人教八年级数学上册第13章《轴对称》练习题
最新人教版八年级数学上册第13章 轴对称 基础训练题(合集)(含答案)
最新人教版八年级数学上册基础训练题第十三章轴对称13.1 轴对称1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()2.下列说法中错误的是()A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等C.全等的三角形一定关于某条直线对称D.若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称3.如图,△ABC中,AB=AC=6,BC=4.5,分别以A,B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是__________.4.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC 的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为__________.5.我国的文字非常讲究对称美,分析图中的四个图案,图案()有别于其余三个图案.6.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后的图是()7.如图,把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量的存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图乙)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行8.如图,P在△AOB内,点M,N分别是点P关于AO,BO的对称点,且与AO,BO 相交于点E,F,若△PEF的周长为15,求MN的长.9.如图所示,在四边形ABCD中,AD△BC,E为CD的中点,连接AE,BE,BE△AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案:1-2 AC 3.10.5 4.6 5-7 DDB8.解:△点M 是点P 关于AO 的对称点, △AO 垂直平分MP , △EP =EM. 同理PF =FN.△MN =ME +EF +FN , △MN =EP +EF +PF. △△PEF 的周长为15, △MN =EP +EF +PF =15. 9.证明:(1)△AD△BC(已知),△△ADC =△ECF(两直线平行,内错角相等). △E 是CD 的中点(已知), △DE =EC(中点的定义). △在△ADE 与△FCE 中,,,,ADC ECF DE EC AED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩△△ADE△△FCE(ASA). △FC =AD(全等三角形的性质). (2)△△ADE△△FCE ,△AE =EF ,AD =CF(全等三角形的对应边相等) △BE 是线段AF 的垂直平分线. △AB =BF =BC +CF. △AD =CF(已证),△AB =BC +AD(等量代换).第十三章轴对称13.2 画轴对称图形1.下列说法正确的是()A.全等的两个图形可以由其中一个经过轴对称变换得到B.轴对称变换得到的图形与原图形全等C.轴对称变换得到的图形可以由原图形经过一次平移得到D.轴对称变换中的两个图形,每一对对应点所连线段都被这两个图形之间的直线垂直平分2.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是轴对称图形的有()A.1个B.2个C.3个D.4个3.点M(3,1)关于x轴对称的点的坐标为()A.(-3,-1) B.(-3,1) C.(1,-3) D.(3,-1)4.如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A′B′C′D′E′F′,下列判断错误的是()A.AB=A′B′ B.BC△B′C′ C.直线l△BB′ D.△A′=120°5.已知点P(a+1,3),Q(-2,2a+b)关于y轴对称,则a=__________,b=__________;若关于x轴对称,则a=__________,b=__________.6.如图,四边形ABCD的顶点坐标为A(-5,1),B(-1,1),C(-1,6),D(-5,4),请作出四边形ABCD关于x轴及y轴的对称图形,并写出各对称图形的顶点坐标.7.如图,等边△ABC的边长为1 cm,D,E分别是AB,AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为__________cm.8.若|3a-2|+|b-3|=0,则P(-a,b)关于y轴的对称点P′的坐标是__________.9.点A(-2a,a-1)在x轴上,则A点的坐标是__________,A点关于y轴的对称点的坐标是__________.10.桌面上有A,B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有().A.1个B.2个C.4个D.6个11.图△、图△均为7×6的正方形网格,点A,B,C在格点(小正方形的顶点)上,分别在图△、图△中确定格点D,并各画出一个以A,B,C,D为顶点的四边形,使其为轴对称图形.12.作图题:在方格纸中,画出△ABC关于直线MN对称的△A′B′C′.13.用四个任意大小的半圆面设计四个轴对称图案(如图所示),并且为所设计的每个图案命名,名称要贴切生动.莲花盛开参考答案:1-4 BBDB 5.1 1 -3 36.解:(1)如图所示,四边形A′B′C′D′和四边形A″B″C″D″即为所求.(2)关于y 轴对称的四边形A′B′C′D′各顶点的坐标分别是A′(5,1),B′(1,1),C′(1,6),D′(5,4);关于x 轴对称的四边形A″B″C″D″各顶点的坐标分别是A″(-5,-1),B″(-1,-1),C″(-1,-6),D″(-5,-4).7.3 8.2,33⎛⎫⎪⎝⎭ 9.(-2,0) (2,0) 10.B11.解:12.解:13.解:如图所示.第十三章轴对称13.3 等腰三角形1.若等腰三角形底角为72°,则顶角为()A.108° B.72° C.54° D.36°2.如图,在△ABC中,AB=AC,AD=BD=BC,则△C=()A.72° B.60° C.75° D.45°3.若等腰三角形的周长为26 cm,一边为11 cm,则腰长为()A.11 cm B.7.5 cm C.11 cm或7.5 cm D.以上都不对4.下列三角形:△有两个角等于60°的三角形;△有一个角等于60°的等腰三角形;△三个外角(每个顶点处各取一个外角)都相等的三角形;△一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.△△△ B.△△△ C.△△ D.△△△△5.如图所示,已知△1=△2,要使BD=CD,还应增加的条件是()△AB=AC△△B=△C△AD△BC△AB=BCA.△ B.△△ C.△△△ D.△△△△6.如图所示,在△ABC中,△ACB=90°,△B=30°,CD△AB于点D,若AD=2,则AB =__________.7.如图,在△ABC中,AB=AC,BD和CD分别是△ABC和△ACB的平分线,EF过D点,且EF△BC ,图中等腰三角形共有( )A .2个B .3个C .4个D .5个8.如图所示的正方形网格中,网格线的交点称为格点.已知A ,B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( )A .6B .7C .8D .99.如图,D 是△ABC 中BC 边上一点,AB =AC =BD ,则△1和△2的关系是( )A .△1=2△2B .△1+△2=90°C .180°-△1=3△2D .180°+△2=3△110.如图,△ABC 中,AB =AC ,△C =30°,DA△BA 于A ,BC =4.2 cm ,则AD =__________.11.如图,在△ABC 中,△C =90°,△CAB =60°,按以下步骤作图:(1)分别以A ,B 为圆心,以大于12AB的长为半径做弧,两弧相交于点P 和Q ;(2)作直线PQ 交AB 于点D ,交BC 于点E ,连接AE.若CE =4,则AE =__________. 12.如图所示,△AOP =△BOP =15°,PC△OA ,PD△OA ,若PC =4,求PD 的长.13.如图所示,在△ABC中,AB=AC,点E在CA的延长线上,且△AEF=△AFE.求证:EF△BC.14.如图,在△ABC中,△ACB=45°,△A=90°,BD是△ABC的角平分线,CH△BD,交BD的延长线于H,求证:BD=2CH.参考答案:1-5 DACDC 6.8 7-9 DCD 10.1.4 cm 11.812.解:如图,过P 作PE△OB ,垂足为E.△△AOP =△BOP =15°,PD△OA △PD =PE.△PC△OA ,△△CPO =△AOP =15°. △△BCP =△BOP +△CPO =30°, 在Rt△CPE 中,△ECP =30°,△114222PE PC ==⨯=.△PD =PE =2.13.证明:如图,过A 作AD△BC ,垂足为D ,△AB =AC ,△12BAD BAC ∠=∠.△△AEF =△AFE , △BAC =△AEF +△AFE ,△12EFA BAC ∠=∠.△△EFA=△BAD.△EF△AD,△EF△BC.14.证明:如图,分别延长CH,BA交于点E.△CH△BD,BD是△ABC的角平分线,△△CHB=△EHB=90°,△CBH=△EBH.又△BH=BH,△△CBH△△EBH.△CH=EH.△CE=2CH.△△ACB=45°,△CAB=90°,△△ABC=45°,△△ACB=△ABC.△AC=AB.△△CAB=△CAE=90°,△△E+△ECA=90°.△CH△BD,△△E+△EBH=90°.△△ECA=△EBH.△△ECA△△DBA.△CE=BD.△BD=2CH.第十三章轴对称13.4 课题学习最短路径问题1.有两棵树位置如图,树脚分别为A,B.地上有一只昆虫沿A—B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处,问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置.2.已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.若甲站在△AOB内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?3.如图所示,P,Q为△ABC边上的两个定点,在BC上求作一点R,使△PQR的周长最小.4.七年级(1)班同学做游戏,在活动区域边OP放了一些球(如图),则小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到球跑到目的地A?5.公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示).现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.6.如图,牧童在A处放牛,其家在B处,A,B到河岸CD的距离分别为AC,BD,且AC=BD,若A到河岸CD的中点的距离为500 m.(1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?在图中作出该处,并说明理由;(2)最短路程是多少?参考答案:1.解:如图,作D关于AB的对称点D′,连接CD′交AB于点E,则点E就是所求的点.2.解:如图所示,(1)分别作点P关于OA,OB的对称点P1,P2;(2)连接P1P2,与OA,OB分别相交于点M,N.因为乙站在OA上,丙站在OB上,所以乙必须站在OA上的M处,丙必须站在OB上的N处才能使传球所用时间最少.3.解:(1)作点P关于BC所在直线的对称点P′(2)连接P′Q,交BC于点R,则点R就是所求作的点(如图所示).4.解:如图,作小明关于活动区域边线OP的对称点A′,连接AA′交OP于点B,则小明行走的路线是小明→B→A,即在B处捡球,才能最快拿到球跑到目的地A.5.解:如图,作P关于OM的对称点P′,作P关于ON的对称点P″,连接P′P″,分别交MO,NO于Q,R,连接PQ,PR,则P′Q=PQ,PR=P″R,则Q,R就是小桥所在的位置.理由:在OM上任取一个异于Q的点Q′,在O N上任取一个异于R的点R′,连接PQ′,P′Q′,Q′R′,P″R′,PR′,则PQ′=P′Q′,PR′=P″R′,且P′Q′+Q′R′+R′P″>P′Q+QR+RP″,所以△PQR的周长最小,故Q,R就是我们所求的小桥的位置.6.解:(1)作法:如图作点A关于CD的对称点A′;连接A′B交CD于点M.则点M即为所求的点.证明:在CD上任取一点M′,连接AM′,A′M′,BM′,AM,因为直线CD是A,A′的对称轴,M,M′在CD上,所以AM=A′M,AM′=A′M′,所以AM+BM=A′M+BM=A′B,在△A′M′B中,因为A′M′+BM′>A′B,所以AM′+BM′=A′M′+BM′>AM+BM,即AM+BM最小.(2)由(1)可得A′C=AC=BD,所以△A′CM△△BDM,即A′M=BM,CM=DM,所以M为CD的中点,且A′B=2AM,因为AM=500 m,所以A′B=AM+BM=2AM=1 000 m.即最短路程为1 000 m.。
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。
人教版八年级上册数学第十三章练习卷含答案(轴对称)
人教版八年级上册数学第十三章练习卷含答案第十三章 轴对称一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .2.下列四个图案中,不是轴对称图案的是( ) A. B. C. D.3.如图,AC =AD ,BC =BD ,则有( )A .AB 垂直平分CDB .CD 垂直平分ABC .AB 与CD 互相垂直平分 D .CD 平分∠ACB4.如图,在ABC ∆中,分别以点A 和B 为圆心,大于12AB 和长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,若ABC ∆的周长为17,7AB =,则ADC ∆的周长是( )A.7B.10C.15D.175.如图,在ΔABC中,AB的垂直平分线交AC于点D,已知AC=10cm,BC=7cm,则△BCD的周长为()A.17cm B.18cm C.19cm D.20cm6.点P(3,-5)关于y轴对称的点的坐标为()A.(-3,-5)B.(5,3)C.(-3,5)D.(3,5)7.直角坐标系中的点A(2,-3)关于x轴对称的点B的坐标()A.(2,3 )B.(2,-3)C.(-2,3)D.(-2,-3)8.已知ab≠0,则坐标平面内四个点A(a,b),B(a,-b),C(-a,b),D(-a,-b)中关于y轴对称的是() A.A与B,C与D B.A与D,B与CC.A与C,B与DD.A与B,B与C9.若等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为()A.7 B.6 C.5 D.410.如图,在ABC ∆中,点D 、E 、F 分别是BC 、AB 、AC 上的点,若AB AC =,BE CD =,BD CF =,则EDF ∠的度数为( )A.2A ∠B.902A -∠C.1902A -∠D.90A -∠11.下列条件不能得到等边三角形的是( )A.有两个内角是60的三角形B.有一个角是60的等腰三角形C.腰和底相等的等腰三角形D.有两个角相等的等腰三角形12.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM 周长的最小值为( )A .6B .8C .10D .12二、填空题 13.在等腰三角形△ABC 中,AB =AC =5cm ,BC =6cm ,则△ABC 的面积为____.14.如图,△ABC 中,DE 是BC 边上的垂直平分线,分别交AB 、BC 于点D 、E ,若AB=8cm ,AC=5cm ,则△ACD 的周长是_______cm.15.已知,如图,在等腰直角△ABC中,∠C=90°,AC=BC=4,点D是BC上一点,CD=1,点P是AB边上一动点,则PC+PD的最小值是________.16.若等腰三角形的周长是20cm ,一边长是5cm, 则其他两边的长为___________.三、解答题17.如图,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD 与ΔABC全等,求点D的坐标.18.如图,已知扇形OAB与扇形O′A′B′成轴对称,请你画出对称轴.19.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E .(1)若BC=10,求△ADE 的周长;(2) 设直线DM 、EN 交于点O①试判断点O 是否在BC 的垂直平分线上,并说明理由;②若∠BAC=100°,求∠BOC 的度数20.如图所示,在ABC ∆中,AD 是BAC ∠平分线,AD 的垂直平分线分别交,AB BC 延长线于点,F E .求证://DF AC .证明:∵AD 平分BAC ∠∴∠ =∠ (角平分线的定义)∵EF 垂直平分AD∴ = (线段垂直平分线上的点到线段两个端点距离相等)∴BAD ADF ∠=∠( )∴DAC ADF ∠=∠(等量代换)∴//DF AC ( )21.已知a 、b 、c 为ABC △的三边长,a 、b 满足2(2)|3|0a b -+-=,且c 为方程|6|3x -=的解,求ABC △的周长并判断ABC △的形状.22.如图,在正方形网格上的一个△ABC .(其中点,,A B C 均在网格上)(1)作△ABC 关于直线MN 的轴对称图形△'''A B C .(2)以P 点为一个顶点作一个与△ABC 全等的△EPF (规定点p 与点B 对应,另两顶点都在图中网格交点处).(3)在MN 上画出点Q ,使得QA QC +最小.答案1.A 2.B 3.A 4.B 5.A 6.A 7.A 8.C 9.C 10.C 11.D 12.C13.12cm2 14.13 15.5 16.7.5cm,7.5cm17.解:∵△ABD与△ABC有一条公共边AB,∴当点D在AB的下边时,点D有两种情况:①点D1和点C关于直线AB对称时,此时点D1坐标是(4,−1);②点D2和点D1关于直线x=1.5对称时,此时点D2坐标为(−1,−1);当点D在AB的上边时,点D3和点C关于直线x=1.5对称,此时点D3坐标为(−1,3),综上,满足条件的点D的坐标有3个:(4,−1),(−1,−1),(−1,3).18.如图所示,直线MN即为所求作的对称轴.19.(1)∵在△ABC中,AB、AC的垂直平分线分别交BC于D、E,∴AD=BD,AE=CE,又∵BC=10,∴△ADE周长为:AD+DE+AE=BD+DE+EC=BC=10;(2)①如图,连接OB,OA,OC,∵MO是AB的垂直平分线,NO是AC的垂直平分线,∴BO=AO,CO=AO,∴BO=CO,∴O在BC的垂直平分线上;②∵OM⊥AB,ON⊥AC,∴∠AMO=∠ANO=90°,∵∠BAC=100°,∴∠MOM=360°-∠AMO-∠BAC-∠ANO=80°;∵MO是AB的垂直平分线,NO是AC的垂直平分线,∴∠BOM=∠AOM,∠CON=∠AON,∴∠BOC=2∠MON=160°.20.证明:AD平分∠BAC∴∠BAD=∠DAC(角平分线的定义)EF垂直平分AD∴FD=FA(线段垂直平分线上的点到线段两个端点距离相等) ∴∠BAD=∠ADF(等边对等角)∴∠DAC=∠ADF(等量代换)∴DF ∥AC(内错角相等两直线平行)故答案为:BAD ,DAC ,FD ,FA ,等边对等角,内错角相等两直线平行 21.解:∵2(2)|3|0a b -+-=,∴20a -=,30b -=,∴2a =,3b =,解方程|6|3x -=,解得3x =或9x =,∴c 可能为3或9,但是9c =时,不满足三角形三边关系定理,故舍去.∴2a =,3b =,3c =,∵2338a b c ++=++=,b c =,∴ABC △的周长为8,ABC △为等腰三角形.22.解:(1)如图所示,△A ′B ′C ′即为所求;(2)如图所示,△EPF 即为所求;(3)如图所示,线段AC ′于MN 的交点Q 即为所求.。
人教版八年级数学上测第十三章《轴对称》检测题(含答案)
人教版八年级数学上测第十三章《轴对称》检测题(含答案)一、选择题(每小题3分,共30分)1. 现实世界中,对称现象无处不在,下列汉字是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C.2.点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)【答案】C.3. 如图,△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B度数为()A. 25°B. 30°C. 35°D. 40°【答案】B.4.下列每个网格中均有两个图形,其中一个图形可由另一个轴对称变换得到的是()A. B. C. D.【答案】B.5. 如图,∠MON内有一点P,点P关于OM、ON的对称点分别是G、H,连GH分别交OM、ON于A、B点,若GH=10cm,则△P AB的周长为()A. 5cmB.10cmC. 20cmD.15cm【答案】B. 提示:根据对称性,AG=AP,BH=GP,∴AP+AB+BP=AG+AB+BH=GH=10.6.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55° ,55°B. 70°,40或70°,55°C.70°,40°D. 55°,55°或70°,40°【答案】D.7. 如图,在正方形ABCD的外侧,作等边△CDE,连接AE交CD于点F,则∠DF A的度数为()A. 45°B. 55°C. 60°D. 75°【答案】D. 提示:∠ADE=90°+60°=150°,∠DAF=∠DEA=15°,则∠DF A=75°.8. 如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长度为()A. 5cmB. 5.4cmC. 2.4cmD. 3cm【答案】C. 提示:作DF⊥BC于F,∵BD平分∠ABC,故设DE=DF=h,由S△ABD+S△CBD=S△ABC,得:12(AB+BC)h=36,代入数值,解得h=2.4,故选C.9. 如图,在△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C. a-b D. b-a【答案】C. 提示:AD=BD=BC=b,CD=AC-AD=a-b.10. 如图OE是等边△AOB的中线,OB=4,C是直线OE上一动点,以AC为边在直线AC下方作等边△ACD,连接ED,下列说法正确的是()A. ED的最小值是2B. ED的最小值是1C. ED有最大值D. ED没有最大值也没有最小值【答案】B. 提示:连BD,则易得△AOC≌△ABD(SAS),∴∠ABD=∠AOC=30°,当∠BDE=90°时,ED最小,此时ED=12BE=1,故选B.二、填空题(每小题3分,共18分)11. 点P(m,n)和点Q(n-1,2m)关于x轴对称,则m+n的值为__________.【答案】13. 提示:m=n-1,2m+n=0,联立解得m=-13,n=23,∴m+n=13.12. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是__________.【答案】3. 提示:由条件得AD=BD,∠CAD=∠BAD,∴∠CAD=∠BAD=∠B=30°,CD=DE=1,BD=2DE=2,∴BC=CD+BD=3.13. 如图,在△ABC中,DE垂直平分AC,若AE=3,△ABD周长为13,则△ABC周长为________.【答案】19. 提示:由题知AC=2AE=6,AD=CD,∴BC=BD+AD,∵AB+BD+AD=13,∴AB+BC=13,∴AB+BC+AC=13+6=19.14. 如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的力向被击出(球可以经过多次反射),那么该球最后将落入的球袋是________.【答案】1号袋. 提示:如图所示.15. 如图,在△ABC中,∠C=46°,将△ABC沿直线l折叠,点C落在点D的位置,则∠1-∠2的度数是___________ .【答案】92°. 提示:由飞镖模型,∠DNC=∠C+∠D+∠DMC,即:180°-∠2=46°+46°+(180°-∠1),∴∠1-∠2=92°.16 .已知A(1,2)、B(7,4),点M、N是x轴上的动点(M在N左边),MN=3,当AM+MN+NB最小时,直接写出点M的坐标为___________.【答案】(2,0). 提示:作点A关于x轴的对称点A′,将点B向左平移3个单位得点B′,连接A′B′,交x轴于点M.三、解答题(共8小题,共72分)17. (8分)如图,已知点M、N和∠AOB,用尺规作图作一点P,使P到点M、N的距离相等,且到∠AOB两边的距离相等.(保留作图痕迹,不写作法)【答案】1.作∠AOB的平分线OC;2.连MN,作MN的垂直平分线EF;则射线OC与直线EF的交点P即为所求.18. (8分)如图,在△ABC中,∠B=30°,∠C=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若△DAF的周长为20,求BC的长.【答案】(1)∠BAC=100°;(2)∵DE、FG分别垂直平分AB、AC,∴AD=BD,AF=CF,∴∠BAD=∠B=30°,∠CAF=∠C=50°,∴∠DAF=∠BAC-∠BAD-∠CAF=100°-30°-50°=20°;(3) ∵△DAF的周长为20,∴AD+DF+AF=20,∴BC=BD+DF+CF=AD+DF+AF=20.19. (8分)(1)如图,已知△ABC,请画出△ABC关于y轴对称的△A'B'C'(其中A'、B'、C'分别是A、B、C的对应点);(2)直接写出点A'、B'、C'点的坐标;(3)求△ABC的面积是多少?(4)用无刻度的直尺在y轴上找一点Q,使得QA+QB之和最小.(用虚线表示画图过程)【答案】(1) A'(2,3)、B'(3,1)、C'(-1,-2);(2)S△ABC=5×4-12×1×2-12×3×4-12×3×5=5.5;(3) 连接A′B(或AB′)交y轴于Q,即可.20. (8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB于E,DF⊥AC于F,请添加一个条件,使DE=DF,并说明理由.【答案】添加的条件是:D为BC的中点. 理由如下:方法1:连接AD.∵AB=AC,D为BC中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.方法2:∵AB=AC,∴∠B=∠C.∵D为BC中点,∴BD=CD.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD=90°,BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.21. (8分)如图,△ABC 是等边三角形,点D 在BC 延长线上,DE ⊥AB 于点E ,交AC 于G ,EF ⊥BC 于点F ,若CD =3AE ,CF =6,求AC 的长. 【答案】设AE =x ,则CD =3x .在等边△ABC 中,∠A =∠B =∠ACB =60°, 又DE ⊥AB ,∴∠D =∠AGE =∠CGD =30°. ∴AG =2AE =2x ,CG =CD =3x , ∴AB =BC =AC =2x +3x =5x . 则BE =5x -x =4x ,又∵EF ⊥BC ,∠B =60°,∴BF =12BE =2x ,∴BC =BF +CF =2x +6.∵BC =AC ,∴2x +6=5x ,∴x =2. ∴AC =5x =10.22. (10分)如图,在△ABC 中,∠ABC =∠ACB ,E 为BC 边上一点,以E 为顶点作∠AEF ,∠AEF 的边交AC 于点F ,使∠AEF =∠B . (1)如果∠ABC =40°,则∠BAC =________; (2)判断∠BAE 与∠CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.【答案】(1)100°; …………… 2分 (2)∠BAE =∠CEF ,理由如下: ∵∠AEC 是△ABE 的外角, ∴∠AEF +∠CEF =∠B +∠BAE . 又∵∠AEF =∠B ,∴∠CEF =∠BAE . …………… 5分(3)由(2),设∠CEF =∠BAE =α,设∠AEF =∠B =∠C =β.则∠AFE =∠CEF +∠C =α+β.∵∠AEF =∠B <90°,故分两种情况考虑:1°当∠EAF 为直角时,如图1,由∠AEF +∠AFE =90°,CBAFECBA备用图1CBA备用图2得β+(α+β)=90°,∴α+2β=90°,故有:∠BAE+2∠AEF=90°.2°当∠AFE为直角时,如图2,得α+β=90°,即:∠BAE+∠AEF=90°.综上,当△AEF为直角三角形时,∠BAE+2∠AEF=90°或∠BAE+∠AEF=90°. …………… 10分23. (10分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边在AD的右侧作Rt△ADE,AD=AE,∠ADE=∠AED =45°,连接CE.(1)〖发现问题〗如图1,当点D在边BC上时,①请写出BD和CE之间的数量关系为_____________,位置关系为____________;②求证:CE+CD=BC;(2)尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD 之间存在的数量关系是否成立? 若成立,请证明;若不成立,请写出新的数量关系(不必证明);(3)拓展延伸:如图3,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.【答案】(1)①BD=CE,BD⊥CE,…………… 2分②由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABD=45°,∴CE+CD=BD+CD=BC. …………… 5分(2) 不成立,此时关系式为BC+CD=CE. …………… 7分提示:同上,证明△BAD≌△CAE(SAS),得BD=CE,即BC+CD=CE.(3) 由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE. ∵BD+BC=CD,∴CD =CE +BC =2+6=8. …………… 10分24. (12分)等腰Rt △ACB 中,∠ACB =90°,AC =BC ,点A 在x 轴正半轴上,C 在y 轴负半轴上.(1)如图1,求证:∠BCO =∠CAO ;(2)如图2,若OA =4,OC =2,M 是AB 与y 轴交点,求△AOM 的面积;(3)如图3,点C (0,2),点Q 、A 均在x 轴上,且S △ACQ =6a (a 为已知数). 分别以AC 、CQ 为腰在第一、第二象限作等腰Rt △CAN 、等腰Rt △QCM ,连接MN 交y 轴于P 点,间:S △MON 是否发生改变?若不变,求出S △MON 的值;若变化,求S △MON 的取值范围.【答案】(1) ∵∠ACB =90°,∴∠BCO +∠ACO =90°. 又∵∠AOC =90°,∴∠CAO +∠ACO =90°. ∴ ∠BCO =∠CAO . …………… 3分(2) 过B 作BD ⊥y 轴于D ,则△BCD ≌△CAO (AAS ), ∴BD =CO =2,CD =AO =4,OD =CD -OC =2,∴B (-2,2). 又∵A (4,0),C (0,-2),由割补法,得S △ABC =4×6-12×2×4-12×2×4-12×2×6=10, 又2142△△BCM ACM S BD S OA ===,∴S △ACM =23S △ABC =203. ∵S △AOC =12×2×4=4,∴S △AOM =S △ACM -S △AOC =203-4=83. (3) 过N 作NE ∥CM 交y 轴于E ,则∠CNE +∠MCN =180°,∵∠MCQ +∠ACN =90°+90°=180°, ∴∠ACQ +∠MCN =180°, ∴∠CNE =∠ACQ . 又∵∠ECN +∠ACO =90°,∠QAC +∠ACO =90°, ∴∠ECN =∠QAC . 在△ECN 和△QAC 中,∵∠CNE =∠ACQ ,CN =AC ,∠ECN =∠QAC , ∴△ECN ≌△QAC (ASA ),∴CE=AQ,EN=QC=MC.又NE∥CM,∴△PEN≌△PCM(ASA),∴PE=PC.∵点C(0,2),S△ACQ=6a,∴AQ=6a.∴CE=AQ=6a,∴CP=PE=3a.∴OP=OC+CP=2+3a.过M作MF⊥y轴于F,过N作NG⊥y轴于G,∵△MCQ为等腰直角三角形,∴△MCF≌△CQO(AAS),∴MF=CO=2,同理,NG=OC=2.则S△MON=S△MOP+S△NOP=12OP·MF+12OP·NG=2OP=6a+4.。
人教版初中八年级数学上册第十三章《轴对称》经典习题(含答案解析)
一、选择题1.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75°B .90°C .105°D .120°或20°D 解析:D【分析】设两内角的度数为x 、4x ,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x 、4x ,当等腰三角形的顶角为x 时,x +4x +4x =180°,x =20°;当等腰三角形的顶角为4x 时,4x +x +x =180°,x =30°,4x =120°;因此等腰三角形的顶角度数为20°或120°.故选:D .【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.2.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个D解析:D【分析】 首先根据等边三角形性质得出BC=AC ,CD=CE ,∠ACB=∠ECD=60°,即可证明△BCD 与△ACE 全等、△BCF 与△ACG 全等以及△DFC 与△EGC 全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC 与△CDE 为等边三角形,∴BC=AC ,CD=CE ,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD ,∠ACD=60°,即:∠ACE=∠BCD ,在△BCD 与△ACE 中,∵BC=AC ,∠ACE=∠BCD ,CD=CE ,∴△BCD ≌△ACE(SAS),∴AE=BD ,即①正确;在△BCF 与△ACG 中,由①可知∠CBF=∠CAG ,又∵AC=BC ,∠BCF=∠ACG=60°,∴△BCF ≌△ACG(ASA),∴AG=BF ,即②正确;在△DFC 与△EGC 中,∵△BCF ≌△ACG ,∴CF=CG .即④正确;∵∠GCF =60°,∴△CFG 为等边三角形,∴∠CFG=∠FCB=60°,∴FG ∥BE ,即③正确;综上,①②③④都正确.故选:D .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.3.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.4.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想. 5.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180°D 解析:D【分析】根据三角形外角的性质得12C ∠+∠=∠,再根据等腰三角形的性质得B C ∠=∠,2BAD ∠=∠,由180BAC B C ∠+∠+∠=︒即可得出1∠与2∠的关系.【详解】解:∵2∠是ACD △的外角,∴12C ∠+∠=∠,∴∠C=∠2-∠1,∵AB AC =,∴B C ∠=∠,∵AB BD =,∴2BAD ∠=∠,∴112BAC BAD ∠=∠+∠=∠+∠,∵180BAC B C ∠+∠+∠=︒,∴122121180∠+∠+∠-∠+∠-∠=︒,即321180∠-∠=︒.故选:D .【点睛】本题考查等腰三角形的性质,解题的关键是利用等腰三角形的性质得到相等的角. 6.如图,C 是线段AB 上的一点,ACD △和BCE 都是等边三角形,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ,则①DB AE =;②AMC DNC ∠=∠;③60AOB ∠=︒;④DN AM =;⑤CMN △是等边三角形.其中,正确的有( )A .2个B .3个C .4个D .5个C解析:C【分析】 易证△ACE ≌△DCB ,可得①正确;即可求得∠AOB =120°,可得③错误;再证明△ACM ≌△DCN ,可得②④正确和CM =CN ,即可证明⑤正确;即可解题.【详解】解:∵ACD △和BCE 都是等边三角形∵∠ACD =∠BCE =60°,∴∠DCE =60°,在△ACE 和△DCB 中,AC DC ACE DCB CB CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠BDC =∠EAC ,DB =AE ,①正确;∠CBD =∠AEC ,∵∠AOB =180°−∠OAB−∠DBC ,∴∠AOB =180°−∠AEC−∠OAB =120°,③错误;在△ACM 和△DCN 中,60BDC EAC DC ACACD DCN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ACM ≌△DCN (ASA ),∴AM =DN ,④正确;∠AMC =∠DNC ,②正确;CM =CN ,∵∠ACD =∠BCE =60°,∴∠MCN =180°-∠ACD-∠BCE =60°,∴△CMN 是等边三角形,⑤正确;故有①②④⑤正确.故选:C .【点睛】本题考查了全等三角形的判定和全等三角形对应边、对应角相等的性质,本题中求证△ACE ≌△DCB 和△ACM ≌△DCN 是解题的关键.7.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个B解析:B【分析】 根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B .【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.8.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°A解析:A【分析】 根据中垂线的性质可得DA=DB ,设∠A=x ,则∠ABD=x ,结合等腰三角形的性质以及三角形内角和定理,列出方程,即可求解.【详解】又作图可知:EF 是AB 的垂直平分线,∴DA=DB ,∴∠A=∠ABD ,设∠A=x ,则∠ABD=x ,∵15DBC ∠=︒,∴∠ABC=x+15°,∵AB=AC ,∴∠C=∠ABC=x+15°,∴2(x+15°)+x=180°,∴x=50°,故选A .【点睛】本题主要考查等腰三角形的性质,中垂线的性质以及三角形内角和定理,掌握中垂线的性质定理以及方程思想,是解题的关键.9.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN 的长度是解决问题的关键.10.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( )A .30B .60︒C .40︒或50︒D .30或60︒D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A ︒-∠ =60°; ②如图,当三角形的高在三角形的外部时,AB=AC ,BD ⊥AC ,∠ABD=30°, ∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故选:D .【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键. 二、填空题11.如图,在平面直角坐标系中,直线l 与x 轴交于点1B ,与y 轴交点于D ,且111,60OB ODB =∠=︒,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,…,按此规律进行下去,则点6A 的横坐标是______.5【分析】过A1作A1A⊥OB1于A过A2作A2B⊥A1B2于B过A3作A3C⊥A2B3于C根据等边三角形的性质以及含30°角的直角三角形的性质分别求得A1的横坐标为A2的横坐标为A3的横坐标为进而解析:5【分析】过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为1212-,,A2的横坐标为2212-,A3的横坐标为3212-,进而得到A n的横坐标为212n-,据此可得点A6的横坐标.【详解】解:如图所示,过A1作A1A⊥OB1于A,则OA=12OB1=12,即A1的横坐标为12=1212-,∵160ODB∠=°,∴∠OB1D=30°,∵A 1B 2//x 轴,∴∠A 1B 2B 1=∠OB 1D =30°,∠B 2A 1B 1=∠A 1B 1O =60°,∴∠A 1B 1B 2=90°,∴A 1B 2=2A 1B 1=2,过A 2作A 2B ⊥A 1B 2于B ,则A 1B =12A 1B 2=1, 即A 2的横坐标为12+1=2212-, 过A 3作A 3C ⊥A 2B 3于C ,同理可得,A 2B 3=2A 2B 2=4,A 2C =12A 2B 3=2, 即A 3的横坐标为12+1+2=3212-, 同理可得,A 4的横坐标为12+1+2+4=4212-, 由此可得,A n 的横坐标为212n -, ∴点A 6的横坐标是62163==31.522-, 故答案为31.5.【点睛】本题是一道找规律问题,涉及到等边三角形的性质、含30度角的直角三角形,解题的关键要利用等边三角形的性质总结出关于点A 的系列点的规律.12.如图,在ABC ∆中,CD 平分,ACB ∠点,E F 分别是,CD AC 上的动点.若6,12,ABC BC S ∆==则AE EF +的最小值是______________.【分析】作A 关于CD 的对称点H 由CD 是△ABC 的角平分线得到点H 一定在BC 上过H 作HF ⊥AC 于F 交CD 于E 连接AE 则此时AE +EF 的值最小AE +EF 的最小值=HF 过A 作AG ⊥BC 于G 根据垂直平分线的解析:4【分析】作A 关于CD 的对称点H ,由CD 是△ABC 的角平分线,得到点H 一定在BC 上,过H 作HF ⊥AC 于F ,交CD 于E ,连接AE ,则此时,AE +EF 的值最小,AE +EF 的最小值=HF ,过A 作AG ⊥BC 于G ,根据垂直平分线的性质和三角形的面积即可得到结论.【详解】作A 关于CD 的对称点H ,∵CD 是△ABC 的角平分线,∴点H 一定在BC 上,过H 作HF ⊥AC 于F ,交CD 于E ,连接AE ,则此时,AE +EF 的值最小,AE +EF 的最小值=HF ,过A 作AG ⊥BC 于G ,∵△ABC 的面积为12,BC 长为6,∴AG =4,∵CD 垂直平分AH ,∴AC =CH ,∴S △ACH =12AC•HF =12CH•AG , ∴HF =AG =4,∴AE +EF 的最小值是4,故答案是:4.【点睛】本题考查了轴对称−最短路线问题,解题的关键是正确的作出对称点和利用垂直平分线的性质证明AE +EF 的最小值为三角形某一边上的高线.13.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵垂直平分∴∴∵∴∴∵BD 平分∴∴故答案是【点睛】本题主要考查了垂直平分线和角平分线的性质结合三角形外角性质和三角形内角和定理计算是关键解析:87︒【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵DE 垂直平分BC ,∴DB DC =,∴∠=∠DBC C ,∵31C ∠=︒,∴31DBC ∠=︒,∴62ADB C DBC ∠=∠+∠=︒,∵BD 平分ABC ∠,∴31ABD DBC ∠=∠=︒,∴180623187A ∠=︒-︒-︒=︒.故答案是87︒.【点睛】本题主要考查了垂直平分线和角平分线的性质,结合三角形外角性质和三角形内角和定理计算是关键.14.如图,在ABC 中,D 是BC 上一点,,105AC AD DB BAC ==∠=︒,则B ∠=________°.25【分析】设∠ADC =α然后根据AC =AD =DB ∠BAC =105°表示出∠B 和∠BAD 的度数最后根据三角形的内角和定理求出∠ADC 的度数进而求得∠B 的度数即可【详解】解:∵AC =AD =DB ∴∠B = 解析:25【分析】设∠ADC =α,然后根据AC =AD =DB ,∠BAC =105°,表示出∠B 和∠BAD 的度数,最后根据三角形的内角和定理求出∠ADC 的度数,进而求得∠B 的度数即可.【详解】解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C ,设∠ADC =α,∴∠B =∠BAD =2α , ∵∠BAC =105°,∴∠DAC =105°﹣2α, 在△ADC 中, ∵∠ADC +∠C +∠DAC =180°,∴2α+105°﹣2α=180°, 解得:α=50°,∴∠B =∠BAD =2α=25°, 故答案为:25.【点睛】 本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.15.若一条长为24cm 的细线能围成一边长等于6cm 的等腰三角形,则该等腰三角形的腰长为__________cm .【分析】分两种情况根据等腰三角形的性质及三角形的三边关系解答【详解】分两种情况:当6cm 的边为腰时底边长=24-6-6=12(cm )∵6+6=12故不能构成三角形;当6cm 的边为底边时腰长=(cm )解析:9【分析】分两种情况,根据等腰三角形的性质及三角形的三边关系解答.【详解】分两种情况:当6cm 的边为腰时,底边长=24-6-6=12(cm ),∵6+6=12,故不能构成三角形; 当6cm 的边为底边时,腰长=1(246)92⨯-=(cm ),由于6+9>9,故能构成三角形, 故答案为:9.【点睛】此题考查等腰三角形的性质:两腰相等,依据三角形三边关系,解题中运用分类思想解答.16.若点P(x-y ,y)与点Q(-1,-5)关于x 轴对称,则x+y=______.9【分析】根据关于x 轴对称的点横坐标相同纵坐标互为相反数可得答案【详解】由点P (x-yy )与点Q (-1-5)关于x 轴对称得x-y =-1y =5解得x =4y =5x+y=4+5=9故答案为:9【点睛】本题解析:9【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】由点P (x-y ,y )与点Q (-1,-5)关于x 轴对称,得x-y =-1,y =5.解得x =4,y =5,x+y=4+5=9,故答案为:9【点睛】本题考查了关于x 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.17.如图所示的网格是正方形网格,点A,B,C,D,O是网格线交点,那么∠___________CODAOB∠(填“>”,“<”或“=”).>【分析】如图过点B作BE⊥AC于E证明△BOE是等腰直角三角形得到∠BOE=过点C作CF⊥OC使FC=OC证明△OCF是等腰直角三角形得到∠FOC=由图知∠FOC>∠COD即可得到∠AOB>∠CO解析:>【分析】如图,过点B作BE⊥AC于E,证明△BOE是等腰直角三角形,得到∠BOE=45︒,过点C 作CF⊥OC,使FC=OC,证明△OCF是等腰直角三角形,得到∠FOC=45︒,由图知∠FOC>∠COD,即可得到∠AOB>∠COD.【详解】如图,过点B作BE⊥AC于E,∵OB=OE=2,∠BEO=90︒,∴△BOE是等腰直角三角形,∴∠BOE=45︒,过点C作CF⊥OC,使FC=OC,∴∠FCO=90︒,∴△OCF是等腰直角三角形,∴∠FOC=45︒,由图知∠FOC>∠COD,∴∠AOB>∠COD,故答案为:>..【点睛】此题考查等腰直角三角形的判定及性质,角的大小比较,根据图形确定角的位置关系是解题的关键.18.如图,∠AOB=45°,OC平分∠AOB,点M为OB上一定点,P为OC上的一动点,N 为OB上一动点,当PM+PN最小时,则∠PMO的度数为___________.45°【分析】找到点M 关于OC 对称点M′过点M′作M′N ⊥OB 于点N 交OC 于点P 则此时PM+PN 的值最小再根据角平分线的性质及三角形内角和即可得出答案【详解】解:如图找到点M 关于OC 对称点M′过点M解析:45°【分析】找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小,再根据角平分线的性质及三角形内角和即可得出答案.【详解】解:如图,找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小.∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M 与点M′关于OC 对称,OC 平分∠AOB ,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.【点睛】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P 及点N 的位置是关键.19.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒, ∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.20.如图,ABC ∆中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF ∆和CEF ∆都是等腰三角形;②DE BD CE =+;③ADE ∆的周长等于AB 与AC 的和;④BF CF =;⑤若80A ∠=︒,则130BFC ∠=︒.其中正确的有_______.(填正确的序号).①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DFEF=EC 从而得到△BDF 和△CEF 都是等腰三角形;②同①有DB=DFEF=EC 所以DE=DF+EF=BD+CE ;③由②得:△ADE 的解析:①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DF ,EF=EC ,从而得到△BDF 和△CEF 都是等腰三角形;②同①有DB=DF ,EF=EC ,所以DE=DF+EF=BD+CE ;③由②得:△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;④因为∠ABC 不一定等于∠ACB ,所以∠FBC 不一定等于∠FCB ,所以BF 与CF 不一定相等;⑤由角平分线定义和三角形内角和定理可以得解.【详解】解:∵DE ∥BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∵△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∴∠DBF=∠DFB ,∠ECF=∠EFC ,∴DB=DF ,EF=EC ,即△BDF 和△CEF 都是等腰三角形;故①正确;∴DE=DF+EF=BD+CE ,故②正确;∴△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;故③正确;∵∠ABC 不一定等于∠ACB ,∴∠FBC 不一定等于∠FCB ,∴BF 与CF 不一定相等,故④错误; 由题意知,1122FBC ABC FCB ACB ∠=∠∠=∠,, ∴()()11801802BFC FBC FCB ABC ACB ∠=︒-∠+∠=︒-∠+∠ =()()111801801801808022A ︒-︒-∠=︒-︒-︒ =130°,故⑤正确,故答案为①②③⑤.【点睛】 本题考查了等腰三角形的判定和性质、角平分线的性质、平行线的性质及三角形的内角和定理;题目利用了两直线平行,内错角相等及等角对等边来判定等腰三角形;等量代换的利用是解答本题的关键.三、解答题21.如图,点E 在ABC 的边AB 上,90ABC EAD ∠=∠=︒,30BAC ADE ∠=∠=︒,DE 的延长线交AC 于点G ,交BC 延长线于点F .AB=AD ,BH ⊥DF ,垂足为H .(1)求HAE ∠的度数;(2)求证:DH FB FH =+.解析:(1)=15∠HAE ;(2)见解析【分析】(1)连接BG ,先根据等腰三角形的判定得出AG=AD ,再根据SSS 得出△AGH ≌△ABH ,从而得出=∠∠HAE HAG ,继而得出HAE ∠的度数;(2)在DH 上取HM=HF ,连接BM ,根据垂直平分线的性质得出BF=BM ,再根据等腰三角形的判定得出DM=BM ,从而得出结论【详解】解:(1)连接BG∵90EAD ∠=︒,30BAC ∠=︒,∴∠DAG=120°,∵30ADE ∠=︒,∴30∠=∠=︒ADE AGD ,∴AG=AD ,∵AB=AD ,∴AG=AB ,∵30BAC ∠=︒,∴75∠=∠=︒AGB ABG ,∵BH ⊥DF ,90EAD ∠=︒,∴=90∠∠=︒BHE EAD ,∵=∠∠BEH AED ,∴30∠=∠=︒ADE EBH ,∴45∠=∠-∠=︒HBG ABG EBH ,∵90FHB ∠=︒,∴∠=∠HBG HGB ,∴GH=BH ,∵AG=AB ,AH=AH ,∴△AGH ≌△ABH ,∴=∠∠HAE HAG ,∵30BAC ∠=︒,∴=15∠HAE ;(2)在DH 上取HM=HF ,连接BM ;∵90ABC EAD ∠=∠=︒,∴AD//BF ,∴30∠=∠=︒F ADE ,∵BH ⊥DF ,HM=HF ,∴BF=BM∴30∠=∠=︒F BMF∵AB=AD ,90EAD ∠=︒∴45ADB ∠=︒,∵30ADE ∠=︒∴15∠=︒MDB ,∵30∠=︒=∠+∠BMF MBD MDB ,∴==15∠∠MBD MDB ,∴BM=DM=BF ,∵DH=DM+HM ,∴DH=FH+BF【点睛】本题考查了等腰三角形的性质和判定、全等三角形的性质和判定、垂直平分线的性质,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型. 22.如图,ABC 是边长为10的等边三角形,现有两点P 、Q 沿如图所示的方向分别从点A 、点B 同时出发,沿ABC 的边运动,已知点P 的速度为每秒1个单位长度,点Q 的运度为每秒2个单位长度,当点P 第一次到达B 点时,P 、Q 同时停止运动. (1)点P 、Q 运动几秒后,可得到等边三角形APQ ?(2)点P 、Q 运动几秒后,P 、Q 两点重合?(3)当点P 、Q 在BC 边上运动时,能否得到以PQ 为底边的等腰APQ ?如存在,请求出此时P 、Q 运动的时间.解析:(1)点P 、Q 运动103秒后,可得到等边三角形APQ ;(2)点P 、Q 运动10秒后,P 、Q 两点重合;(3)当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【分析】(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,利用,AP AQ = 列方程,解方程可得答案;(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,由追及问题中的相等关系:Q 的运动路程等于P 的运动路程加上相距的路程,列方程,解方程即可得到答案;(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.先证明:ACP △≌ABQ △,可得CP BQ =,再列方程,解方程并检验即可得到答案.【详解】解:(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,如图①,AP t =,102AQ AB BQ t =-=-,∵三角形APQ 是等边三角形,,AP AQ ∴=∴102t t =-,解得103t =, ∴点P 、Q 运动103秒后,可得到等边三角形APQ .(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,102x x +=,解得:10x =.∴点P 、Q 运动10秒后,P 、Q 两点重合.(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.理由如下: 由(2)知10秒时P 、Q 两点重合,恰好在C 处,如图②,假设APQ 是等腰三角形,∴AP AQ =,∴APQ AQP ∠=∠,∴APC AQB ∠=∠,∵ACB △是等边三角形,∴C B ∠=∠,在ACP △和ABQ △中,,,,AC AB C B APC AQB =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ACP △≌ABQ △,∴CP BQ =,设当点P 、Q 在BC 边上运动时,P 、Q 运动的时间y 秒时,APQ 是等腰三角形, 由题意得:10CP y =-,302QB y =-,∴ 10302y y -=-, 解得:403y =, P 的最长运动时间为2020,1s = Q 从B A C B →→→的最长时间为30=152s , 由403<15, ∴ 403y =符合题意, ∴当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【点睛】 本题考查的是三角形全等的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,动点问题,掌握以上知识是解题的关键.23.已知AOB ∠及一点P ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法)(1)过点P 作OA 、OB 的垂线,垂足分别为点M 、N ;(2)猜想MPN ∠与AOB ∠之间的数量关系,并说明理由.解析:(1)见解析;(2)∠MPN+∠AOB=180°或∠MPN=∠AOB,理由见解析【分析】(1)根据垂线的定义画出图形即可解决问题;(2)根据四边形内角和为360°或“8字型”的性质即可解决问题;【详解】(1)过点P作OA、OB的垂线PM、PN如图所示;(2)猜想:∠MPN+∠AOB=180°或∠MPN=∠AOB.理由:左图中,在四边形PMON中,∵∠PMO=∠PNO=90°,∴∠MPN+∠AOB=180°.右图中,∵∠PJM=∠OJN,∠PMJ=∠JNO=90°,∴∠MPN=∠AOB.【点睛】本题考查了作图-基本作图,解题的关键是熟练掌握基本知识,属于中考常考题型.24.在等边三角形ABC中,点E为线段AB上一动点,点E与A,B不重合,点D在CB的延长线上,且ED=EC.(1)当E为边AB的中点时,如图1所示,确定线段AE与BD的大小关系,并证明你的结论;(2)如图2,当E不是边AB的中点时,(1)中的结论是否成立?若不成立,请直接写出EF BC交AC于点F)BD与AE的数量关系;若成立,请给予证明;(提示:过E作//(3)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,ABC 的边长为1,AE=2,请直接写出CD的长.解析:(1)AE=BD;见解析;(2)成立;AE=BD;见解析;(3)CD的长为3或1.【分析】(1)根据等边三角形三线合一的性质证得∠ECB=30°,由DE=CE,求出∠D=∠ECB=30°得到∠DEB=30°,推出BD=BE,根据AE=BE证得结论;(2)过E作EF∥BC交AC于点F,得到△AEF是等边三角形,推出BE=CF,利用∠DBE=∠EFC=120°,∠BED=∠ECF,证得△DEB≌△ECF(AAS),得到BD=EF=AE;(3)作EF∥BC交CA的延长线于点F,则△AEF为等边三角形,利用∠CEF=∠EDB,EB=CF=3,∠F=∠B=60°,证得△CEF≌△EDB(AAS),得到BD=EF=2,求出CD=BD-BC =1,同理可得CD=3【详解】解:(1)AE=BD;证明:∵△ABC为等边三角形,AE=BE,∴CE平分∠ACB,∴∠ECB=30°.∵DE=CE,∴∠D=∠ECB=30°.∵∠ABC=∠D+∠DEB=60°,∴∠DEB=30°,∴∠D=∠DEB,∴BD=BE.∵AE=BE,∴AE=BD;(2)当E为边AB上任意一点时,AE=BD仍成立;证明:如图1,过E作EF∥BC交AC于点F.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF.∵∠ABC=∠ACB=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE =EC ,∴∠D =∠ECD ,∴∠BED =∠ECF ,∴△DEB ≌△ECF (AAS ),∴BD =EF ,∴AE =BD ;(3)CD 的长为3或1如图2,作EF ∥BC 交CA 的延长线于点F ,则△AEF 为等边三角形,∴AF =AE =EF =2,∠BEF =60°,∴∠CEF =60°+∠BEC .∵∠EDC =∠ECD =∠B +∠BEC =60°+∠BEC ,∴∠CEF =∠EDB .又∵EB =CF =3,∠F =∠B =60°,∴△CEF ≌△EDB (AAS ),∴BD =EF =2,∴CD =BD -BC =1,如图3,同理可得CD =3,综上所述,CD 的长为3或1【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,平行线的性质,等腰三角形等边对等角的性质,熟练掌握三角形的知识并熟练应用是解题的关键.25.如图,在Rt ABC △中,90ACB ∠=︒,CA CB =,M 是AB 的中点,点D 在BM 上,AE CD ⊥,BF CD ⊥,垂足分别为E ,F ,连接EM .(1)求证:CE BF =;(2)求证:AEM DEM ∠=∠.解析:(1)证明见解析;(2)证明见解析【分析】(1)先证明CAE BCF ∠=∠,再证明CAE BCF ≌△△,从而可得结论;(2)连接CM ,FM ,先证明ECM FBM ∠=∠,再证明CME BMF ≌△△,可得EM FM =,EMC FMB ∠=∠,再证明FME 是等腰直角三角形,可得45MED ∠=︒,从而可得结论.【详解】证明:(1)AE CD ⊥,BF CD ⊥,90AEC CFB ∴∠=∠=︒.90ACB ∠=︒,90BCF ACE ACE EAC ∴∠+∠=︒=∠+∠CAE BCF ∴∠=∠.CA BC =. ()CAE BCF AAS ∴≌△△.CE BF ∴=.(2)连接CM ,FM在Rt ABC △中,CA CB =,点M 是AB 的中点,90,ACB ∠=︒BM AM ∴=,CM AB ⊥,CM 平分ACB ∠,45ACM BCM CBM CAM ∴∠=∠=∠=∠=︒,CM BM AM ==,由CAE BCF ≌△△可得:ACE CBF ∠=∠.,ACM ECM CBM MBF ∴∠+∠=∠+∠ECM FBM ∴∠=∠.又CE BF =,()CME BMF SAS ∴≌△△.EM FM ∴=,EMC FMB ∠=∠.90EMF FMB DME CME DME ∠=∠+∠=∠+∠=︒.FME ∴△是等腰直角三角形.45MED ∴∠=︒,90AED ∠=︒,45AEM DEM ∴∠=∠=︒.【点睛】本题考查的的三角形全等的判定与性质,等腰直角三角形的判定与性质,掌握以上知识是解题的关键.26.如图,在所给平面直角坐标系(每小格均为边长是1个单位长度的正方形)中完成下列各题.(1)已知()6,0A -,()2,0B -,()4,2C -,画出ABC 关于y 轴对称的图形△111A B C △,并写出1B 的坐标;(2)在y 轴上画出点P ,使PA PC +最小;(3)在(1)的条件下,在y 轴上画出点M ,使11MB MC -最大.解析:(1)见解析;B 1(2,0);(2)见解析;(3)见解析【分析】(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0); (2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短即可;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边即可.【详解】解:(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0),如图;B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短,则PA+PC=PA+PC 1=AC 1,则点P 为所求,如图;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边,11MB MC -最大=C 1B 1,如图.【点睛】 本题考查轴对称作图,线段公里,三角形三边关系,掌握轴对称作图,线段公里,三角形三边关系是解题关键.27.如图,点A ,C ,D ,B 四点共线,且AC BD =,A B ∠=∠,ADE BCF ∠=∠.(1)求证:ADE BCF ≌;(2)若9DE =,CG 4=,求线段EG 的长.解析:(1)证明见解析;(2)5EG =.【分析】(1)根据AC=BD 可得AD=BC ,然后利用已知条件根据ASA 即可证明全等;(2)根据(1)中的全等可得∠ADE=∠BCF ,再结合等角对等边可得4DG CG ==,最后利用线段的和差即可求得EG 的长度.【详解】解:(1)证明:∵AC=BD ,∴AC+CD=BD+CD ,∴AD=BC ,在△ADE 和△BCF 中,A B AD BCADE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BCF (ASA );(2)∵△ADE ≌△BCF ,∴∠ADE=∠BCF ,∴4DG CG ==,∵9DE =,∴5EG DE DG =-=.【点睛】本题考查全等三角形的性质和判定,等腰三角形等角对等边.熟练掌握全等三角形的几种判定定理,并能结合题中所给条件灵活运用是解题关键.28.已知ABC 是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在线段AB 上,120PDQ ∠=︒.(1)如图1,若点Q 与点B 重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,8AC =,求AQ PC +的值.解析:(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明30DBC ∠=︒,再利用三角形的内角和定理求解30DPB ∠=︒,从而可得结论; (2)过点D 作//DE BC 交AB 于点E ,先证明ADE 为等边三角形,再证明QDE PDC ≌,可得QE PC =, 从而可得答案.【详解】证明:(1)∵ABC 为等边三角形,∴,60BA BC ABC =∠=︒∵D 为AC 的中点,∴DB 平分ABC ∠,∴30DBC ∠=︒. ∵120PDB ∠=︒,∴1801203030DPB ∠=︒-︒-︒=︒,∴DBC DPB ∠=∠,∴DB DP =.(2)过点D 作//DE BC 交AB 于点E .∵ABC 为等边三角形,8AC =,点D 是AC 的中点,∴4,60AD CD ABC ACB A ==∠=∠=∠=︒.∵//DE BC ,∴60AED B ∠=∠=︒.60ADE C ∠=∠=︒,∴ADE 为等边三角形,120EDC ∠=︒,∴4AD ED AE ===,。
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。
人教版初中八年级数学上册第十三章《轴对称》经典题(含答案解析)
一、选择题1.若实数a ,b 满足a 2-4a +4+(b -4)2=0,且a ,b 恰好是等腰△ABC 两条边的长,则△ABC 周长为( )A .8B .8或10C .12D .10 2.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.如图,点O 是ABC 的ABC ∠,ACB ∠的平分线的交点,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,若ODE 的周长为9cm ,那么BC 的长为( )A .8cmB .9cmC .10cmD .11cm 4.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40 5.如图,已知点D 为ABC 内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若6AC =,4BC =,则BD 的长为( )A .2B .1.5C .1D .2.56.如图,在ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 平分∠BAC ;②∠ADC =60°;③点D 在AB 的垂直平分线上;④2ABD ACD S S =.A .1B .2C .3D .47.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒8.如图,ABC 中,AB AC =,AB 的垂直平分线DE 分别交AB 、AC 于点E 、D ,若52BAC ∠=︒,则DBC ∠=( ).A .12︒B .14︒C .16︒D .18︒9.如图,在△ABC 中,∠C =84°,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别交于点M ,N ,作直线MN 交AC 于点D ;以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点P .若此时射线BP 恰好经过点D ,则∠A 的大小是( )A .30°B .32°C .36°D .42°10.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .1211.若海岛N 位于海岛M 北偏东30°的方向上,则从海岛N 出发到海岛M 的航线可能是( )A .B .C .D .12.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个13.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°14.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①∠ACB =2∠APB ;②BP 垂直平分CE ;③PG =AG ;④CP 平分∠DCB ;其中,其中说法正确的有( )A .1个B .2个C .3个D .4个15.已知等边△ABC 的边长为6,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G .当G 与D 重合时,AD 的长是( )A .1B .2C .3D .4二、填空题16.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.17.如图,在ABC ∆中,CD 平分,ACB ∠点,E F 分别是,CD AC 上的动点.若6,12,ABC BC S ∆==则AE EF +的最小值是______________.18.如图,ABC 中,AB BC =,点D 在线段BC 上(不与点,B C 重合). 作法如下:①连接AD ,作AD 的垂直平分线分别交直线,AB AC 于点,P Q ,连接,DP DQ ,则APQ DPQ △≌△;②过点D 作AC 的平行线交AB 于点P ,在线段AC 上截取AQ ,使AQ DP =,连接,PQ DQ ,则APQ DQP △≌△;③过点D 作AC 的平行线交AB 于点P ,过点D 作AB 的平行线交AC 于点Q ,连接PQ ,则APQ DQP △≌△;④过点D 作AB 的平行线交AC 于点Q ,在直线AB 上取一点P ,连接DP ,使DP AQ =,连接PQ ,则APQ DPQ △≌△.以上说法一定成立的是__________.(填写正确的序号)19.如图,30MON ∠=︒,点1234,,,A A A A ,…在射线ON 上,点123,,B B B ,…在射线OM 上,且112223334,,A B A A B A A B A △△△,…均为等边三角形,以此类推,若11OA =,则202120212022A B A △的边长为_______.20.如图,在ABC 中,D 是BC 上一点,,105AC AD DB BAC ==∠=︒,则B ∠=________°.21.如图,在Rt ABC 中,BAC 90︒∠=,AB 2=,M 为边BC 上的点,连接AM .如果将ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是________.22.嘉嘉和淇淇下棋,嘉嘉执圆形棋子,淇淇执方形棋子,如图,棋盘中心的圆形棋子的位置用()1,1-表示,右下角的圆形棋子用()0,0表示,淇淇将第4枚方形棋子放入棋盘后,所有棋子构成的图形是轴对称图形.则淇淇放的方形棋子的位置是__________.23.如图,在△ACB 中,∠ACB =∠90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,DC =4cm ,则D 到AB 的距离为________cm .24.如图,在ABC 中,AB=AC ,40A ∠=,CD //AB ,则BCD ∠的度数是______°.25.如图,在ABC 中,30EFD ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则B 的度数为______.26.△ABC 中,∠A =50°,当∠B =____________时,△ABC 是等腰三角形.三、解答题27.如图,△ABC 的三个顶点在边长为1的正方形网格中,已知A (−4,5),B (﹣3,1),C (−2,3).(1)画出△ABC 及关于y 轴对称的△A 1B 1C 1,其中点B 1的坐标是________; (2)若点M 是x 轴上的动点,在图中画出使△B 1CM 周长最小时的点M .28.如图,网格中小正方形的边长为1,(1)画出△ABC 关于x 轴对称的△A 1B 1C 1(其中A 1、B 1、C 1分别为A 、B 、C 的对应点); (2)△ABC 的面积为 ;点B 到边AC 的距离为 ;(3)在x 轴上是否存在一点M ,使得MA +MB 最小,若存在,请直接写出MA +MB 的最小值;若不存在,请说明原因29.如图,ABC 中,90BAC ∠=︒,AB AC =,AD 是高,E 是AB 上一点,连接DE ,过点D 作DF DE ⊥,交AC 于点F ,连接EF ,交AD 于点G .(1)若6AB =,2AE =,求线段AF 的长;(2)求证:AGF AED ∠=∠.30.如图,在ABC ∆中,,AB AC =过点A 作//AD BC 交ABC ∠的平分线BD 于点D ,求证:AC AD =.。
人教版八年级数学上册第十三章《轴对称》综合测试题(含答案)
人教版八年级数学上册第十三章《轴对称》综合测试题(含答案)一、单选题1.下列润滑油1ogo标志图标中,不是..轴对称图形的是()A.B.C.D.2.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.ABC的三条中线的交点B.ABC三边的垂直平分线的交点C.ABC三条角平分线的交点D.ABC三条高所在直线的交点3.三角形的外心是三角形的()A.三条中线的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三条高所在直线的交点4.下列条件中,不能判定直线CD是线段AB(C,D不在线段AB上)的垂直平分线的是()A.CA=CB,DA=DB B.CA=CB,CD⊥ABC.CA=DA,CB=DB D.CA=CB,CD平分AB5.如图,在⊥ABC中,AB=AC,⊥A=36°,BD平分⊥ABC交AC于点D,则图中的等腰三角形共有()A .1 个B .2 个C .3 个D .4 个6.下列图形中,不是轴对称图形的是( )A .有一个角是45度的直角三角形B .有两个角相等的三角形C .有一个角是40度,另一个角是100度的三角形D .有一个角是30度的直角三角形7.如图,在ABC 中,90,6,10,8BAC AC BC AB ∠=︒===,过点A 的直线//,DE BC ABC ∠与ACB ∠的平分线分别交DE 于点E 、D ,则DE 的长为( )A .14B .16C .18D .208.若等腰三角形的顶角是40°,则它的底角是( )A .40°B .70°C .80°D .100°9.如图,在等边ABC 中,AD 是它的角平分线,DE AB ⊥于点E ,若8AC =,则BD =( )A .4B .3C .2D .110.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,150ABC ∠=︒,BC 的长是40m ,则乘电梯从点B 到点C 上升的高度h 是( )A.20m B 203m3C403m3D.203m11.如图,△ABC是边长为4的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC至点Q,使CQ=P A,连接PQ交AC于点D,则DE的长为()A.1B.1.8C.2D.2.512.如图,等边三角形ABC的三条角平分线相交于点O,//OD AB交BC于点D,//OE AC交BC于点E,那么这个图形中的等腰三角形共有()个A.4B.5C.6D.7二、填空题13.在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.14.如图,在ABC中,10cmAB AC==,AB的垂直平分线交AC于点D,且BCD△的周长为17cm,则BC=________cm.15.如图,在ABC ∆中,,MP NQ 分别垂直平分边,AB AC ,交BC 于点,P Q ,如果20BC =,那么APQ 的周长为 __________.16.ABC ∆中,AB =AC ,AB 的中垂线与AC 所在直线相交成的锐角为50︒,则底角B 的大小为_________.17.如图,⊥AOB =60°,C 是BO 延长线上一点,OC =10cm ,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 出发沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用t (s )表示移动的时间,当t =______s 时,△POQ 是等腰三角形.三、解答题18.如图,AD 平分⊥BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD 垂直平分EF .19.如图,在ABC 中,,AB AC AB =的垂直平分线交AB 于点D ,交AC 于点E .已知BCE 的周长为8,2AC BC -=,求AB 与BC 的长.20.如图,AD 是ABC 的角平分线,EF 是AD 的垂直平分线.求证:(1)EAD EDA ∠=∠;(2)//DF AC ;(3)EAC B ∠=∠.21.如图,在四边形ABCD 中,//AD BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .22.如图,在⊥ABC 中,⊥BAC =90°,E 为边BC 上的任意点,D 为线段BE 的中点,AB =AE ,EF ⊥AE ,AF BC ∥.(1)求证:⊥DAE=⊥C;(2)求证:AF=BC.23.阅读下面材料:【原题呈现】如图1,在ABC中,⊥A=2⊥B,CD平分⊥ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分⊥ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到DEC⊥DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知ABC中,AB=AC,⊥A=20°,BD平分⊥ABC,BD=2.3,BC=2.求AD的长.参考答案1.C2.C3.C4.C5.C6.D7.A8.B9.A10.A11.C12.D解:⊥⊥⊥ABC为等边三角形,⊥AB=AC,⊥⊥ABC为等腰三角形;⊥⊥BO,CO,AO分别是三个角的角平分线,⊥⊥ABO=⊥CBO=⊥BAO=⊥CAO=⊥ACO=⊥BCO,⊥AO=BO,AO=CO,BO=CO,⊥⊥AOB为等腰三角形;⊥⊥AOC为等腰三角形;⊥⊥BOC为等腰三角形;⊥⊥OD⊥AB,OE⊥AC,⊥⊥ABC=⊥ODE,⊥ACB=⊥OED,⊥⊥ABC=⊥ACB,⊥⊥ODE=⊥OED,⊥⊥DOE为等腰三角形;⊥⊥OD⊥AB,OE⊥AC,⊥⊥BOD=⊥ABO,⊥COE=⊥ACO,⊥⊥DBO=⊥ABO,⊥ECO=⊥ACO,⊥⊥BOD=⊥DBO,⊥COE=⊥ECO,⊥⊥BOD为等腰三角形;⊥⊥COE为等腰三角形.故选:D.13. 5 圆、正六边形、五角星、等边三角形、锐角14.715.2016.70°或20°17.103或10 18.证明:AD 平分⊥BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,,EAD FAD DE EF ∴∠=∠=又AD AD =∴AED AFD ≌∴AE AF =∴,A D 在EF 的垂直平分线上即AD 垂直平分EF .19.解: ⊥BCE 的周长为8,⊥8BE EC BC ++=⊥AB 的垂直平分线交AB 于点D ,交AC 于点E ,⊥AE BE =,⊥8AE EC BC ++=,即8AC BC +=,⊥2AC BC -=,⊥5AC =,3BC =,⊥AB AC =,⊥5AB =.20解析:(1)根据线段垂直平分线上任意一点,到线段两端的距离相等可得到AE DE =,再根据三角形全等得到EAD EDA ∠=∠;(2)根据线段垂直平分线的性质证明AF DF =,进而得到BAD ADF ∠=∠,再利用角平分线的性质可得到BAD CAD ∠=∠,利用等量代换可得ADF CAD ∠=∠,再根据平行线的判定即可得到//DF AC ;(3)根据三角形内角与外角的关系可得到结论.答案:证明:(1)如图,连接AE ,设AD 与EF 相交于点Q ,⊥EF 是AD 的垂直平分线,⊥AE DE =,AQ DQ =,在AEQ △和DEQ 中,⊥,,,AQ DQ EQ EQ AE DE =⎧⎪=⎨⎪=⎩⊥AEQ DEQ ≌(SSS ),⊥EAD EDA ∠=∠;(2)⊥EF 是AD 的垂直平分线,⊥AF DF =,在AFQ △和DFQ 中,⊥,,,AQ DQ FQ FQ AF DF =⎧⎪=⎨⎪=⎩⊥AFQ DFQ ≌(SSS ),⊥BAD ADF ∠=∠,⊥AD 是ABC 的角平分线,⊥BAD CAD ∠=∠,⊥ADF CAD ∠=∠,⊥//DF AC ;(3)由(1)知EAD EDA ∠=∠,EAD CAD EAC ∠=∠+∠,⊥EDA CAD EAC ∠=∠+∠,又⊥EDA BAD B ∠=∠+∠,⊥CAD EAC BAD B ∠+∠=∠+∠,⊥BAD CAD ∠=∠,⊥EAC B ∠=∠.易错:证明:(1)⊥EF 是AD 的垂直平分线,⊥AE DE =,在AEQ △和DEQ 中,,,,AQ DQ AEQ DEQ AE DE =⎧⎪∠=∠⎨⎪=⎩⊥AEQ DEQ ≌(SAS ),⊥EAD EDA ∠=∠.错因:角不是夹角,随意找三个条件证明全等.满分备考:掌握线段的垂直平分线和角平分线的性质与判定的应用,可以快速解决有关线段相等,角相等或距离相等的问题.21(1)//AD BC ,,F DAE ECF D ∴∠=∠∠=∠,点E 是CD 的中点,CE DE ∴=,在CEF △和DEA △中,F DAE ECF D CE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CEF DEA AAS ∴≅,FC AD ∴=;(2)由(1)已证:CEF DEA ≅,FE AE ∴=,又BE AE ⊥,BE ∴是线段AF 的垂直平分线,AB FB BC FC ∴==+,由(1)可知,FC AD =,AB BC AD ∴=+.22.(1)证明:⊥AB =AE ,D 为线段BE 的中点,⊥AD ⊥BC ,⊥⊥C +⊥DAC =90°,⊥⊥BAC =90°,⊥⊥BAD +⊥DAC =90°,⊥⊥C =⊥BAD ,⊥AB =AE ,AD ⊥BE ,⊥⊥BAD =⊥DAE ,⊥⊥DAE =⊥C ;(2)证明:⊥AF ⊥BC ,⊥⊥F AE =⊥AEB ,⊥AB =AE ,⊥⊥B =⊥AEB ,⊥⊥B =⊥F AE ,又⊥AEF =⊥BAC =90°,AB =AE ,⊥⊥ABC ⊥⊥EAF (ASA ),⊥AC =EF .23.解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,⊥⊥ACD ⊥⊥ECD (SAS ),⊥AD =DE ,⊥A =⊥DEC ,⊥⊥A =2⊥B ,⊥⊥DEC =2⊥B ,⊥⊥B =⊥EDB ,⊥⊥BDE 是等腰三角形;⊥BE =DE =AD =2.2,AC =EC =3.6, ⊥BC 的长为5.8;(2)⊥⊥ABC 中,AB =AC ,⊥A =20°, ⊥⊥ABC =⊥C =80°,⊥BD 平分⊥B ,⊥⊥1=⊥2=40°,⊥BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =⎧⎪∠=∠⎨⎪=⎩,⊥⊥DEB ⊥⊥DBC (SAS ),⊥⊥BED =⊥C =80°,⊥⊥4=60°,⊥⊥3=60°,在DA 边上取点F ,使DF =DB ,连接FE , 同理可得△BDE ⊥⊥FDE ,⊥⊥5=⊥1=40°,BE =EF =2,⊥⊥A =20°,⊥⊥6=20°,⊥AF =EF =2,⊥BD =DF =2.3,⊥AD =BD +BC =4.3.。
人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,
八年级数学上册《第十三章轴对称》练习题及答案
八年级数学上册《第十三章轴对称》练习题及答案学校:___________姓名:___________班级:___________一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.下列4个时刻中,是轴对称图形的有()A.3个B.2个C.1个D.0个3.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列图形均为表示医疗或救援的标识,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,△ABC 与A B C '''关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .AA P '△是等腰三角形B .MN 垂直平分AA ',CC ' C .△ABC 与A B C '''面积相等D .直线AB 、A B ''的交点不一定在MN 上6.如图,在△ABC 纸片中,△ABC =90°,将其折叠,使得点C 与点A 重合,折痕为DE ,若AB =3cm ,AC =5cm ,则△ABE 的周长为( )A .4 cmB .6 cmC .7 cmD .8 cm7.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,如果将△ABC 先沿x 轴翻折,再向右平移3个单位长度,得到△A ′B ′C ′,那么点B 的对应点B ′的坐标为( )A .(2,﹣3)B .(4,3)C .(﹣1,﹣3)D .(4,0)8.下列轴对称图形中,对称轴最多的是( )A .等腰三角形B .等边三角形C .正方形D .线段9.如图,ABC ∆中40A ∠=︒,E 是AC 边上的点,先将ABE ∆沿着BE 翻折,翻折后ABE ∆的AB 边交AC 于点D ,又将BCD ∆沿着BD 翻折,点C 恰好落在BE 上,此时82CDB ∠=︒,则原三角形的B 的度数为( )A .57︒B .60︒C .63︒D .70︒10.ABC ∆和A B C '''∆关于直线l 对称,若ABC ∆的周长为12cm ,则A B C '''∆的周长为( )A .24cmB .12cmC .6cmD .6cm11.如图,边长为a 的等边△ABC 中,BF 是AC 上中线且BF =b ,点D 在BF 上,连接AD ,在AD 的右侧作等边△ADE ,连接EF ,则△AEF 周长的最小值是( )A .12a 23+bB .12a +b C .a 12+b D .23a二、填空题12.线段是轴对称图形,它的一条对称轴是_______________,线段本身所在的直线也是它的一条对称轴. 13.如图,在平面直角坐标系中,等腰直角三角形△沿x 轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A 1(0,2)变换到点A 2(6,0),得到等腰直角三角形△;第二次滚动后点A 2变换到点A 3(6,0),得到等腰直角三角形△;第三次滚动后点A 3变换到点A 4(10),得到等腰直角三角形△;第四次滚动后点A 4变换到点A 5(0),得到等腰直角三角形△;依此规律…,则第2020个等腰直角三角形的面积是_____.14.轴对称图形的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的_____________. (2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的_______________.15.如图,将矩形ABCD沿AC折叠,使点B落在点B'处,B'C交AD于点E,若△1=25°,则△2的度数为_____.⨯的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形16.如图,在34组成轴对称图形,选择的位置共有______处.三、解答题17.如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A',AA'的延长线交BC于点G.(1)求证:DE A F '∥;(2)求证:2A C A B '='.18.已知二次函数21312y x x =-+, (1)若把它的图象向右平移1个单位,向下平移3个单位,求所得图象的函数表达式.(2)若把它的图象绕它的顶点旋转180°,求所得图象的函数表达式.(3)若把它绕x 轴翻折,求所得图象的表达式.19.你设计的游戏一游戏规则:游戏背后的数学原理:游戏操作后同组学生的评价:20.数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)参考答案:1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴对各选项一一进行分析即可.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.解决轴对称图形的关键是寻找对称轴.2.B【分析】根据轴对称图形的概念分别对各个图形进行判断即可.【详解】解:第1个,不是轴对称图形,故本选项不合题意;第2个,是轴对称图形,故本选项符合题意;第3个,是轴对称图形,故本选项符合题意;第4个,不是轴对称图形,故本选项不合题意;故选:B.【点睛】本题考查轴对称图形,能根据轴对称的概念找出图形的对称轴是解决此题的关键.3.D【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.B【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐项判断即可得.【详解】解:A、是轴对称图形,不是中心对称图形,则此项不符合题意;B、既是轴对称图形又是中心对称图形,则此项符合题意;C、是轴对称图形,不是中心对称图形,则此项不符合题意;D、既不是轴对称图形又不是中心对称图形,则此项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记定义是解题关键.5.D【分析】根据轴对称的性质即可解答.'''关于直线MN对称,P为MN上任意一点,【详解】解:由题意△ABC与A B C△对称轴上的任何一点到两个对应点之间的距离相等,'=,△PA PA△是等腰三角形,选项A正确,不符合题意;△AA P'△轴对称图形对应点所连的线段被对称轴垂直平分,△MN垂直平分AA',CC',选项B正确,不符合题意;△轴对称图形对应的角、线段都相等,△△ABC与A B C'''是全等三角形,面积也必然相等,选项C选项正确,不符合题意;△直线AB、A B''关于直线MN对称,因此交点一定在MN上.△选项D错误,符合题意.故选D.【点睛】本题考查轴对称的性质与运用,轴对称图形对应的角、线段都相等,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等.6.C【分析】先利用勾股定理求出BC,利用折叠得出AE=CE,然后△ABE的周长转化为AB+BC即可.【详解】解:△ABC纸片中,△△ABC=90°,AB=3cm,AC=5cm,△BC4=cm,△△DEC沿DE折叠得到△ADE,△AE=CE,△△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故选C.【点睛】本题考查勾股定理,折叠轴对称性质,三角形周长,掌握勾股定理,折叠轴对称性质,三角形周长是解题关键.7.A【分析】根据轴对称的性质和平移规律求得即可.【详解】解:由坐标系可得B(﹣1,3),将△ABC先沿x轴翻折得到B点对应点为(﹣1,﹣3),再向右平移3个单位长度,点B的对应点B'的坐标为(﹣1+3,﹣3),即(2,﹣3),故选:A.【点睛】此题考查了翻折变换的性质、坐标与图形的变化--对称和平移,解题的关键是掌握点的坐标的变化规律.8.C【分析】根据等腰三角形、等边三角形、正方形、线段的轴对称性质,依次解题.【详解】A、等腰三角形1条对称轴;B、等边三角形3条对称轴;C、正方形有4条对称轴;D、线段2条对称轴.故选:C.【点睛】本题考查轴对称图形的对称轴,是基础考点,难度较易,掌握相关知识是解题关键.9.C【分析】由折叠可得,△BDG=△BDC=82°,△ABE=△A'BE=△A'BG,依据△BDG是△BDF是外角,即可得到△DBA=△BDG﹣△A=82°﹣40°=42°,进而得到原三角形的△B为63°.【详解】解:如图,由折叠可得,△BDG=△BDC=82°,△ABE=△A'BE=△A'BG,△△BDG是△BDA是外角,△△DBA=△BDG﹣△A=82°﹣40°=42°,△△ABE=△DBE=21°,△△ABG=3×21°=63°,即原三角形的△B为63°,故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形外角性质的应用,能够根据折叠的性质发现△FBE=△ABE=△ABG是解答此题的关键.10.B【分析】根据关于成轴对称的两个图形是全等形和全等三角形的性质填则可.【详解】△△ABC和△A′B′C′关于直线l对称,△△ABC△△A′B′C′,△△A′B′C′的周长为12,故填12.【点睛】本题考查轴对称的性质和全等三角形的性质,解题的关键是熟练掌握轴对称的性质和全等三角形的性质.11.B【分析】先证明点E在射线CE上运动,由AF为定值,所以当AE+E F最小时,△AEF周长的最小,作点A关于直线CE的对称点M,连接FM交CE于E',此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.【详解】解:△△ABC、△ADE都是等边三角形,△AB=AC,AD=AE,△BAC=△DAE=60°,△△BAD=△CAE,△△BAD△△CAE,△△ABD=△ACE,△AF=CF,△△ABD=△CBD=△ACE=30°,△点E在射线CE上运动(△ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E',此时AE+FE的值最小,此时AE+FE=MF,△CA=CM ,△ACM =60°,△△ACM 是等边三角形,△△ACM △△ACB ,△FM=FB=b ,△△AEF 周长的最小值是AF+AE+EF =AF+MF =12a +b ,故选:B .【点睛】此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.12.线段的垂直平分线【详解】分析:线段的对称轴为线段的中垂线.详解:线段是轴对称图形,它的一条对称轴是线段的垂直平分线,线段本身所在的直线也是它的一条对称轴.点睛:本题主要考查的是轴对称图形的对称轴,属于基础题型.这个题目的关键就是理解轴对称图形的性质.13.22020【分析】根据A 1(0,2)确定第1个等腰直角三角形(即等腰直角三角形△)的面积,根据A 2(6,0)确定第1个等腰直角三角形(即等腰直角三角形△)的面积,…,同理,确定规律可得结论.【详解】△点A 1(0,2), △第1个等腰直角三角形的面积=1222⨯⨯=2, △A 2(6,0),△第2=△第2个等腰直角三角形的面积=12⨯=4=22,△A4(10,,△第3个等腰直角三角形的边长为10−6=4,△第3个等腰直角三角形的面积=1442⨯⨯=8=32,…则第2020个等腰直角三角形的面积是20202;故答案为:20202.【点睛】本题主要考查坐标与图形变化以及找规律,熟练掌握方法是关键.14.垂直平分线垂直平分线【解析】略15.50°【分析】根据折叠的性质可得△BCE的度数,再由矩形对边平行的性质即可求得△2的度数.【详解】由折叠的性质得:△ACE=△1=25°△△BCE=△1+△ACE=50°△四边形ABCD是矩形△AD△BC△△2=△BCE=50°故答案为:50°【点睛】本题考查了矩形的折叠,掌握矩形的性质及折叠的性质是关键.16.7【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有△下1;△下2;△中3;△中4;△上5;△上6;△上7.如图:选择的位置共有7处.故答案为:7.【点睛】掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.17.(1)见解析(2)见解析【分析】(1)设DE 与AG 的交点为O ,根据题意可得AE EF BF ==,AO A O '=,即可求证; (2)先证明ADE BAG ∆≅∆,可得AE BG =,DEA AGB ∠=∠,从而得到DEF A FB A GC ∠=∠='∠',再过点B 作BH AG ⊥,连接A D ',可得AO BH =,再由DE A F BH ∥∥,可得AO A O A H '==',从而得到45BA F ∠='︒,再根据四边形的性质可得135AA C ∠='︒,从而得到45CA G ∠='︒,可证得△A FB '∽△A GC ',从而得到A C CG A B BF='',再根据AE BG =,可得2GC BF =,即可求证. (1)证明:设DE 与AG 的交点为O ,E ,F 为边AB 上的两个三等分点,AE EF BF ∴==,AA DE '⊥,点A 关于DE 的对称点为A ',AO A O '∴=,//DE A F '∴;(2)解:AA DE '⊥,90AOE DAE ABG ∴∠=︒=∠=∠,90ADE DEA DEA EAO ∴∠+∠=︒=∠+∠,ADE EAO ∴∠=∠,在ADE ∆和BAG ∆中,90ADE EAOAD AB DAE ABG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ADE BAG ASA ∴∆≅∆,AE BG ∴=,DEA AGB ∠=∠,A GC DEF '∴∠=∠,△DE A F '∥,DEF A FB A GC ∴∠=∠='∠',如图,过点B 作BH AG ⊥,连接A D ',ADE BAG ∆≅∆,DE AG ∴=,ΔΔADE BAG S S =, ∴1122DE AO AG BH ⨯⨯=⨯⨯,AO BH ∴=,BH AG ⊥,DE AG ⊥,A F AG '⊥,△DE A F BH ∥∥, ∴AO OA AHAE EF BF =''=,又AE EF BF ==,AO A O A H ='∴=',BH A H ∴=',45HBA BA H ∴∠=︒∠'=',45BA F ∴='∠︒,点A 关于DE 的对称点为A ',DA DA ∴=',DA DA DC '∴==,DAA DA A ∴∠='∠',DCA DA C ∠='∠',360ADC DAA DA A DA C DCA ∠+∠+∠+∠+∠=''︒'',236090AA C ∴∠=︒-'︒,135AA C ∴='∠︒,45CA G ∴='∠︒,CA G FA B ∴∠='∠',又A GC A FB ∠='∠',∴△A FB '∽△A GC ', ∴A C CG A B BF='', AE BG =,AB BC =,BE GC ∴=,2BE BF =,2GC BF ∴=, ∴2A C A B''=, 2A C A B ''∴=.【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轴对称的性质,相似三角形的判定和性质等知识,求出45FA CA B G ∠'∠='=︒是解题的关键.18.(1)213422y x x =-+ (2)21382y x x =-+- (3)21312y x x =-+-【分析】(1)先将二次函数化为顶点式,然后根据平移规律即可得出答案.(2)将图象绕顶点旋转180︒,则顶点不变,开口向下,据此可直接得出答案.(3)将图象绕x 轴翻折,此时二次函数横坐标不变,纵坐标变为相反数,由此可得出答案. (1)2211731(3)222y x x x =-+=--,∴向右平移1个单位,向下平移3个单位得:2217113(13)3(4)2222y x x =----=--213422x x =-+.(2)2211731(3)222y x x x =-+=--, ∴二次函数顶点坐标为7(3,)2-,12a =, 将图象绕顶点旋转180︒,则顶点不变为7(3,)2-,开口向下12a =-, 217(3)22y x ∴=---=21382x x -+-. (3)将图象绕x 轴翻折,此时二次函数横坐标不变,纵坐标变为相反数,所以2211(31)3122y x x x x =--+=-+-.【点睛】本题考查二次函数的性质及函数平移翻折的规律,解题的关键是熟练掌握相关内容并能灵活运用.19.见解析【分析】先设计一个游戏规则,再利用整式的加减进行计算说明游戏背后的数学原理,最后得到同组学生的评价.【详解】解:游戏规则:组员把自己的年龄加上10,结果乘以10,再减去10,再减去自己的年龄,结果除以9,将自己计算的结果告诉组长,组长就知道你的实际年龄.游戏背后的数学原理:设自己的年龄为x ,根据题意可得:10(10)10109x x x +--=-, 这说明结果总比自己的年龄大小10, 所以组长只需要将计算结果加上10,就等于组员的年龄,游戏操作后同组学生的评价:这类游戏规则的设计使得计算的结果为常数或含有未知数的较为简单的代数式.【点睛】本题考查了列代数式及整式的加减,解决本题的关键得到相应的代数式,找到数学的联系.20.见解析【分析】根据轴对称图形的定义、中心对称图形的定义画出图形即可【详解】解:如下图所示:【点睛】本题考查利用轴对称设计图案,中心对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.。
人教版八年级数学上册《第十三章轴对称》单元练习题(含答案)
第十三章《轴对称》单元练习题一、选择题1.如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是()A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2.如图,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于()A. 40°B. 50°C. 70°D. 80°3.若A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),则P(a,b)关于x轴对称点P1的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)4.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A. 13B. 15C. 18D. 215.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB6.已知a,b,c是三角形的三边长,如果满足(a﹣b)2++|c2﹣64|=0,则三角形的形状是()A.底和腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形7.以下列各组数据为边长,可以构成等腰三角形的是()A. 2,3,4B. 5,5,10C. 2,2,1D. 1,2,38.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+∠B=90°二、填空题(9.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=.10.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选点(C或D).11.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为.12.如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为.13.如图,在△ABC中,D为AB上的一点,且DE垂直平分AC,∠B=115°,且∠ACD:∠BCD=5:3,则∠ACB=__________度.14.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=____________.15.如图,△ABC是等边三角形,则∠ABD=度.16.如图将边长为5cm的等边△ABC,沿BC向右平移3cm,得到△DEF,DE交AC于M,则△MEC 是三角形,DM=cm.三、解答题17.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)画出点B关于直线AC的对称点D.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(2,3),B(3,1),C(-2,-2).(1)请在图中作出△ABC关于y轴的轴对称图形△A′B′C′(A,B,C的对称点分别是A′,B′,C′),并直接写出A′,B′,C′的坐标.(2)求△A′B′C′的面积.20.如图,已知五边形ABCDE是轴对称图形,点B,E是一对对称点,请用无刻度的直尺画出该图形的对称轴.(保留作图痕迹,不要求写作法)21.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.第十三章《轴对称》单元练习题答案解析1.【答案】B【解析】可依据题意线作出简单的图形,结合图形可得∠B=∠A,进而可得其为等腰三角形.解:如图,DC平分∠ACE,且AB∥CD,∴∠ACD=∠DCE,∠A=∠ACD,∠B=∠DCE∴∠B=∠A,∴△ABC为等腰三角形.故选B2.【答案】C【解析】由已知AB=AC,∠ABC=70°,根据等腰三角形的性质,得出∠C的度数,再利用DE∥AC,可得∠CBE=70°,答案可得.解:∵AB=AC(已知),∴∠C=∠ABC=70°(等边对等角),又∵DE∥AC(已知),∴∠CBE=∠C=70°(两直线平行,内错角相等)故选C.3.【答案】C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得方程组,根据解方程组,可得P点坐标,根据关于关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:由A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),得2a-b=-3,a+b=-3,所以a=-2,b=-1,∴P(﹣2,﹣1).P(a,b)关于x轴对称点P1的坐标是(﹣2,1),故选:C.4.【答案】A【解析】根据线段垂直平分线的性质得出AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC求出即可.解:∵AB=AC=8,BC=5,AB的垂直平分线交AC于D,∴AD=BD,∴△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.5.【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,∠FPD=∠Q,∠FDE=∠CDQ,PF=CQ∴△PFD≌△QCD,∴PD=DQ,DF=CE,∴A选项正确,∵AE=EF,∴DE=AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=AP=CQ,∴C选项正确,故选D.6.【答案】B【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.解:由(a﹣b)2++|c2﹣64|=0得:a﹣b=0,b﹣8=0,c2﹣64=0,又a,b,c是三角形的三边长,∴a=8,b=8,c=8,所以三角形的形状是等边三角形,故选:B.7.【答案】C【解析】根据三角形的三边关系对以下选项进行一一分析、判断.解:A.∵2≠3≠4,∴本组数据不可以构成等腰三角形;故本选项错误;B.∵5+5=10,∴本组数据不可以构成三角形;故本选项错误;C.∵1+2>2,∴本组数据可以构成等腰三角形;故本选项正确;D.∵1+2=3,∴本组数据不可以构成三角形;故本选项错误.故选C.8.【答案】D【解析】等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解:A、若∠A是顶角时,则50°+120°<180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在50°+50°+160°<180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;B、若∠A是顶角时,则50°+200°>180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在100°+100°>180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;C、当∠A+∠B=90°时,∠C=90°;但∠A=10°,∠B=80°时,三角形ABC的三个内角没有那两个相等,所以构不成等腰三角形;故本选项错误;D、当∠B是顶角时,则2∠A+∠B=180°,∴∠A+∠B=90°;故本选项正确;故选D.9.【答案】2【解析】根据等边三角形的性质求得BD=CD,并且求得边BC的长度,进而即可求得BD的长.解:∵△ABC是等边三角形,AD是∠BAC的平分线,∴AB=BC=CA,BD=CD,∵等边△ABC周长是12,∴BC=4,∴BD=2.故答案为2.10.【答案】C【解析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.11.【答案】1或3【解析】当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB﹣BC=12,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=12BE=12,∴CF=BC+FB=32,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3.12.【答案】20°【解析】根据轴对称的性质求出∠A′,再利用三角形的内角和等于180°列式计算即可得解.解:∵△ABC与△A′B′C′关于直线l对称,∴∠A′=∠A=50°,在△A′B′C′中,∠C′=180°﹣∠A′﹣∠B′=180°﹣50°﹣110°=20°.故答案为:20°.13.【答案】40【解析】根据垂直平分线的性质与三角形的全等可以得出∠A=∠ACD,再根据三角形的内角和和角的比计算.解:∵DE垂直平分AC,∴EA=EC,AD=CD,∠ADE=∠CDE=90°∴Rt△ADE≌Rt△CDE∴∠A=∠ACD又∵∠ACD:∠BCD=5:3,∴∠ACD:∠ACB=5:8∴∠A:∠ACB=5:8又∵∠B=115°。
八年级数学上册第十三章《轴对称》测试-人教版(含答案)
八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。
人教版初中八年级数学上册第十三章《轴对称》经典练习(含答案解析)
一、选择题1.如图,在等腰三角形ABC 中,,36,AB AC A D =∠=是AC 的中点,ED AC ⊥交AB 于点E ,已知6,2AC DE ==,则BC 的长为( )A .13B .32C .40D .20 2.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③ 3.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75° B .90° C .105° D .120°或20° 4.如图,在ABC 中,6AB =,8AC =,10BC =,EF 是BC 的垂直平分线,P 是直线EF 上的一动点,则PA PB +的最小值是( ).A .6B .8C .10D .115.下列命题中,假命题是( ) A .两条直角边对应相等的两个直角三角形全等B .等腰三角形顶角平分线把它分成两个全等的三角形C .相等的两个角是对顶角D .有一个角是60的等腰三角形是等边三角形6.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 7.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .48.如图,在ABC ∆中,90,30C B ︒︒∠=∠= ,以A 为圆心,任意长为半径画弧分别交AB AC 、于点M 和N ,再分别以M N 、为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP ,并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ︒∠=;③点D 在AB 的垂直平分线上﹔④若2AD =,则点D 到AB 的距离是1,:1:2DAC ABC S S ∆∆=A .2B .3C .4D .59.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,E F 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大 10.如图,长方形纸片ABCD (长方形的对边平行且相等,每个角都为直角),将纸片沿EF 折叠,使点C 与点A 重合,下列结论:①AF AE =,②ABE AGF ≌,③AF CE =,④60AEF ∠=︒,其中正确的( )A .①②B .②③C .①②③D .①②③④ 11.如图,在ABC 与A B C ''△中,,90AB AC A B A C B B ==''='∠+∠'=︒,ABC ,A B C '''的面积分别为1S 、2S ,则( )A .12S S >B .12S SC .12S S <D .无法比较1S 、2S 的大小关系 12.若a b c 、、是ABC 的边,且222()()()0,a b a c b c -+-+-=则ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 13.下列图案中,是轴对称图形的是( )A .B .C .D .14.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒15.如图,在Rt ABC 中,∠BAC =90°,以点A 为圆心,以AB 长为半径作弧交BC 于点D ,再分别以点B ,D 为圆心,以大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,如果AB =3,AC =4,那么线段AE 的长度是( )A .125B .95C .85D .75二、填空题16.如图,在平面直角坐标系中,直线l 与x 轴交于点1B ,与y 轴交点于D ,且111,60OB ODB =∠=︒,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,…,按此规律进行下去,则点6A 的横坐标是______.17.如图,在ABC 中,AB 的垂直平分线DE 分别与,AB BC 交于点,D E ,AC 的垂直平分线FG 分别与,BC AC 交于点,F G ,10,3BC EF ==,则AEF 的周长是________.18.如图,在ABC 和ADE 中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,其中点C ,D ,E 在同一条直线上,连接BD ,BE .以下四个结论:①ACE DBC ∠=∠;②45ACE DBC ∠+∠=︒;③BD CE ⊥;④BD CE =.一定正确的是______.19.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,从左起第1个等边三角形的边长记为1a ,第2个等边三角形的边长记为2a ,以此类推.若11OA =,则2021a =____.20.如图30AOB ∠=︒,OC 平分AOB ∠,P 为OC 上一点,//PD OA 交OB 于点D ,PE OA ⊥于E ,6cm OD =,则PE =________.21.如图,E 是腰长为2的等腰直角ABC 斜边上一点,且BE BC P =,为CE 上任意一点,PQ BC ⊥于点Q PR BE ⊥,于点R ,则PQ PR +的值是___________.22.如图,已知 O 为△ABC 三边垂直平分线的交点,且∠A =50°,则∠BOC 的度数为_____度.23.如图,在ABC 中,30EFD ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则B 的度数为______.24.如图,在△ABC 中,AB =AC ,∠BAC=36°,AD 、CE 是△ABC 的两条角平分线,BD=5,P 是AD 上的一个动点,则线段BP +EP 最小值的是____________.25.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________. 26.如图,在ABC 中,12 cm AB AC ==, 6 cm BC =,D 为AC 的中点,动点P 从点A 出发,以每秒1 cm 的速度沿A B C --的方向运动,设运动时间为t ,当过D ,P 两点的直线将ABC 的周长分成两部分,当其中一部分是另一部分的2倍时,t =_________.三、解答题27.如图,ABC 是边长为10的等边三角形,现有两点P 、Q 沿如图所示的方向分别从点A 、点B 同时出发,沿ABC 的边运动,已知点P 的速度为每秒1个单位长度,点Q 的运度为每秒2个单位长度,当点P 第一次到达B 点时,P 、Q 同时停止运动. (1)点P 、Q 运动几秒后,可得到等边三角形APQ ?(2)点P 、Q 运动几秒后,P 、Q 两点重合?(3)当点P 、Q 在BC 边上运动时,能否得到以PQ 为底边的等腰APQ ?如存在,请求出此时P 、Q 运动的时间.28.已知,在四边形ABCD 中,AB AD =,CB CD =,连接,AC BD ,判断,AC BD 的位置关系,并加以证明.29.如图,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=︒,求ACE ∠的度数.30.如图:已知ABC 中AB AC =:(1)尺规作图:过A 点作//AE BC (不写作法,保留作图痕迹);(2)求证:AE 是ABC 的一个外角角平分线.。
人教版八年级上册数学第十三章 轴对称含答案(完美版)
人教版八年级上册数学第十三章轴对称含答案一、单选题(共15题,共计45分)1、如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过O作AC的垂线EF,分别交AD、BC于E、F点,连接EC,则△CDE的周长为()A.5cmB.8cmC.9cmD.10cm2、如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8B.4C.12D.163、已知:如图,直线与轴、轴分别交于,两点,两动点,分别以个单位长度/秒和个单位长度/秒的速度从、两点同时出发向点运动(运动到点停止);过点作交抛物线于、两点,交于点,连结、.若抛物线的顶点恰好在上且四边形是菱形,则、的值分别为()A. 、B. 、C. 、D.、4、甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(),[说明:棋子的位置用数对表示,如A点在(6,3)].A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)C.黑(2,7);白(5,3)D.黑(3,7);白(2,6)5、如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D 是BC的中点,BE,CF交于点M,如果CM=4,FM=5,则BE等于( )A.14B.13C.12D.116、在△ABC中,∠B和∠C的平分线交于点I,边AB和AC的垂直平分线交于点O,若∠BIC=90°+ θ,则∠BOC=()A.90°﹣θB.2θC.180°﹣θD.以上答案都不对7、如图,在△ABC中,AB=AC,BD平分∠ABC,若∠BDC=120°,则∠A的度数为()A.110°B.60°C.80°D.100°8、下列图形中,是轴对称图形的个数是().A.1个B.2个C.3个D.4个9、把16个边长为a的正方形拼在一起,如图,连接BC,CD,则△BCD是()A.直角三角形B.等腰三角形C.等边三角形D.任意三角形10、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.11、如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )A.∠B=48°B.∠AED=66°C.∠A=84°D.∠B+∠C=96°12、如图,O是等边△ABC内一点,OA=6,OB=8,OC=10,以B为旋转中心,将线段BO逆时针旋转60°得到线段BO′,连接AO′.则下列结论:①△BO′A 可以由△BOC绕点B逆时针方向旋转60°得到;②连接OO′,则OO′=8;③∠AOB=150°;④其中正确的有()A.①②B.①②③C.①②④D.①②③④13、下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③顶角和底边对应相等的两个等腰三角形全等;④有一个角是60°的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.2B.3C.4D.514、如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数y1=的图象经过点A,反比例函数y=的图象经过点B,则下列关于m,n2的关系正确的是()A.m=nB.m=﹣nC.m=﹣nD.m=﹣3n15、下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.17、如图,在Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=12cm,则BC的长为________ cm.18、如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是________.19、如图,在等边△ABC的外侧作正方形ABDE,AD与CE交于F,则∠ABF的度数为________.20、如图,已知在中,AB=AC,点D在边BC上,要使BD=CD,还需添加一个条件,这个条件是________ .(只需填上一个正确的条件)21、如图,中,边AB的垂直平分线分别交AB、BC于点D、E,连接若,,则的周长为________.22、点A(2,-3)关于x轴对称的点的坐标是________.23、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是________24、如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为________.25、如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=________.三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、以给出的图形“○,○,△,△, ”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.28、已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G 不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DG=2PC;②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.29、作图题:如图,在平面直角坐标系xOy中,A(2,3),B(3,1),C(﹣2,﹣1).①在图中作出△ABC关于x轴的对称图形△A1B1C1并写出A1, B1, C1的坐标;②在y轴上画出点P,使PA+PB最小.(不写作法,保留作图痕迹)③求△ABC的面积.30、若等腰三角形一腰上的中线把三角形分为两个周长为 15cm和 18cm的三角形,且该中线长6cm,请画出示意图,并结合图形,求这个等腰三角形的底边长.参考答案一、单选题(共15题,共计45分)2、A3、A4、C5、C6、B7、D8、D9、B10、C11、B12、B13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、。
人教版八年级上册数学第13章《轴对称》测试题【含答案】
一、选择题(每小题3分,共24分)1.下列交通标志图案是轴对称图形的是()2.下列图形中对称轴只有两条的是()3.如图1,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性 B.用字母表示数C.随机性 D.数形结合4.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18C.20 D.16或205.如图2,△ABC与△A′B′C′关于直线l对称,且∠A′=78°,∠C=48°,则∠ABC的度数为()A.48°B.54°C.74°D.78°6.图3是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分线段EGC.连接BG,CE,其交点在AF上D.△DEG是等边三角形7.在平面直角坐标系xOy中,点P(-3,8)关于y轴的对称点的坐标为()A.(-3,-8)B.(3,8)C.(3,-8)D.(8,-3)8.如图4,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使点B落在AC边上的点E处,则∠CED的度数是()A.30°B.40°C.50°D.70°二、填空题(每小题4分,共32分)9.如果一个三角形是轴对称图形,且有一个角是60°,那么这个三角形是________三角形.10. 已知M,N是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN的关系是________. 11.如图5,在△ABC中,AB=AC,∠B=50°,则∠A=________.12.如图6,在△ABC中,AB=AC=3 cm,AB的垂直平分线MN交AC于点N,交AB于点M.已知△BCN的周长是5 cm,则BC的长是________cm.13.如图7,A,B,C三个居民小区的位置呈三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在________________.14.如图8,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有________个.15.观察规律,并填空:16.如图9,O为△ABC内一点,O与D关于AB对称,O与E关于BC对称,O与F关于AC对称,∠BAC=40°,∠ABC=80°,∠ACB=60°,则∠ADB+∠BEC+∠CFA=_________.三、解答题(共64分)17.(9分)请在如图10所示的三个2×2的方格中各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)18.(8分)汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图11所示的三个汉字可以看成是轴对称图形,请在方框中再写出4个类似轴对称图形的汉字.19.(12分)如图12,在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.20.(11分)如图13,在△ABC中,点D,E分别是AB,AC边的中点,请你在BC边上确定一点P,使△PDE的周长最小,在图中作出点P.21.(12分)如图14,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线DE交AB于点E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.22.(12分)如图15,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE,则线段AE与BC有什么位置关系?请说明理由.第十三章轴对称测试题一、1.B 2.C 3.A 4.C 5.B 6.D 7.B 8.D二、9.等边 10. 相等 11.80° 12.213. AB,BC,CA垂直平分线的交点处14. 6 15. 16. 360°三、17.解:答案不唯一,如图1所示.18.解:答案不唯一,如中、田、日、吕、呆等.19.(1)证明:因为BD=AB,所以∠BAD=∠BDA.因为DE⊥BC,所以∠BDE=90°.又∠BAC=90°,所以∠EAD=∠EDA.所以AE=DE,即△ADE是等腰三角形.(2)还有三个等腰三角形,△ABD、△ABC、△CDE.20.解:如图2,作点D关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求作.21.解:(1)因为DE垂直平分AC,所以CE=AE,即△ACE是等腰三角形.所以∠ECD =∠A=36°.(2)因为AB=AC,∠A=36°,所以∠B=∠ACB=(180°-36°)÷2=72°.因为∠ECD=36°,所以∠BEC=∠A+∠ECD=72°,即∠BEC=∠B.所以BC=CE=5.22.解:AE∥BC.理由:因为△ABC和△DEC是等边三角形,所以BC=AC,CD=CE,∠ABC=∠BCA=∠ECD =60°.所以∠BCA-∠DCA=∠ECD-∠DCA,即∠BCD=∠ACE.在△ACE和△BCD中,AC=BC,∠ACE=∠BCD,CE=CD,所以△ACE≌△BCD.所以∠EAC=∠B=60°.所以∠EAC=∠ACB.所以AE∥BC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
151 14 - 18
八年级数学《轴对称》练习题
选择题
1.
卜列说法错误的是 ( ) .、八 —1-" rx —* L-T J 厶
J —nr* A FT/ J -
B.
A. 大于呆直线对称的两个图形一疋能元全里合
全等的两个一角形 疋关于呆直线对称
C.
轴对称图形的对称轴至少有一条 D.
线段是轴对称图形
2. 轴对称图形的对称轴是 (
)
A. 直线
B.线段
C.射线
D.以上都有可能
3. 下面各组点关于y 轴对称的是 (
)
A. (0, 10)与(0,— 10)
B. (—3, —2)与(3,— 2)
C. (-3,— 2)与(3, 2)
D. (—3, —2)与(一3, 2)
4. 卜列图形中,不是轴对称图形的是
(
)
A. 一条线段
B. 两条相交直线
C.
有公共端点的两条相等的线段
D. 有公共端点的两条不相等的线段
5. 卜列图形中,是轴对称图形的是(
)
①A
B
6. 一只小狗正在平面镜前欣赏自己的全身像,此时,它所看到的全身像是
( )
7.如图所示,下列图案中,是轴对称图形的是 ()
A.( 1)( 2)
B.( 1)( 3)
C.( 1)( 4)
D.( 2)( 3)
班级
姓名 ______________
【)
⑴
C2)
⑶ (4)
8.如图所示,下列图案中,是轴对称图形的是
()
2
12. 和点P (- 3, 2)关于y 轴对称的点是( )
A. ( 3, 2 )
B. (- 3, 2)
C. ( 3,- 2)
D. (- 3,- 2)
13. 下列图形中:①角,②正方形,③梯形,④圆,⑤菱形,⑥平行四边形,其中是轴对称 图形的有(
)
A 2个
B 3个
C 4个
D 5个
14. 小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是(
A 21: 10
B 10: 21
C 10: 51
D 12: 01
15. 平面内点 A — 1, 2)和点B ( — 1, 6)的对称轴是(
)
A x 轴
B 、y 轴
C 直线y =4
D 直线x =- 1
16. 在下列说法中,正确的是(
)
A 如果两个三角形全等,则它们必是关于直线成轴对称的图形
B 如果两个三角形关于某直线成轴对称,那么它们是全等三角形
C 等腰三角形是关于底边中线成轴对称的图形
D
一条线段是关于经过该线段中点的直线成轴对称的图形
D. (1) (4)
9、 下列英文字母属于轴对称图形的是( ) A N
B
、S
C
、L D
10
、 下列各时刻是轴对称图形的为( )
A B
、
C
、
D
、
IE :EI I3:DB IE :5D m :5D
11、将写有字“ B ”的字条正对镜面,则镜中出现的会是(
C 、
)
E R II
A. ( 1) (2)
B. (1) ( 3) (4)
C. (2) ( 3)
)
17. 把一张长方形的纸沿对角线折叠,则重合部分是(
18•若一个图形上所有点的纵坐标不变,横坐标乘以一1,则所得图形与原图形的关系为()
2L 4 △
D
A. B . C
A. B . C . D .
23 .下列图形中,不是轴对称图形的是()
A、直角三角形B长方形C、等边三角形D等腰三角形
)
A、关于x轴成轴对称图形B关于y轴成轴对称图形
C关于原点成中心对称图形D无法确定
19. 下列图形中,不是轴对称图形的是(
A.等边三角形 B .平行四边形
20. 下列四个图形中不是轴对称图形的是(
D .等腰梯形
3
24.下列图案是我国几家银行的标志,其中不是轴对称图形的是(
)
A. B C D
A. B
.
C. D.
25.下列图形中是轴对称图形的是(
)
A .
B
C . D
26.下列平面图形中,不是轴对称图形的是
A B D
27.观察下列四个图案,其中为轴对称图形的是()•
A
B
C
28.下列文字图案中,是轴对称图形的是()
高山流
29.在下列各电视台的台标图案中,是轴对称图形的是(
30.下列图案中属于轴对称图形的是()
31 .下列图形是轴对称图形的是()
zL @ (S)
A. B . C .
32.下列各图中,为轴对称图形的是()
A.
A. B. D.
27.观察下列四个图案,其中为轴对称图形的是()•
A . B. C. D
.
33.下列图形是轴对称图形的是()
35.下列图形中, △ ABC •与△ ABC关于直线MN成轴对称的是
A .
B . C
34•下列“ QQ表情”中属于轴对称图形的是()
A .
B .
C .
D .
B B
C.
B
A. 30
B . 50
C .90
D .
100
37.如图是一个风筝的图
案,
它是轴对称图形, 量得
Z B =30 ,
则/E 的大小为( )
A. 30
B . 35
C .40
D
.
45 38.如图,△ ABC 与厶ABC •关于直线1
1对
称,
且.A =78°,
C
=48 °
,
则/B 的度数为( )
A. 48° B 54° C
.74°
D .78°
39.如图,Rt △ ABC 中,/ ACB 90。
,/ A =50°, 将其折叠,使点
A 落
在边CB 上 A'处,折痕为 CD 贝U N ADB -( )
A. 40°
B
30°
C
.20°
D .
10°
36.如图,△ ABC 与△ ABC •关于直线丨对称,则.B 的度数为( )。