一次函数复习 课件

合集下载

一次函数复习课课件ppt

一次函数复习课课件ppt

谢谢!
x
当k<0时,图象过二、四象限;
y随x的增大而减少。
15
直线经过一、二、四象限,则
K
0, b
0.


此时,直线的图象只能是( )
D
2021/1/4
16
与y轴的交点为 (0 , b ) 与x轴的交点为 (- , 0 )
1.若一次函数的图象过点A(1,-1),则。 -2
2 .根据如图所示的条件,求直线的表达式。
建立数学模型
函数
应用 2021/1/4
一次函数 再认识
一元一次方程 一元一次不等式 一元一次方程组
图象 性质
8
八年级 数学 一次函数的概念:
第十一章 函数
一般地,形如(为常数,且k≠0) 的函数叫做一次函数.
当b =0 时 即为 , 所以正比例函数,是一次函数的特例.
2021/1/4
9
考点题型 1:一次函数的概念 (1)考纲要求:理解一次函数、正比例函数的意义 (2)考点:一次函数、正比例函数解析式的特征
2021/1/4
3
正方形的面积S 随边长 x 的变化
2
(x>0)
(1)解析法 (2)列表法 (3)围
第十一章 函数
求出下列函数中自变量的取值范围?
分式的分母不为0
被开方数(式)为非负数
与实际问题有关系的,应使实际问题有意义
(3) h 1 k k 1
29
2021/1/4
y
0
A
B
x 19
4.一次函数14与正比例函数2x的图象经过点(2,-1), (1)分别求出这两个函数的表达式; (2)求这两个函数的图象与x轴围成的三角形的面积。

一次函数复习课件ppt课件精选全文

一次函数复习课件ppt课件精选全文

若它的图象经过原点,则 m=
;
若点(0 ,3) 在它的图象上,则m=
;
6.下列哪个图像是一次函数y=-3x+5 和y=2x-4的大致图像B( )
(A)
(B)
(C)
(D)
小试牛刀
7、已知函数 y = kx的图象在二、四象限,
那么函数y = kx-k的图象可能是B(

y
y
0
x
(A ) y
0
x
y (B)
2.一次函数的图像; 3.一次函数的性质; 4. 一次函数的应用
(1)待定系数法;
(2)利用一次函数解决实际问题。 5. 一次函数的与方程、方程组及不 等式的关系


• 1.直线y=6x-12与x轴的交点坐标是__________,与y轴
的交点坐标是__________.
• 2.已知一次函数,过点(1,-3)且使随的增大而减小.则 一次函数是__________.
2.一次函数的图象
a. 正比例函数y=kx(k≠0)的图象是过点(0,__0___), (_1_,__k__)的_一__条__直__线__。 (__bk__,b0.一)的次_一函__条数__直y_=_线k_x_+_b。(k≠0)的图象是过点(0,b ___),
c.一次函数y=kx+b(k≠0)的图象与k,b符号的关 系:
2.一次函数的概念
一次函数的概念:如果函数y=k__x__+_b__(k、b为 常数,且k__≠__0__),那么y叫做x的一次函数。
特别地,当b___=__0时,函数y=__k_x_(k__≠__0)叫做正比
例函数。
★理解一次函数概念应注意下面两点: ⑴、解析式中自变量x的次数是_1__次,

一次函数复习PPT课件

一次函数复习PPT课件

基础知识 基础练习
提升、归纳
典例解析
课内练习
课堂小结
反思纠错
正比例函数
定义
函数y=kx(k≠0)叫做正比例函数
k>0
y
k<0
y
图像
o
x
o
x
图像是经过原点(0,0)的一条直线
性质
图像在一、三象限内,y随x的 增大而增大
图像在二、四象限内,y随x的 增大而减小
一次函数
定义
函数y=kx+b(k,b都是常数,且k≠0)叫做一次函数
(1)、函数y=kx+b的图像不通过第四象限,则( )
A.k>0 b>0 B.k>0 b<0
C.k>0 b=0 D.k>0 b≥0
y
解:函数y=kx+b的图像不通过第四象限,
即如图,所以k>0,b>0,
o
x
因此选A这样做对吗?为什么?
(2)已知函数y=kx+b的图像经过点(0,-4)且
与两坐标轴围成的三角形的面积为8,求它的解析式。
在第一轮复习中,我们会发现,有一些错误 是学生的共性。如何让他们在以后的第二轮复习 中不错或少错,是非常值得我们研究的问题,如 果一味把正确的解法抛给他们,尽管暂时学生会 理解它,但时间一长,往往会所剩无几。如果把 学生经常出现的错误适时展现出来,让他们自己 来纠错,这样印象会深刻得多,自然到达更有效 的教学。
教师讲完第二题,接着问学生:①当x取什么值时,y1>y2 ?②当 x____时,y1>0 ?
通过两条直线的位置关系,以及直线与x轴的位置关系来解决问① ②,较好地体现了函数、方程与不等式之间的关系,突出了新课程重 视基础,关注联系与综合的特点。
练一练
(1)一次函数y=3x-4的图像不经过的象限( )

一次函数课件(共50张PPT)

一次函数课件(共50张PPT)
例2.画出函数y =-6x与 y =-6x +5的图 象。
x
-2 -1 0 1 2
y=-6x 12 6
0
-6 -12
y=-6x+5 17 11 5 -1 -7
解:函数y =-6x与 y =-6x +5中,自变量x 可以是任意的实数,列表表示几组对应值:
y
y=-6x+5 17
11
y=-6x
5
两个函数 图象有什 么关系?
即它可以看作由直线y=x向 下 平移___2_ 个单位长度而得 到.
.
.
.
y
...0...
.Байду номын сангаас
.
.
y... =yyx==+xx2-2
2
x
一次函数y=kx+b(k≠0) 图象的画法 (两点)
例1 在同一平面直角坐标系中画出下列 每组函数的图象:
1 y 2x与
y 2x 3
2 y 2x 1与
y 1 x 1 2
2、正比例函数的图象是什么形状?
正比例函数的图象是
(
经过原点的一条直)线
3、正比例函数 y=kx(k是常数,k≠0)中,
k的正负对函数图象有什么影响?
y=kx
图象
性质
y
K>0
经过一、三象限
x
y随x增大而增大
K<0
y
经过二、四象限
y随x增大而减小
x
图像必经过(0,0)和(1,k)这两个点
二、新课精讲
结 y随x的增大而增大,
y 3x 2

这时函数的图象从左到右上升;
观察分析:
y 2 x 1和

一次函数的全章复习课件

一次函数的全章复习课件

例如,速度、加速度和时间的关系,重力 等。
一次函数在工程学中的应用
例如,机械运动、流体力学等。
一次函数在日常生活中的应用
例如,时间与速度的关系、距离与速度的 关系等。
一次函数在数学问题中的应用
一次函数在代数问题中的应用
例如,解一元一次方程、一元一次不等式等。
一次函数在几何问题中的应用
例如,求直线方程、求两点之间的距离等。
解得 k = 3, b = -2。所以解析式 为 y = 3x - 2。
THANKS
感谢观看

对于一次函数,解析式可以用来 表示 $k$ 和 $b$ 的值,进而确
定函数的图像和性质。
通过解析式可以计算出任意自变 量 $x$ 对应的函数值 $y$。
解析式与函数图像的关系
解析式是绘制函数图像的基础。 通过解析式可以确定函数的开口方向、顶点坐标和对称轴等特性。
解析式与函数图像的对应关系是一一对应的,即一个解析式对应一个确定的图像。
y = 3x - 2
答案
解答题
题目
已知一次函数 y = kx + b,当 x = 1 时,y = -2;当 x = -1 时,y = 4。 求 k 和 b 的值。
答案
k = -3, b = 1
选择题解析
01
02
03
04
对于选项A,y = 2x,是一次 函数也是正比例函数,不符合
题意。
对于选项B,y = 3 - 5x,是 一次函数但不是正比例函数,
虽然一次函数在微积分中不是主要研 究对象,但其在导数和积分中的应用 仍不可忽视。
一次函数与三角函数
三角函数可以看作是周期性的一次函 数,两者在图像和性质上有许多相似 之处。

一次函数专题复习ppt课件

一次函数专题复习ppt课件
y=0时
y=kx+b
方程kx+b=0直线 与的y 1k1
x
b1
y k b 交点 x
2
2
2
y=kx+b
y>0时
y<0时
方程 组
y k b 1
x
1
1 的解
y 2
k
2
x
b2
kx+b>0
kx+b<0
已知y=(m-2)x-(m-4)是y关于x的一次函数。 (1)求m的取值范围
(2) 若2<m<4,函数图像经过哪几个象限?
本节课你学会了哪些方法? 学会了哪些知识?
1、(2015•陕西)设正比例函数y=mx的图像经过点A(m, 4),且y随x的增大而减小,则m=() A、2 B、-2 C、4 D、-4 2、(2016•陕西)已知一次函数y=kx+5和y= x+7,假设k>0,
<0,则这两个一次函数图像交点在() A、第一象限 B、第二象限 C、第三象限 D、第四象限
(6) 若此函数图像经过点(2,5),请画出此一次
函数图像,根据图像回答下列问题:
y
① 求出一次函数与两坐标轴的交点;
② 不解方程求出(m-2)x-(m-4)=0时方
程的解;
③ 求不等式(m-2)x-(m-4)>-1的解;
O
x
④ 求出图像与两坐标轴围成的面积。
(7)一次函数y=kx+b与(6)中一次函数交点坐标为(1, y),与y轴交点坐标为(0,4)
5、(2016•陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科 技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中, 他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象. 根据下面图象,回答下列问题: (1)求线段AB所表示的函数关系式; (2)已知昨天下午3点时,小明距西安112千米,求他何时到家?

一次函数图象专题复习课件

一次函数图象专题复习课件
函数。
增减性是函数的重要特性,它描 述了函数值随自变量变化的趋势

在实际应用中,了解函数的增减 性有助于我们预测未来的趋势和
结果。
一次函数的截距
一次函数的截距是其与y 轴的交点。对于函数 y=kx+b,其截距为b。
截距是函数的一个重要参 数,它决定了函数与y轴 的交点位置。
通过调整截距,可以改变 函数与y轴的交点,从而 影响整个函数的形态。
பைடு நூலகம் 一次函数的交点
一次函数与其他直线或曲线的交点是 解方程的结果。
寻找一次函数的交点是解决实际问题 的重要步骤,例如在路程、速度和时 间问题中经常需要求解两个一次函数 的交点。
当两个一次函数有交点时,它们的y值 相等,对应的x值即为交点的横坐标。
Part
05
解题技巧与思路分析
一次函数图象的绘制技巧
下移
若函数表达式变为$y = kx + b m$,其中$m > 0$,则图像向下 平移$m$个单位。
左移
若函数表达式变为$y = k(x - n) + b$,其中$n > 0$,则图像向 左平移$n$个单位。
Part
03
一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本、收益和利 润之间的关系。
确定函数表达式
首先需要确定一次函数的 1
表达式,包括系数和常数 项。
连线
4
使用平滑的曲线将这些关 键点连接起来,形成一次 函数的图像。
选择坐标系
2
选择适当的坐标系,如直
角坐标系或极坐标系,以
便更好地绘制函数图像。

八年级数学《一次函数-复习课》课件

八年级数学《一次函数-复习课》课件

这小堂 课结
归纳小结 反馈升华
正比例函数与一次函数有何 异同? 一次函数与方程(组)、不 等式之间的关系
一次函数的图象和性质及应用
学习了哪些数学思想方法?
分层作业 自我评价
A组为必做题, B组为选作题.
A组:1.弹簧的长度y(cm)与所挂物体的质量x(kg)关系如右图所示,
则弹簧不挂重物时的长度是
解:∵ y=2x-1;
∴k=2>0; ∴y随x的增大而增大.
∵-1 < 2 ; ∴ y1 < y2 .
一题多解 合作探究
例3.已知,点(-1,y1),(2,y2)在
< 一次函数y=2x-1的图象上,则y1
y2.
解法三 图象法:
y
4
画出函数y=2x-1的图象:
3
x… 0 1… y … -1 1 …
2
问题4:该函数有哪些性质?
B
A
一次函数与正比例函数的图象与性质
一次
函数
y=kx+b
(k≠0,
b≠0)
图象
k,b的 符号 经过象
限 增减性
y
y
y
y
(0,b) ox
ox (0,b)
(0,b) ox
(o 0,bx)
k >0 k >0 k< 0 k< 0 b >0 b< 0 b >0 b< 0
一、 二 、三一、三、四 .一、二、四 二、三、四
问题1:分别求出y1,y2关于x的函数关系式;
解决问题 巩固知识
活动一:自主复习,板书展演 问题1:分别求出y1,y2关于x的函数关系式;
甲公司:y1=30x(x≥0) 乙公司:y2=15x+80(x≥0)

10、一次函数PPT课件

10、一次函数PPT课件
第一部分 教材同步复习
10、一次函数
第一部分 教材同步复习
1
10、一次函数
知识要点 ·归纳
►知识点一 一次函数的图象与性质
1.一次函数及正比例函数的概念 一般地,如果y=kx+b(k,b是①___常__数__,k≠0),那么,y叫做x的一次函数,特 别地,当②____b_=__0_时,一次函数y=kx+b就变为y=kx(k为常数,k≠0),这时,y叫 做x的正比例函数.
202X权威 · 预测
第一部分 教材同步复习
15
【解答】 (1)∵点 A(2,0),AB= 13,∴BO= AB2-AO2= 9=3,∴点 B 的 坐标为(0,3);
(2)∵△ABC 的面积为 4,∴12×BC×AO=4,∴12×BC×2=4,即 BC=4.∵BO =3,∴CO=4-3=1,∴C(0,-1).
第一部分 教材同步复习
13
1.(202X玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是
( D) A.点(0,k)在l上
B.l经过定点(-1,0)
C.当k>0时,y随x的增大而增大
D.l经过第一、二、三象限
【考查内容】一次函数的性质.
【解析】A.当x=0时,y=k,即点(0,k)在l上,此选项正确;B.当x=-1
(3)一次函数图象y=kx+b与x轴的交点是⑥__(_-_bk_,__0_)__ ,与y轴的交点是⑦ _(0_,__b_)___.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
3
3.一次函数的性质 一次函数
k、b 符号 b>0
k>0 b<0
中考新突破 · 数学(江西)

一次函数复习 课件(共30张PPT)

一次函数复习 课件(共30张PPT)

当k<0时,图象过二、四象限;y随x的增大而减少。
y=kx
5、有下列函数:①y=2x+1, ②y=-3x+4,③y=0.5x,④y=x-6; 其中过原点的直线是___③_____; 函数y随x的增大而增大的是___①___④____; 函数y随x的增大而减小的是____②_______; 图象在第一、二、三象限的是___①_____ 。
x 50 y 250
60 70 80 … 200 150 100 …
《一次函数》复习
三、正比例函数
1、形如 y=kx (k是常数,k≠0)的函数,叫做正比例函数, 其中k叫比例函数。 2、(1)正比例函数y=kx( k是常数,k≠0)的图象是一条经 过 原点的直线,也称它为 直线y=kx ;
(2)画y=kx的图象时,一般选 原 点和_(__1_,__k)
往往需要复杂的计算才能得出。
《一次函数》复习 巩固练习
1、甲车速度为20米/秒,乙车速度为25米/ 秒.现甲车在乙车前面500米,设x秒后两车之间的 距离为y米.求y随x(0≤x≤100)变化的函数解析 式,并画出函数图象.
解:由题意可知: y=500-5x 0≤x≤100 用描点法画图:
x … 10 20 30 40 y … 450 400 350 300
9、若函数y=(2m+6)x2+(1-m)x是正比例函数,则其解
析式是 y=4x ,该图象经过第一、三象限,y随x
的增大而 增大 ,当x1<x2时,则y1与y2的关
是 y1<y2

解:∵函数y=(2m+6)x2+(1-m)x是正比例函数
∴2m+6=0,1-m≠0 ∴m=-3
y

一次函数复习课公开课课件ppt

一次函数复习课公开课课件ppt
7.如图,足球由正五边形皮块(黑色)和正六边形皮 块(白色)缝成,试用正六边形的块数x表示正五边形 的块数y,并指出其中的变量和常量.(提示:每一个 白色皮块周围连着三个黑色皮块)
8.如图所示的图象分别给出了x与y的对应关系,其中y 是x的函数的是( )
9、 填空题:
(1) 有下列函数:① y6x5, ②λ=πδ , ③ yx4 , ④ y4x3 。其中过原点的直
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
回顾 小结
一、知识结构
1. 数值发生变化的量 叫变量, 数值始终不变的量 叫常量.
2.函数定义:
在一个变化过程中,如果有两 个变量x与y,并且对于x的每一个 确定的值,y都有唯一确定的值与 其对应,那么我们就说x是自变量, y是x的函数.
5、若正比例函数y=(1-2m)x的图象经过点A (x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则 m的取值范围是( )
6.甲、乙两地相距S千米,某人行完全程所用的时间t 在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么 (时)与他的速度v(千米/时)满足vt=S,在这个变化过 程中,下列判断中错误的是 ( ) A.S是变量 B.t是变量 C.v是变量 D.S是常量
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
回顾 小结
7.两直线的位置关系
若直线l1和l2的解析式为y=k1X+b1和y=k2X+b2,它们的 位置关系可由其系数确定:

一次函数总复习整理ppt课件

一次函数总复习整理ppt课件
技能要求:能从函数图象中读取信息,完成问题。
图象信息(形)
图象上点的坐标特点(数)
对应关系和变化规律
.
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
函数的图象
对于一个函数,若把自变量与函数的每对对应值分别作 为点的横、纵坐标,那么坐标平面内由这些点组成的图 形,就是这个函数的图象。从这个图象中可以方便地看 出当自变量增大时,函数值怎样变化.即函数的增减性。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
变量与函数
在事物运动变化过程中,变化的量叫变量。不变的量叫 常量。变量一般表示为字母,但字母不一定是变量。
数值不断 变化的量
变量
数值固定 不变的量
常量
习题:一个大小不断变化的圆的半径为r,它的面积 S=πr2,其中变量有______,常量有_____.
直线y=kx+b1可以看作y=kx+b2向上(b1>b2)或向下 (b1<b2)平移|b1-b2|个单位长度得到的.
习题:直线y=-2x向上平移3个单位长度可以得到直线 ________;向下平移2个单位长度可得直线________。
直线y=-2x-3向上平移3个单位长度可得到直线________; 向下平移4个单位长度可得直线________。
y =k1 x +b1
y
6
4
y =k2 x +b2
-5
2
O -2
.
5
x
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去

一次函数复习课课件

一次函数复习课课件

一次函数的性质
01
02
03
单调性
由斜率决定,当斜率$k > 0$时,函数单调递增;当 斜率$k < 0$时,函数单 调递减。
奇偶性
一次函数既不是奇函数也 不是偶函数。
无界性
一次函数的值域是全体实 数。
一次函数的图像
绘制方法
通过选取几个不同的$x$值,代入一 次函数中求得对应的$y$值,然后在 平面坐标系中描点作图。
助人们保持健康。
在交通方面,一次函数可以用 来计算出行时间和路线,提高
出行效率。
一次函数在经济中的应用
在经济学中,一次函数被广泛应用于 成本、收益和利润的计算。
在市场营销中,一次函数可以用来预 测市场需求和销售量。
在投资领域,一次函数可以用来计算 投资回报率和风险。
在财务规划中,一次函数可以用来计 算收入和支出,帮助个人或企业制定 合理的财务计划。
一次函数的图像
一次函数是函数的一种,其数学表达 式为y=kx+b,其中k、b为常数,且 k≠0。
一次函数的图像是一条直线,其斜率 为k,截距为b。
一次函数的性质
一次函数具有线性性质,即随着x的增 加或减少,y也以固定的斜率增加或减 少。
复习一次函数的表达式与系数
一次函数的表达式
一次函数的表达式为y=kx+b,其 中k为斜率,b为截距。
一次函数在科技中的应用
在计算机科学中,一次函数被广泛应用于算法设计和数 据结构。
在工程学中,一次函数可以用来计算材料用量和设计参 数。
在物理学中,一次函数可以用来描述物体的运动规律和 变化趋势。
在通信技术中,一次函数可以用来调制信号和传输数据 。
05

中考数学专题《一次函数》复习课件(共20张PPT)

中考数学专题《一次函数》复习课件(共20张PPT)

2D
S△COD=
1 2
OC
OD
C
x
O1
122 2 23 3
考点二:确定一次函数解析式及其相关问题
例2:已知:一次函数图象经过A(1,5), B(-2,-4)两点, 图象与x轴交于点C,与 y轴交于点D.
(5)若直线l:y= x-4与此一次函数图象相交 于点P,试求点P的坐标
【解析】:(5)由题意可得:
例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为常数:
(2)当m为何值时,y随x的增大而减小?
【解析】:
∵y随x的增大而减小
2
∴3m-2<0
∴m<
本题考查一次函数的性质,即:在y3=kx+b(k≠0)中,
当k>0时,y随x的增大而增大;
当k<0时,y随x的增大而减小;
考点一:一次函数定义、图象、性质的相关知识
例1:已知直线解析式为y=(3m-2)x+(1-2m) , 其中m为常数:
(3)当m为何值时,图象经过第二、三、四象 限?
【解析】:∵图象经过第二、、四象限∴ 3m 2 0 1 2m 0
∴ 1m 2
2
3
本题考查一次函数的图象及其性质
例题分析
考点一:一次函数定义、图象、性质的相关知识 例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为
④直线AB上有一点C,
y
且点C的横坐标为1, 求点C的坐标及S△BOC的面积
B
C
解:在y=-2x+4中,
当x=1时,y=2
∴C:(1,2)
S△BOC= 1 OB×|1|=2
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y随x的增 y随x的增 大而增大 大而减少
y随x的增 大而减少
考点二
一次函数的图像与性质
1.(2009湖南邵阳)在平面直角坐标系中,函数y=-2x+3的图象经过( )
A.一、二、三象限 C.一、三、四象限
B.二、三、四象限 D.一、二、四象限
D
2.(2009宁夏) 一次函数y=3x-2的图象不经过( )
提问复习,引入新课
1、什么叫正比例函数?
一般地,形如 y=kx(k是常的数函,数k≠,0) 叫做正比例函数,k叫做正比例系 数
例1:画出下列正比例函数的图象
(1) y 2x (2)y 2x
画图步骤: 1、列表; 2、描点; 3、连线.
2、正比例函数的图象是什么形状?有哪些性质?
正比例函数y=kx(k是常数,k≠0) 的图像和性质

y=3x+2

考点四 求实际问题中的一次函数的解析式
1、(2014扬州)(12分)某店因为经营不善欠下38400元的无息贷款的
债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定
借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不
计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日
k的正负性
k>0
k<0
y=kx(k是常数, k≠0)的图像
直线y=kx经过 的象限
性质
一、三象限 y随x的增大而增大
二、四象限 y随x的增大而减小
图像必经过的点 图象必经过(0,0)和(1,k)这两个点
如何用简便的方法画正比例函数的图像?
因为正比例函数的图像是一条直线, 而两点确定一条直线
画正比例函数的图像时,只需 描两个点,然后过这两个点画一条 直线
3
看谁反应快
已知 ab 0, 则函数 y b x
的图像经过哪些象限
a
二、四象限
例1. 如果正比例函数y=(8-2a)x的图像 经过二、四象限,求a的取值范围。 解: 该函数图像经过二、四象限
比例系数k=8-2a<0
a>4
(2014•贺州)已知P1(1,y1),P2 (2,y2)是正比例函数y=x的图象 上的两点,则y1 < y2(填“>”或 “<”或“=”).
当b=0时,y=kx+b就变成了 y=k,x所以说正比 例函数是一种特殊的一次函数。
六.探索发现
(1) 在同一坐标系中作出下列函数的图象
1 y (1) x
3
1 (2) y x 1
3
1 y (3) x 1
y 3 2 1
-3 -2 -1 o -1 -2
12 3
y 1 x 1 3
y1x 3
y 1 x 1 3
x
3
思考:k,b的值跟图像有什么关系?
(2)在同一坐标系中作出下列函数的图象
(1) y 1 x
y 3
3
-
2
(2)
y


1 3
x

1
(3)
y


1 3
x

1
1
-3 -2 -1 o -1 -2
y


1 3x112 Nhomakorabea3
x
y 1 x 3
y


1 3
x

1
思考 做了这三个图像你发现了
K,b跟图像的关系吗?
直线y = kx+b (k≠0) 的平移规律
y
x o
y = kx+b(b>0)
y = kx y = kx+b(b<0)
归纳: (1) 所有一次函数y=kx+b的图象都是_一__条__直__线_ ;
(2)直线 y=kx+b与直线y=kx_互__相__平__行___;
(3)直线 y=kx+b可以看作由直线y=kx平__移____b个__单__位_
(2014. 邵阳) 已知点 M(1,a)
和点N(2,b) 是一次函数y=-2x+1
图像上的两点,则a与b的大小关系

(A )
A. a >b B. a=b C. a <b D. 以上都不对
(2014 .泰州) 将一次函数
y=3x-1 的图像沿y 轴向上平
移3个单位以后,得到的图像
对应的函数关系是为
A.第一象限
B.第二象限
C.第三象限
D.第四象限
B
3、(2009年重庆市江津区)已知一次函数y=x-2的
大致图像为 (

y
C y
y
y
x
x
x
x
A
B
C
D
逆向思维 小试牛刀
已知函数 y = kx的图象在二、四象限,那么函
数y = kx-k的图象可能是( B )
y
y
0
x
y
0
xy
(A )
(B)
0x
0x
(C)
(2014.云南)写出一个图像经过
一,三象限的正比例函数y=kx (k ≠ 0) 的解析式(关系式) ( y=5x )
提问复习,引入新课
1、什么叫正比例函数、一次函数?它们之间有 什么关系?
一般地,形如 y=kx(k是常的数函,k数≠0,) 叫做正比 例函数; 一般地,形如 y=kx+b(k,的b是函常数数,,k≠叫0)做一次函 数。
(D)
(2014. 资阳) 一次函数y=-2x+1
的图像不经过的下列那个象限
(C
)
A. 第一象限 B.第二象限 C. 第三象限
D.第四象限
考点三 一次函数的解析式
(2014年温州 )一次函数y=2x+4
的图像与y轴交点的坐标是
(B
)
A.(O, -4) C.(2, 0)
B.(0,4) D.(-2, 0)
2、(2014年安徽) 2013年某企业按餐厨垃圾处理 费25元/吨,建筑垃圾处理费16元/吨标准。从2014 年元月起,收费标准上调为:餐厨垃圾处理 费100 元/吨,建筑垃圾处理费30元/吨,若该企业计划 2014年将上述两种垃圾处理量减少到240吨,且建 筑垃圾处理量不超过餐厨垃圾处理量的3倍,则 2014年该企业最少需要支付这两种垃圾处理费共多 少元?
而得到
当b>0,向上平移 b 个单位; 当b<0,向下平移 b 个单位。
一次函数图象与性质

图象



k,b的符号
y
b
ox
k>0 b>0
y=kx+b b≠0)
经过象限
一、二、三

增减性
y随x的增 大而增大
y
ox
b
k>0 b<0
y
b
o
k<0 b>0
y
x
ox
b
k<0 b<0
一、三、四 一、二、四 二、三、四
作业: 中考总复习第30——31页上的第四, 第五大题
考点一 正比例函数的图像与性质
1.由由正函比例数函解数析解式析,式请(你根说据k出的下正列、函负),
来数判的断变其化函情数况图像分布在哪些象限
(1) y 2 x 3
y一随、x的三增象大而限增大
(2) y 2x y一随、x的三增象大而限增大
(3) y
2 x y二随、x的四增象大而限减小
销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实
线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其
它费用为106元(不包含债务). (1)求日销售量y(件)与销售价x(元/件)之间的 函数关系式;
(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时, 当天正好收支平衡(收人=支出),求该店员工的人数;
相关文档
最新文档