电磁学第六次作业解答
电磁学习题答案
04
电磁波部分习题答案
平面波在均匀介质中的传播
总结词
波动特性、传播速度、波长、频率、偏振。
详细描述
电磁波在均匀介质中传播时,具有恒定的波速,与频率无关;波长、频率和速度之间存在反比关系;电磁波是横波时,具 有偏振现象。
公式
$v = \lambda f$
电磁辐射与天线
总结词
基本原理、偶极子天线、单极子天线、天线增益。
详细描述
电磁辐射是指电磁场在空间中传播并向外辐射能量的现象;天线是用于发射和接收电磁波的设备,根据不同需求有多种类 型,如偶极子天线和单极子天线,其中偶极子天线又分为对称和非对称两种类型。
公式
$G = \frac{4\pi^2}{\lambda^2}r^2$
电磁波的散射与吸收
总结词
散射现象、散射截面、吸收现象 、介质损耗。
雷电与避雷针
01
02
总结词:雷电的形成、危害与 避雷针的作用
详细描述
03
04
雷电是云层与地面之间产生的 放电现象,具有极大的破坏性 ,可导致建筑物、设备损坏和 人员伤亡。
避雷针是一种接闪装置,通过 金属杆将雷电引向自身,再通 过引下线和接地装置将电流引 入地下,以保护建筑物和人员 安全。
THANK YOU.
详细描述
电磁波遇到微观粒子时,会产生 散射现象,散射截面表示散射强 度与入射角度之间的关系;当电 磁波穿过介质时,会发生吸收现 象,介质损耗表示电磁波在介质 中传播时的能量损耗。
公式
$\alpha = \frac{4\pi k}{\lambda}$
05
电磁场应用部分习题答案
变压器与电动机总结词:变压器的原理、源自用与电动机的关系电容器与电阻器
电磁学第六次作业解答教学文案
电磁学第六次作业解答电磁学第六次作业解答第八章 真空中的稳恒磁场8-2 如图所示,一无限长直导线通有电流I =10 A ,在一处折成夹角=60°的折线,求角平分线上与导线的垂直距离均为r =0.1 cm 的P 点处的磁感强度.(0 =4×10-7 H ·m -1)解:P 处的B 可以看作是两载流直导线所产生的,1B 与2B 的方向相同.21B B B +=rI π=40μ+︒--︒)]90sin(60[sin r Iπ40μ)]60sin(90[sin ︒--︒rIπ=420μ=︒+︒)60sin 90(sin 3.73×10-3 T方向垂直纸面向上.8-4 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度 )221()]4/([03⋅π=b I B μ1B 、2B、3B 方向相同,可知D 处总的B 为 )223(40baI B +ππ=μ8-12 如图所示,有一密绕平面螺旋线圈,其上通有电流I ,总匝数为N ,它被限制在半径为R 1和R 2的两个圆周之间.求此螺旋线中心O 处的磁感强度.解:以O 为圆心,在线圈所在处作一半径为r 的圆.则在r 到r + d r 的圈数为r R R Nd 12- 由圆电流公式得 )(2d d 120R R r rNI B -=μ⎰=-=21)(2d 120R R R Rr rNI B μ12120ln)(2R R R R NI-μ Db A B Ca I bOR 1R 2Ir rP θ方向⊙8-13 图所示为两条穿过y 轴且垂直于x -y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1) 推导出x 轴上P 点处的磁感强度)(x B 的表达式. (2) 求P 点在x 轴上何处时,该点的B 取得最大值.解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:rI B π=201μ2/1220)(12x a I +⋅π=μ 2导线在P 点产生的磁感强度的大小为: rI B π=202μ2/1220)(12x a I +⋅π=μ 1B 、2B的方向如图所示. P 点总场θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B)()(220x a Ia x B +π=μ,i x a Ia x B )()(220+π=μ (2) 当 0d )(d =x x B ,0d )(d 22=<x x B 时,B (x )最大. 由此可得:x = 0处,B 有最大值.8-16 如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.解:利用无限长载流直导线的公式求解.(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流 x i d d δ= (2) 这载流长条在P 点产生的磁感应强度x i B π=2d d 0μxxπ=2d 0δμ 方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P点产生的磁感强度 ==⎰B B d 02a b b dx xμδ+⎰π0ln 2a bb μδ+=π 方向垂直纸面向里.II x y a aO P xy r r x a a θ θ θ 2 1O P x B 1 B 2ObxaP δ x d x POx。
电磁场与电磁波课后习题及答案六章习题解答
第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题6.1图所示。
滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。
设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为0000()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。
设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。
电磁学习题答案
电磁学习题答案第一、二章静电场(一)填空题0111 引,引,引,不受静电0211 带电小球不是点电荷,库仑定律不适用0322 小0423 1∶50522 q=Q/20622 小0721 移到大地,不会移动0821 不会改变0911 同号等量1023 物质在引力场中1111 电力线的方向是电场的方向,即正电荷受力的方向而不是运动方向和轨迹1211 空过高斯曲面的电通量,电场E1311 不一定为零,必为零1423 不会成立这时 ∮E·dS=∫1/4π0q/rn1/ε0qrn-21522 能,不能1621 q/(6ε),在体内时不变,体外为零1723 恒为零,恒为一定值,由定值变为零1823 1/4πε4Qa21924 5/22022 2q/(4πεR2)2122 不能,能2222 能,不能2322 无限远或大地,整机外壳,并不一定相等2422 零,常数,2524 g,gh,mgh2611 -q2724 4.0×106N/C,02824 7.1×10-5C·m-22923 16∶253024 6.9×10-19J 、3112 升高3222 有,有,无,有3322 均匀分布,仍然为均匀3422 相等3523 rA ∶rB3624 2md/(et 2),2md 2/t 2 3722 1∶53824 EM <EN3923 W0/εr4024 600V(二)选择题0132 (B) 0222 (C) 0322 (B) 0422 (B)0523 (D) 0622 (A) 0724 (D) 0824 (D)0924 (D) 1023 (B) 1122 (B) 1222 (B)1321 (C) 1421 (C) 1521 (C) 1622 (C)1724 (D) 1834 (D) 1921 (D) 2022 (A)2123 (C) 2224 (C) 2322 (B) 2424 (CD)2523 (C) 2624 (D) 2724 (C) 2824 (C)2923 (C) 3034 (C) 3122 (A) 3222 (C)3322 (A) 3422 (B) 3523 (C) 3624 (C) 3734BF,D,AC 3824 (D) 3924 (C) 4024 (A)第三章稳恒电流(一)填空题0111 非保守力非静电场0211 非静电力将单位正电荷在电源内部由负极移到正极所作的功0322 不一定相同,不同,相同0423 x=l/2(1±n-4)0532 e2/(4πr0621 2nevS0721 2I/30821 l/2和l/20922 60V1034 92.5V1121 1159kW1223 1∶3,1∶1,3∶161333 并,2.71424 U3>U2>U1,相等,相等1534 闭路式,因为开路式当开关在触点间跨越时可能烧坏表头1622 灯泡点亮时电阻变大1722 零,增大,R>r时将减小,R<r时将增大,R=r时功率最大1822 新旧电池的电动势变化不大而内阻变化很大,故输出功率大大减小 1922 nε,nr2022 ε,r/n(二)选择题0122 (B) 0223 (C) 0321 (C) 0423 (C) 0522 (C) 0621 (B) 0722 (D) 0823 (B) 0922 (A) 1033 (D) 1134 (C) 1234 (B)1334 (A) 1424 (D) 1534 (B) 1622 (D)1723 (B) 1823 (C) 1923 (C) 2023 (B)第四、五章稳恒磁场(一)填空题0111 在与x轴的两个相交点处B=0,在与y轴相交的两点处B=μ0/4πidR2,但分别沿k和-k方向0211 μI/2R0312 μI0411 沿x方向0511 因引力而靠近0612 一方面朝两环电流方向相同的方位转动,同时相互平动靠近0711 电场或磁场,磁场,电场0811 相等0922 μ0I/(2π)1022 2μ0I/(πa)1121 零,μI/2πR (1+π/4),零1224 弱1311 零1411 μ0nI,μ0nI1512 能,不能1623 μ0Ir2πr2 μI/2πr ,零1722 无源有旋1821 μev/4πr21922 靠近导线平移,转动且平移靠近导线,转动且平移靠近导线2024 零2122 零,不一定为零2234 大,不变2324 右2424 ne(IB/b)2523 2mEk/(qr)2623 以半径R=mv2/(qvB)作圆周运动;以较小的半径反方向作圆周运动 2722 收缩变短2823 自上而下俯视为逆时针2932 向下偏移3024 vBd,上边为正极板,下边为负极板3122 B和M都与外磁场B0同方向,B和M都与外磁场B反方向3234 磁化的铁钉与磁场间的相互作用能(磁势能),铁钉接近磁铁时磁势能减小而转化为铁钉动能3322 弹簧伸长,插入部分变长,瞬间上升而随即又伸长插入螺线管中 3422 相同电流,不变3522 加一个反向磁场,或敲击震动磁铁,或加热使温度升高到居里点以上3622 加一块衔铁将两极闭合,将两条磁铁的异性磁极靠在一起3721 南,指向地面3821 抗磁质,顺磁质3921 ②,①4034 下降,下降,上升,上升,上升,吸住(二)选择题0121 (D) 1124 (A) 2121 (C) 3121 (B)0222 (D) 1223 (C) 2221 (B) 3234 (B)0324 (B) 1334 (BC) 2322 (C) 3323 (D)0421 (D) 1433 (D) 2422 (A) 3424 (C)0522 (D) 1522 (B) 2522 (A) 3534 (B)0634 (B) 1623 (AB) 2622 (D) 3622 (B)0723 (C) 1724 (D) 2724 (C) 3722 (A)0822 (BD) 1823 (B) 2833 (C) 3821 (A)0922 (B) 1923 (C)(B) 2933 (B) 3922 (B)1021 (D) 2023 (C) 3032 (A) 4033 (BCDA)第六章电磁感应(一)填空题0111 先加速最后以一恒速度0211 一个反抗拉力0322 垂直导线而远离0422 受到较大阻力而很快停下来,受到的阻力减小而好久才能停住 0523 变化的B在薄片上产生涡电流,由椤次定律知,涡流磁场总是阻碍原磁场变化,而具屏蔽作用0621 0,Blv,bωl 2/2,00721 0.1,a→d→c→b→a0834 右0921 增大1022 ωBR2/21122 0.05T1222 电能1323 ε/Bl1422 产生电流而不运动1523 μ0N21a2/2R,μ0N22a2/2R,μN1N2a2/2R1621 使二线圈的半径基本相等,同轴紧套在一起1721 两线圈互相垂直放置1821 同轴顺向紧密连接1921 先将电阻丝折成双线再绕在绝缘筒上而使电流相反 2021 交流电源,减少,焦耳热(二)选择题0121 (B) 0632 (AD) 1124 (D) 1623 (C) 0223 (D) 0732 (BD) 1223 (D) 1723 (D)0323 (A) 0824 (C) 1323 (D) 1823 (C)0421 (A) 0934 (C) 1423 (C) 1924 (D)0534 (C) 1021 (B) 1523 (D) 2024 (B)第七章电磁场和电磁波(一)填空题0111 涡旋电场和位移电流0211 变化的电场,电位移通量的变化率dφD/dt0312 位移电流产生于变化的电场且无焦耳热,而传导电流产生于电荷的运动且有焦耳热0422 是横波,S=E×H,E和H同位相、同周期变化,εE=μH2, v=(εμ)-1/2等0533 独立客观存在,有能量动量,有粒子性,与实物粒子可相互转换等 0622 传导,位移,传导0722 变化的电场和变化的磁场0833 不会产生,仍不产生0922 发射电磁波必须是高频的开放型振荡电路1033 实验规律中直接归纳,积分形式通过数学推演1121 3×1018 ,5. 09×1014 , 2.19×108 ,1.07×106Hz1221 2.0×108 m/s1321 7.0×10-2A1421 3.33×10-12T1522 3.95×1026W1623 1.74×10-2V/m, 5.8×10-11T1724 2.68×102W/m21824 3m,108Hz,2.0×10-9cos〔2π×108(t-x/c)〕1924 4.3×10-13~3.9×10-10F2023 1.6×10-5W/m2(二)选择题0121 (AC) 0322 (AC) 0522 (C) 0721 (D)0222 (AD) 0422 (AD) 0621 (D) 0821 (D)0924 (D) 1223 (A) 1524 (C) 1824 (D)1024 (A) 1323 (C) 1622 (C) 1924 (B)1123 (B) 1422 (C) 1723 (B) 2034 (D)。
电磁学第二版习题答案第六章
中 点。
(〜)求动生电动势,AM及,AC
(2)A、M哪点电势高,
解答:
(1)线圈上一元段的电动势为
由图6.3.7得
AM间的电动势为
AC间的电动势为
(2) A、C间的电动势差为
4, AC R , 0 U CA , , AC IRAC , , AC R 4
B 2l2令 ,,,得mR
v,,
dv F
dt m,
分离变量得
v m,F,,dt
d v
F
m,
积分后得
v ln,,t,C
F
m,
式中:C为待定系数,由初始条件,t=0,v(0)=0,得
F C,ln ma
故
F
m,v ln,,t F
m,
即
F v m,,e,t F
m,
证得杆的速率随时间变化的规律为
F v,t,,,1e,t,ma
形的6.3.6
半径为0.1m,转速为3000r min,求动生电动势的频率和最大植。
解答:
只有半圆弧的运动对动生电动势有贡献,沿旋转轴(即直径)作一辅助线,与半 圆弧
连成一封闭曲线,设t=0时,半圆面的位置如附图所示,选取半圆面的法线 方向垂直向外,
t时刻通过半圆面的磁通量为
R2
, ,B S,B cos,t2
R R dt
此电磁力与运动方向相反,根据牛顿第二定律,有
2B 2l dx dv F, ,R dt dt
得
mR dx,dv B l22
设杆的起始位置为x=0,金属杆所能移过的距离为
0mR mR x,dv,v0,v0 B 2l2B l22
电磁场与电磁波课后习题及答案六章习题解答
第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题 6.1图所示。
滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰g g B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。
设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解 介质棒内距轴线距离为r 处的感应电场为00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为00()(P r r r a e r σεεωε==⋅=-⋅=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。
设0.2a m=、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。
解 由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。
第6单元课后答案
习题66-1 在同一磁感应线上,各点B 的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B 的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B 的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B 的方向.题9-2图6-2 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.6-3已知磁感应强度0.2=B Wb ·m -2 的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S B ΦWb(2)通过befc 面积2S 的磁通量022=⋅=S B Φ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )题6-4图6-4如题6-4图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度. 解:如题6-4图所示,O 点磁场由AB 、C B 、CD 三部分电流产生.其中AB 产生 01=BCD 产生R IB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 6-5 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题6-5图解:如题6-5图所示,A B 方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T (2)设0=B 在2L 外侧距离2L 为r 处则 02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题6-6图6-6 如题6-6图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题6-6图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
电磁学(赵凯华,陈熙谋第三版)第六章 习题及解答
新概念物理教程・电磁学! 第六章 麦克斯韦电磁理论 电磁波 电磁单位制 习题解答
! ! ! ! " " 设 "## ! 的电灯泡将所有能量以电磁波的形式沿各方向均匀地 辐射出去, 求: (") $# " 以外的地方电场强度和磁场强度的方均根值; ( $ )在该处对理想反射面产生的光压。 解: (") # $ "## " " $ & ’ $ %!% $ # # $
!
(
)
(
)
由于同心球形电容器中放电电流具有球对称性分布, 电流产生的磁场 分布也必定是球对称的; 然而磁场是轴矢量, 球对称的磁场只能处处为 & , 即电容器中没有磁场。
新概念物理教程・电磁学! 第六章 麦克斯韦电磁理论 电磁波 电磁单位制 习题解答
! ! ! ! " " 太阳每分钟垂直射于地球表面上每 !"" 的能量约为 " !#$ ( # !#$" $ % " &) , 求地面上日光中电场强度 # 和磁场强度 $ 的方均根值。 解:% & # # # $ & " % % " ! !% " "%
&
新概念物理教程・电磁学! 第六章 麦克斯韦电磁理论 电磁波 电磁单位制 习题解答
! ! ! ! "" " 利用电报方程证明: 长度为 # 的平行双线 ( 损耗可以忽略)两端 开启时电压和电流分别形成如下形式的驻波: "%$ " !"# & ! ’$%& ( $ ’ !& ( ) , " # ! ( & % #, $, %, …) &!’ "% *" * #’( ( ) ) ) $%& , ( ’ !& " " # &! " 指出电压、 电流的波腹和波节的位置, 以 其中谐振角频率为 ! & % #! +& ,& 及波长的大小。
电磁学课后习题答案及解析
第五章 静 电 场5 -9若电荷Q 均匀地分布在长为L 的细棒上.求证:<1>在棒的延长线,且离棒中心为r 处的电场强度为<2>在棒的垂直平分线上,离棒为r 处的电场强度为若棒为无限长<即L →∞>,试将结果与无限长均匀带电直线的电场强度相比较.分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.<1>若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,<2>若点P 在棒的垂直平分线上,如图<A >所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 <1>延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.<2>根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′,22x r r +='统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度此结果与无限长带电直线周围的电场强度分布相同[图<B >].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.5 -14设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2取球坐标系,电场强度矢量和面元在球坐标系中可表示为①5 -17设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析通常有两种处理方法:<1>利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. <2>利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内<0≤r ≤R > 球体外<r >R >解2将带电球分割成球壳,球壳带电由上述分析,球体内<0≤r ≤R >球体外<r >R >5 -20一个内外半径分别为R 1和R 2的均匀带电球壳,总电荷为Q 1,球壳外同心罩一个半径为R 3的均匀带电球面,球面带电荷为Q 2.求电场分布.电场强度是否为离球心距离r 的连续函数?试分析.分析以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解取半径为r 的同心球面为高斯面,由上述分析r <R 1,该高斯面内无电荷,0=∑q ,故01=ER 1<r <R 2,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4rR R εR r Q E --= R 2<r <R 3,高斯面内电荷为Q 1,故r >R 3,高斯面内电荷为Q 1+Q 2,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图<B >所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1和R 2>R 1>,单位长度上的电荷为λ.求离轴线为r 处的电场强度:<1>r <R 1,<2> R 1<r <R 2,<3>r >R 2.分析电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解作同轴圆柱面为高斯面,根据高斯定理r <R 1,0=∑q 在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1<r <R 2,L λq =∑r >R 2,0=∑q 在带电面附近,电场强度大小不连续,电场强度有一跃变这与5-20题分析讨论的结果一致.5 -22如图所示,有三个点电荷Q 1、Q 2、Q 3沿一条直线等间距分布且Q 1=Q 3=Q .已知其中任一点电荷所受合力均为零,求在固定Q 1、Q 3的情况下,将Q 2从点O 移到无穷远处外力所作的功.分析由库仑力的定义,根据Q 1、Q 3所受合力为零可求得Q 2.外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:<1>根据功的定义,电场力作的功为 其中E 是点电荷Q 1、Q 3产生的合电场强度.<2>根据电场力作功与电势能差的关系,有其中V 0是Q 1、Q 3在点O 产生的电势<取无穷远处为零电势>.解1由题意Q 1所受的合力为零解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1、Q 3激发的电场在y 轴上任意一点的电场强度为将Q 2从点O 沿y 轴移到无穷远处,<沿其他路径所作的功相同,请想一想为什么?>外力所作的功为解2与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1、Q 3在点O 的电势将Q 2从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23已知均匀带电长直线附近的电场强度近似为为电荷线密度.<1>求在r =r 1和r =r 2两点间的电势差;<2>在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明.解 <1>由于电场力作功与路径无关,若沿径向积分,则有<2>不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.5 -27两个同心球面的半径分别为R 1和R 2,各自带有电荷Q 1和Q 2.求:<1>各区域电势分布,并画出分布曲线;<2>两球面间的电势差为多少?分析通常可采用两种方法<1>由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.<2>利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为在球面内电场强度为零,电势处处相等,等于球面的电势其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 <1>由高斯定理可求得电场分布由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1时,有当R 1≤r ≤R 2时,有当r ≥R 2时,有<2>两个球面间的电势差解2 <1>由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1,则若该点位于两个球面之间,即R 1≤r ≤R 2,则若该点位于两个球面之外,即r ≥R 2,则<2>两个球面间的电势差第六章 静电场中的导体与电介质6 -1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将〔 〔A 升高 〔B 降低 〔C 不会发生变化 〔D 无法确定分析与解不带电的导体B 相对无穷远处为零电势。
大物电磁学课后答案6模板
反转时,电势的高低是否也会反过来?
B
解 :d (v B) dr, d B rdr
6-3 如图所示,通过回路的B线与线圈平面垂直,若磁通量按如
下规律变化=6t2+8t+8,式中的单位是毫韦伯,t是以秒为单位
。求当t=2秒时,(1)回路中感应电动势的大小是多少?(2)设
R=2欧姆,R上电流I的大小及方向如何?
解:(1) (6t2 8 8) 103(韦 伯 )
d (12t 8) 103 3.2 102(V)
解 : d (v B) dr vBdr u0Iv dr 2r
I
V
01..11
u0Iv 2r
dr
4 107 40 2.0 2
1.1 ln
0.1
3.8 5 1 05 ( v)
ab
0.1m
6-7 如图一长直导线,通有电流I=5.0安培,在与其相距d= 5.0厘米处放一矩形线圈,l=4.0厘米,宽A=2.0厘米,共1000 匝。线圈以速度v=3.0厘米/秒,沿垂直于长直导线的方向向右 运动,问该时刻线圈中感应电动势是多少?
R
)2 Rdt
v2B2l2 R
dx v
vB 2l (
R
Rm B2l2
dv )
dw mvdv , w
0
mvdv
v0
1 2
mv
2 0
补充6.5如图所示,法拉第圆盘发电机是一个在磁场中转动的导
体圆盘。设圆盘的半径R,它的轴线与均匀外磁场B平行,旋转角
速率为。求盘心到盘边的电势差,哪处电势高?当盘旋转方向
vBl ,
RR
vBl
B2l2
f I lB lB v
R
R
电磁场与电磁波第六章作业题解答
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载电磁场与电磁波第六章作业题解答地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第六章无界空间平面电磁波的传播习题解答6-1.已知自由空间的电磁波的电场强度E的瞬时值为试回答下列问题:(1)该电磁波是否属于均匀平面波?沿何方向传播?(2)该电磁波的频率、波长、相位常数和相速度各为多少?(3)该电磁波的磁场强度的瞬时表达式。
解(1)均匀平面波等振幅面与等相位面重合,在垂直于传播方向上E、H的方向和大小都不变的电磁波。
由题给电磁波电场强度的表达式,可知电磁波沿-Z方向传播,电场强度在垂直于传播方向+Y方向,且振幅为常数,所以电磁波属于均匀平面波。
(2)与沿-Z方向传播,且电场强度矢量沿方向的均匀平面波的一般表达式相比较,可知因此,有频率波长相速度显然,自由空间电磁波的相速度等于光速。
(3)磁场强度H的瞬时表达式为而代入,得到6-2.理想介质(介质参数为μ=μ0,ε=εr ε0,σ=0)中有一均匀平面电磁波沿X方向传播,已知其电场瞬时表达式为试求:(1)该理想介质的相对介电常数;(2)该平面电磁波的磁场瞬时表达式;(3)该平面电磁波的平均功率密度。
解(1)根据有(2)磁场的瞬时表达式而理想介质中的波阻抗为所以,有(3)平均坡印廷矢量由电场强度E和磁场强度H的瞬时表达式可知,电场和磁场的复振幅矢量为有6-3.空气中一平面电磁波的磁场强度矢量为求:(1)波的传播方向;(2)波长和频率;(3)电场强度矢量E;(4)平均坡印廷矢量。
解(1)根据平面波的一般表达式比较可知有因此,波传播的单位矢量为(2)波长频率(3)电场强度矢量与磁场强度矢量的关系可由麦克斯韦方程得到将波矢量和磁场矢量代入,有(3)平均坡印廷矢量由电场强度E和磁场强度H的瞬时表达式可知,电场和磁场的复振幅矢量为代入得到6-7.在非磁性、有耗电介质中,一个300MHz的平面电磁波的磁场复振幅矢量为求电场、磁场矢量的时域表达式。
电磁学课后部分习题答案解析
电磁学课后部分习题答案解析1.2.2 两个同号点电荷所带电荷量之和为Q.在两者距离一定的前提下,他们带电荷量各为多少时相互作用力最大?解答:设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为()2q Q q =-,两者距离为r,则由库仑定律求得两个电电荷之间的作用力为()204q Q q F rπε-=令力F 对电荷量q 的一阶导数为零,即 ()2004Q q qdF dqrπε--==得122Q q q ==即取 122Q q q ==时力F 为极值,而222202204Q q d F dqrπε==-<故当 122Q q q ==时,F 取最大值1.2.6 两个电荷量相等的同性点电荷相距为2a ,在两者连线的中垂面上置一试探点电荷0q , 求0q 受力最大的点的轨迹.解答:如图(a)所示,设有两个电荷量为q 的点电荷 ,坐标分别为(-a ,0,0)和(a ,0,0),试探点电荷0q 置于二者连线的中垂面Oyz 上坐标为(0,y,z).r y j z k=+ 为原点O 至试探点电荷0q 的失径,距离为r =,如图(b)所示.根据对称性, 所受合力的方向与失径r 平行或反平行.其大小为 ()003222222sin 2q q q qrF kkr araα==++求上式的级值,去F 对r 的一阶导数并令其为零,的方程 ()22230r r a-++=求得2r =求二阶导数并带入2r =,得()272222022120r d Fa kqq r a rdr -=-+<说明此时F 取极大值因此,0q 受力最大的点的轨迹是在中垂面上的圆心坐标为(0,0,0)半径为2的圆.1.3.6 附图中均匀带电圆环的半径为R,总电荷量为q(1)求数轴线上离环心O 为x处的场强E(2) 轴线上何处场强最大?其值是多少? (3)大致画出E-x 曲线.解答:设圆环的带电线密度为 2q Rηπ=如图(a)所示,圆环一小段d l 到轴上一点P 的距离为r ,即有dq dl η=,cos x rα=,该小段对P 点产生的场强大小为22dq dldE k krrη==根据对称性,P 点场强仅有x 分量, d E在x 轴的分量大小为()3222cos x xdldE dE kRxηα==+()()()33322222222200224xxRxqxE dEkR RxR xR xηηπεπε====+++⎰P点场强为()322204qxE iR xπε=+(2)应求dE dx并令其值为0,求得当2x =,E取极值,而2220x d Edx<,根据对称性,位于轴上2x =±点的场强取最大值,其值为qE =±(3)如图(b )所示。
电磁学复习练习题作业(答案)
第一次作业(库仑定律和电场强度叠加原理)一 选择题[ C ]1下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同.(C) 场强可由q F E / 定出,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受的电场力.(D) 以上说法都不正确.[ C ]2 在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为: (A)2012a Q . (B) 206a Q.(C)203a Q . (D)20a Q.[ B ]3图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+(x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B)i a 02 . (C) i a 04 . (D) j i a04 . 【提示】根据)sin (sin 4120 a E x )cos (cos 4210aE y对+ 均匀带电直线2,021对— 均匀带电直线0,221在(0,a )点的场强是4个场强的矢量和[ A ]4电荷面密度分别为+ 和- 的两块“无限大”均匀带电的平行平板,如图放置,则其周围空间各点电场强度随位置坐标x 变化的关系曲线为:(设场强方向 向右为正、向左为负)O +- x y (0, a ) O x -a a y+ -O -a +a 0/x(A)EO E -a +a 02/ x (B)OE -a +a 02/ x(C)-02/OE -a +a2/ x(D)/ 02/【提示】依据02E 及场强叠加 二.填空题5. 电荷为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,则该点的电场强度大小为_____________________,方向____________.4N / C 2分 向上 1分6. 电荷均为+q 的两个点电荷分别位于x 轴上的+a 和-a 位置,如图所示.则y 轴上各点电场强度的表示式为E=j y a qy2/322042 , (j为y 方向单位矢量) ,场强最大值的位置在y =2/a7.两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为 1和 2如图所示,则场强等于零的点与直线1的距离a 为d 211三计算题8.如图所示,一电荷面密度为 的“无限大”平面,在距离平面a 处的一点的场强大小的一半是由平面上的一个半径为R 的圆面积范围内的电荷所产生的.试求该圆半径的大小.解:电荷面密度为 的无限大均匀带电平面在任意点的场强大小为E = / (2 0) 2分以图中O 点为圆心,取半径为r →r +d r 的环形面积,其电量为d q = 2 r d r 2分它在距离平面为a 的一点处产生的场强+q +q -a+aO xy12a daR O E2/32202d ra ardrE2分则半径为R 的圆面积内的电荷在该点的场强为R r a r r a E 02/3220d 222012R a a 2分 由题意,令E = / (40),得到R =a 32分9.如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为 =q / L ,在x 处取一电荷元d q = d x = q d x / L ,它在P 点的场强: 204d d x d L q E204d x d L L xq 2分总场强为 Lx d L xL q E 020)(d 4- d L d q 043分 方向沿x 轴,即杆的延长线方向.10.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度. 解:把所有电荷都当作正电荷处理.在 处取微小电荷 d q = d l = 2Q d /它在O 处产生场强d 24d d 20220RQR q E2分按 角变化,将d E 分解成二个分量:d sin 2sin d d 202RQ E E xOd cos 2cos d d 202R Q E E y3分对各分量分别积分,积分时考虑到一半是负电荷2/2/0202d sin d sin 2R QE x =0 2分 2022/2/0202d cos d cos 2R QR Q E y2分 所以j RQ j E i E E y x2021分 第三次作业答案(高斯定理和电势2)1. 以下各种说法是否正确?(回答时需说明理由)(1)场强为零的地方,电势也一定为零。
电磁学习题解答
新疆大学物理系
亚森江I, 例1. 载流长直导线,其电流强度为 ,试计算导线旁 任意一点P的磁感应强度 任意一点 的磁感应强度 B = ? dB 方向为 Idl × r y θ 根据毕——萨定理 解:根据毕 萨定理 2 取任意电流元 Idl 其在P点产生的磁场为 点产生的磁场为: 其在 点产生的磁场为: ro ×P o µ o Idl sinθ dB = l θr 4π r 2 Idl θ 方向垂直纸面向里。 各电流元产生的 dB 方向垂直纸面向里。 1
q µ oq σ= ω ∴B = 2π R πR 2 R 2 (2) Pm = ∫ dPm = ∫ SdI = ∫ π r σω rdr = 1 πσω R 4 4 0 2 qR ω ∴ Pm = 12 4
µoI R2 B=? 例5. 一长螺线管轴线上的磁场 B= 2 r3 已知:导线通有电流I,单位长度上匝数为n。 已知:导线通有电流 ,单位长度上匝数为 。 在管上取一小段dl 解:在管上取一小段 , 电流为dI=nIdl , 电流为 该电流在P点的磁场为 点的磁场为: 该电流在 点的磁场为: µo R2nIdl r 2 = l 2 + R 2 dB = 2 + R2 )3 2 r= R 2(l sin θ R dθ dl ... . ... . . . .. .... . ... . .. ... l = − Rctgθ → dl = r θ sin 2θ θ θ µ o nI l P 则: = dB sin θ d θ 2 θ2µ o nI B = ∫ dB = ∫ sinθ dθ θ1 2 µ o nI (cosθ 1 − cosθ 2 ) =
2( x 2 + R 2 ) 3 / 2
轴正向! 方向沿 x 轴正向!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁学第六次作业解答-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
电磁学第六次作业解答
第八章 真空中的稳恒磁场
8-2 如图所示,一无限长直导线通有电流I =10 A ,在一处折成夹角=60°的折线,求角平分线上与导线的垂直距离均为r =0.1 cm 的P 点处的磁感强度.(0 =4×10-7 H ·m -1)
解:P 处的B 可以看作是两载流直导线所产生的,1B 与2
B 的方向相同.
21B B B +=
r
I π=40μ+︒--︒)]90sin(60[sin r I
π40μ)]60sin(90[sin ︒--︒
r
I
π=420μ=︒+︒)60sin 90(sin 3.73×10-3 T
方向垂直纸面向上.
8-4 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B
的大小.
解:其中3/4圆环在D 处的场 )8/(301a I B μ=
AB 段在D 处的磁感强度 )221
()]4/([02⋅π=b I B μ
BC 段在D 处的磁感强度 )221
()]4/([03⋅π=b I B μ
1B 、2B
、3B 方向相同,可知D 处总的B 为 )223(
40b
a
I B +
π
π=
μ
8-12 如图所示,有一密绕平面螺旋线圈,其上通有电流I ,总匝数为N ,它被限制在半径为R 1和R 2的两个圆周之间.求此螺旋线中心O 处的磁感强度.
解:以O 为圆心,在线圈所在处作一半径为r 的圆.则在r 到r + d r 的圈数为
r R R N
d 1
2- 由圆电流公式得 )
(2d d 120R R r r
NI B -=μ
⎰=
-=
2
1
)
(2d 12
0R R R R
r r
NI B μ1
2
120ln
)
(2R R R R NI
-μ D
b A B C
a I b
O
R 1
R 2
I
r r
P θ
方向⊙
8-13 图所示为两条穿过y 轴且垂直于x -y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .
(1) 推导出x 轴上P 点处的磁感强度)(x B 的表达式. (2) 求P 点在x 轴上何处时,该点的B 取得最大值.
解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:
r
I B π=201μ2
/1220)(1
2x a I +⋅π=μ 2导线在P 点产生的磁感强度的大小为: r
I B π=202μ2/1220)(1
2x a I +⋅π=μ 1B 、2B
的方向如图所示. P 点总场
θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B
)()(220x a Ia x B +π=μ,i x a Ia x B )
()(2
20+π=μ (2) 当 0d )
(d =x x B ,
0d )(d 2
2=<x x B 时,B (x )最大. 由此可得:x = 0处,B 有最大值.
8-16 如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.
解:利用无限长载流直导线的公式求解.
(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电
流 x i d d δ= (2) 这载流长条在P 点产生的磁感应强度
x i B π=2d d 0μx
x
π=2d 0δμ 方向垂直纸面向里.
(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P
点产生的磁感强度 ==⎰B B d 02a b b dx x
μδ+⎰π0ln 2a b
b μδ+=π 方向垂直纸面向里.
I
I x y a a
O P x
y r r x a a θ θ θ 2 1
O P x B 1 B 2
O
b
x
a
P δ x d x P
O
x。