大学物理第九章热力学基础历年考题
最新第9章热力学(习题、答案)文件.doc
大学物理Ⅱ习题集第9 章热力学基础一. 基本要求1. 理解平衡态、准静态过程的概念。
2. 掌握内能、功和热量的概念。
3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。
4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。
5. 了解可逆过程与不可逆过程的概念。
6. 解热力学第二定律的两种表述,了解两种表述的等价性。
7. 理解熵的概念,了解热力学第二定律的统计意义及无序性。
二. 内容提要1. 内能功热量内能从热力学观点来看,内能是系统的态函数,它由系统的态参量单值决定。
对于理想气体,其内能 E 仅为温度T 的函数,即EM M iC TVMmolM 2molRT当温度变化ΔT 时,内能的变化EM M iC TVM Mmol 2molR T功热学中的功与力学中的功在概念上没有差别,但热学中的作功过程必有系统边界的移动。
在热学中,功是过程量,在过程初、末状态相同的情况下,过程不同,系统作的功 A 也不相同。
系统膨胀作功的一般算式为A V2V1pdV在p—V 图上,系统对外作的功与过程曲线下方的面积等值。
热量热量是系统在热传递过程中传递能量的量度。
热量也是过程量,其大小不仅与过程、的初、末状态有关,而且也与系统所经历的过程有关。
2. 热力学第一定律系统从外界吸收的热量,一部分用于增加内能,一部分用于对外作功,即Q E A热力学第一定律的微分式为1大学物理Ⅱ习题集dQ dE pdV3. 热力学第一定律的应用——几种过程的A、Q、ΔE的计算公式(1)等体过程体积不变的过程,其特征是体积V =常量;其过程方程为1pT常量在等体过程中,系统不对外作功,即 A 0。
等体过程中系统吸收的热量与系统内V能的增量相等,即R TM M iQ E C TV 2VM Mmol mol(2) 等压过程压强不变的过程,其特点是压强p =常量;过程方程为1VT常量在等压过程中,系统对外做的功MV 2APd ( ) R(T T )p V p V VV1 2 1 2 1MmolM系统吸收的热量( 2 T )Q C TP P 1Mmol式中C C RP 为等压摩尔热容。
大学物理热力学基础习题与解答(课堂PPT)
Q 1152 16 8.31 400 ln V2
32
V1
V2 0.5V1 p2 2 p1
12
4.一定量的氧气,经绝热压缩过程,体积变为
原来的五分之一,若初始温度为 27C ,压强为
1 atm ,则压缩后的压强为 9.52 atm,温度
为 571 K。
pV C
1V 1.4 p V 1.4 5
(A) AB 过程 (B)AC 过程 (C) AD 过程 (D)不能确定
Q ΔE W QAD 0 EAC 0
[A ]
6
6. 根据热力学第二定律判断下列哪种说法是 正确的:
(A)热量能从高温物体传到低温物体,但不能 从低温物体传到高温物体;
(B)功可以全部变为热,但热不能全部变为功; (C)气体能够自由膨胀,但不能自由压缩; (D)有规则运动的能量能够变为无规则运动的能
V
9
填空题 1. 要使一热力学系统的内能增加,可以通过
做功 或 传热 两种方式,或者两种 方式兼用来完成。理想气体的状态发生变 化时,其内能的增量只决定于
温度的变化 ,而与 过程 无关。
10
2 .一气缸内储有 10 mol 单原子分子理想气体,
在压缩过程中,外力做功 209 J,气体温度升高 1
c
T1
400
d
300
400
T(16K)
8. 一卡诺热机在每次循环中都要从温度为
400 K 的高温热源吸热 418 J ,向低温热源放
热 334.4 J ,低温热源的温度为 320 K 。如
果将上述卡诺热机的每次循环都逆向地进行,
从原则上说,它就成了一部致冷机,则该逆向
卡诺循环的致冷系数为 4
《大学物理》热力学基础 自学练习题
《大学物理》热力学基础 自学练习题9-1下列表述是否正确?为什么?并将错误更正. (1)A E Q ∆+∆=∆ (2)⎰+=V p E Q d(3)121Q Q -≠η (4)121Q Q -<不可逆η 解:(1)不正确,A E Q +∆=(2)不正确, ⎰+=V p E Q d Δ(3)不正确,121Q Q -=η (4)不正确,121Q Q -=不可逆η 9-2 V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高?答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关.9-3 如题7-3图所示,有三个循环过程,指出每一循环过程所作的功是正的、负的,还是零,说明理由.解:各图中所表示的循环过程作功都为0.因为各图中整个循环分两部分,各部分面积大小相等,而循环方向一个为逆时针,另一个为顺时针,整个循环过程作功为0.题7-3图9-4 用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两 个交点.题7-4图解:1.由热力学第一定律有A E Q +∆= 若有两个交点a 和b ,则 经等温b a →过程有0111=-=∆A Q E 经绝热b a →过程012=+∆A E 022<-=∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.2.若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 9-5 一循环过程如题7-5图所示,试指出: (1)ca bc ab ,,各是什么过程; (2)画出对应的V p -图;(3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数. 解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率 由vRT pV = 得KvR p =故bc 过程为等压过程 ca 是等温过程(2)V p -图如题57'-图题57'-图(3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形.(5) abca bc abQ Q Q Q e -+=题7-5图 题7-6图9-6 两个卡诺循环如题7-6图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同. 9-7 评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程. 答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功; (2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是 可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程 虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 9-8 热力学系统从初平衡态A 经历过程P 到末平衡态B .如果P 为可逆过程,其熵变为 :⎰=-BA AB T Q S S 可逆d ,如果P 为不可逆过程,其熵变为⎰=-B A A B T Q S S 不可逆d ,你说对吗?哪一个表述要修改,如何修改?答:不对.熵是状态函数,熵变只与初末状态有关,如果过程P 为可逆过程其熵变为:⎰=-BA AB TQ S S 可逆d ,如果过程P 为不可逆过程,其熵变为⎰>-BA AB TQ S S 不可逆d9-10 如题7-10图所示,一系统由状态a 沿acb 到达状态b 的过程中,有350 J 热量传入系统,而系统作功126 J .(1)若沿adb 时,系统作功42 J ,问有多少热量传入系统?(2)若系统由状态b 沿曲线ba 返回状态a 时,外界对系统作功为84 J ,试问系统是吸热还是放热?热量传递是多少?题7-10图解:由abc 过程可求出b 态和a 态的内能之差 A E Q +∆=224126350=-=-=∆A Q E Jabd 过程,系统作功42=A J26642224=+=+∆=A E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=A E Q J 系统放热9-11 1 mol 单原子理想气体从300 K 加热到350 K ,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功? (1)体积保持不变; (2)压力保持不变. 解:(1)等体过程由热力学第一定律得E Q ∆=吸热 )(2)(1212V T T R iT T C E Q -=-=∆=υυ 25.623)300350(31.823=-⨯⨯=∆=E Q J 对外作功 0=A(2)等压过程)(22)(1212P T T R i T T C Q -+=-=υυ 吸热 75.1038)300350(31.825=-⨯⨯=Q J )(12V T T C E -=∆υ 内能增加 25.623)300350(31.823=-⨯⨯=∆E J对外作功 5.4155.62375.1038=-=∆-=E Q A J 9-12 一个绝热容器中盛有摩尔质量为mol M ,比热容比为γ的理想气体,整个容器以速度v 运动,若容器突然停止运动,求气体温度的升高量(设气体分子的机械能全部转变为内能).解:整个气体有序运动的能量为221mu ,转变为气体分子无序运动使得内能增加,温度变化2V 21mu T C M m E =∆=∆ )1(211212mol V 2mol -==∆γu M RC u M T 9-13 0.01 m 3氮气在温度为300 K 时,由0.1 MPa(即1 atm)压缩到10 MPa .试分别求氮气经等温及绝热压缩后的(1)体积;(2)温度;(3)各过程对外所作的功. 解:(1)等温压缩 300=T K 由2211V p V p = 求得体积 3211210101.0101-⨯=⨯==p V p V 3m 对外作功21112ln lnp pV p V V VRT A == 01.0ln 01.010013.115⨯⨯⨯⨯=31067.4⨯-=J(2)绝热压缩R C 25V =57=γ 由绝热方程 γγ2211V p V p = γγ/12112)(p V p V =1121/12112)()(V p pp V p V γγγ==3411093.101.0)101(-⨯=⨯=m 由绝热方程γγγγ---=22111p T p T 得K 579)10(30024.04.1111212=⨯==--T p p T T γγγγ热力学第一定律A E Q +∆=,0=Q 所以 )(12molT T C M MA V --= RT M MpV mol =,)(2512111T T R RT V p A --= 35105.23)300579(25300001.010013.1⨯-=-⨯⨯⨯⨯-=A J9-14 理想气体由初状态),(11V p 经绝热膨胀至末状态),(22V p .试证过程中气体所作的功为12211--=γV p V p A ,式中γ为气体的比热容比.答:证明: 由绝热方程C V p V p pV ===γγγ2211 得γγVV p p 111= ⎰=21d V V V p A⎰-----==21)11(1d 11121111V V r V V V p v v V p A γγγγγ]1)[(112111---=-γγV V V p 又 )(1111211+-+----=γγγγV V V p A112221111--=+-+-γγγγγV V p V V p所以 12211--=γV p V p A9-15 1 mol 的理想气体的T-V 图如题7-15图所示,ab 为直线,延长线通过原点O .求ab 过程气体对外做的功.题7-15图解:设KV T =由图可求得直线的斜率K 为 02V T K =得过程方程 V V T K 02=由状态方程 RT pV υ= 得 VRTp υ=ab 过程气体对外作功⎰=02d V v V p A⎰⎰⎰====00000020002202d 2d 2d V V V v V V RTV V RT VV V T V R V V RT A9-16 某理想气体的过程方程为a a Vp ,2/1=为常数,气体从1V 膨胀到2V .求其所做的功.解:气体作功⎰=21d V v V p A⎰-=-==-2121)11()(d 2121222V V V V V V a V a V V a A 9-17 设有一以理想气体为工质的热机循环,如题7-17图所示.试证其循环效率为1112121---=p p VV γη 答:等体过程吸热 )(12V 1T T C Q -='υ)(1221V 11RV p R V p C Q Q -='= 绝热过程 03='Q 等压压缩过程放热 )(12p 2T T C Q -='υ )(12P 22T T C Q Q --='=υ )(2212P RV p R V p C -= 循环效率 121Q Q -=η )1/()1/(1)()(1121212221V 2212p 12---=---=-=p p V p V p C V p V p C Q Q ννγηη题7-17图 题7-19图****************************************************************************** 9-1 一系统由图示的状态a 经acd 到达状态b ,系统吸收了320J 热量,系统对外作功126J 。
(完整word版)大学物理学热力学基础练习题
《大学物理学》热力学基础一、选择题13-1.如图所示,bca 为理想气体的绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是 ( )(A )b 1a 过程放热、作负功,b 2a 过程放热、作负功; (B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功; (C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功; (D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。
【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+∆知b 2a 过程放热,b 1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B ,且他们的压强相等,即A B P P =。
问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然 ( ) (A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。
【提示:由于A B T T <,必有A B E E <;而功、热量是 过程量,与过程有关】13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。
【提示:等体过程不做功,有Q E =∆,而2mol M iE R T M ∆=∆,所以需传5J 】13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是( )A ()C ()B ()D ()【提示:(A) 绝热线应该比等温线陡,(B )和(C )两条绝热线不能相交】13-5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功( )(A )2000J ; (B )1000J ; (C )4000J ; (D )500J 。
物理化学各章总结及习题解答(天津大学) 第九章_统计热力学基础
第九章统计热力学基础一、基本公式玻尔兹曼公式:Ωk S ln =玻尔兹曼分布:∑--=ikTi kTi i e g e g N n //εε两个能级上的粒子数之比kT j kTi j i ji e g e g n n //εε--=分子的配分函数:kT ii ie g q /ε-∑=(能级求和)kTjj eq /ε-∑=(量子态求和)能级能量公式:平动⎪⎪⎭⎫ ⎝⎛++=22222228c n b n a n m h z y x i ε转动Ih J J r 228)1(πε+=振动νεh v v⎪⎭⎫⎝⎛+=21平动配分函数:一维L h mkT q t 2122⎪⎭⎫ ⎝⎛=π;二维A h mkT q t ⎪⎭⎫ ⎝⎛=22π;三维Vh mkT q t 2322⎪⎭⎫ ⎝⎛=π转动配分函数:线型分子rr ΘTh IkT q σσπ==228,转动特征温度Ik h Θr 228π=非线型分子zy x r I I I hkT q 3232)2(8σππ=振动配分函数:双原子分子T ΘTΘkT h kT h v v v e e e e q /2//2/11-----=-=νν,振动特征温度v Θh h ν多原子线型∏-=---=531/2/1n i kTh kT h v i ie e q νν多原子非线型∏-=---=631/2/1n i kT h kTh v iie e q νν电子运动配分函数kTe e j q /0)12(ε-+=原子核运动配分函数kT n e e S q /0)12(ε-+=热力学函数与配分函数的关系N q kT A ln -=(定位)!ln N q kT A N -=(非定位)N V N T q NkT q k S ,ln ln ⎪⎭⎫ ⎝⎛∂∂+=(定位)N V N T q NkT N q k S ,ln !ln ⎪⎭⎫ ⎝⎛∂∂+=(非定位)N T N V q NkTV q kT G ,ln ln ⎪⎭⎫ ⎝⎛∂∂+-=(定位)N T N V q NkTV N q kT G ,ln !ln ⎪⎭⎫ ⎝⎛∂∂+-=(非定位)NV T q NkT U ,2ln ⎪⎭⎫ ⎝⎛∂∂=N T N V V q NkTV T q NkT H ,,2ln ln ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=NT T q NkT p ,ln ⎪⎭⎫ ⎝⎛∂∂=VN V V T q NkT T c ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂=,2ln 4.设有一个极大数目的三维平动子组成的粒子体系,运动于边长为a 的立方容器中体系的体积、粒子质量和温度有如下关系:kT ma h 10.0822=,求处于能级22149ma h =ε和222427mah =ε上粒子数目的比值是多少?解:kTkTe g e g n n 212121εε--=kT ma h ma h 8.18184922221===ε18222=++z y x n n n 31=g kT ma h 7.2827221==ε42=g 84.1437.28.121==--e e n n 5.将N 2气在电弧中加热,从光谱中观察到处于第一激发振动态的相对分子数26.001===ννN N ,式中ν为振动量子数N ν=0为基态占有的分子数,N ν=1为第一激发振动态占有的分子数,已知N 2的振动频率ν=6.99×1013s -1。
热力学基础试题及答案
热力学基础试题及答案一、选择题(每题2分,共20分)1. 热力学第一定律指出能量守恒,下列哪项描述是正确的?A. 能量可以被创造或消灭B. 能量可以从一个物体转移到另一个物体C. 能量可以在封闭系统中增加或减少D. 能量总是从高温物体流向低温物体答案:B2. 熵是热力学中描述系统无序度的物理量,下列哪项描述是正确的?A. 熵是一个状态函数B. 熵是一个过程函数C. 熵只与系统的温度有关D. 熵只与系统的压力有关答案:A3. 理想气体状态方程为PV=nRT,其中P代表压力,V代表体积,n代表摩尔数,R代表气体常数,T代表温度。
下列哪项描述是错误的?A. 理想气体状态方程适用于所有气体B. 在恒定温度下,气体的体积与压力成反比C. 在恒定压力下,气体的体积与温度成正比D. 在恒定体积下,气体的压力与温度成正比答案:A4. 热力学第二定律指出热量不能自发地从低温物体传递到高温物体,下列哪项描述是正确的?A. 热量总是从高温物体流向低温物体B. 热量可以在没有外界影响的情况下从低温物体流向高温物体C. 热量可以在外界做功的情况下从低温物体流向高温物体D. 热量可以在没有外界做功的情况下从低温物体流向高温物体答案:C5. 卡诺循环是理想化的热机循环,其效率只与热源和冷源的温度有关。
下列哪项描述是错误的?A. 卡诺循环的效率与工作介质无关B. 卡诺循环的效率与热源和冷源的温度差有关C. 卡诺循环的效率与热源和冷源的温度成正比D. 卡诺循环的效率在所有循环中是最高的答案:C6. 根据热力学第三定律,下列哪项描述是正确的?A. 绝对零度是可以达到的B. 绝对零度是不可能达到的C. 绝对零度下所有物质的熵为零D. 绝对零度下所有物质的熵为负值答案:B7. 热力学中的吉布斯自由能(G)是用来描述在恒温恒压条件下系统自发进行变化的能力。
下列哪项描述是错误的?A. 吉布斯自由能的变化(ΔG)是负值时,反应自发进行B. 吉布斯自由能的变化(ΔG)是正值时,反应非自发进行C. 吉布斯自由能的变化(ΔG)是零时,系统处于平衡状态D. 吉布斯自由能的变化(ΔG)与系统的温度和压力无关答案:D8. 相变是指物质在不同相态之间的转变,下列哪项描述是错误的?A. 相变过程中物质的化学性质不变B. 相变过程中物质的物理性质会发生变化C. 相变过程中物质的熵值不变D. 相变过程中物质的体积可能会发生变化答案:C9. 热力学中的临界点是指物质的气液两相在该点的物理性质完全相同。
大学物理同步训练第09章热力学基础
第九章 热力学基础一、选择题1. 如图1所示,一定量的理想气体,由平衡状态A 变到平衡状态B (p A =p B ),则无论经过的是什么过程,系统必然(A )对外做正功(B )内能增加 (C )从外界吸热(D )向外界放热答案:B分析:功和热量为过程量,其大小、正负与过程有关,故A 、C 、D 选项错误;内能(温度)为状态量,与过程无关。
由图可知,B 点内能高于A 点(由内能公式E =ipV 2⁄可得,式中i 为气体分子自由度,见《气体动理论》选择题1)。
2. 对于室温下的单原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比W Q ⁄等于(A )23⁄(B )12⁄ (C )25⁄ (D )27⁄ 答案:C分析:由等压过程公式∆Q:∆E:∆W =(i +2):i:2可得W Q ⁄=2(3+2)=25⁄⁄。
3. 压强、体积、温度都相等的常温下的氧气和氦气,分别在等压过程中吸收了相等的热量,它们对外做的功之比为(A )1:1(B )5:9 (C )5:7 (D )9:5 答案:C分析:(参考选择题2)可得∆W =2i +2∆Q → ∆W O 2∆W He =2∆Q (i O 2+2)⁄2∆Q (i He +2)⁄=3+25+2=57 关于自由度i 可参考《气体动理论》选择题1。
4. 在下列理想气体过程中,哪些过程可能发生?(A )等体积加热时,内能减少,同时压强升高(B )等温压缩时,压强升高,同时吸热(C )等压压缩时,内能增加,同时吸热(D )绝热压缩时,压强升高,同时内能增加答案:D分析:热力学第一定律∆Q =∆E +∆W (其中∆Q 为系统吸收的热量,∆E 为系统内能的增量,∆W 为系统对外所做的功)。
等体过程,∆W =0,吸收热量∆Q >0,则∆E >0,系统内能增加,故A 错误;等温压缩,∆W <0,温度不变即∆E =0,故∆Q <0,系统放热,故B 错误;等压压缩,∆W <0,由等压过程公式(见选择题2)可知∆E <0,∆Q <0,系统内能减小,且系统放热,故C 错误;绝热压缩时,∆Q =0,∆W <0,故∆E >0,系统内能增加,由绝热过程曲线可知压强升高,故D 正确。
大学物理-第九章(热力学基础)习题标准答案
大学物理-第九章(热力学基础)习题标准答案大学物理2-1第九章(热力学基础)习题答案————————————————————————————————作者:————————————————————————————————日期:习题九9-1 一系统由图示的状态a 经acd 到达状态b ,系统吸收了320J 热量,系统对外作功126J 。
(1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少?[解] 由热力学第一定律A E Q +?= 得 A Q E -=?在a在ba 过程中 J A E A E E Q b a 27884194333-=--=+?-=+-= 本过程中系统放热。
9-2 2mol 氮气由温度为300K ,压强为510013.1?Pa (1atm)的初态等温地压缩到 510026.2?Pa(2atm)。
求气体放出的热量。
[解] 在等温过程中气体吸收的热量等于气体对外做的功,所以J P P RT M m A Q mol T 3211046.321ln 30031.82ln ?-==== 即气体放热为J 31046.3?。
9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V 图上的一条过原点的直线,如图所示。
试证此直线表示等压过程。
[证明] 设此直线斜率为k ,则此直线方程为kv E =又E 随温度的关系变化式为T k T C M ME v mol'=?= 所以T k kV '= 因此C kk T V ='=(C 为恒量) 又由理想气体的状态方程知,C TpV'= (C '为恒量) 所以 p 为恒量即此过程为等压过程。
9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径。
(2)1→2直线。
《大学物理》热力学基础练习题及答案解析
《大学物理》热力学基础练习题及答案解析一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、从增加内能来说,做功和热传递是等效的。
但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。
4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。
”此说法对吗? 为什么?答:不对。
对外做功,则内能减少,温度降低。
5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。
V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。
答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。
不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。
摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。
两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
8、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。
大学物理热力学基础习题
2
b
c
1
a
d
2
3
V (× 10 −2 m3 )
(2)气体循环一次做的净功为图中矩形面积 气体循环一次做的净功为图中矩形面积
W = Pb (Vc − Vb ) − Pd (Vd − Va ) = 100 J
P (×105 Pa)
2
b
c
1
a
d
2
3
V (× 10 −2 m3 )
(3)证明 aTc=TbTd 证明T 证明
6.一定量某理想气体所经历的循环过程是: 一定量某理想气体所经历的循环过程是: 一定量某理想气体所经历的循环过程是 从初态( 开始, 从初态(V0,T0)开始,先经绝热膨胀使 其体积增大 1 倍,再经等容升温回复到初 态温度 T0,最后经等温过程使其体积回复 则气体在此循环过程中: 为 V0,则气体在此循环过程中: (A)对外作的净功为正值; )对外作的净功为正值; (B)对外作的净功为负值; )对外作的净功为负值; (C)内能增加了; )内能增加了; (D)从外界净吸的热量为正值。 )从外界净吸的热量为正值。 [B]
解:(1)第二个循环热机的效率 )
W T2 η= =1− T1 Q1
T2 ∴ Q1 = W 1 − T1
−1
Q 2 T2 且 = Q1 T1
T2 T2 T2 W 即 Q2 = 1 − ⋅ W = T1 − T2 T1 T1
= 2.4 × 10 J
4
又:第二个循环所吸的热 Q1 ' = W1 '+Q2 ' = W '+Q2
b
V1
c
V2 V
在 ca 的过程
大学物理热力学基础习题与解答 PPT
QAB
m M
CP (TB
TA )
8 V/m3
5 2
( pBVB
p AVA )
14.9 105 J
全过程:Q QBC QAB 14.9 10 5 J 由图得, TA TC
E 0
W Q E 14.9105 J
3. 图所示,有一定量的理想气体,从初状态 a
3 4
ln
4
p1V1
净热量为
Q
W
3 4
ln
4
p1V1
4. 设燃气涡轮机内的理想气体作如图所示的循环过程, 其中 1 2 ,3 4 为绝热过程;2 3 ,4 1 为 等压过程,证明此循环的效率为
1
1 p1 p2
解:在等压过程中吸热为
T3
p2
由上述二式得: T1 T4 T4 T1 T2 T3 T3 T2
从而证得循环的效率为
1
1 T1
T2
1
p1 p2
[B ]
8. 如图,一卡诺机由原来采用循环过程 a b c d a
改为采用循环过程 ab' c' da ,则循环过程 的
(A)净功增大,效率提高; (B)净功增大,效率降低; (C)净功和效率都不变; (D)净功增大,效率不变
Wabcd Wab'c' d
1 T2
T1
[D]
p a
b b
E E3 E4 1246 .5 J
2. 一定量的单原子分子理想气体,从A态出发经过等压过 程膨胀到B态,又经过绝热过程膨胀到C态,如图所示。 试求这全过程中,该气体对外所做的功、内能的增量以及 吸收的热量。
大学物理2-1第九章(热力学基础)习题答案
大学物理2-1第九章(热力学基础)习题答案习 题 九9-1 一系统由图示的状态a 经acd 到达状态b ,系统吸收了320J 热量,系统对外作功126J 。
(1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少?[解] 由热力学第一定律A E Q +∆= 得AQ E -=∆在a <b 过程中,E E E a b∆=-JA Q 19412632011=-=-= 在adb 过程中 JA E Q 236421942=+=+∆=在ba 过程中 JA E A E E Q b a 27884194333-=--=+∆-=+-=本过程中系统放热。
9-2 2mol 氮气由温度为 300K ,压强为510013.1⨯Pa(1atm)的初态等温地压缩到 510026.2⨯Pa(2atm)。
求气体放出的热量。
[解] 在等温过程中气体吸收的热量等于气体对外做的功,所以J P P RT M m A Q mol T 3211046.321ln 30031.82ln ⨯-=⨯⨯⨯===即气体放热为J 31046.3⨯。
9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V 图上的一条过原点的直线,如图所示。
试证此直线表示等压过程。
[证明] 设此直线斜率为k ,则此直线方程为kvE =又E 随温度的关系变化式为Tk T C M M E v mol'=⋅=所以T k kV '=因此C kk T V ='=(C 为恒量) 又由理想气体的状态方程知,C TpV '= (C '为恒量)所以 p 为恒量 即此过程为等压过程。
9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径。
(2)1→2直线。
试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化。
基础物理学热力学部分试卷及答案详解
20XX-20XX第一学期基础物理学⑵试卷(热学部分)常数表R = 8.31 J mol-1 K-1.选择题(每题1分,共15分)1.三个容器A、B、C中装有同种理想气体,其分子数密度n相同,而方均根速率之比为(A) 1 :2 :4.(C) 1 :4 :16.(B) 1 :4 :8.(D) 4 :2 :1.2.金属导体中的电子,在金属内部作无规则运动,与容器中的气体分子很类似.设金属中共有N个自由电子其中电子的最大速率为v m,电子速率在v〜v + d v之间的概率为d N \A v2d v 0W v W v m——=< 一mN 0 v > v m式中A为常数.则该电子气电子的平均速率为A (A) -v3.3 m A (B) v4 .4 m(C) v m .A (D) -v2 .3 m[ ]3.按照麦克斯韦分子速率分布定律,具有最概然速率v的分子,P3一一3,一(A)万RT. (B)万kT.其动能为:(C) kT. (D) 2 RT . [ ]4.关于温度的意义,有下列几种说法:(1)气体的温度是分子平均平动动能的量度.(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3)温度的高低反映物质内部分子运动剧烈程度的不同.(4)从微观上看,气体的温度表示每个气体分子的冷热程度.这些说法中正确的是(A) (1)、(2) 、(4). (B) (1)、(2) 、(3).(C) (2)、(3)、(4). (D) (1)、(3)、(4). [ ]5.一定量的理想气体,开始时处于压强,体积,温度分别为p』匕,T1的平衡态,后来变到压强,体积,温度分别为p2, 丫2, T2的终态.若已知丫2 >匕,且T2 = T],则以下各种说法中正确的是:(A)不论经历的是什么过程,气体对外净作的功一定为正值.(B)不论经历的是什么过程,气体从外界净吸的热一定为正值.(C)若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少.(D)如果不给定气体所经历的是什么过程,则气体在过程中对外净作功和从外界净吸热的正负皆无法判断. [ ]6.一定量的理想气体,其状态变化遵从多方过程方程pV n =常量,已知其体积增大为原来的二倍1:2:4,则其压强之比七:P B:P C为:时,温度相应降低为原来的四分之一,则多方指数n为(A) 3. (B) 2.(D)7. 一定量的理想气体,从。
(完整版)大学物理习题集(气体动力论热力学基础)
气体的动理论 姓名学号一. 选择题1.关于温度的意义,有下列几种说法: [ ](1)气体的温度是分子平均平动动能的量度。
(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。
(3)温度的高低反映物质内部分子运动剧烈程度的不同。
(4)从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的是(A )(1)、(2)、(4); (B )(1)、(2)、(3); (C )(2)、(3)、(4); (D )(1)、(3)、(4);2.若室内生起炉子后温度从15︒C 升高到27︒C ,而室内气压不变,则此时室内的分子数减少了[ ]。
(A )0.5% (B )4% (C )9% (D )21%3.一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 [ ] )2523)(( (A)21kT kT N N ++ )2523)(( 21(B)21kT kT N N ++ kT N kT N 2523 (C)21+ kT N kT N 2325 (D)21+ 4.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几?(不计振动自由度)(A )66.7% (B )50% (C )25% (D )0 [ ]5.在标准状态下,体积比为1:2的的氧气和氦气(均视为刚性分子理想气体)相混合,混合气体中氧气和氦气的内能之比为 [ ]2:1 (A) 3:5 (B) 6:5 (C) 3:10 (D) 6.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系(A )ε和w 都相等。
(B )ε相等,而w 不相等。
[ ](C )w 相等,而ε不相等。
(D )ε和w 都不相等。
7.1mol 刚性双原子分子理想气体,当温度为T 时,其内能为 [ ] RT 23 (A) kT 23 (B) RT 25 (C) kT 25 (D) 8.在一容积不变的封闭容器内,理想气体分子的平均速率若提高为原来的2倍,则[ ](A )温度和压强都提高为原来的2倍。
大学物理热力学基础知识点及试题带答案
热力学基础一、基本要求1. 理解功、热量及准静态过程的概念。
2. 掌握热力学第一定律,能分析计算理想气体等容、等压、等温过程和绝热过程中的功、热量、内能改变量;理解循环过程概念及卡诺循环的特征,并能计算效率和致冷系数。
3. 了解可逆过程、不可逆过程及卡诺定理。
4. 了解热力学第二定律及其统计意义。
二、主要内容1. 准静态过程:过程进行的每一时刻,系统的状态都无限接近平衡态。
准静态过程可以用状态图上的曲线表示。
2. 热力学第一定律(1) 热力学第一定律的数学表达式Q=E 2 - E 1 +W对微分过程为dQ=dE +d W热力学第一定律的实质是能量守恒与转换定律在热现象中的应用,其内容表示系统吸收的热量一部分转换为系统的内能,一部分对外做功。
(2) 准静态过程系统对外做功:d W=pd V ,W=⎰12V V pd V(3) 热量:系统和外界之间或两个物体之间由于温度不同而交换的热运动量,热量也是过程量。
一定摩尔的某种物质,在某一过程中吸收的热量,)(C m12m c,T T M Q -=(4) 摩尔热容:1mo1物质温度变化1K 所吸收或放出的热量,定义式为 dTQd m,=m c C 其中m 为1mo1 物质吸热。
摩尔定容热容:CV , m =摩尔定压热容:Cp, m =理想气体的摩尔热容:CV, m =,Cp, m =Cp, m =CV, m + 摩尔热容比:=3. 热力学第一定律对理想气体等值过程和绝热过程的应用,详见表1 表1 d =0 =恒量=恒量p =恒量mmmM m T1nMm T1nCV, m =Cp, m =4. 循环过程(1)循环过程的特征是E =0热循环:系统从高温热源吸热,对外做功,向低温热源放热,致效率为== 1—致冷循环:系统从低温热源吸热,接受外界做功,向高温热源放热,致冷系数为==(2)卡诺循环:系统只和两个恒温热源进行热交换的准静态循环过程。
卡诺热机的效率为= 1—卡诺致冷机的致冷系数为三、习题与解答1、 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.解 S ABCD =1/2(BC +AD)×CD 故 W =150 J2、 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3倍,求空气膨胀时所作的功. 解 根据物态方程11RT pV v =, 则作功为()J 1097.92231112⨯===-=RT pv V V p W v3、64g 氧气(可看成刚性双原子分子理想气体)的温度由0℃升至50℃,〔1〕保持体积不变;(2)保持压强不变。
《大学物理学》热力学基础练习题
《大学物理学》热力学基础练习题《大学物理学》热力学基础一、选择题13-1.如图所示,bcab 1a 和b 2a 功与吸收热量的情况是( )(A )b 1a 过程放热、作负功,b 2a 过程放热、作负功;(B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功;(C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功;(D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。
【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+∆知b 2a 过程放热,b 1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B 状态A 和状态B 过程,气体必然 ( )(A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。
【提示:由于A B T T <,必有A B E E <;而功、热量是 过程量,与过程有关】13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。
【提示:等体过程不做功,有Q E =∆,而2mol M iE R T M ∆=∆,所以需传5J 】13-4.有人想象了如图所示的四个理想气体的循)A ()B ()【提示:(A) 绝热线应该比等温线陡,(B )和(C )两条绝热线不能相交】13-5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功( ) (A )2000J ; (B )1000J ; (C )4000J ; (D )500J。
热力学考试试题
热力学考试试题一、选择题(每题 5 分,共 30 分)1、下列关于热力学第一定律的表述中,正确的是()A 系统从外界吸收的热量等于系统内能的增加量与系统对外做功之和B 系统内能的增加量等于系统从外界吸收的热量减去系统对外做功C 系统对外做功等于系统从外界吸收的热量减去系统内能的增加量D 以上表述都不正确2、一定质量的理想气体,在绝热膨胀过程中()A 气体的内能增大,温度升高B 气体的内能减小,温度降低C 气体的内能不变,温度不变D 气体的内能不变,温度升高3、对于热机,下列说法中正确的是()A 热机效率越高,做的有用功越多B 热机效率越高,消耗的燃料越少C 热机效率越高,燃料燃烧释放的内能转化为机械能的比例越大D 热机效率可以达到 100%4、下列过程中,可能发生的是()A 某一物体从外界吸收热量,内能增加,但温度降低B 某一物体从外界吸收热量,内能增加,温度升高C 某一物体对外做功,内能减少,但温度升高D 以上过程都不可能发生5、一定质量的理想气体,在等容变化过程中,温度升高,则()A 气体压强增大B 气体压强减小C 气体压强不变D 无法确定气体压强的变化6、关于热力学第二定律,下列说法正确的是()A 不可能使热量从低温物体传向高温物体B 不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化C 第二类永动机不可能制成,是因为它违反了能量守恒定律D 热力学第二定律说明一切宏观热现象都具有方向性二、填空题(每题 5 分,共 20 分)1、热力学温度与摄氏温度的关系为_____,当热力学温度为 273K 时,摄氏温度为_____℃。
2、一定质量的理想气体,在等温变化过程中,压强与体积成_____比。
3、卡诺循环包括_____个等温过程和_____个绝热过程。
4、熵增加原理表明,在任何自然过程中,一个孤立系统的熵总是_____。
三、计算题(每题 15 分,共 30 分)1、一定质量的理想气体,初始状态为压强 p₁= 10×10⁵ Pa,体积 V₁= 10×10⁻³ m³,温度 T₁= 300 K。
合肥工业大学-物理化学习题-第九章、统计热力学初步合并
00-7-12
2/ 3
/ h 2 3.811 10 20
8
例
气体CO的转动惯量 I = 1.45 10-46 kgm2 , 试求转动量子数 转动能级公式
J 为 4 与 3的两能级的能值差 , 并求T = 300K时的 /kT.
分子数与基态分子数之比.
一维简谐振子的振动能
ni gi e nk g e k / kT k
n2 e ( ) / kT / kT e 0 2 e 2hv / kT 0.01 n0 e 0 n1 e ( ) / kT / kT e 0 1 e hv / kT 0.01 0.1 n0 e 0
00-7-15 4
3960/312= 0.75
4 分子平动能级间隔约为 ___________, 转动能级间隔约为 1019kT
___________, 振动能级间隔约为 _________. 10-2kT 10kT 5 对单原子理想气体在室温下的一般物理化学过程, 若用配分 函来求热力学函数的变化, 在qt, qr, qv, qe, qn各种配分函数中, 最少得到____ ____________________________ , 电子 1 种即可, 原因是 在室温下的物理化学过程 和原子核处于基态 , 所以qe, qn不变. 单原子理想气体, 分子内无 ______________________________________________________ 振动和转动 , 所以只须获得qt即可计算热力学函数的变化 . __________________________________________________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章热力学基础一、选择题1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是[] (A>准静态过程一定是可逆过程(B>可逆过程一定是准静态过程(C>二者都是理想化的过程(D>二者实质上是热力学中的同一个概念2. 对于物体的热力学过程, 下列说法中正确的是[] (A>内能的改变只决定于初、末两个状态, 与所经历的过程无关(B>摩尔热容量的大小与所经历的过程无关(C>在物体内, 若单位体积内所含热量越多, 则其温度越高(D>以上说法都不对3. 有关热量, 下列说法中正确的是[](A>热是一种物质(B>热能是物质系统的状态参量(C>热量是表征物质系统固有属性的物理量(D>热传递是改变物质系统内能的一种形式4. 关于功的下列各说法中, 错误的是[](A>功是能量变化的一种量度(B>功是描写系统与外界相互作用的物理量(C>气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样(D>系统具有的能量等于系统对外作的功5. 理想气体状态方程在不同的过程中有不同的微分表达式, 式表示[](A>等温过程(B>等压过程(C>等体过程(D>绝热过程6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式表示[](A>等温过程(B>等压过程(C>等体过程(D>绝热过程7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式表示[](A>等温过程(B>等压过程(C>等体过程(D>绝热过程8. 理想气体状态方程在不同的过程中可以有不同的微分表达式,则式表示[](A>等温过程(B>等压过程(C>等体过程(D>任意过程9. 热力学第一定律表明:[](A>系统对外作的功不可能大于系统从外界吸收的热量(B>系统内能的增量等于系统从外界吸收的热量(C>不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功不等于系统传给外界的热量(D>热机的效率不可能等于110. 对于微小变化的过程, 热力学第一定律为d Q= d E d A.在以下过程中, 这三者同时为正的过程是[](A>等温膨胀(B>等容膨胀(C>等压膨胀(D>绝热膨胀11. 对理想气体的等压压缩过程,下列表述正确的是[](A> d A>0, d E>0, d Q>0 (B> d A<0, d E<0, d Q<0(C> d A<0, d E>0, d Q<0 (D> d A = 0, d E = 0, d Q = 012. 功的计算式适用于[](A>理想气体(B>等压过程(C>准静态过程(D>任何过程13. 一定量的理想气体从状态出发,到达另一状态.一次是等温压缩到, 外界作功A;另一次为绝热压缩到,外界作功W.比较这两个功值的大小是[](A>A>W(B>A = W(C>A<W (D>条件不够,不能比较14. 1mol理想气体从初态(T1、p1、V1 >等温压缩到体积V2, 外界对气体所作的功为[](A>(B>(C>(D>15. 如果W表示气体等温压缩至给定体积所作的功, Q表示在此过程中气体吸收的热量, A表示气体绝热膨胀回到它原有体积所作的功, 则整个过程中气体内能的变化为[](A>W+Q-A(B>Q-W-A(C>A-W-Q(D>Q+A-W16. 理想气体内能增量的表示式适用于[](A>等体过程(B>等压过程(C>绝热过程(D>任何过程17. 刚性双原子分子气体的定压比热与定体比热之比在高温时为[](A> 1.0 (B> 1.2 (C> 1.3 (D> 1.418. 公式在什么条件下成立?[](A>气体的质量为1 kg(B>气体的压强不太高(C>气体的温度不太低(D>理想气体19. 同一种气体的定压摩尔热容大于定体摩尔热容, 其原因是[](A>膨胀系数不同(B>温度不同(C>气体膨胀需要作功(D>分子引力不同20. 摩尔数相同的两种理想气体, 一种是单原子分子气体, 另一种是双原子分子气体, 从同一状态开始经等体升压到原来压强的两倍.在此过程中, 两气体[](A>从外界吸热和内能的增量均相同(B>从外界吸热和内能的增量均不相同(C>从外界吸热相同, 内能的增量不相同(D>从外界吸热不同, 内能的增量相同21. 两气缸装有同样的理想气体, 初态相同.经等体过程后, 其中一缸气体的压强变为原来的两倍, 另一缸气体的温度也变为原来的两倍.在此过程中, 两气体从外界吸热[](A>相同(B>不相同, 前一种情况吸热多(C>不相同, 后一种情况吸热较多(D>吸热多少无法判断22. 摩尔数相同的理想气体H2和He, 从同一初态开始经等压膨胀到体积增大一倍时[](A> H2对外作的功大于He对外作的功(B> H2对外作的功小于He对外作的功(C> H2的吸热大于He的吸热(D> H2的吸热小于He的吸热23. 摩尔数相同的两种理想气体, 一种是单原子分子, 另一种是双原子分子, 从同一状态开始经等压膨胀到原体积的两倍.在此过程中, 两气体[](A>对外作功和从外界吸热均相同(B>对外作功和从外界吸热均不相同(C>对外作功相同, 从外界吸热不同(D>对外作功不同, 从外界吸热相同24. 摩尔数相同但分子自由度不同的两种理想气体从同一初态开始作等温膨胀, 若膨胀后体积相同, 则两气体在此过程中[](A>对外作功相同, 吸热不同(B>对外作功不同, 吸热相同(C>对外作功和吸热均相同(D>对外作功和吸热均不相同25. 两气缸装有同样的理想气体, 初始状态相同.等温膨胀后, 其中一气缸的体积膨胀为原来的两倍,另一气缸内气体的压强减小到原来的一半.在其变化过程中, 两气体对外作功[](A>相同(B>不相同, 前一种情况作功较大(C>不相同, 后一种情况作功较大(D>作功大小无法判断26. 理想气体由初状态( p1、V1、T1)绝热膨胀到末状态( p2、V2、T2>,对外作的功为[](A>(B>(C>(D>27.在273K和一个1atm下的单原子分子理想气体占有体积22.4升.将此气体绝热压缩至体积为16.8升, 需要作多少功?[](A> 330 J (B> 680 J (C> 719 J (D> 223 J28.一定量的理想气体分别经历了等压、等体和绝热过程后其内能均由E1变化到E2.在上述三过程中, 气体的[](A>温度变化相同, 吸热相同(B>温度变化相同, 吸热不同(C>温度变化不同, 吸热相同(D>温度变化不同, 吸热也不同29. 如果使系统从初态变到位于同一绝热线上的另一终态则[](A>系统的总内能不变(B>联结这两态有许多绝热路径(C>联结这两态只可能有一个绝热路径(D>因为没有热量的传递, 所以没有作功30. 一定量的理想气体, 从同一状态出发, 经绝热压缩和等温压缩达到相同体积时, 绝热压缩比等温压缩的终态压强[](A>较高(B>较低(C>相等(D>无法比较31. 一定质量的理想气体从某一状态经过压缩后, 体积减小为原来的一半, 这个过程可以是绝热、等温或等压过程.如果要使外界所作的机械功为最大,这个过程应是[](A>绝热过程(B>等温过程(C>等压过程(D>绝热过程或等温过程均可32. 视为理想气体的0.04 kg的氦气(原子量为4>, 温度由290K升为300K.若在升温过程中对外膨胀作功831 J, 则此过程是[](A>等体过程(B>等压过程(C>绝热过程(D>等体过程和等压过程均可能33. 一定质量的理想气体经历了下列哪一个变化过程后, 它的内能是增大的?[](A>等温压缩(B>等体降压(C>等压压缩(D>等压膨胀34.一定量的理想气体从初态开始, 先绝热膨胀到体积为2V , 然后经等容过程使温度恢复到T , 最后经等温压缩到体积V .在这个循环中, 气体必然[](A>内能增加(B>内能减少(C>向外界放热(D>对外界作功35. 提高实际热机的效率, 下面几种设想中不可行的是 [](A>采用摩尔热容量较大的气体作工作物质 (B>提高高温热源的温度 (C>使循环尽量接近卡诺循环(D>力求减少热损失、摩擦等不可逆因素36. 在下面节约与开拓能源的几个设想中, 理论上可行的是 [](A>在现有循环热机中进行技术改进, 使热机的循环效率达100% (B>利用海面与海面下的海水温差进行热机循环作功 (C>从一个热源吸热, 不断作等温膨胀, 对外作功 (D>从一个热源吸热, 不断作绝热膨胀, 对外作功 37. 下列说法中唯一正确的是 [](A>任何热机的效率均可表示为(B>任何可逆热机的效率均可表示为(C>一条等温线与一条绝热线可以相交两次(D>两条绝热线与一条等温线可以构成一个循环38. 卡诺循环的特点是[](A>卡诺循环由两个等压过程和两个绝热过程组成 (B>完成一次卡诺循环必须有高温和低温两个热源(C>卡诺循环的效率只与高温和低温热源的温度有关(D>完成一次卡诺循环系统对外界作的净功一定大于0 39. 在功与热的转变过程中, 下面说法中正确的是 [](A>可逆卡诺机的效率最高, 但恒小于1 (B>可逆卡诺机的效率最高, 可达到1(C>功可以全部变为热量, 而热量不能全部变为功 (D>绝热过程对外作功, 系统的内能必增加 40. 两个恒温热源的温度分别为T 和t , 如果T >t ,则在这两个热源之间进行的卡诺循环热机的效率为T 9-1-34图[](A>(B>(C>(D>41. 对于热传递, 下列叙述中正确的是[](A>热量不能从低温物体向高温物体传递(B>热量从高温物体向低温物体传递是不可逆的(C>热传递的不可逆性不同于热功转换的不可逆性(D>理想气体等温膨胀时本身内能不变, 所以该过程也不会传热42. 根据热力学第二定律可知, 下列说法中唯一正确的是[](A>功可以全部转换为热, 但热不能全部转换为功(B>热量可以从高温物体传到低温物体, 但不能从低温物体传到高温物体(C>不可逆过程就是不能沿相反方向进行的过程(D>一切自发过程都是不可逆过程43. 根据热力学第二定律判断, 下列哪种说法是正确的[](A>热量能从高温物体传到低温物体, 但不能从低温物体传到高温物体(B>功可以全部变为热, 但热不能全部变为功(C>气体能够自由膨胀, 但不能自由压缩(D>有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量44. 热力学第二定律表明:[](A>不可能从单一热源吸收热量使之全部变为有用功(B>在一个可逆过程中, 工作物质净吸热等于对外作的功(C>摩擦生热的过程是不可逆的(D>热量不可能从温度低的物体传到温度高的物体45. “理想气体和单一热源接触作等温膨胀时, 吸收的热量全部用来对外作功.”对此说法, 有以下几种评论, 哪一种是正确的?[](A>不违反热力学第一定律, 但违反热力学第二定律(B>不违反热力学第二定律, 但违反热力学第一定律(C>不违反热力学第一定律, 也不违反热力学第二定律(D>违反热力学第一定律, 也违反热力学第二定律46.有人设计了一台卡诺热机(可逆的>.每循环一次可从400K的高温热源吸收1800J的热量, 向300K的低温热源放热800J, 同时对外作功1000J.这样的设计是[](A>可以的, 符合热力学第一定律(B>可以的, 符合热力学第二定律(C>不行的, 卡诺循环所作的功不能大于向低温热源放出的热量(D>不行的, 这个热机的效率超过了理论值47. 1mol的单原子分子理想气体从状态A变为状态B, 如果变化过程不知道, 但A、B两态的压强、温度、体积都知道, 则可求出[](A>气体所作的功(B>气体内能的变化(C>气体传给外界的热量(D>气体的质量48.如果卡诺热机的循环曲线所包围的面积从图中的增大为与所作的功和热机效率变化情况是:[] (A>净功增大,效率提高(B> 净功增大,效率降低(C> 净功和效率都不变(D> 净功增大,效率不变49. 用两种方法: 使高温热源的温度T1升高△T ;使低温热源的温度T 2降低同样的△T 值;分别可使卡诺循环的效率升高和,两者相比: [] (A>>(B>>(C>= (D> 无法确定哪个大 50.下面所列四图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在理论上可能实现的循环过程的图的符号.[]51. 在图中,I c II 为理想气体绝热过程,I b II 是任意过程.此两任意过程中气体作功与吸收热量的情况是:[] (A> I a II 过程放热,作负功;I b II 过程放热,作负功aII 过程吸热,作负功;I bII 过程放热,作负功(C> I a II 过程吸热,作正功;I b II 过程吸热,作负功(D> I a II 过程放热,作正功;I b II 过程吸热,作正功52.给定理想气体,从标准状态(p 0,V 0,T 0>开始作绝热膨胀,体积增大到3倍.膨胀后温度T 、压强p 与标准状态时T 0、p 0之关系为(为比热比> [] (A>,(B>,(C>,(D>,53.甲说:“由热力学第一定律可证明任何热机的效率不可能等于1.”乙说:“热力学第二定律可表述为效率等于100%的热机不可能制造成功.”丙说:“由热力学第一定律可证明任何卡诺循环的效率都等于.”丁说:“由热力学第一定律可证明理想气体卡诺热机(可逆的>循环的效率等于.”对以上说法,有如下几种评论,哪种是正确的?[] (A> 甲、乙、丙、丁全对 (B> 甲、乙、丙、丁全错(C> 甲、乙、丁对,丙错 (D> 乙、丁对,甲、丙错 54.某理想气体分别进行了如T9-1-54图所示的两个卡诺循环:I(abcda >和II(a'b'c'd'a'>,且两个循环T9-1-48图T9-1-51图T9-1-54图曲线所围面积相等.设循环I的效率为,每次循环在高温热源处吸的热量为Q ,循环II 的效率为,每次循环在高温热源处吸的热量为,则[] (A>(B>(C>(D>55.两个完全相同的气缸内盛有同种气体,设其初始状态相同.今使它们分别作绝热压缩至相同的体积,其中气缸1内的压缩过程是非准静态过程,而气缸2内的压缩过程则是准静态过程.比较这两种情况的温度变化:[] (A> 气缸1和气缸2内气体的温度变化相同(B> 气缸1内的气体较气缸2内的气体的温度变化大(C> 气缸1内的气体较气缸2内的气体的温度变化小 (D> 气缸1和气缸2内的气体的温度无变化二、填空题1. 不等量的氢气和氦气从相同的初态作等压膨胀, 体积变为原来的两倍.在这过程中, 氢气和氦气对外作的功之比为.2.1mol 的单原子分子理想气体,在1atm 的恒定压力下从273K 加热到373K,气体的内能改变了.3.各为1摩尔的氢气和氦气,从同一状态(p ,V >开始作等温膨胀.若氢气膨胀后体积变为2V ,氦气膨胀后压强变为,则氢气和氦气从外界吸收的热量之比为.4.两个相同的容器,一个装氢气,一个装氦气(均视为刚性分子理想气体>,开始时它们的压强和温度都相等.现将6J 热量传给氦气, 使之温度升高.若使氢气也升高同样的温度, 则应向氢气传递的热量为.5. 1摩尔的单原子分子理想气体, 在1个大气压的恒定压力作用下从273K 加热到373K, 此过程中气体作的功为.6.273K 和一个1atm 下的单原子分子理想气体占有体积22.4升.此气体等温压缩至体积为16.8升的过程中需作的功为. 7.一定量气体作卡诺循环,在一个循环中,从热源吸热1000J, 对外作功300J .若冷凝器的温度为7C, 则热源的温度为.8.T9-2-8图理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分>分别为和,则二者的大小关系是.9.一卡诺机(可逆的>,低温热源的温度为,热机效率为40%,其高温热源温度为K.今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加K.10.一个作可逆卡诺循环的热机,其效率为,它的逆过程的致冷系数,则与w 的关系为.11.1mol理想气体(设为已知>的循环过程如T-V图所示,其中CA为绝热过程,A 点状态参量(>,和B点的状态参量(>为已知.则C点的状态参量为:,,.12. 一定量的理想气体,从A状态经历如T9-2-12图所示的直线过程变到B状态,则AB过程中系统作功___________,内能改变△E=_________________.13.质量为、温度为的氦气装在绝热的容积为的封闭容器中,容器一速率作匀速直线运动.当容器突然停止后,定向运动的动能全部转化为分子热运动的动能,平衡后氦气的温度增大量为.14. 有摩尔理想气体,作如T9-2-14图所示的循环过程abca,其中acb为半圆弧,b-a为等压过程,,在此循环过程中气体净吸热量为Q C<填入:> , <或=).T9-2-11图T9-2-12图T9-2-14T9-2-15图15. 一定量的理想气体经历acb 过程时吸热550 J .则经历acbea 过程时,吸热为. 16.一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程: 等压过程; 等温过程;●绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.17.一定量的理想气体,从状态a 出发,分别经历等压、等温、绝热三种过程由体积V 1膨胀到体积V 2,试在T9-2-17图中示意地画出这三种过程的p -V 图曲线.在上述三种过程中:(1> 气体的内能增加的是__________过程;(2> 气体的内能减少的是__________过程. 18.如T9-2-18图所示,已知图中两部分的面积分别为S 1和S 2.如果气体的膨胀过程为a →1→b ,则气体对外做功W =________;如果气体进行a →1→b →2→a 的循环过程,则它对外做功W =_______________.19.如T9-2-19图所示,一定量的理想气体经历过程,在此过程中气体从外界吸收热量Q,系统内能变化.则Q和>0或<0或= 0的情况是:Q _________, ∆E __________.20. 将热量Q 传给一定量的理想气体, (1> 若气体的体积不变,则其热量转化为; (2> 若气体的温度不变,则其热量转化为;(3> 若气体的压强不变,则其热量转化为. 21.一能量为1012eV 的宇宙射线粒子,射入一氖管中,氖管内充有 0.1mol 的氖气,若宇宙射线粒子的能量全部被氖气分子所吸收,则氖气温度升高了_________________K .(1 eV =1.60×10-19J ,普适气体常量R =8.31 J/(mol ⋅K>)22.有一卡诺热机,用29kg 空气作为工作物质,工作在27℃的高温热源与-T9-2-18图T9-2-17图T9-2-19图73℃的低温热源之间,此热机的效率=______________.若在等温膨胀的过程中气缸体积增大到2.718倍,则此热机每一循环所作的功为_________________.(空气的摩尔质量为29×10-3 kg ⋅mol -1,普适气体常量R =8.31>23. 一气体分子的质量可以根据该气体的定体比热来计算.氩气的定体比热c V=0.314 k J·kg -1·K -1,则氩原子的质量m =__________.三、计算题1.1mol刚性双原子分子的理想气体,开始时处于、的状态,然后经图示直线过程I变到、的状态.后又经过方程为<常量)的过程II变到压强的状态.求:(1> 在过程I 中气体吸的热量。