用动态规划方法手工求解下面的问题
最优化方法练习题(答案)
练习题一1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。
2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。
答:针对一般优化模型()()min ()..0,1,2, 0,1,,i j f x s t g x i m h x j p≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ∀∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)(),,,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有(1)()k k x x ε+-<,(1)()()k k k x x x ε+-<,()()(1)()k k f x f x ε+-<,()()()(1)()()k k k f x f x f x ε+-<,()()k f x ε∇<等等。
练习题二1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。
如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。
解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。
确定目标函数 问题的目标很清楚——“收购价最小”。
确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。
因此有如下线性规划问题:123min 170100150w y y y =++1231231235210..23518,,0y y y s t y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩ *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。
答:略。
3、用单纯形法求解下列线性规划问题:(1)⎪⎪⎩⎪⎪⎨⎧≥≤+-≤++≤-++-=0,,43222..min32131321321321x x x x x x x x x x x t s x x x z ; (2)⎪⎪⎩⎪⎪⎨⎧=≥=++=+-=+-+-=)5,,2,1(052222..4min53243232132 i x x x x x x x x x x t s x x z i解:(1)引入松弛变量x 4,x 5,x 6123456min 0*0*0*z x x x x x x =-++++12341232 =22 5 =3..13 6=41,2,3,4,5,60x x x x x x x x s t x x x x x x x x x +-+⎧⎪+++⎪⎨-++⎪⎪≥⎩因检验数σ2<0,故确定x 2为换入非基变量,以x 2的系数列的正分量对应去除常数列,最小比值所在行对应的基变量x 4作为换出的基变量。
一、用动态规划方法手工求解下面的问题:
一、用动态规划方法手工求解下面的问题:生产单位产品的成本费为1(千元)。
同时,在任何一个月内,生产能力所允许的最大生产批量为不超过6个单位。
又知每单位产品的库存费用为每月0.5(千元),同时要求在第一个月开始之初, 及在第四个月末,均无产品库存。
问:在满足上述条件下,该厂应如何安排各个时期的生产与库存,使所花的总成本费用最低?解:这是一个多阶段问题,我们按照计划时间自然划分阶段。
状态变量k x 定义为第k 月月初时的存储量,决策变量k u 定义为第k 月的产量,记每个月需求量为k s ,则状态转移方程为:4,3,2,1,0,1=≥-+=+k x s u x x k k k k k第k 月允许决策集合 }60|{)(≤≤=k kk k u u x D阶段指标为阶段的生产成本费用和存储费用之和,即:⎩⎨⎧=>++=00035.0),(k k k k k k k u u u x u x v指标函数为∑==41,1),(k k k k n u x v V)(k k x f 表示由第k 月出发采用最优方案到第4月月底4个月时间内总成本{}1,2,3,4,)(),(min )(11)(=+=++∈k x f u x v x f k k k k k x D u k k k k k由条件可得到递推式:()⎪⎪⎩⎪⎪⎨⎧+⎩⎨⎧=>++==++∈}00035.0{min )(0)(11)(55k k k k k k x D u k k x f u u u x x f x f k k k k=4,3,2,1()}00035.0{min )(554444)(44444x f u u u x x f x D u +⎩⎨⎧=>++=∈)(44444354x D x x s x u ∈-=-+=4f (0)=7 4u =4 4f (1)=6.5 4u =3 4f (2)=6 4u =2 4f (3)=5.54u =1 4f (4)=24u =0()}00035.0{min )(443333)(33333x f u u u x x f x D u +⎩⎨⎧=>++=∈)(233343343x D x x x s x u ∈-+=-+= 3f (0) = min {12, 12.5, 13, 13.5, 11} = 11 3u =63f (1) = min {11.5, 12, 12.5, 13, 10.5} = 10.53u =6 3f (2) = min {8, 11.5, 12, 12.5, 10} = 8 3u =0 3f (3) = min {8, 11.5, 12, 9.5} = 8 3u =0 3f (4) = min {8, 11.5, 9} = 83u =0 3f (5) = min {8, 8.5} = 8 3u =0 3f (6) = min {5} = 53u =0()}00035.0{min )(332222)(22222x f u u u x x f x D u +⎩⎨⎧=>++=∈)(322232232x D x x x s x u ∈-+=-+=2f (0) = min {17, 17.5, 16, 17} = 162u =52f (1) = min {16.5, 17, 15.5, 16.5, 17.5} = 15.5 2u =4 2f (2) = min {16, 16.5, 15, 16, 17, 18} = 152u =3 2f (3) = min {12.5, 14, 14.5, 15.5, 16.5, 17.5, 15.5} = 12.52u =0 2f (4) = min {12.5, 14, 15, 16, 17, 15} = 12.52u =0 2f (5) = min {10.5, 14.5, 15.5, 16.5, 14.5} = 10.52u =0 2f (6) = min {11, 15, 16, 14} = 112u =0()}00035.0{min )(221111)(11111x f u u u x x f x D u +⎩⎨⎧=>++=∈)(211121121x D x x x s x u ∈-+=-+= 1f (0) = min {21, 21.5, 22, 20.5, 21.5} = 20.51u =5逆推可得 u={5, 0, 6, 0} x={0, 3, 0, 4}即第1个月生产5单位产品,第4个月生产6单位产品,第2、3月不生产。
动态规划算法的详细原理及使用案例
动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
(完整版)运筹学》习题答案运筹学答案
《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
动态规划算法详解及经典例题
动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。
(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。
⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。
动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。
这样就能够从表中得到原始问题的解。
(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。
关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。
⽽在各阶段中。
⼈们都须要作出⽅案的选择。
我们称之为决策。
⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。
这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。
因为各个阶段可供选择的决策往往不⽌⼀个。
因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。
每⼀个策略都对应地确定⼀种活动的效果。
我们假定这个效果能够⽤数量来衡量。
因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。
经常是⼈们所关⼼的问题。
我们称这种策略为最优策略,这类问题就称为多阶段决策问题。
(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。
在⾼负荷下⽣产时。
产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y 的关系为h=h(y)。
线性规划习题
第一章 线性规划习题1. 将下列线性规划问题变换成标准型,并列出初始单纯形表。
1) min Z =-3x 1+4x 2-2x 3+5x 4s.t.⎪⎪⎩⎪⎪⎨⎧≥≥+-+-≤-++-=-+-.,0,,22321432244321432143214321无约束x x x x x x x x x x x x x x x x 2) max S =z x /p ks.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧==≥=-=-=∑∑∑===).,...,2,1;,...,2,1(0),,...,2,1(1,111m k n i x n i x x a z ik mk ik n i mk ik ik k 2. 分别用单纯法中的大M 法和两阶段法求解下述线性规划问题:min Z =2x 1+3x 2+x 3s.t.⎪⎩⎪⎨⎧≥≥+≥++.0,,,623,82432121321x x x x x x x x 并指出该问题的解属哪一类解。
3. 【表1-6】是某求极大化线性规划问题计算得到单纯形表。
表中无人工变量,a 1, a 2, a 3, d , c 1, c 2为待定常数。
试说明这些常数分别取何值时,以下结论成立。
1) 表中解为唯一最优解;2) 表中解为最优解,但存在无穷多最优解; 3) 该线性规划问题具有无界解;4) 表中解非最优,为对解进行改进,换入变量为x 1,换出变量为x 6。
表1-64. 某饲料厂用原料A 、B 、C 加工成三种不同牌号的饲料甲、乙、丙。
已知各种牌号饲料中A 、B 、C 含量,原料成本,各种原料的每月限制用量,三种牌号的饲料的单位加工费及售价如【表1-7】所示。
表1-7问该厂每月应生产这三种牌号饲料各多少千克,使该厂获利最大?试建立这个问题的的线性规划的数学模型。
5. 考虑下列问题⎩⎨⎧≥≥≤-+=0,01.42)(max 212121x x x x tS x x x f 1) 建立此问题的对偶问题,然后以观察法求出其最优解。
中南大学现代远程教育平台—运筹学课程作业答案
《运筹学》作业答案作业一一、是非题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
(√)2.线性规划问题的每一个基解对应可行解域的一个顶点。
(╳)3.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。
(√)4.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。
(√)5.单纯形法计算中,如果不按最小比值规划选出基变量,则在下一个解中至少有一个基变量的值为负。
(√)6.线性规划问题的可行解如为最优解,则该可行解一定是基可行解。
(╳)7.若线性规划问题具有可行解,且可行解域有界,则该线性规划问题最多具有有限个数的最优解。
(╳)8.对一个有n个变量,m个约束的标准型线性规划问题,其可行域的顶点数恰好为mnC个。
(╳)9.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
(√)10.求Max型的单纯形法的迭代过程是从一个可行解转换到目标函数值更大的另一个可行解。
(√)二、线性规划建模题:1.某公司一营业部每天需从A、B两仓库提货用于销售,需提取的商品有:甲商品不少于240件,乙商品不少于80台,丙商品不少于120吨。
已知:从A仓库每部汽车每天能运回营业部甲商品4件,乙商品2台,丙商品6吨,运费200元/每部;从B仓库每部汽车每天能运回营业部甲商品7件,乙商品2台,丙商品2吨,运费160元/每部。
问:为满足销售量需要,营业部每天应发往A、B两仓库各多少部汽车,并使总运费最少解:设营业部每天应发往A、B两仓库各x1,x2部汽车,则有:12 121212min200160 47240 2280 621200(1,2)jW x xx xx xx xx j=++≥⎧⎪+≥⎪⎨+≥⎪⎪≥=⎩2.现有一家公司准备制定一个广告宣传计划来宣传开发的新产品,以使尽可能多的未来顾客特别是该企业计划用于此项广告宣传的经费预算是80万元,此外要求:①至少有200万人次妇女接触广告宣传;②电视广告费用不得超过50万元, ③电视广告至少占用三个单元一般时间和两个单元黄金时间, ④广播和报纸广告单元均不少于5个单元而不超过10个单元。
离散确定型动态规划问题
5.2 离散确定型动态规划问题1.背包问题设背包可携带物品重量的限度为公斤。
有种物品可供选择装入背包中,已知第种物品每件重量为公斤,其价值是携带数量的函数。
问应如何选择携带物品(各几件),使总价值最大。
设为物品的装入件数,则问题的静态规划模型为:∑==ni i i x c f 1)(max 10且为整数,i=1,2,,nni i ii w x ax =≤≥∑若每件物品最多只能放一件,则为0-1背包问题.a ni i w i x i i c (x )i x i这类问题的动态规划模型为:(1)分阶段:按可装入物品种类划分为个阶段.(2)设变量状态变量:第阶段初背包拥有的装载量。
决策变量:第种物品的装入件数。
允许决策集合为(3)状态转移方程:(4)指标函数:(5)指标递推方程⎩⎨⎧==+=++++0)(,...,2,1 )},()(max{)(1111n n k k k k k k S f n k S f x c S f n k k (){}k k D x |0[/]且为整数=≤≤k k k k x x S w k S k x k+1k k k S = S - w x k k k k k d (S x ) = c (x ),例某车辆的有效载重为10吨,现有3种物品需要运输,相应的重量和价值如表。
问如何选择物品运输,才能使所运物品的价值最大?物品III III重量w345i价值c456i解该问题的静态(线性规划)模型为max f = 4x 1+ 5x2+ 6x33x 1+ 4x2+ 5x3≤10x i≥0 且为整数现用动态规划方法来解.k = 2时S 3x 3f 3(S 3)= c 3 x 30-45-9100120612S 2f 2(S 2)= c 2 x 2+ f 3(S 3)x 2*f 2(S 2)x 2=0x 2=1x 2=2147100+0000+05+0150+65+0060+125+610+012***k = 3 时的允许决策集合为{0, 1, 2},可分为三个区间.3x 3Sk = 1时S 1f 1(S 1)= c 1 x 1+ f 2(S 2)x 1*f 1(S 1)x 1=0x 1=1x 1=2x 1=3100+124+68+512+0最优方案为,最大价值为13.213*123x 2,1,0===x x◆资源分配问题有某种资源,总数为,分配给个使用者。
动态规划算法
21(2+19),28(18+10),19(9+10),21(5+16)。
用同样的方法还可以将4阶数塔问题,变为3阶数塔问题。 …… 最后得到的1阶数塔问题,就是整个问题的最优解。
2.存储、求解: 1) 原始信息存储 原始信息有层数和数塔中的数据,层数用一个整型 变量n存储,数塔中的数据用二维数组data,存储成如
29 19 10
21 4
16
数塔及动态规划过程数据
总结
动态规划=贪婪策略+递推(降阶)+存储递推结果 贪婪策略、递推算法都是在“线性”地解决问题,而动态 规划则是全面分阶段地解决问题。可以通俗地说动态规划是 “带决策的多阶段、多方位的递推算法”。
2、算法框架
1.适合动态规划的问题征
动态规划算法的问题及决策应该具有三个性质:最优 化原理、无后向性、子问题重叠性质。 1) 最优化原理(或称为最佳原则、最优子结构)。 2) 无后向性(无后效性)。 3) 有重叠子问题。
2. 动态规划的基本思想
动态规划方法的基本思想是,把求解的问题分成许多阶 段或多个子问题,然后按顺序求解各子问题。最后一个子问 题就是初始问题的解。
由于动态规划的问题有重叠子问题的特点,为了减少重 复计算,对每一个子问题只解一次,将其不同阶段的不同状 态保存在一个二维数组中。
3. 设计动态规划算法的基本步骤
3、动态规划应用
【例1】 背包问题 给定 n种物品和一个容量为 C的背包,物品 i的重 量是 wi ,其价值为 vi ,背包问题是如何选择装入背包 的物品,使得装入背包中物品的总价值最大?
算法分析
前 i 个物品(1≤i≤n)定义的实例: 物品的重量分别为w1,…,wi, 价值分别为v1,…,vi, 背包的承重量为j(1≤j≤W)。 设V[i,j]为该实例的最优解的物品总价值,也就 是说,是能够放进承重量为j的背包中的前i个物品中 最有价值子集的总价值。 可以把前i个物品中能够放进承重量为j的背包中的 子集分成两个类别: 1、包括第i个物品的子集 2、不包括第i个物品的子集
算法论文:旅行商问题的求解方法(动态规划法和贪心法)讲解
旅行商问题的求解方法摘要旅行商问题(TSP问题)时是指旅行家要旅行n个城市然后回到出发城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。
该问题又称为货郎担问题、邮递员问题、售货员问题,是图问题中最广为人知的问题。
本文主要介绍用蛮力法、动态规划法、贪心法和分支限界法求解TSP问题,其中重点讨论动态规划法和贪心法,并给出相应求解程序。
关键字:旅行商问题;动态规划法;贪心法;分支限界法1引言旅行商问题(TSP)是组合优化问题中典型的NP-完全问题,是许多领域内复杂工程优化问题的抽象形式。
研究TSP的求解方法对解决复杂工程优化问题具有重要的参考价值。
关于TSP的完全有效的算法目前尚未找到,这促使人们长期以来不断地探索并积累了大量的算法。
归纳起来,目前主要算法可分成传统优化算法和现代优化算法。
在传统优化算法中又可分为:最优解算法和近似方法。
最优解算法虽然可以得到精确解,但计算时间无法忍受,因此就产生了各种近似方法,这些近似算法虽然可以较快地求得接近最优解的可行解,但其接近最优解的程度不能令人满意。
但限于所学知识和时间限制,本文重点只讨论传统优化算法中的动态规划法、贪心法和分支限界法,并对蛮力法做简单介绍,用以比较。
2正文2.1蛮力法2.1.1蛮力法的设计思想蛮力法所依赖的基本技术是扫描技术,即采用一定的策略将待求解问题的所有元素一次处理一次,从而找出问题的解。
一次处理所有元素的是蛮力法的关键,为了避免陷入重复试探,应保证处理过的元素不再被处理。
在基本的数据结构中,一次处理每个元素的方法是遍历。
2.1.2算法讨论用蛮力法解决TSP问题,可以找出所有可能的旅行路线,从中选取路径长度最短的简单回路。
如对于图1,我们求解过程如下:(1)路径:1->2->3->4->1;路径长度:18;(2)路径:1->2->4->3->1;路径长度:11;(3)路径:1->3->2->4->1;路径长度:23;(4)路径:1->3->4->2->1;路径长度:11;(5) 路径:1->4->2->3->1;路径长度:18;(6) 路径:1->4->3->2->1;路径长度:18;从中,我们可以知道,路径(2)和(4)路径长度最短。
动态规划法求解生产及存储问题
动态规划一·动态规划法的发展及其研究内容动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。
20世纪50年代初美国数学家,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解创立了解决这类过程优化问题的新方法——动态规划。
1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。
动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。
例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。
二·动态规划法基本概念一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素:1.阶段阶段(stage)是对整个过程的自然划分。
通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。
阶段变量一般用k=1.2….n.表示。
1.状态状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。
它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。
通常还要求状态是可以直接或者是间接可以观测的。
描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。
变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。
用X(k)表示第k阶段的允许状态集合。
n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。
根据演变过程的具体情况,状态变量可以是离散的或是连续的。
动态规划求解方法
动态规划求解方法动态规划(Dynamic Programming)是一种常见的求解优化问题的方法,它通过将问题分解成更小的子问题,并保存子问题的解来降低时间复杂度。
动态规划通常使用一个表格来记录子问题的解,然后根据递推关系计算出更大问题的解。
动态规划的求解方法一般包含以下几个步骤:1.定义问题:首先,需要明确要解决的问题是什么。
动态规划通常适用于求解具有最优子结构性质的问题,即原问题的最优解可以通过一系列子问题的最优解得到。
2.确定状态:接下来,需要确定动态规划的状态。
状态是问题中会变化的量,它包含了问题的关键信息。
在动态规划中,状态可以是一个或多个变量。
3.建立转移方程:然后,需要建立问题的转移方程。
转移方程描述了问题状态之间的关系,用来计算子问题的最优解。
转移方程可以通过观察问题的特点或者使用递推关系得到。
4.确定初始条件:接下来,需要确定边界条件或初始条件。
边界条件是问题中的一些特殊情况,它们通常是一些最小子问题的解。
初始条件是指将边界条件中的解赋值给表格中对应的位置。
5.使用递推关系计算:最后,使用递推关系将表格中的其他位置的解计算出来。
通常,可以使用自底向上的方法,从表格的第一个位置开始计算,依次填充整个表格。
动态规划的优点在于它可以将一个复杂的问题分解成多个子问题,然后通过记录子问题的解来减少重复计算。
这样,可以大大提高求解问题的效率。
动态规划通常适用于求解满足最优化原理和无后效性条件的问题。
最优化原理是指问题的最优解具有递归的结构,即解可以通过子问题的最优解得到。
无后效性条件是指问题的当前状态决定了未来的决策,与过去的决策无关。
动态规划在算法设计和实现中有很多经典的应用,例如最长公共子序列问题、0/1背包问题、最短路径问题等。
下面简要介绍其中的两个经典应用。
1.最长公共子序列问题:给定两个字符串s1和s2,求它们的最长公共子序列。
最长公共子序列是指在两个字符串中以相同的顺序出现的最长的子序列。
动态规划算法详解及应用实例
动态规划算法详解及应用实例动态规划算法是一种常见的解决各种最优化问题的算法。
它适用于很多复杂的问题,如图形分析、路线规划、搜索引擎等等。
本文将详细讲解动态规划算法的基本原理、特点和应用实例,供大家学习和借鉴。
一、动态规划算法基本原理动态规划,简称DP,是一种递推式算法,通过将问题分解成一系列子问题,并按照一定的顺序对子问题进行求解,最终得到问题的最优解。
其主要思想是:当我们在解题时遇到一个问题时,如果能将这个问题划分成若干个与原问题相似但规模更小的子问题,而这些子问题又可以逐一求解,最终将所有子问题的结果汇总起来得到原问题的解,那么这个问题就可以使用动态规划算法解决。
由于动态规划算法中有“最优解”的要求,所以在求解过程中需要涉及到状态转移方程的设计。
状态转移方程是一个数学公式,它描述了一个状态如何从前一个状态转移而来,以及在当前状态下所做的某些决策对下一个状态的影响。
通过不断迭代求解状态转移方程,我们可以得到最优解。
二、动态规划算法的特点1、动态规划是一种自底向上的策略,通常需要维护一个状态表格,记录下每个阶段的最优解,最后汇总起来得到问题的最终解。
2、动态规划通常具有“无后效性”的特点,即求解某个决策问题时,当前状态之后的决策不会影响之前的决策。
因此,在涉及到状态转移时,只需考虑当前状态和以前的状态即可。
3、动态规划通常包含两个要素:最优子结构和重叠子问题。
最优子结构是指一个问题的最优解由其子问题的最优解递推而来,而重叠子问题则是指在递归求解的过程中,同一问题会被反复求解多次,因此需要使用记忆化搜索等技巧,避免重复计算。
4、动态规划算法的时间复杂度通常是O(n^2)或O(n^3),空间复杂度通常也会比较高。
三、应用实例:0-1背包问题0-1背包问题是指在背包容量固定的情况下,如何选择物品才能使得背包装载的价值最大,其中每个物品只能选择一次。
对于此类问题,可以采用动态规划算法进行求解。
首先需要确定问题的状态转移方程,具体如下:设f(i,j)表示在前i个物品中,当背包的容量为j时,能够装载的最大价值,那么状态转移方程为:f(i,j)=max{f(i-1,j), f(i-1,j-wi)+vi}其中,wi表示第i个物品的重量,vi表示第i个物品的价值。
线性规划习题
第一章线性规划习题1. 将下列线性规划问题变换成标准型,并列出初始单纯形表1) min — 3xi+ 4X2 — 2X3 + 5X4kJXik AO (i=1,2,…,n; k = 12…,rn).2. 分别用单纯法中的大M 法和两阶段法求解下述线性规划问题:mi nZ 二 2xi + 3x2+ X3Xi 4X2 2X3-8, s.t. (3X I +2X 2X6,X I ,X2,X A0.并指出该问题的解属哪一类解。
3.【表1-6]是某求极大化线性规划问题计算得到单纯形表。
表中无人工变量, as, a 2, as, d 5 Ci, C2为待定常数。
试说明这些常数分别取何值时,以下结论成立。
1) 表中解为唯一最优解;2) 表中解为最优解,但存在无穷多最优解; 3) 该线性规划问题具有无界解;4) 表中解非最优,为对解进行改进,换入变量为* ,换出变量为Xe 。
表1-6基b Xi X2 X3 X4 X5 Xe X3 d 4 ai 1 0 a2 0 X4 2 —1 —3 0 1 1 0 X63a3 -5 0 0 -4 1CiC2—34. 某饲料厂用原料ABC 加工成三种不同牌号的饲料甲、乙、丙。
已知各 种牌 号饲料中ABC 含量,原料成本,各种原料的每月限制用量,三种牌号的饲 料的单位加工费及售价如【表1・7】所示。
2) maxS 二 zx/ pk4Xi-X?+2X3-X4 = —2捲 + X2 +3X3 — X4 兰 14-2X A 1 +3X2 - X3 +2X4 兰 2、X1,X2,X AO, X4 无约束•a xik iki=1 k」S.t. j 一x —原料成本(元/千克)问该厂每月应生产这三种牌号饲料各多少千克,使该厂获利最大?试建立这 个问题的的线性规划的数学模型。
5. 考虑下列问题max f (x)二 2xi 4x2为一' X2兰1 为3 0, X2色0D 建立此问题的对偶问题,然后以观察法求出其最优解。
运筹学 考题与答案
一、填空题:1. 表1中给出某线性规划问题计算过程中的一个单纯形表,目标函数为654228max x x x z ++=,约束条件为≤,表中321,,x x x 为松弛变量,表中解的目标函数值为14=z 。
(1)a =______,b =______,c =______,d =______,e =______,f =______,g =______; (2)表中给出的解为___________(提示:最优解,满意解,可行解……)。
2.在单纯形法的计算中,按照最小比值θ来确定换出基的变量时,有时出现存在两个以上相同的最小比值,从而出现_______现象。
3.使用动态规划方法解决多阶段决策问题,首先要将实际问题写成动态规划模型,此时要用到5个概念:_______、_______、_______、状态转移方程和指标函数。
二、判断题1.图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
( )2.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解;反之,当对偶问题无可行解时,其原问题具有无界解。
( )3.运输问题时一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:唯一最优解、无穷多最优解、无界解、无可行解。
( )4.动态规划中,定义状态时应保证在各个阶段中所作决策的相互独立性。
( )5.求图的最小支撑树以及求图中一点至另一点的最短路问题,都可以归结为求解整数规划问题。
( )三、简答题1.简述影子价格的经济意义。
2.简述不确定型决策方法中的悲观准则。
四、计算题1.用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解或无可行解。
(8分)⎪⎩⎪⎨⎧≥≥+≥++=0,5.14312.46min 21212121x x x x x x st x x z 2.已知表2为求解某线性规划问题的最终单纯形表,表中4x ,5x 为松弛变量,问题的约束为≤形式。
动态规划法-回溯法-分支限界法求解TSP问题实验报告
for(int i=1;i<=n;i++)
vis[i]=x[i];
ans=cur+mp[x[n-1]][x[n]]+mp[x[n]][1];
}
}
else
{
for(int i=t;i<=n;i++)
{
if(mp[x[t-1]][x[i]]!=-1&&(cur+mp[x[t-1]][x[i]]<ans||ans==-1))
一般情况下,假设当前已确定的路径为U=(r1,r2,…,rk),即路径上已确定了k个顶点,此时,该部分解的目标函数值的计算方法(限界函数)如下:
Lb=(2∑c[ri][r(i+1)]+∑ri行不在路径上的最小元素+∑ri行最小的两个元素)/2
算法设计
输入:图G=(V,E)
输出:最短哈密顿回路
1、根据限界函数计算目标函数的下界down;采用贪心法得到上界up;
算法设计
输入:图的代价矩阵mp[n][n]
输出:从顶点0出发经过所有顶点一次且仅一次再回到顶点0的最短路径长度
1.初始化第0列(动态规划的边界问题)
for(i=1;i<n;i++)
dp[i][0]=mp[i][0]
2.依次处理每个子集数组x[2^n-1]
for(i=1;i<n;i++)
if(子集x[j]中不包含i)
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
using namespace std;
数塔问题
4 动态规划的算法实现逆序法
原始信息存储
59 50 49 38 34 29 21 28 19 21
层数用整型变量n存储;
19 7 10 4 16
数塔中的数据用二维数组data[ ][ ]存储,下三角阵。
能够体现动态规划优点的性质:
子问题重叠性质; 动态规划用空间换取时间,在有大量重叠子问题
的时候其优势才能充分体现出来。
5 -适合解决的问题的性质-数塔问题
最优化原理(最优子结构)
9->12->10->18->10
显然12->10->18->10也是12到最后一层的最大
无和后…效…性
if (a[i+1][j][2]>a[i+1][j+1][2]) { a[i][j][2]=a[i][j][2]+a[i+1][j][2]; a[i][j][3]=0;}
else { a[i][j][2]=a[i][j][2]+a[i+1][j+1][2]; a[i][j][3]=1;}
print('max=’,a[1][1][2]);
解。
设计一个标准的动态规划算法的步骤:
1) 划分阶段; 2) 选择状态; 3) 确定决策并写出状态转移方程。
实际应用当中的简化步骤:
1) 分析最优解的性质,并刻划其结构特征。 2) 递推地定义最优值。 3) 以自底向上的方式或自顶向下的记忆化方法(备忘
录法)计算出最优值。 4) 根据计算最优值时得到的信息,构造问题的最优
数组存放下三角数据 9 12 15 10 6 8 2 18 9 5 19 7 10 4 16
动态规划_多阶段决策问题的求解方法
动态规划_多阶段决策问题的求解方法1.构造状态网络; :一:解决多阶段决策最优化的过程为动态规划方法在程序设计中,有一类活动的过程,由于它的特殊性,可将过程2.根据状态转移关系和状态转移方程建立最优值的分成若干个互相联系的阶段,在它的每一阶段都需要做出决策,从而3.按阶段的先后次序计算每个状态的最优值。
使整个过程达到最好的活动效果。
因此各个阶段决策的选取不能任逆向思维法是指从问题目标状态出发倒推回初始意确定,它依赖于当前面临的状态,又影响以后的发展。
当各个阶段态的思维方法。
动态规划的逆向思维法的要点可归纳为以决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条 1.分析最优值的结构,刻画其结构特征; 活动路线。
这种把一个问题看作是一个前后关联具有链状结构的多 2.递归地定义最优值; 阶段过程就称为多阶段决策过程,这种问题称为多阶段决策问题。
3.按自底向上或自顶向下记忆化的方式计算最优在多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列如果原问题可以分解成几个本质相同、规模较小的就是在变化的状态中产生出来的,故有"动态"的含义,我们称这种就会联想到从逆向思维的角度寻求问题的解决。
一般解决多阶段决策最优化的过程为动态规划方法。
策问题多采用动态规划逆向思维方法解决。
二、举:二:动态规划最优化原理 pascal 语例说明本文以信息学奥赛用语言——最优化原理是动态规划的基础。
任何一个问题,如果失去了这言为编程个最优化原理的支持,就不可能用动态规划方法计算。
这个“最优化说明,其他编程语言编写方法相同,语句类似。
原理”如果用数学化一点的语言来描述的话,就是:假设为了解决某 :一:问题描述一优化问题,需要依次作出 n 个决策 D1,D2,,Dn,如若这个决策设有 N 个不相同的整数组成的数列,记为: 序列是最优的,对于任何一个整数 k,1 < k < n,不论前面 k 个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即 ()且 ?? a1 a2 an aiajij以后的决策 Dk+1,Dk+2,,Dn 也是最优的。
运筹学部分试题
三(20分)、考虑下列线性规划:
1(7分)、化标准形式,求最优解;
2(4分)、写出最优基 和它的逆 ;
3(2分)、求此线性规划的对偶问题的最优解;
4(2分)、试求 在什么范围内,此线性规划的最优解不变;
5(5分)、若 变为45,最优解及最优值是什么。
C、有最优解????????????????? D、有可行解
3、资源的影子价格是一种(????? )。
??????? A、机会成本??? B、市场价格????? C、均衡价格??? D、实际价格
4、检验运输方案的闭合回路法中,该回路含有(????? )个空格为顶点。
??????? A、4个??????? B、2个??????????? C、1个??????? D、3个
四(10分)、已知线性规划问题:
1(5分)、写出对偶问题;
2(5分)、已知原问题的最优解为 ,求对偶问题的最优解。
五(13分)、已知运输问题的运价表及初始方案如下:
Bj
Cij
AiB1B2B3B4
Bj
Xij
AiB1B2B3B4
A1512411A110616
A221039A28210
A385116A314822
7、在网络图中,关键线路是指各条线路中作业总时间(????? )的一条线路。
??????? A、最短??????? B、中间??????? C、成本最小????? D、最长
8、具有n个顶点的树的边数是(????? )。
??????? A、n个???????? B、n -1个????? C、n+1个????? D、n+2个
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题动态规划是一种常用的优化方法,可以用来求解线性规划问题。
线性规划是一种数学建模方法,用于在给定的一组约束条件下,寻觅使目标函数最大(或者最小)的变量值。
本文将介绍动态规划方法在解决线性规划问题中的应用。
一、线性规划问题的定义和形式线性规划问题可以用下列形式来描述:目标函数:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中,c₁、c₂、...、cₙ为目标函数的系数,x₁、x₂、...、xₙ为变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的常数。
目标是找到使目标函数最大(或者最小)的变量值。
二、动态规划方法求解线性规划问题的基本思想动态规划方法可以将线性规划问题转化为一个多阶段决策问题,并通过递推的方式求解最优解。
具体步骤如下:1. 将线性规划问题转化为标准形式:将不等式约束转化为等式约束,并引入松弛变量。
2. 构建动态规划模型:定义状态和状态转移方程。
3. 初始化:确定初始状态和初始条件。
4. 递推求解:根据状态转移方程,逐步计算得到最优解。
5. 回溯得到最优解:根据递推过程中记录的状态,回溯得到最优解。
三、动态规划方法求解线性规划问题的具体步骤1. 将线性规划问题转化为标准形式:将不等式约束转化为等式约束,并引入松弛变量。
例如,将约束条件 a₁₁x₁ + a₁₂x₂ ≤ b₁转化为 a₁₁x₁ + a₁₂x₂ + x₃ = b₁,其中 x₃为松弛变量。
2. 构建动态规划模型:定义状态和状态转移方程。
定义状态:设 f(i,j) 表示前 i 个约束条件中,使得目标函数最大(或者最小)的变量值。
状态转移方程:f(i,j) = max/min { f(i-1,j), f(i-1,j-aᵢ₋₁₁x₁ - aᵢ₋₁₂x₂) +cᵢ₋₁x₁ + cᵢ₋₁x₂ }其中,f(i-1,j) 表示不使用第 i 个约束条件时的最优解,f(i-1,j-aᵢ₋₁₁x₁ -aᵢ₋₁₂x₂) + cᵢ₋₁x₁ + cᵢ₋₁x₂表示使用第 i 个约束条件时的最优解。