒数的定义解答即可. 【详解】∵-0.5×(-2)=1, ∴0.5-的倒数是是-2. 故选C.【点睛】本题考查了倒数的定义,熟知乘积是1 的两个数互为倒数是解题的关键. 2.下列各题中合并同类项,结果正确的是( ) A. 222347a a a += B. 222236a a a +=C. 532xy xy -=D. 336235a a a +=【答案】A 【解析】 【分析】原式各项合并得到结果,即可做出判断. 【详解】A 、3a 2+4a 2=7a 2,正确; B 、2a 2+3a 2=5a 2,错误; C 、5xy-3xy=2xy ,错误; D 、原式不能合并,错误, 故选A .【点睛】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键. 3.在下列五个数中:23,0,2π,1.3,-1.212212221…(两个1之间依次多一个2)有理数个数为( )A. 4B. 3C. 2D. 1【答案】B 【解析】【分析】根据有理数的定义、无理数的定义进行判断即可得解.【详解】在23,0,2,1.3,-1.212212221…(两个1之间依次多一个2)中,有理数有23,0,1.3,有理数的个数是3个.故选B.【点睛】本题考查了实数,主要利用了有理数和无理数定义,熟记概念是解题的关键.4.若代数式a2+2b的值为4,则代数式3a2+6b-3的值为()A. 3B. -9C. -3D. 9【答案】D【解析】【分析】3a2+6b可看为a2+2b的3倍.【详解】3a2+6b-3=3(a2+2b)-3=12-3=9.故选D【点睛】此题主要考查了代数式求值,将待求的式子前两项提取3整体出现a2+2b是解本题的关键.5.我市某文具店进行促销活动,决定将单价为a元的笔记本降价10%销售,降价后的销售价为()A. 10%aB. a-10%C. (1-10%)aD. (1+10%)a【答案】C【解析】【分析】根据题意可以求得降价后的销售价格,本题得以解决.【详解】由题意可得,降价后的销售价为:(1-10%)a,故选C.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.6.a,b是有理数,且|a|=-a,|b|=b,|a|>|b|,用数轴上的点来表示a,b,正确的是( )A. B. C. D.【答案】A【解析】分析:根据绝对值的定义和数轴的定义解答此题即可. 详解:|a|=-a ,|b|=b ,|a|>|b|, ∴a≤0,b≥0,|a|>|b|, 故选A .点睛:此题考查了数轴的知识,解答本题的关键是理解数轴上各点的大小关系,掌握原点左边的数小于0,原点右边的数大于0.7.无论a 取什么值,下列哪个代数式的值一定是正的?( ) A. 21a + B. 8a +C. 2(3)a +D. 3100a +【答案】A 【解析】 【分析】讨论每个选项后,作出判断.注意平方数和绝对值都可是非负数. 【详解】A 、无论a 是何值,代数式a 2+1的值都是正数,符合题意; B 、当a=-8时,代数式8a +的值为0,0不是正数,不符合题意; C 、当a=-3时,代数式(a+3)2的值为0,0不是正数,不符合题意; D 、当x≤-10时,代数式3100a +的值小于等于0,,不符合题意. 故选A .【点睛】注意0既不是正数,也不是负数.平方数和绝对值都可以为0,也可以为正数.8.一家商店以每包a 元的价格进了20包甲种茶叶,又以每包b 元的价格买进30包乙种茶叶(a <b ),如果以每包2a b+元的价格卖出这两种茶叶,则卖完后,这家商店( ) A. 赚了 B. 赔了C. 不赔不赚D. 不能确定赚或赔【答案】B 【解析】 【分析】根据题意知商店获得的利润为2a b+×(20+30)-20a-30b=5(a-b ),由a<b 知5(a-b )<0,可得答案. 【详解】该商店一共购进茶叶50包,若每包以2a b+元的价格卖出,则共收入50×2a b+=25(a +b )元;购进两种茶叶共花费:20a+30b;25(a+b)−(20a+30b)=25a+25b−20a−30b=5a−5b=5(a−b)∵a<b,即a−b<0,所以5(a−b)<0即卖完后,这家商店赔了.故选B.【点睛】本题主要考查列代数式的能力及整式的化简,理解题意列出商店获取利润的代数式是解题的关键.二、填空题(每小题2分,共20分)9.-12的相反数为_______,-12的绝对值等于_______.【答案】(1). 12(2).12【解析】【分析】分别根据相反数的概念及绝对值的性质进行解答即可.【详解】-12与12只有符号相反,∴-12的相反数等于12,∵-12<0,∴|-12|=12.故答案为12;12.【点睛】本题考查的是相反数的概念及绝对值的性质,熟知以上知识是解答此题的关键.10.据报道,春节期间微信红包收发高达3280000000次,数字3280000000用科学记数法表示为___________.【答案】93.2810【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将3280000000用科学记数法表示为3.28×109. 故答案为3.28×109. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 11.比较大小,用“<”“>”或“=”连接: (1)-|23-| ___-(34-); (2)-3.14___-|-π|. 【答案】 (1). < (2). > 【解析】 【分析】(1)先化简,然后根据正数大于负数即可判断;(2)先化简,然后再求绝对值,最后根据两个负数比较大小,绝对值大的反而小即可比较. 【详解】(1)∵-|-23|=-23<0,-(-34)=34>0, ∴-|-23|<-(-34); (2)∵-|-π|=-π,|-3.14|=3.14,|-π|=π,且3.14<π, ∴-314>-|-π|,故答案为(1)<;(2)>.【点睛】本题考查的是有理数的大小比较,熟知两负数比较大小的法则是解答此题的关键.12.若312a x y -与223bx y -的和仍是单项式,则-a b =_________.【答案】-1 【解析】 【分析】利用已知得出两个单项式是同类项,进而得出a ,b 的值即可得出答案.【详解】∵单项式312a x y -与223bx y -的和仍是单项式,∴a=2,b=3, 则a b -=-1, 故答案为-1.【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键.13.袋装牛奶的标准质量为100克,现抽取5袋进行检测,超过标准的质量记为正数,不足的记为负数,结果如下表所示:(单位:克)其中,质量最接近标准的是__________号(填写序号).【答案】③【解析】【分析】根据表中数据求出每袋的质量,选出和100克比较接近的即可;也可以根据-2,+4,-1,+5,-6直接得出答案.【详解】∵①的质量是100-2=98(克),②的质量是100+4=104(克),③的质量是100-1=99(克),④的质量是100+5=105(克),⑤的质量是100-6=94(克),∴最接近100克的是③,故答案为③.【点睛】本题考查了正数和负数的应用,解此题的关键是理解题意.14.定义一种新的运算“*”,并且规定:a*b=a2-2b.则(-3)*(-1)=_______.【答案】11【解析】分析】根据题中的新定义运算的方法列出所求算式,计算即可得到结果.【详解】(-3)*(-1)=(-3)2-2×(-1)=9+2=11.故答案为11.【点睛】此题考查了有理数的混合运算,弄清题中的新定义运算的方法是解本题的关键.15.如图,用代数式表示图中阴影部分的面积为___________________.【答案】212ab b π-【解析】 阴影部分的面积等于长方形的面积减去两个小扇形的面积差.长方形的面积是ab ,两个扇形的圆心角是90∘,∴这两个扇形是分别是半径为b 的圆面积的四分之一. ∴2211242ab b ab b ππ-⨯=- . 【点睛】本题考查了列代数式,由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.理解图意得到阴影部分的面积长方形的面积-2个14圆的面积是解题的关键. 16.已知x =5,y =4,且x >y ,则x -y =_________.【答案】1或9【解析】【分析】根据绝对值的代数意义分别求出x 与y 的值,然后根据x >y 得到满足题意的x 与y 的值,代入所求的式子中计算即可.【详解】∵|x|=5,|y|=4,∴x=±5,y=±4, 又∵x >y ,∴x=5,y=4或x=5,y=-4,则x-y=5-4=1,或x-y=5-(-4)=9.故答案1或9. 【点睛】此题考查了有理数的减法,绝对值的代数意义,掌握绝对值的代数意义是解本题的关键,注意不要漏解.17.已知2a+b=23,a+2b=25,则代数式a+b=________.【答案】16【解析】【分析】把两式相加,得到3a+3b=48,即可求解.【详解】2a+b=23①,a+2b=25②,①+②,得3a+3b=48,即3(a+b)=48,得a+b=16,故答案为16【点睛】此题考查了代数式求值,把a+b看作一个整体是解题的关键.18.如图所示的运算程序中,若开始输入的x值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为_________.【答案】2【解析】【分析】把x=64代入程序中计算,以此类推得到一般性规律,即可确定出第2018次输出的结果.【详解】把x=64代入得:12×64=32,把x=32代入得:12×32=16,把x=16代入得:12×16=8,把x=8代入得:12×8=4,把x=4代入得:12×4=2,把x=2代入得:12×2=1,把x=1代入得:1+3=4,以此类推,∵(2018-3)÷3=671…2,∴第2018次输出的结果为2,故答案为:2.【点睛】此题考查了代数式求值,弄清题中的程序框图是解本题的关键.三、计算题(每小题4分,共16分)19.(1)14―25+12―17;(2)113()(60)234--+⨯-; (3)54(25)(32)45-÷⨯÷-; (4)22123(3)6⎡⎤--⨯--⎣⎦. 【答案】(1)-16;(2)5;(3)12;(4)-3. 【解析】【分析】(1)把正数负数分别结合计算即可;(2)运用乘法分配律计算可得;(3)先把除法转化成乘法,再根据有理数的乘法法则计算即可.(4)先算乘方和括号里面的,再算乘法,最后算减法即可.【详解】(1)14―25+12―17=14+12―25―17=26―42=-16;(2)()11360234⎛⎫--+⨯- ⎪⎝⎭=()()()113 6060603020234⎛⎫-⨯--⨯-+⨯-=+ ⎪⎝⎭-45=5; (3)()()54253245-÷⨯÷-=()4414411 2525553255322⎛⎫-⨯⨯⨯-=⨯⨯⨯= ⎪⎝⎭; (4)()2212336⎡⎤--⨯--⎣⎦=-4-16⨯(3-9)= -4-16⨯(-6)=-4+1=-3 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.四、计算与化简(20题每小题5分,21题6分,共16分)20.化简下列各式:(1)324576x y x y -+---+;(2)4(32)3(52)x y y x ----.【答案】(1)-8x-5y+2;(2)-6x-7y.【解析】【分析】(1)直接合并同类项即可;(2)先去括号,然后合并同类项.【详解】(1)324576x y x y -+---+=()()()352746x x y y --+-+-+=-8x-5y+2;(2)()()432352x y y x ----=-12x+8y-15y+6x=(-12x+6x) +(8y-15y)=-6x-7y .【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.21.化简求值22225(3)4(3),2, 3.a b ab ab a b a b ---+=-=其中,【答案】54.【解析】【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】原式=15a 2b ﹣5ab 2+4ab 2﹣12a 2b =3a 2b ﹣ab 2,当a =﹣2,b =3时,原式=36+18=54.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、解答题(共32分)22.列式计算:已知三角形的第一条边长为5a +3b ,第二条边比第一条边短2a -b ,第三条边比第二条边短a -b .(1)求第二条边长;(2)求这个三角形的周长.【答案】(1)3a +4b ;(2)10a +12b【解析】【分析】(1)根据题意即可列出第二条边的长度;(2)根据题意列出第三条边的长度,然后即可求出三角形的周长.【详解】(1) 5a+3b -(2a-b)= 5a+3b -2a+b = 3a+4b;(2)5a+3b+(3a+4b)+(3a+4b)-(a-b)=5a+3b+3a+4b+3a+4b-a+b= 10a+12b 【点睛】本题考查整式的加减,涉及列代数式,属于基础题型.23.用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.…第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形;第(3)个图形有1+3+5=9个小正方形;第(4)个图形有25小正方形;……(1)根据上面的发现我们可以猜想:1+3+5+7+...+(2n-1)的结果(用含n的代数式表示);(2)请根据你的发现计算:① 1+3+5+7+ (99)② 101+103+105+ (199)【答案】(1)2n,①2500,②7500.【解析】【分析】(1)直接分别解各数据得出答案;(2)①利用(1)规律求出答案;②由以上规律可得原式可看作是1002-502.【详解】第(1)个图形中有1=12个正方形;第(2)个图形有1+3=4=22个小正方形;第(3)个图形有1+3+5=9=32个小正方形;第(4)个图形有1+3+5+7=16=42小正方形;……第n个图形有1+3+5+…+(2n-1)=n2小正方形;(1)1+3+5+…+(2n-1)=n2;(2)① 1+3+5+7+…+99=502=2500;②101+103+105+…+199=(1+3+5+7+…+199)+( 1+3+5+7+…+99)=1002-502=7500.【点睛】此题主要考查了图形的变化类,正确得出数字之间变化规律是解题关键.24.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过30立方米时,按2元/立方米计费;月用水量超过30立方米时,其中的30立方米仍按2元/立方米收费,超过部分按2.5元/立方米计费.设每户家庭月用水量为x立方米.(1)当x不超过30时,应收多少水费(用x的代数式表示);当x超过30时,应收多少水费(用x的代数式表示);(2)小明家四月份用水20立方米,五月份用水36立方米,请帮小明计算一下他家这两个月一共应交多少元水费?【答案】(1)2x,60+2.5(x-30)或2.5x-15;(2)这两个月一共应交115元水费【解析】【分析】(1)因为月用水量不超过30m3时,按2元/m3计费,所以当0≤x≤30时,水费为是2x;因为月用水量超过30m3时,其中的30m3仍按2元/m3收费,超过部分按 2.5元/m3计费,所以当x>30时,水费为:2×30+2.5(x-30)=2.5x-15;(2)由题意可得:因为四月份用水20立方米,所以用2x计算水费;五月份用水36立方米,所以用(2.5x-15)计算用水量.【详解】(1)月用水量不超过30立方米时水费为:2x元,月用水量超过30立方米时水费为:60+2.5(x-30)=2.5x-15;(2)当x=20时,2x=2×20=40,x-=⨯-=当x=36时,2.515 2.5361575答:这两个月一共应交115元水费【点睛】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景-建立模型-解释、应用和拓展”的数学学习模式.25.阅读材料:如图(1),在数轴上A示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.解决问题:如图(2),数轴上点A表示的数是-4,点B表示的数是2,点C表示的数是6.(1)若数轴上有一点D,且AD=3,求点D表示的数;(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.求点A表示的数(用含t的代数式表示),BC等于多少(用含t的代数式表示).(3)请问:3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-7或-1,(2)-4-t t+4 (3)不变,理由见解析.【解析】【分析】(1)设D表示的数为a,由绝对值的意义容易得出结果;(2)分别表示出t秒后A、B、C分别对应的数,再求AC即可;(3)表示出BC和AB,再相减即可得出结论.【详解】(1)设D表示的数为a,∵AD=3,∴|-4-a|=3,解得:a=-7或-1;(2)将点A向左移动t个单位长度,则移动后的点表示的数为-4-t;将点B和点C分别向右运动2t和3t个单位长度,则移动后的点表示的数分别为2+2t,6+3t;则BC=(6+3t)-(2+2t)=t+4;(3)AB=(2+2t)-(-4-t)=3t+6,3BC-AB=3(t+4)-(3t+6)=6,故3BC-AB的值不随时间t的变化而改变.【点睛】此题考查了数轴,掌握数轴上两点之间的距离求解方法是解决问题的关键.。
苏教版七年级数学上册第一学期期中考试试卷及答案
(第6题)cabB A C苏教版七年级数学上册第一学期期中考试试卷(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共12分)1.如果向东走3 km 记作+3 km ,那么向西走5 km 记作( )A .-5 kmB .-2 kmC .+5 kmD .+8 km2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为( )A .110.510⨯千克 B .95010⨯千克 C .9510⨯千克 D . 10510⨯千克. 3.下列各式中结果为负数的是( )A .(3)--B .2(3)-C .3--D .3- 4.设边长为a 的正方形的面积为2.下列关于a 的三种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③0<a <1.其中,所有正确的序号是 ( ) A .①② B .①③ C .②③ D .①②③5.下列关于单项式-352xy 的说法中,正确的是( ) A .系数是25-,次数是3 B .系数是25-,次数是4 C .系数是5-,次数是4 D .系数是5-,次数是36.如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,点A 与点C 到点B 的距离相等,如果||a >||c >||b ,那么该数轴的原点O 的位置应该在( ) A .点A 的左边 B .点A 与点B 之间 C .点B 与点C 之间 D .点C 的右边二、填空题(每小题2分,共20分)7. 13的相反数是 ,倒数是 .8.比较大小:109- 1110-.9.用代数式表示“m 与n 积的平方”: .10.数轴上点A 表示-1,到点A 距离3个单位长度的点B 所表示的数是_________. 11.如果x -y =3,m +n =2,则 (y +m )-(x -n )的值是 .12.若单项式n y ax 275与457y ax m -的差仍是单项式,则n m 2-=_________. 13.某超市的苹果价格如图所示,试说明代数式100-9.8x 的实际意义 .14.如图所示2014年11月份的日历,在日历上任意圈出一个竖列上相邻的3个数.如果被圈出的三个数的和为51,则这三个数中最后一天为2014年11月 号.15.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:……第一个 第二个 第三个 …… 第n 个图案中有白色纸片 张.16.如图所示的运算程序中,若开始输入的x 值为32,我们发现第一次输出的结果为16,第二次输出的结果为8,…,则第2014次输出的结果为 .三、解答题(本大题共9小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.计算(每题5分,共15分)(1))16()7(1723-+---; (2)123(24)(1)238-⨯--;(3)4211(10.4)(2)63⎡⎤---÷⨯--⎣⎦.苹果:9.8元/斤(第13题)x 21 输出输入xx +3x 为偶数x 为奇数(第16题)(第14题)19.(5分) 化简:2(2x 2-9x ) -3(3x 2+4x -1) .20.(5分) 先化简,再求值:)4(3)32(2722222ab b a ab b a b a ---+,其中2-=a ,21=b .21.(6分)已知10箱苹果,以每箱15千克为标准,超过15千克的千克数记为正数,不足15千克的千克数记为负数,称重记录如下:+0.2,-0.2,+0.7,-0.3,-0.4,+0.6,0,-0.1,+0.3,-0.2 (1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为(15±0.5)千克,则这10箱有几箱不符合标准的?22.(6分)如图,长方形内有两个四分之一圆.(1) 用代数式表示阴影部分的面积;(2) 当a =10,b =4时,阴影部分的面积是多少(π取值为3.14)?23.(7分)(南京青奥会期间,某数学兴趣小组调查了奥运村某个体水果店经销香蕉情况,每千克进价4.5元,售价6.5元,8月16日至8月20日经销情况如下表:日期 16日 17日 18日 19日 20日 购进(kg ) 55 50 50 55 50 售出(kg ) 44.5 51 38 50.5 51 损耗(kg )52126(1)若8月15日晚库存为0,则8月16日晚库存 kg ;(2)从8月18日这一天的香蕉经销情况看,规定赚钱为正,当天是赚钱还是赔钱?说明理由;(3)青奥会期间8月16日至8月20日,该个体户卖香蕉共赚了多少钱?24.(7分)如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b是直角边.正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积: 方法一: ; 方法二: ;(2)观察图②,试写出222(),,2,a b a ab b +这四个代数式之间的等量关系; (3)利用你发现的结论,求:299769979+⨯+的值.25.(7分)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额. 消费金额(元) 小于或等于500元500~10001000~15001500以上 返还金额(元)60100150注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000⨯(1-80%)+60=260(元). (1)购买一件标价为1600元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x 元(x >1250)的商品,那么该顾客获得的优惠额为多少?(用含有x 的代数式表示)(3)若顾客在该商场第一次购买一件标价x 元(x >1250)的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为 元.ab①bc ab baaaabb②苏教版七年级数学上册第一学期期中考试试卷参考答案一、选择题(每小题2分,共12分)二、填空题(每小题2分,共20分)7. 31-;3 8. < 9.(mn )2 10. –4或2 11. -1 12. –6 13. 用100元买每斤9.8元的苹果x 斤余下的钱 14. 24 15. 3n +1 16. 2 三、解答题(本大题共9小题,共68分)17.(1)解:原式23-177-16 =+……………………………………3分-3 = ……………………………………5分(2)解:原式153242424238=-⨯+⨯+⨯ ……………………………………3分 12409=-++ ……………………………………4分37= ……………………………………5分(3)解:原式3135=--⨯⨯(46-) ……………………………………2分3135=--⨯⨯(2-) ……………………………………3分1=--(185-) ……………………………………4分135= ……………………………………5分 18.(1)解: 463x x -=- ……………………………………2分22x = ……………………………………4分 1x = ……………………………………5分(2)解:6-3(1x +)2=(2x -) ……………………………………1分题号 1 2 3 4 5 6 答案ADCABC6-3342x x -=- ……………………………………2分1x -= ……………………………………4分1x =- ……………………………………5分19.解:原式=4x 2-18x -9x 2-12x +3 ……………………………………3分=-5x 2-30x +3 ……………………………………5分20.解:原式22222746123a b a b ab a b ab =+--+ ……………………………………2分223a b ab =-- ……………………………………3分 当2-=a ,21=b 时, 原式=-(2-)212⨯3-⨯(2-)⨯(12)2 ……………………………………4分1432=-⨯-⨯(2-)14⨯322=-+12=- ……………………………………5分21.解:(1) (+0.2)+(—0.2)+(+0.7)+(—0.3)+(—0.4)+( +0.6)+0+(—0.1)+(+0.3)+(—0.2) = 0.6(千克) ……………………………………………………………………………………………2分因此,这10箱苹果的总质量为15×10+0.6 =150.6(千克) ……………………………4分 (2)这10箱有2箱不符合标准. ………………………………………………………6分 22.解:(1)22b ab π-……………………………………………………………….3分(2)14.88 ………………………………………………………….6分 23.(1)5.5 kg ……………………………………………2分 (2)当天赚钱因为38 6.5247⨯=元 4.550225⨯=元则247>225,所以当天赚钱. ……………………………………………4分(3)(5055505550++++)-(44.5513850.551++++)-(521260++++)0=所以该个体户最后一天香蕉全部售完. ……………………………………………5分 (44.5513850.551++++) 6.5⨯-(5055505550++++) 4.5⨯357.5=元 答:该个体户卖香蕉共赚了357.5元钱. ……………………………………………7分 24.(1)(a b +)2;222a ab b ++ ……………………………………………2分 (2)(a b +)2=222a ab b ++ ……………………………………………4分 (3)解:299769979+⨯+22997299720133=+⨯⨯+=(9973+)2210001000000== ……………………………………………7分(特别说明:本题第(1)问的添法不唯一,只要两种不同的方法填写正确均得2分) 25.解:(1)标价为1600元的商品按80%的价格出售,消费金额为1440元,消费金额1440元在1000﹣1500之间,返还金额为100元, 则顾客获得的优惠额是:1600×(1﹣80%)+100=420(元)………………………………2分 (2)当1000<0.81500x ≤时,(0.2100x +)元;……………………………………………3分当0.8x >1500时,(0.2150x +)元; ……………………………………………4分(3)2000 (当1250<x ≤1875时,0.2x+100+500×0.2=650,得x=2250不合题意;当x>1875时,0.2x+150+500×0.2=650,得x=2000符合)……………………………………………7分。
苏教版七年级数学上册期中考试调研测试卷附参考答案
苏教版七年级数学上册期中考试测试卷一、选择、填空:考点一、知识点:①有理数分类、相反数、绝对值、倒数、有理数大小比较;②有理数加减乘除乘方运算;③科学记数法、近似数的精确位与有效数字。
重点与难点:无理数的认识、数轴上点表示的数、绝对值的化简、有理数运算中的符号问题。
1、-0.5的相反数是 ( ) A .2 B .-2 C .-0.5 D .0.52.已知太阳的半径约为696000000m ,则696000000这个数用科学记数法可表示为( ) A .0.696×109 B .6.96×109 C .6.96×108 D .69.6×107 3.0.5-的相反数是 ( )A .0.5B .-0.5C .-2D .24.下列四个实数中,是无理数的是 ( ) A .0B .πC .-2D .275.如果2x y -和(x +y -3)2互为相反数,则x y =_______.6、若-3<x <-1,则化简21x -+得 ( ) A .1一x B .-3+x C .3-x D .3+x7、当a =1时,3a -的值为 。
8、如图,数轴上的点P 表示的数是-1,将点P 在数轴上向右移动3个单位长度得到点P ′,则点P ′表示的数是 。
9.(★★★)如图,数轴上的点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且b -2a =3c +d +21,那么数轴上原点对应的点是 ( )A .A 点B .B 点C .C 点D .D 点10.已知:2+23=22×23,3+38=32×38,4+415=42×415…,若10+a b =102×a b (a 、b 为正整数),则a +b 的值为 ( ) A .89 B .91 C .109 D .111考点二、知识点:①整式的分类:单项式(系数与次数)与多项式(次数与项数);②同类项与合并同类项;③去(添)括号法则;④整式的加减法。
苏科版七年级上册数学《期中测试卷》含答案
苏 科 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共8小题,每小题3分,共24分)1.的相反数是( ) A.B. 2C.12D. 12-2.下列代数式中a , -2ab ,x y +,22x y +,-1, 2312ab c ,单项式共有( )A 6个B. 5 个C. 4 个D. 3个3.下列计算正确的是( ) A. 2a −a = 2B. 2a + b = 2abC. 3x 2 + 2x 2 = 5x 4D. mn − 2mn = −mn4.下列方程中,是一元一次方程的是( ) A.110x-= B. x ﹣1=0 C. x 2﹣x ﹣1=0 D. 2(x ﹣1)=2x5.关于x 的方程ax +3=1的解为x =2,则a 的值为( ) A. 1B. -1C. 2D. -26.一元一次方程3x+6=2x ﹣8移项后正确的是( ) A. 3x ﹣2x=6﹣8B. 3x ﹣2x=﹣8+6C. 3x ﹣2x=8﹣6D. 3x ﹣2x=﹣6﹣87.按如图所示的运算程序,能使输出的结果为18的是( )A. x =1,y =4B. x = -4,y = 4C. x = -4,y = -1D. x =4,y =48.若规定[a]表示不超过a 的最大整数,例如[4.3]=4,若m=[π],n=[﹣2.1],则在此规定下[m+74n]的值为( ) A. ﹣3B. ﹣2C. ﹣1D. 0二、填空题(每空2分,共20分)9.-5的绝对值是________.32x y-的次数是_________10.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为_______km 2.11.甲数比乙数的2倍大3,若乙数为x,则甲数为____________.12.已知2m a b -和3n 13a b -是同类项,则m +n = ( ) A. 6B. 5C. 4D. 313.一个多项式加上﹣3-x ﹣2x 2得到x 2+1,这个多项式是________ 14.若|x ﹣2|+(y +3)2=0,则(x +y)2018=________15.若|x |=7,|y |=5,且x >y ,那么x ﹣y 的值是_______________. 16.已知2x ﹣3y=3,则代数式6x ﹣9y+5的值为_____.17.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为_____.三、解答题(本大题共56分,解答时应写出必要的文字说明、计算过程或演算步骤)18.画一条数轴,并把 -4,-(-3.5),212,0,32- 各数在数轴上表示出来,并用“<”把它们连接起来. 19.计算:(1)()8121623-+---- (2)(-8)÷(-4)-(-3)3×(-123) (3)(12-59+712)×(-36) (4)()31210.7510514143⨯--⨯+÷ 20.(1)化简:5m 2-7n -8mn +5n -9m 2+8mn .(2)已知:a -2b =4,ab =1.试求代数式(-a +3b +5ab )-(5b -2a +6ab )的值. 21.解方程:(1)43(5)6x x --=; (2)121146x x +--=. 22.已知代数式A =x 2+3xy +x -12,B =2x 2-xy +4y -1 (1)当x =y =-2时,求2A -B 的值; (2)若2A -B 值与y 的取值无关,求x 的值. 23.有理数、、在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:-c 0,+ 0,c - 0. (2)化简:| b -c|+|+b|-|c -a|24.某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽米,回答下列问题:(1)修建十字路的面积是多少平方米?(2)草坪(阴影部分)面积是多少?(3)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?25.某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):进出数量-3 4 -1 2 -5(单位:吨)进出次数 2 1 3 3 2(1)这天仓库原料比原来增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适.(3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.26.如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)用含有t代数式表示AM的长为(2)当t= 秒时,AM+BN=11.(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.的相反数是( ) A. B. 2 C.12D. 12-【答案】B 【解析】 【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 2.下列代数式中a , -2ab ,x y +,22x y +,-1, 2312ab c ,单项式共有( )A. 6个B. 5 个C. 4 个D. 3个【答案】C 【解析】试题分析:根据单项式的定义:数字与字母的积,或单独的数字和字母都叫单项式.即可求解. 解:单项式有:a , -2ab ,-1, 2312ab c ,共4个. 故选C.3.下列计算正确的是( ) A. 2a −a = 2 B. 2a + b = 2abC. 3x 2 + 2x 2 = 5x 4D. mn − 2mn = −mn【答案】D 【解析】 【分析】根据合并同类项系数相加字母及指数不变,可得答案. 【详解】A .2a −a = a ,故A 错误; B .不是同类项不能合并,故B 错误; C .3x 2 + 2x 2 = 5x 2,故C 错误; D .mn − 2mn = −mn ,故D 正确. 故选D .【点睛】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题的关键.4.下列方程中,是一元一次方程的是( )A. 110x-= B. x﹣1=0 C. x2﹣x﹣1=0 D. 2(x﹣1)=2x【答案】B【解析】【分析】根据一元一次方程定义进行分析即可.【详解】A.不是一元一次方程,故此选项错误;B.是一元一次方程,故此选项正确;C.不是一元一次方程,故此选项错误;D.不是一元一次方程,故此选项错误.故选B.【点睛】本题主要考查了一元一次方程定义,关键是掌握只含有一个未知数(元),且未知数次数是1,这样的方程叫一元一次方程.5.关于x的方程ax+3=1的解为x=2,则a的值为( )A. 1B. -1C. 2D. -2【答案】B【解析】【分析】把x=2代入方程可得关于a 的方程,解之即可得.【详解】把x=2代入方程ax+3=1得,2a+3=1,解得:a=-1,故选B.【点睛】本题考查了一元一次方程的解,方程的解是能使方程两边相等的未知数的值.6.一元一次方程3x+6=2x﹣8移项后正确的是( )A. 3x﹣2x=6﹣8B. 3x﹣2x=﹣8+6C. 3x﹣2x=8﹣6D. 3x﹣2x=﹣6﹣8【答案】D【解析】试题解析:根据移项法则得:3x﹣2x=﹣6﹣8,故选D.7.按如图所示的运算程序,能使输出的结果为18的是()A. x=1,y=4B. x= -4,y= 4C. x= -4,y= -1D. x=4,y=4 【答案】C【解析】【分析】根据运算程序,结合输出结果确定的值即可.【详解】A.x=1,y=4时,输出结果为12+2×4=9,不符合题意;B.x=﹣4,y=4时,输出结果为(﹣4)2+2×4=24,不符合题意;C.x=﹣4,y=﹣1时,输出结果为(﹣4)2﹣2×(﹣1)=18,符合题意;D.x=4,y=4时,输出结果为42+2×4=24,不符合题意.故选C.【点睛】本题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解答本题的关键.8.若规定[a]表示不超过a的最大整数,例如[4.3]=4,若m=[π],n=[﹣2.1],则在此规定下[m+74n]的值为( )A. ﹣3B. ﹣2C. ﹣1D. 0 【答案】A【解析】∵[a]表示不超过a的最大整数,m=[π]=3,n=[﹣2.1]=﹣3,∴[m+74n]=[3+74×(﹣3)]=[﹣94]=﹣3,故选A.二、填空题(每空2分,共20分)9.-5的绝对值是________.32x y的次数是_________【答案】(1). 5(2). 4【解析】【分析】根据绝对值的代数意义和单项式次数的概念求解.【详解】-5的绝对值是5,单项式32x y-的次数是4.故答案为5,4.【点睛】本题考查了绝对值和单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.10.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为_______km 2. 【答案】1.026×105 【解析】 【分析】科学记数法就是将一个数字表示成(a×10的n 次幂的形式),其中1≤|a|<10,n 表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂, 【详解】解:102 600=1.026×105 故答案为:1.026×105 【点睛】本题考查科学计数法,掌握概念正确表示是本题的解题关键. 11.甲数比乙数的2倍大3,若乙数为x,则甲数为____________. 【答案】2x +3 【解析】 【分析】由题意先表示出乙数的2倍,再加上3,即可得到结果. 【详解】解:乙数x 的2倍为2x, 所以甲数为:2x+3, 故答案为2x+3.【点睛】本题考查了列代数式,读懂语句列出代数式是解题的关键.12.已知2m a b -和3n 13a b -是同类项,则m +n = ( ) A. 6 B. 5C. 4D. 3【答案】A 【解析】 【分析】根据相同字母的指数相同列方程求解即可. 【详解】由题意得m=3,n-1=2,∴n=3,∴m+n=3+3=6.故选A.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.13.一个多项式加上﹣3-x﹣2x2得到x2+1,这个多项式是________【答案】3x2+x+4【解析】【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可.【详解】设这个整式为M,则M=x2+1﹣(﹣3﹣x﹣2x2)=x2+1+3+x+2x2=(1+2)x2+x+(1+3)=3x2+x+4.故答案为3x2+x+4.【点睛】解决此类题目的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简.14.若|x﹣2|+(y+3)2=0,则(x+y)2018=________【答案】1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x﹣2=0,y+3=0,解得:x=2,y=﹣3,所以,(x+y)2018=(2﹣3)2018=1.故答案为1.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.若|x|=7,|y|=5,且x>y,那么x﹣y的值是_______________.【答案】2或12【解析】【分析】根据题意,利用绝对值的代数意义求出x与y的值,即可确定出x﹣y的值.【详解】∵|x|=7,|y|=5,且x>y,∴x=7,y=5或x=7,y=﹣5,∴x﹣y=7﹣5=2或7﹣(﹣5)=12.故答案为2或12.【点睛】本题考查了有理数的减法,熟练掌握运算法则是解答本题的关键.16.已知2x﹣3y=3,则代数式6x﹣9y+5值为_____.【答案】14.【解析】【详解】代数式6x-9y+5可变形为3(2x-3y)+5,又2x-3y=3,所以6x-9y+5=3×3+5=14.故答案为14.17.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子数为_____.【答案】【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】∵任意三个相邻格子中所填整数之和都相等,∴a+b+c=b+c+(−1),3+(−1)+b=−1+b+c,∴a=−1,c=3,∴数据从左到右依次为3、−1、b、3、−1、b,∵第9个数与第3个数相同,即b=2,∴每3个数“3、−1、2”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为−1.故答案为−1.【点睛】此题考查数字的变化规律以及有理数的加法,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.三、解答题(本大题共56分,解答时应写出必要的文字说明、计算过程或演算步骤)18.画一条数轴,并把 -4,-(-3.5),212,0,32各数在数轴上表示出来,并用“<”把它们连接起来.【答案】答案见解析.【解析】 【分析】在数轴上把各个数表示出来,再根据在数轴上表示的数,右边的总比左边的数大比较即可. 【详解】在数轴上表示为:用“<”把它们连接为:﹣4<0<32-<122<﹣(﹣3.5). 【点睛】本题考查了数轴和有理数的大小比较,注意:在数轴上表示的数,右边的总比左边的数大. 19.计算:(1)()8121623-+---- (2)(-8)÷(-4)-(-3)3×(-123) (3)(12-59+712)×(-36) (4)()31210.7510514143⨯--⨯+÷ 【答案】(1)-3;(2)-43;(3)-19;(4)-84 【解析】 【分析】(1)先算绝对值,把减法转化为加法,然后计算即可; (2)按照有理数混合运算的顺序,先乘方后乘除最后算加减; (3)运用乘法的分配律计算;(4)把除法转化为乘法后,运用乘法的分配律计算. 【详解】(1)原式=-8+12+16-23=-3; (2)原式=52273-⨯=2-45=-43; (3)原式=-18+20-21=-19;(4)原式=21×(-0.75)-105×0.75+14×0.75=0.75×(-21-105+14)=0.75×(-112)=-84. 【点睛】本题考查了有理数的混合运算.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣. 20.(1)化简:5m 2-7n -8mn +5n -9m 2+8mn .(2)已知:a -2b =4,ab =1.试求代数式(-a +3b +5ab )-(5b -2a +6ab )的值.【答案】(1)-4m 2-2n ;(2)3.【解析】【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并得到最简结果,把已知等式代入计算即可求出值.【详解】(1)原式=﹣4m 2﹣2n ;(2)原式=﹣a +3b +5ab ﹣5b +2a ﹣6ab =a ﹣2b ﹣ab,当a ﹣2b =4,ab =1时,原式=4-1=3.【点睛】本题考查了整式的加减﹣化简求值,熟练掌握运算法则是解答本题的关键.21.解方程:(1)43(5)6x x --=; (2)121146x x +--=. 【答案】(1)x=3;(2)x=-7.【解析】【分析】(1)先去括号,再移项,再合并同类项,最后化系数为1,即可得到方程的解;(2)先去分母,再去括号,再移项,再合并同类项,最后化系数为1,即可得到方程的解.【详解】(1)去括号得:4x ﹣15+3x =6,移项得:4x +3x =6+15,合并同类项得:7x =21,化系数为1得:x =3;(2)去分母得:3(x +1)﹣2(2x ﹣1)=12,去括号得:3x +3﹣4x +2=12,移项得:3x ﹣4x =12﹣3﹣2,合并同类项得:﹣x =7,化系数为1得:x =﹣7.【点睛】本题考查了一元一次方程的求解方法,去分母,去括号,移项,合并同类项,化系数为1,是常用的一元一次方程的求解方法.22.已知代数式A =x 2+3xy +x -12,B =2x 2-xy +4y -1 (1)当x =y =-2时,求2A -B 的值;(2)若2A -B 的值与y 的取值无关,求x 的值.【答案】(1)2A -B =7xy+2x-4y ;(2)47x =【解析】【分析】(1)把A与B代入2A﹣B中,去括号合并后,把x与y的值代入计算即可得到结果;(2)由2A﹣B与x取值无关,确定出y的值即可.【详解】(1)2A﹣B=2(x2+3xy+x﹣12)﹣(2x2﹣xy+4y﹣1),= 2x2+6xy+2x﹣1﹣2x2+xy﹣4y+1,=7xy+2x﹣4y,当x=﹣2,y=﹣2时,2A﹣B=7xy+2x﹣4y =7×(﹣2)×(﹣2)+2×(﹣2)﹣4×(﹣2)=28-4+8=32;(2)由(1)可知2A﹣B=7xy+2x﹣4y =(7x﹣4)y+2x,若2A﹣B的值与y的取值无关,则7x﹣4=0,解得:47x .【点睛】本题考查了有理数的减法,熟练掌握运算法则是解答本题的关键.23.有理数、、在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:-c0,+0,c-0.(2)化简:| b-c|+|+b|-|c-a|【答案】(1)<,<, >;(2)-2b【解析】【分析】(1)根据数轴得出a<0<b<c,|b|<|a|<|c|,即可求出答案;(2)去掉绝对值符号,合并同类项即可.【详解】(1)∵从数轴可知:a<0<b<c,|b|<|a|<|c|,∴b−c<0,a+b<0,c−a>0,(2)∵b−c<0,a+b<0,c−a>0,∴|b−c|+|a+b|−|c−a|=c−b+(−a−b)−(c−a)=c−b−a−b−c+a=−2b.【点睛】此题考查数轴、绝对值、整式的加减,解题关键在于结合数轴判断绝对值的大小.24.某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽米,回答下列问题:(1)修建十字路的面积是多少平方米?(2)草坪(阴影部分)的面积是多少?(3)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?【答案】(1)50x-x2;(2)600-50x+x2;(3)504【解析】【分析】(1)根据修建的十字路面积=两条路的面积和﹣重叠部分的面积得出;(2)阴影面积等于矩形面积减去道路面积;(3)根据长方形草坪的面积﹣十字路的面积=草坪(阴影部分)的面积得出.【详解】(1)30x+20x﹣x2=50x﹣x2.答:修建十字路的面积是(50x﹣x2)平方米.(2)草坪的面积为:30×20﹣(50x﹣x2)=600﹣50x+x2;(3)600﹣50x+x2=600﹣50×2+2×2=504(平方米).答:草坪(阴影部分)的面积504平方米.【点睛】本题考查了列代数式及代数式求值的问题,应熟记长方形的面积公式.另外,整体面积=各部分面积之和;阴影部分面积=原面积﹣空白的面积.进出数量-3 4 -1 2 -5(单位:吨)进出次数 2 1 3 3 2(1)这天仓库的原料比原来增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适.(3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.【答案】(1)仓库原料比原来减少9吨;(2)选方案二运费少;(3)当a=2b时,两种方案运费相同.【解析】【分析】(1)将进出数量×进出次数,再把它们相加即可求解;(2)分别求出两种方案的钱数,再相加即可求解;(3)根据两种方案的运费相同,列出等式求解即可.【详解】(1)﹣3×2+4×1﹣1×3+2×3﹣5×2=﹣6+4﹣3+6﹣10=﹣9.答:仓库的原料比原来减少9吨.(2)方案一:(4+6)×5+(6+3+10)×8=50+152=202(元),方案二:(6+4+3+6+10)×6=29×6=174(元),因为174<202,所以选方案二运费少.(3)根据题意得:5a+8b=6(a+b),解得:a=2b.答:当a=2b时,两种方案运费相同.【点睛】本题考查了有理数的混合运算,列代数式,以及正数和负数,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.26.如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)用含有t的代数式表示AM的长为(2)当t= 秒时,AM+BN=11.(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.【答案】(1)1+t,(2)192;(3)10,83.【解析】分析:(1)根据点M开始表示的数结合其运动速度和时间,即可得出运动后点M的表示的数,再依据点A表示的数为-1即可得出结论;(2)分别找出AM、BN,根据AM+BN=11即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论;(3)假设能够相等,找出AM、BN,根据AM=BN即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论.本题解析:(1)∵点A、M、N对应的数字分别为﹣1、0、2,线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒,∴移动后M 表示的数为t,N 表示的数为t+2,∴AM=t﹣(﹣1)=t+1.(2)由(1)可知:BN=|11﹣(t+2)|=|9﹣t|,∵AM+BN=11,∴t+1+|9﹣t|=11, 解得:192t = (3)假设能相等 ,则点A 表示的数为2t ﹣1,M 表示的数为t,N 表示的数为t+2,B 表示的数为11﹣t, ∴AM=|2t﹣1﹣t|=|t ﹣1|,BN=|t+2﹣(11﹣t)|=|2t ﹣9|,∵AM=BN ,∴|t﹣1|=|2t ﹣9|,1210,83t t ==解得 故在运动的过程中AM 和BN 能相等,此时运动的时间为 秒和8秒.点睛:本题考查了数轴及一元一次方程的应用,根据数量关系列出一元一次方程是解答试题的关键.。
苏科版七年级上期中数学试卷含解析
七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.﹣3的相反数是( )A.﹣3B.+3C.0.3D.2.下列各数:﹣5,,4.11212121212…,0,,3.14,其中无理数有( )A.1个B.2个C.3个D.4个3.江苏省的面积约为102 600km2,这个数据用科学记数法表示正确的是( ) A.12.26×104B.1.026×104C.1.026×105D.1.026×1064.下列代数式:a,﹣ab,m+n,x2+y2,﹣1,ab2c,其中单项式共有( )A.6个B.5个C.4个D.3个5.下面的计算正确的是( )A.6a﹣5a=1B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b6.如图,表示阴影部分面积的代数式是( )A.ab+bc B.ad+c(b﹣d)C.c(b﹣d)+d(a﹣c)D.ab﹣cd7.下列说法中,正确的个数有( )(1)绝对值最小的数是1和﹣1.(2)多项式﹣3a2b+7a2b2﹣2ab+1的项数是4.(3)数轴上与表示﹣2的点距离3个长度单位的点所表示的数是1.(4)若|x|=﹣x,则x<0.A.0个B.1个C.2个D.3个8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有( )A.1种B.2种C.3种D.4种二、填空题(本大题共10小题,12空,每空2分,共24分.)9.在体育课的跳远比赛中,以5.00米为标准,若小东跳出了5.22米,可记做+0.22,那么小东跳出了4.85米,记作__________.10.﹣的绝对值是__________.11.单项式的系数是__________,次数是__________.12.比较大小,用“<”“>”或“=”连接:(1)﹣|﹣|__________﹣(﹣);(2)﹣3.14__________﹣|﹣π|13.式子2x+3y的值是﹣4,则3+6x+9y的值是__________.14.某种商品原价每件b元,第一次降价是打八折(按原价的80%出售),第二次降价每件又减10元,这时的售价是__________元.15.若(m﹣1)x|m|﹣6=0是关于x的一元一次方程,则m的值是__________.16.定义新运算“⊗”,规定:a⊗b=a﹣2b,则12⊗(﹣1)=__________.17.已知|x|=5、|y|=2,且x+y<0,则x﹣2y的值是__________.18.观察下列等式:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,….探究计算结果中的个位数字的规律,猜测3+1的个位数字是__________.三、解答题(本大题共7小题,共52分.)19.计算:(1)﹣10﹣(﹣16)+(﹣24)(2)6÷(﹣2)×(3)(+﹣)×20(4)﹣14+(﹣2)2﹣|2﹣5|+6×(﹣)20.解方程:(1)6(x﹣5)=﹣2(2)x+=2﹣.21.先化简再求值:5a2+3ab+2(a﹣ab)﹣(5a2+ab﹣b2),其中a、b满足|a+1|+(b﹣)2=0.22.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c__________0,a+b__________0,c﹣a__________0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.23.我市城市居民用电收费方式有以下两种:普通电价:全天0.53元/度;峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度.小明家所在小区经过电表升级改造之后下月起实施峰谷电价,已知小明家下月计划总用电量为400度.(1)若其中峰时电量控制为100度,则小明家下月所付电费能比普通电价收费时省多少元?(2)当峰时电量为多少时,小明家下月所付电费跟以往普通电价收费相同?24.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.25.阅读理解:如图,A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是[A,B]的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是[A,B]的好点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是[A,B]的好点,但点D是[B,A]的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数__________所表示的点是[M,N]的好点;(2)现有一只电子蚂蚁P从点N出发,以每秒2个单位的速度沿数轴向左运动,运动时间为t.当t为何值时,P、M、N中恰有一个点为其余两点的好点?-学年江苏省无锡市北塘区七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.)1.﹣3的相反数是( )A.﹣3B.+3C.0.3D.【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣3的相反数是+3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.下列各数:﹣5,,4.11212121212…,0,,3.14,其中无理数有( )A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的定义得到无理数有,共1个.【解答】解:无理数有,共1个,故选A.【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.3.江苏省的面积约为102 600km2,这个数据用科学记数法表示正确的是( ) A.12.26×104B.1.026×104C.1.026×105D.1.026×106【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于102600有6位,所以可以确定n=6﹣1=5.【解答】解:102 600=1.026×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.4.下列代数式:a,﹣ab,m+n,x2+y2,﹣1,ab2c,其中单项式共有( )A.6个B.5个C.4个D.3个【考点】单项式.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以确定单项式的个数.【解答】解:a,﹣ab,m+n,x2+y2,﹣1,ab2c,其中单项式共有a,﹣ab,﹣1,ab2c共4个,故选C.【点评】本题考查单项式的定义,较为简单,准确掌握定义是解题的关键.5.下面的计算正确的是( )A.6a﹣5a=1B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b【考点】去括号与添括号;合并同类项.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【解答】解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.【点评】此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.6.如图,表示阴影部分面积的代数式是( )A.ab+bc B.ad+c(b﹣d)C.c(b﹣d)+d(a﹣c)D.ab﹣cd【考点】列代数式.【专题】常规题型.【分析】先作辅助线,把阴影部分分成两部分,然后根据矩形的面积公式列式即可得解.【解答】解:如图,阴影部分的面积是:ad+c(b﹣d).故选B.【点评】本题主要考查了列代数式求阴影部分的面积,正确作出辅助线,把阴影部分分成两部分是解题的关键.7.下列说法中,正确的个数有( )(1)绝对值最小的数是1和﹣1.(2)多项式﹣3a2b+7a2b2﹣2ab+1的项数是4.(3)数轴上与表示﹣2的点距离3个长度单位的点所表示的数是1.(4)若|x|=﹣x,则x<0.A.0个B.1个C.2个D.3个【考点】多项式;数轴;绝对值.【分析】(1)0是绝对值最小的数;(2)根据多项式的定义回答即可;(3)符合条件的点有两个;(4)根据绝对值性质判断即可.【解答】解:(1)0是绝对值最小的数,故(1)错误;(2)多项式﹣3a2b+7a2b2﹣2ab+1的项数是4,正确;(3)﹣2+3=1,﹣2﹣3=﹣5,∴数轴上与表示﹣2的点距离3个长度单位的点所表示的数是1或﹣5,故(3)错误;(4)若|x|=﹣x,则x≤0,故(4)错误.故选:B.【点评】本题主要考查的是多项式、数轴、绝对值,掌握相关性质是解题的关键.8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有( )A.1种B.2种C.3种D.4种【考点】代数式求值.【专题】图表型;规律型.【分析】根据运算程序列出方程,然后求解即可.【解答】解:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5,5n+1=5,解得x=(不符合),所以,满足条件的n的不同值有3个【点评】本题考查了代数式求值,读懂图表信息并理解运算程序是解题的关键.二、填空题(本大题共10小题,12空,每空2分,共24分.)9.在体育课的跳远比赛中,以5.00米为标准,若小东跳出了5.22米,可记做+0.22,那么小东跳出了4.85米,记作﹣0.15.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:∴5.00米为标准,跳出了5.22米,可记做+0.22,∴小东跳出了4.85米可记做﹣0.15米.故答案为:﹣0.15.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.﹣的绝对值是.【考点】绝对值.【分析】根据一个负数的绝对值是它的相反数即可求解.【解答】解:﹣的绝对值是.故答案为:.【点评】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.11.单项式的系数是﹣,次数是6.【考点】单项式.【分析】直接根据单项式系数及次数的定义进行解答即可.【解答】解:∴单项式的数字因数是﹣,所有字母指数的和=1+3+2=6,∴此单项式的系数是﹣,次数是6.故答案为:﹣,6.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.12.比较大小,用“<”“>”或“=”连接:(1)﹣|﹣|<﹣(﹣);(2)﹣3.14>﹣|﹣π|【考点】有理数大小比较.【分析】(1)先化简,然后根据正数大于负数即可判断;(2)先化简,然后再求绝对值,最后根据两个负数比较大小,绝对值大的反而小即可比较.【解答】解:(1)∴﹣|﹣|=﹣<0,﹣(﹣)=>0,∴﹣|﹣|<﹣(﹣);(2)∴﹣|﹣π|=﹣π,|﹣3.14|=3.14,|﹣π|=π,且3.14<π,∴﹣3.14>﹣|﹣π|,故答案为:(1)<;(2)>.【点评】本题考查的是有理数的大小比较,熟知两负数比较大小的法则是解答此题的关键.13.式子2x+3y的值是﹣4,则3+6x+9y的值是﹣9.【考点】代数式求值.【专题】整体思想.【分析】把代数式变形为含有2x+3y的式子,再整体代入求值.【解答】解:∴2x+3y=﹣4,∴3+6x+9y=3+3(2x+3y)=3﹣12=﹣9,故本题答案为:﹣9.【点评】此题要把2x+3y看作一个整体,整体代入计算.14.某种商品原价每件b元,第一次降价是打八折(按原价的80%出售),第二次降价每件又减10元,这时的售价是0.8b﹣10元.【考点】列代数式.【专题】应用题.【分析】依题意直接列出代数式即可,注意:八折即原来的80%,还要明白是经过两次降价.【解答】解:根据题意得,第一次降价后的售价是0.8b,第二次降价后的售价是(0.8b﹣10)元.【点评】正确理解文字语言并列出代数式.注意:八折即原来的80%.15.若(m﹣1)x|m|﹣6=0是关于x的一元一次方程,则m的值是﹣1.【考点】一元一次方程的定义.【分析】根据一元一次方程的定义得出|m|=1且m﹣1≠0,求出即可.【解答】解:∴(m﹣1)x|m|﹣6=0是关于x的一元一次方程,|m|=1且m﹣1≠0,解得:m=﹣1,故答案为:﹣1.【点评】本题考查了一元一次方程的定义的应用,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.16.定义新运算“⊗”,规定:a⊗b=a﹣2b,则12⊗(﹣1)=6.【考点】有理数的混合运算.【专题】新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题中的新定义得:12⊗(﹣1)=×12﹣2×(﹣1)=4+2=6,故答案为:6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.已知|x|=5、|y|=2,且x+y<0,则x﹣2y的值是﹣9或﹣1.【考点】代数式求值;绝对值.【分析】由绝对值的性质求得x、y的值,然后根据x+y<0分类计算即可.【解答】解:∴|x|=5、|y|=2,∴x=±5,y=±2.∴x+y<0,∴x=﹣5,y=﹣2或x=﹣5,y=2.当x=﹣5,y=﹣2时,x﹣2y=﹣5﹣2×(﹣2)=﹣5+4=﹣1;当x=﹣5,y=2时,x﹣2y=﹣5﹣2×2=﹣5+4=﹣9.故答案为:﹣9或﹣1.【点评】本题主要考查的是求代数式的值,分类讨论是解题的关键.18.观察下列等式:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,….探究计算结果中的个位数字的规律,猜测32015+1的个位数字是8.【考点】尾数特征.【专题】计算题.【分析】通过计算易得31的尾数为3,32的尾数为9,33的尾数为7,34的尾数为1,35的尾数为3,36的尾数为9,…,发现3的n次幂的尾数每4个一循环,而2015=4×503+3,于是可判断32015的尾数与33的尾数相同,为7,由此可判断32015+1的个位数字为8.【解答】解:31的尾数为3,32的尾数为9,33的尾数为7,34的尾数为1,35的尾数为3,36的尾数为9,…,而2015=4×503+3,所以32015的尾数为7,则32015+1的个位数字是8.故答案为8.【点评】本题考查了尾数特征:利用从特殊到一般的方法探讨尾数的特征.本题的关键是探讨3的正整数次幂的尾数的规律.三、解答题(本大题共7小题,共52分.)19.计算:(1)﹣10﹣(﹣16)+(﹣24)(2)6÷(﹣2)×(3)(+﹣)×20(4)﹣14+(﹣2)2﹣|2﹣5|+6×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式从左到右依次计算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=6×(﹣)×=﹣;(3)原式=10+5﹣4=11;(4)原式=﹣1+4﹣3+3﹣2=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)6(x﹣5)=﹣2(2)x+=2﹣.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)6(x﹣5)=﹣2,去括号得:6x﹣30=﹣2,移项合并得:6x=28,解得:x=;(2)x+=2﹣去分母得:6x+3(x﹣1)=12﹣2(x+2),去括号得:6x+3x﹣3=12﹣2x﹣4,移项合并得:11x=11,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简再求值:5a2+3ab+2(a﹣ab)﹣(5a2+ab﹣b2),其中a、b满足|a+1|+(b﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=5a2+3ab+2a﹣2ab﹣5a2﹣ab+b2=2a+b2,∴|a+1|+(b﹣)2=0,∴a+1=0,b﹣=0,∴a=﹣1,b=,则原式=2×(﹣1)+()2=﹣2+=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【考点】绝对值;数轴.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c的正负情况是解题的关键.23.我市城市居民用电收费方式有以下两种:普通电价:全天0.53元/度;峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度.小明家所在小区经过电表升级改造之后下月起实施峰谷电价,已知小明家下月计划总用电量为400度.(1)若其中峰时电量控制为100度,则小明家下月所付电费能比普通电价收费时省多少元?(2)当峰时电量为多少时,小明家下月所付电费跟以往普通电价收费相同?【考点】一元一次方程的应用.【分析】(1)根据两种收费标准,分别计算出每种需要的钱数,然后判断即可.(2)设峰时电量为x度时,收费一样,然后分别用含x的式子表示出两种收费情况,建立方程后求解即可.【解答】解:(1)若按(甲)收费:则需要电费为:0.53×400=212元;若按(乙)收费:则需要电费为:0.56×100+0.36×300=164元,212﹣164=48元.故小明家按照(乙)付电费比较合适,能省48元.(2)设峰时电量为x度时,收费一样,由题意得,0.53×400=0.56x+(400﹣x)×0.36,解得:x=340.答:峰时电量为340度时,两种方式所付电费相同.【点评】本题考查了一元一次方程的应用,解答本题的关键是正确表示出两种付费方式下需要付的电费,注意方程思想的运用.24.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.【考点】规律型:数字的变化类;代数式求值.【分析】(1)根据所给的式子可得S与n之间的关系为:S=n(n+1);(2)首先确定有几个加数,由(1)得出的规律,列出算式,进行计算即可.【解答】解:(1))∴1个最小的连续偶数相加时,S=1×(1+1),2个最小的连续偶数相加时,S=2×(2+1),3个最小的连续偶数相加时,S=3×(3+1),…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+ (400)=(2+4+6+…+400)﹣(2+4+6+…+160),=200×201﹣80×81,=40200﹣6480,=33720.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.25.阅读理解:如图,A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是[A,B]的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是[A,B]的好点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是[A,B]的好点,但点D是[B,A]的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数2所表示的点是[M,N]的好点;(2)现有一只电子蚂蚁P从点N出发,以每秒2个单位的速度沿数轴向左运动,运动时间为t.当t为何值时,P、M、N中恰有一个点为其余两点的好点?【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)设所求数为x,根据好点的定义列出方程x﹣(﹣2)=2(4﹣x),解方程即可;(2)根据好点的定义可知分两种情况:①P为【A,B】的好点;②P为【N,P】的好点.设点P表示的数为y,根据好点的定义列出方程,进而得出t的值.【解答】解:(1)设所求数为x,由题意得x﹣(﹣2)=2(4﹣x),解得x=2,故答案为:2;(2)设点P表示的数为4﹣2t,①当P为【M,N】的好点时.PM=2PN,即6﹣2t=2×2t,t=1,②当P为【N,M】的好点时.PN=2PM,即2t=2(6﹣2t),t=2,③当M为【N,P】的好点时.MN=2PM,即6=2(2t﹣6),t=,④当M为【P,N】的好点时.MP=2MN,即2t﹣6=12,t=9,综上可知,当t=1,2,,9时,P、M、N中恰有一个点为其余两点的好点.【点评】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解好点的定义,找出合适的等量关系列出方程,再求解.。
苏教版七年级数学上册期中考试测试卷附参考答案
苏教版七年级数学上册期中考试测试卷注意事项:1.答卷前将答卷纸上密封线内的项目填写清楚.2.用钢笔或圆珠笔(蓝色或黑色)直接答在答卷纸上........,不能答在试卷上........ 3.考试时间100分钟,试卷满分100分.一、选择题(每小题2分,共16分) 1.与-3的和是3的数是(▲)A .-6B .-3C .3D .62.在数5、-6、3、-2、2中,任意取3个不同的数相乘,其中乘积最大是(▲) A. 30 B. 48 C. 60 D. 90 3.下列各项中是同类项的是(▲)A .-xy 与 2yxB .2ab 与2abcC .x 2y 与x 2zD .a 2b 与ab 2 4.下列去括号正确的是(▲)A .a +(-3b +2c -d )=a -3b +2c -dB .-(-x 2+y 2)=-x 2-y 2C .a 2-(2a -b +c )=a 2-2a -b +cD .a -2(b -c )=a +2b -c 5.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是(▲)A .4B .5C .6D .76.如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,其中AB =BC .如果a c b >>, 那么该数轴的原点O 的位置应该在(▲)A .点A 的左边B .点A 与B 之间C .点B 与C 之间D .点C 的右边7.下面给出关于任意有理数a 的三个结论:①a >-a ;②||-a >0;③(-a )2>0.其中,一定正确的结论个数为(▲) A .0B .1C .2D .38.已知最近的一届世界运动会、亚运会、奥运会分别于2013年、2014年、2016年举办,若这三项运动会都是每四年举办一次,则这三项运动会均不在下列哪一年举办(▲) A .2070年 B .2071年 C .2072年 D .2073年 二、填空题(每小题2分,共20分) 9.-23的相反数是 ▲ .10.绝对值与倒数均等于它本身的数是 ▲ .A B C abc(第14题)11.比较大小:-(-23)2 ▲ -12(填“<”、“=”、“>”).12.我国第一艘航母“辽宁舰”最大排水量为67 500吨,数字67 500用科学记数法可表示为 ▲ .13.若x 表示一个两位数,y 也表示一个两位数,小明想用x 、y 来组成一个四位数且把x放在y 的右边,则这个四位数可以表示为 ▲ .14.因强冷空气南下,预计某地平均每小时降温1.5°C ,如果上午10时测得气温为8°C ,那么下午5时该地的气温是 ▲ °C .15.已知4个有理数:-1、-2、-3、-4,在这4个有理数之间用“+、-、×、÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是 ▲ .16.下列叙述:①x +1x是一次二项式;②-xy 的系数为1,次数为2;③0是代数式;④多项式3x 2y +3xy -12y 2有三项,即3x 2y 、3xy 和12y 2.其中正确的是 ▲ .(填序号)17.三个互不相等的有理数,既可以表示为1、a +b 、a 的形式,也可以表示为0、ba、b 的形式,则字母a 表示的有理数是 ▲ .18.观察下图给出的四个点阵,请按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数为 ▲ 个.三、计算与解答(共64分)19.(6分)有8筐白菜,以每筐25kg 为准,超过的千克数记为正数,不足的千克数记为负数,称后的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5.这8筐白菜一共多少千克?20.(8分)计算(1) (12+56-712)×(-36);(2)-14-7÷[2-(-3)2].21.(4分)化简-4xy +3(13xy -2x ).22.(6分)先化简,再求值:(2m 3+3m )-(m 3+5m -3m 3)-1,其中m =-1.23.(6分)已知代数式3a -7b 的值为-3,求代数式2(2a +b -1)+5(a -4b +1)-3b 的值.24.(6随着n 值的逐渐变大,回答下列问题:(1)这三个代数式的值增加最快的是 ▲ .(2)你预计代数式的值最先超过1000的是 ▲ ,此时n 的值为 ▲ 。
苏教版七年级数学上册期中测试卷(含参考答案)
aO b 苏教版七年级数学上册期中考试试卷6姓名__________成绩_________一、选择题(共10小题,每小题2分,共20分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填在括号中)1.︱-3︱的相反数是 ( ) A 、 ±3 B 、 -3 C 、31-D 、 3 2.下列说法错误的是 ( ) A 、零是绝对值最小的有理数 B 、若是两个数互为相反数,那么它们的绝对值相等. C 、任何有理数的绝对值都是正 D 、两个互为相反数的商是-13.在|-2|,-(-2)2,-|-2|,(-2)3,-(-2)3,(-1)2n(n 是正整数),这6个数中,负数的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个北京奥运国家运动场“鸟巢”建筑面积达万平方米,用科学记数法表示应为( ) A 、×104m 2B 、×105m 2C 、×105m 2D 、×106m25.四个有理数的积是负数,则这四个数中负因数的个数是 ( ) A 、1个 B 、3个 C 、1个或3个 D 、不能确信6.如有理数a 、b 在数轴上的位置如图所示,则下列各式中不成立的是 ( ) A 、a >-bB 、b -a <0C 、|a|>|b|D 、a+b <07.下列去括号正确的是 ( ) A 、-(a+b-c)=-a+b-c B 、-2(a+b-3c)=-2a-2b+6c C 、-(-a-b-c)=-a+b+c D 、-(a-b-c)=-a+b-c8.多项式5a 3-6a 3b +3a 2b -3a 3+6a 3b -5-2a 3-3ba 2的值 ( ) A 、只与a 有关 B 、只与b 有关 C 、与字母a 、b 都有关 D 、与字母a 、b 都无关9.已知n 表示正整数,则2)1(21nn -+= ( ) A 、0 B 、 1 C 、0 或1 D 、 无法确信,随n 值的不同而不同10.若代数式x 2的值和代数式2x + y- 1的值相等,则代数式9-2(y +2x) +2x 2的值是 ( )A 、7B 、 4C 、1D 、不能确信二、填空题(共12小题,每小题2分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期期中学情分析七年级数学试卷
一、填空题(每题2分,共24分)
1.计算:3+(-4)= ▲ ; 3×(-4)= ▲ .
2.13-的绝对值是 ▲ ; 1
3
-的倒数是 ▲ .
3.比较下列各数的大小:0 ▲ -5; 23- ▲ 3
4
-(在横线上填“<”、“=”、“>”)
4.单项式32
56x y -的系数是 ▲ ,次数是 ▲ .
5.若4
1
4n x y
+与2
5m x y -的和仍为单项式,则m= ▲ , n= ▲ .
6.化简:2(2)--= ▲ ;2(1)a a --= ▲ . 7.已知一个数与-5 和为2,则这个数为 ▲ .
8.我国现采用国际通用的公历纪年法,如果我们把公元2013年记作+2013年,那么,处于
公元前500年的春秋战国时期可表示为 ▲ . 9.如图,数轴上的点P 表示的数是-1,将点P 向右移动3个
单位长度得到点P ',则点P '表示的数是 ▲ .
10.照下图所示的操作步骤,若输入x 的值为5,则输出的值为
▲ .
11.如图,边长为(m +3)的正方形纸片剪出一个边长
为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是 ▲ .
12.已知2y x =-,则23
()()1x y y x -+-+的值为 ▲ .
二、选择题(每小题2分,共18分)
13.甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低
的地方高 A .5 m
B.10 m
C .25 m
D .35 m
14.下列各式正确的是
A. 6a -5a =1
B. a +2a 2=3a 3
C.-(a -b )=-a +b
D.2(a +b )=2a +b
15.下列各对数中互为相反数的是
A .-()+3和 +()-3
B .-()-3和+()-3
C .-()-3和 +||―3
D .+()-3和-||―3 16.如图,在数轴上点M 表示的数可能是
A . 1.5
B .-1.5
C .-2.4
D .2.4
17.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,
那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为 A .51012.3⨯
B .61012.3⨯
C .5102.31⨯
D .710312.0⨯
18.代数式-2x ,0,3x y -,
4x y +,b
a
中,单项式的个数有 A .1个 B .2个 C .3个 D .4个 19.若关于x 的方程x +2=ax 的解是-1,则a 的值是 A .1-=a
B .0=a
C . 1=a
D .3=a
20.已知|a |=3,|b |=4且a >b ,则2a -b 的值为
A .-10
B .10
C .2或-10
D .-2或10 21.在一条笔直的公路边,有一些树和灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离都是10m ,如图,第一棵树左边5m 处有一个路牌,则从此路牌起向右510m ~550m 之间树与灯的排列顺序是
三、解答题
22.计算(每小题4分,共16分)
(1)(-2)+(-3)-(+11)-(-17)
(2))7
1()7(35-⨯-÷-
(3))60()15
14121132(-⨯--
(4)2010
21
1
(1)33(3)2
---÷⨯--
23.化简(每小题4分,共8分)
⑴ )2(2y x y x -+- ⑵ )2(3)3(2222b a b a ---
24.(每小题4分,共8分)
(1)化简后再求值:()()
2224232y x x y x ---+,其中()01 22
=++-y x
(2)有一个整式减去..(23)xy yz xz -+的题目,小春同学误看成加法..
了,得到的答案是 232yz xz xy -+.假如小春同学没看错,原来题目正确解答是什么?
25.(本题8分)(1)()3112x x +-=- (2) x x 21
43-
=--
26.(本题6分)观察下面一列数,探究其中的规律:
1-,
21,31-,41,51-,6
1
,…… ①填空:第7、8个数分别是 ▲ , ▲ ; ②第2013个数是 ▲ ;
③如果这列数无限排列下去,借助数轴,你发现与哪个数越来越近?答: ▲ .
x
27.(本题6分)某校在新建学生宿舍时需如图所示的铝合金窗框(别忘了中间还用了一根),
它共用了长8米的铝合金,设长方形窗框的一边长为x 米(如图). (1)求长方形窗框的另一边长及窗框的面积(用含x 的代数式表示). (2)若x 的取值分别为1,2,3,则哪一种取值所做的窗框面积最大?
28.(本题6分)操作与思考
探索性问题:
已知点A ,B 在数轴上的位置所表示的数分别用a b 、表示.利用数形结合思想回答下列问题:
(2)通过对上表中具体数据的研究和归纳,你发现数轴上表示x 和2-两点之间的距离
表示为 ▲ .
(3)若x 表示一个有理数,则|1||3|x x -++的最小值是 ▲ .
(2)2682861414
x x x x x x --=--+=+-==-(1分)(2分)(3分)(4分)
七年级数学期中试卷参考答案
一、填空题(每题2分)
1.-1;-12 2.
13
;-3 3.>;> 4.5
6-;5 5.4; 1 6.-4;a -2
7.7 8.-500 9. 2 10.97 11. 2 m +3 12.-3
二、选择题(每小题2分)
13.D 14.C 15.B 16.C 17.B 18.B 19.A 20.D 21.B 三、解答题
22.(1)原式=-2-3-11+17 (1分) (2)原式=5×1
()7-(2分)
=-16+17 (3分) =5
7
- (4分)
=1 (4分) (3)原式=-40+55+56 (3分,算对一个给1分)
=71 (4分)
(4)原式=-1-1
2×13
×6(3分,化对1个给1分) =-2(4分)
23.(1)原式=y x y x -+-22(2分) =y x 33-(4分)
(2)原式=2
2
2
2
633b a b a +-- (2分,去对一个括号给1分)==2
5b (4分)
24.(1)原式=2
2
6484x y x x y +--+(1分)=-11x+10y 2;(2分) 由()01 22
=++-y x ,得x=2,y=-1(3分)代入
原式=-11x+10y 2=-12;( 4分)
(2)解:原整式=(2y z -3z x +2xy )-(xy -2y z +3x z)(1分)=46xy yz xz +-(2分) 所以,原题正解:(46xy yz xz +-)-(xy -2y z +3x z)(3分)=69yz xz -(4分)
25.
26.①-17,1
8 (2分) ②1
2013
- (4分) ③ 0(6分) 27.(1)另一边长:823x - 面积:1
(82)3x x - (3分)
(2)当x=1,面积
1(82)3x x -=2,当x=2,面积1(82)3x x -= 83,当x= 3,面积1
(82)3
x x -=2 所以,当x=2,面积8
3
最大。
(6分)
28.(1)5,10,2,8(2分) (2) |2|x +或当22x x x ≥-<-时,x+2;时,-2-(4分)
(3)4(6分)
3312(1)
24(3)2(4)
x x x x +-=-=-=-分分分。