第三章 流体静力学 (3)

合集下载

第三章 流体力学

第三章 流体力学
1、理想流体:
完全不可压缩的无粘滞流体称为理想流体。
液体不易被压缩,而气体的可压缩性大。但当气体可自由流 动时,微小的压强差即可使气体快速流动,从而使气体各部 分的密度差可以忽略不计。
流体内各部分间实际存在着内摩擦力,它阻碍着流体各部分 间的相对运动,称为粘滞性。但对于很“稀”的流体,可近 似看作是无粘滞的。
4l
dQ=vdS
流量
R
Q R4 ( P1 P2 )
8l
泊肃叶定律推导(略)
流速分布: r
r
v P1 P2 ( R2 r 2 )
4l
各流层流速沿径向呈抛 物线分布
v 管轴中心处,流速最大
vmax

P1 P2
4l
R2
管壁处,流速最小 vmin 0
v
平均速度 v P1 P2 R2
由伯努利方程:
p0

gh

p0

1 2
v2
由上式求得:
v 2 gh
p0
A h
B p0 v
习例题题5-1:1 直径为0.10m,高为0.20m的圆筒形容器底部有1cm2的小 孔。水流入容器内的流量为1.4×10-4m3/s 。求:容器内水面能
上升多高?
D
由伯努利方程: v 2 gh
h 当水面升至最高时: QV v S S 2 ghm
若1 < 2 , 小球(气泡)上浮

1 2
V

v
2 1

gh2V


gh1V
即:
p1

1 2

v
2 1

gh1

第三章流体静力学

第三章流体静力学
一、静止液体作用在固体壁面上的总压力
作用在平面上总压力的计算方法有两种: 解析法
图解法
第二十六页,共八十九页。
1.平面总压力大小
o
设有一与水平面成α夹角的倾斜平面 ab,其面积为A,左侧受水压力, 水面大气压强为p0,在平板表面所 在的平面上建立坐标,原点o取在 平板表面与液面的交线上,ox轴与
hD hC yb
整理 p2p1gh
液体静力学基本方程式为 pp0 gh
第八页,共八十九页。
二.流体静力学基本方程的意义
1.A点的压强
p p 0g h p 0g (z 0 z )
整理
p
g
z
p0
g
z0
常数
意义:
Z——单位重量液体的位置势能(简称比位能);
——p 静止液体中单位质量液体的压力能(简称比压能)
g
,比位能与比压能之和称为总比能。
3.运动流体是理想流体时,不会产生切应力,所以理想流体
动压强呈静水压强分布特性,即
第七页,共八十九页。
第二节 重力场中流体的平衡
一.流体静压强的基本方程
静止液体所受的力除了液体重力外 ,还有液面上的压力和固体壁面作 用在液体上的压力,其受力情况如 图所示。
1.受力平衡方程
p 2 A p 1 A g l A co 0 s
D
sin y2dA sinyc AyD
式中 y2dA 为受压面对ox轴的惯性矩 I X
所以
yD
Ix ycA
第三十二页,共八十九页。
根据平行移轴定理:
I X IC yC2 A

yD
yc
Ic ycA
ohD hC h源自αa yyb

流体力学_第三章_伯努利方程及动量方程

流体力学_第三章_伯努利方程及动量方程
4根线具有能量 意义: 总水头线 测压管水头线 水流轴线 基准面线
23
第三节 恒定总流的伯努利方程
例 用直径d=100mm的水管从水箱引水,水管水面与
管道出口断面中心高差H=4m,水位保持恒定,水头 损失hw=3m水柱,试求水管流量,并作出水头线 解:以0-0为基准面,列1-1、2-2断面的伯努利方程
第三节 恒定总流的伯努利方程
渐变流及其性质
渐变流
(u )u 0
渐变流的过流断面近于平 面,面上各点的速度方向 近于平行。 渐变流过流断面上的动压 强与静压强的分布规律相 同,即:
p z c g
1
第三节 恒定总流的伯努利方程
大小的变化 流速的变化 方向的变化
出现直线惯性力 压强沿流向变化
微小圆柱体的力平衡
p1dA ldA cos p2 dA l cos Z1 Z 2 p1 (Z1 Z 2 ) p2
Z1 p1 Z2 p2


4
第三节 恒定总流的伯努利方程
Z1 p1

Z2
p2

均匀流过流断面上压强 分布服从水静力学规 律
40
2
,
2
第三节 恒定总流的伯努利方程
( a )( z2 z1 ) ( a )( z2 z1 ) ( a )
单位体积气体所受有效浮力
v1 2 gh d1 1 d 2
4
4
2 1
2 1
30
第三节 恒定总流的伯努利方程
Q v1

4
d
2 1

4
d
2 1
2 gh d1 d 1 2

流体力学基础-第三章-一维流体动力学基础

流体力学基础-第三章-一维流体动力学基础

1Q1dt 2Q2dt
1. 微小流束连续性方程
1Q1 2Q2 11dA1 22dA2
对不可压缩流体:
1 2 , Q1 Q2 1dA1 2dA2
1. 微小流束连续性方程 推而广之,在全部流动的各个断面上:
Q1 Q2 ~ Q
拉格朗日法(Lagrange method)—“跟踪”法
拉格朗日法是将流场中每一流体质点作为研究对象, 研究每一个流体质点在运动过程中的位置、速度、加 速度及密度、重度、压强等物理量随时间的变化规律。 然后将所有质点的这些资料综合起来,便得到了整 个流体的运动规律。即将整个流体的运动看作许多流 体质点运动的总和。
d 2 4A d 4R d x
非圆形截面管道的当量直径 x
D 4A 4R x
R
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
五、一维流动模型
一维流动: 流动参数是一个坐标的函数; 二维流动: 流动参数是两个坐标的函数; 三维流动: 流动参数是三个坐标的函数。
二维流动→一维流动
(1)(a,b,c)=const ,t 为变数,可以 得出某个指定质点在任意时刻所处的位置。 (2)(a,b,c)为变数,t =const,可以得 出某一瞬间不同质点在空间的分布情况。
流体质点速度为: x a,b,c,t
流体质点加速度为:
v x x a,b,c,t a x t t 2 v y 2 y a,b,c,t a y 2 t t vz 2 z a,b,c,t a z t 2 t
动方向的横断面, 如图中的 1-1,2-2 断面。又称为有效 截面,在流束中与各流线相垂直,在每一个微元流束的过 水断面上,各点的速度可认为是相同的。

工程流体力学经典习题答案

工程流体力学经典习题答案

第一章 流体及其主要物理性质1-1.轻柴油在温度15ºC 时相对密度为0.83,求它的密度和重度。

解:4ºC 时所以,33/8134980083.083.0/830100083.083.0mN m kg =⨯===⨯==水水γγρρ1-2.甘油在温度0ºC时密度为1.26g/cm 3,求以国际单位表示的密度和重度。

333/123488.91260/1260/26.1m N g m kg cm g =⨯==⇒==ργρ 1-3.水的体积弹性系数为1.96×109N/m 2,问压强改变多少时,它的体积相对压缩1%?MPa Pa E E VVVV p p6.191096.101.07=⨯==∆=∆=∆β 1-4.容积4m 3的水,温度不变,当压强增加105N/m 2时容积减少1000cm 3,求该水的体积压缩系数βp 和体积弹性系数E 。

解:1956105.2104101000---⨯=⨯--=∆∆-=Pa p V V pβ Pa E p89104105.211⨯=⨯==-β 1-5. 用200L 汽油桶装相对密度为0.70的汽油,罐装时液面上压强为1个大气压,封闭后由于温度变化升高了20ºC ,此时汽油的蒸气压为0.18大气压。

若汽油的膨胀系数为0.0006ºC -1,弹性系数为14000kg/cm 2。

试计算由于压力及温度变化所增减的体积?问灌桶时每桶最多不超过多少公斤为宜?解:E =E ’·g =14000×9.8×104PaΔp =0.18atdp pV dT T V dV ∂∂+∂∂=00V T V T V V T T ββ=∂∂⇒∂∂=00V pVp V V p p ββ-=∂∂⇒∂∂-= 所以,dp V dT V dp pVdT T V dV p T 00ββ-=∂∂+∂∂=从初始状态积分到最终状态得:LL L V p p EV T T V V dpV dT V dV T p pp T TT VV 4.21057.24.2200108.914000108.918.020*******.0)(1)(34400000000≈⨯-=⨯⨯⨯⨯⨯-⨯⨯=---=--=-⎰⎰⎰βββ即()kg V V M 32.13810004.220010007.0=-⨯⨯=∆-=ρ另解:设灌桶时每桶最多不超过V 升,则200=++p t dV dV VV dt V dV t t 2000061.0⨯=⋅⋅=βV dp V dV p p 18.0140001⨯-=⋅⋅-=β(1大气压=1Kg/cm 2)V =197.6升 dV t =2.41升 dV p =2.52×10-3升G =0.1976×700=138Kg =1352.4N 1-6.石油相对密度0.9,粘度28cP ,求运动粘度为多少m 2/s?解:s Pa P s Pa s mPa P cP ⋅=⋅=⋅==--1.0110110132()cSt St s m 3131.0/101.310009.01028253==⨯=⨯⨯==--ρμν1-7.相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少?解:89.0==水ρρd ν=40cSt =0.4St =0.4×10-4m 2/sμ=νρ=0.4×10-4×890=3.56×10-2Pa ·s 1-8.图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ 1-9.如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μ第二章 流体静力学2-1. 如图所示的U 形管中装有水银与水,试求:(1)A 、C 两点的绝对压力及表压各为多少? (2)A 、B 两点的高度差为多少?解:① p A 表=γh 水=0.3mH 2O =0.03at =0.3×9800Pa=2940Pa p A 绝=p a + p A 表=(10+0.3)mH 2O =1.03at =10.3×9800Pa=100940Pap C 表=γhg h hg + p A 表=0.1×13.6mH 2O+0.3mH 2O =1.66mH 2O =0.166at= 1.66×9800Pa =16268Pap C 绝=p a + p C 表=(10+1.66)mH 2O =11.66 mH 2O =1.166at =11.66×9800Pa=114268Pa② 30cmH 2O =13.6h cmH 2O ⇒h =30/13.6cm=2.2cm题2-2 题2-32-2.水银压力计装置如图。

流体力学复习内容

流体力学复习内容
流体静压强定义: 分离体外液体作用在分离体流体表 v 面的负的法向应力
dFn v v pnn pn dA
特征一: 流体静压强的方向沿作用面的内法向方向。 特征二: 静止流体中任一点上不论来自何方的静压 强均相等。
3.2 流体平衡的微分方程式
一,平衡方程:由微元受力平衡(表面力和质量力) 得出静止流体平衡的微分方程。
1、压强差公式:
dp f x dx f y dy f z dz
表明:静止液体中,流体静压强的增量dp随坐标增量 的变化决定于质量力。
3.6 静止液体作用在平面上的总压力
§2.2 流体受力平衡微分方程
压强全微分方程: 等压面方程:
dp f x dx f y dy f z dz
分子组成的,宏观尺度非常小,而微观尺度又
足够大的物理实体。
§2.2 连续介质假设
流体质点选取必须具备的两个基本条件:
宏观尺度非常小:
才能把流体视为占据整个空间的一种连续介质, 且其所有的物理量都是空间坐标和时间的连续函 数的一种假设模型。 有了这样的模型,就可以把数学上的微积分手 段加以应用了。
微观尺度又足够大的物理实体:
使得流体质点中包含足够多的分子,使各物理 量的统计平均值有意义(如密度,速度,压强,温 度,粘度,热力学能等宏观属性)。而无需研究所 有单个分子的瞬时状态。
§2.5 流体的可压缩性
流体体积随着压力和温度的改变而发生变化的 性质。
二、流体的第二个重要特性——可压缩性
单一参数影响规律
x x(a,b,c,t )
特征:追踪观察,如将不易扩散的染料滴一滴到水流
中,染了色的流体质点的运动轨迹。
用欧拉方法求流体质点物理量时间变化率的一 般公式为:

第三章流体静力学(流体的平衡)

第三章流体静力学(流体的平衡)
第三章 流体静力学(流体的平衡)
1.流体的平衡:绝对平衡、相对平衡 2.流体平衡时的压强 3.流体平衡的条件 3.1.平衡的微分方程 ∂ p dx ∂ p dx −∂ p dydz − p dydz = dxdydz ∂x 2 ∂x 2 ∂x 表面力: −∇ p dxdydz d 体积力: f b =∇ p 绝对平衡方程: f x 方向表面力: p −
∫ gy sin dA= g sin ∫ y dA= g y c sin A= P c A
A A
设压力中心坐标为
x D , y D = x C f , y C e ,其中 f 和 e 称为纵向和横向偏心矩。
则总合力对形心坐标轴的力矩:
F e =∫ dF = g sin ∫ y dA F f =∫ dF = g sin ∫ y dA∇ p d r =0
d 考虑到绝对平衡方程,得出等压面的微分方程: f b r = 0 ,即在等压面上体力处处与等压面 垂直。
3.3.流体平衡的必要条件
b =∇× 由绝对平衡方程得 ∇× f 1 −1 ∇ p = 2 ∇ ×∇ p
−1 ∇ p⋅∇ ×∇ p =0 3 ⋅∇ × f =0 流体平衡的必要条件 f b b b⋅∇ × f b = 于是 f
均质流体 =constant
≡0 ∇× f b
−∇ =
1 ∇p
=
−p
非均质流体:正压流体 = p ,如等温或绝热气体 定义压力函数 P p : ∇ P =
=∇ P 由绝对平衡方程得, f b 4.流体静力学基本方程(静力学规律)
由 P =− gz C 得
∇p p ≡0 ,故 f 有势,势函数 =− P p ∇× f b b

液压传动第三章 流体力学基础

液压传动第三章 流体力学基础

1、理想流体和恒定流动
理想流体:既无粘性,又无压缩性的假想液体。
实际流体:有粘性,又有压缩性的液体。
恒定流动:液体在流动时,通过空间某一点的压力、速度和密度等运
动参数只随位置变化,与时 间无关。
非恒定流:液体在流动时,通过空间某一点的压力、速度和密度等
运动参数至少有一个是随时 间变化的。
2、流线 流管、流束、通流截面
dqdt
u22 2
dqdt
u12 2
势能:ΔEP gdqh2dt gdqh1dt
外力做的功=能量变化:
W ΔE ΔEK ΔEP
p1
g
u12 2g
h1
p2
g
u22 2g
h2
1.理想流体的能量方程
p1
g
u12 2g
h1
p2
g
u22 2g
h2
2、实际流体伯努利方程
实际流体:有粘性、可压缩、非恒定流动 速度修正:动能修正系数
正确设计和使用液压泵站。 液压系统各元部件的连接处要密封可靠,严防
空气侵入。 采用抗腐蚀能力强的金属材料,提高零件的机
械强度,减小零件表面粗糙度值。
第六节 液 压 冲 击
一、管内液流速度突变引起的液压冲击
有一液位恒定并能保持 液面压力不变的容器如 图3-40所示。
二、运动部件制动所产生的液压冲击
第四节 孔口和缝隙液流
一、薄壁小孔
➢ 薄壁小孔是指小孔的长度和直径之比l/d<0.5的孔, 一般孔口边缘做成刃口形式,如图3-25所示。
➢薄壁小孔的流量计算
对于图所示的通过薄壁小孔的液体,取小孔前后截面1-1和2-2列伯努利方程
p1
g
v12 2g

第3章 流体静力学 (华水)

第3章 流体静力学 (华水)

微分形式的等压面方程
f x dx f y dy f z dz 0
性质:在静止流体中,作用于任意点的质量力垂直于 经过该点的等压面
等压面及其特性:
等压面: 等压面性质:
1、在平衡液体中等压面就是等势面 p=cons tan t dp 0 dU 0
液体中压强相等的点连成的面 (可能是曲面或平面)
方向特性
pc pc
pc
h
大小特性
静水压强的方向与受压面垂直并指向受压面
证明方法:……??
反证法
特性二(大小特性):静压强的大小与作用面在 空间的方位无关,只是坐标点的连续可微函数
即作用于同一点上各方向的静水压强大小相等。
边长 δx、δy、δz 静压强 px、py、pz和pn
密度 ρ
单位质量力的分量 fx 、fy、fz
1 p 0 z

2 p f x 不可压缩均质 y yx 2 p f y xy x
fx fy y x
单位质量力分量之间有下述关系
f y f x x y
f x f z z x
5.255
二 大气压的压强分布(可压缩流体中压强的变化)
在大气层中,从高11000m到20100m的空间为大气恒温层,
等温过程,气体的密度:

p RT
重力场中单位质量力分量为: 代入压差公式,得
dp p gdz RT1
f x f y 0, f z g
积分
dp RT1 gdz 0 p
用液柱高度表示 hV
pV p p a g g
三 绝对压强 计示压强(相对压强) 真空(真空度)

流体力学 第三章

流体力学 第三章
无数微元流束的总和称为总流。自然界和工程中所遇到 的管流或渠流都是总流。根据总流的边界情况,可以把总流 流动分为三类:
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。

工程流体力学 第三章 流体静力学(孔珑 第三版)

工程流体力学 第三章 流体静力学(孔珑 第三版)
两侧压差:
Δp pA pB 2 gh 1 gh2 1 gh1 2 1 gh
如果被测流体为气体:
21
1 gh 0
2013年9月21日
《工程流体力学》 樊小朝 电气学院
4.倾斜微压计
玻璃管倾斜角

,截面积 A1
宽广容器截面积 A2
微压计存在压差 p2 p1
F mg pe 13263 Pa 2 d 4
液柱显示的压强:
pe gH h
联立方程,解得:
H 0.8524 m
24
2013年9月21日
《工程流体力学》 樊小朝 电气学院
P30例题3-2 如图所示,为测压装置。假设容器 A 中水面上的计 h 示压强 pe 2.45 104 Pa , h 500 mm ,h1 200mm , 2 100mm 3 3 h3 300mm ,水的密度 1 1000kg m ,酒精的密度 2 800kg m B 中气体的计示压强。 水银的密度 3 13600kg m3 ,试求容器
16
2013年9月21日
《工程流体力学》 樊小朝 电气学院
三、绝对压强 计示压强 p26 绝对压强:以真空为基准计量的压强。
p pa gh pa ——大气压强
计示压强:以当地大气压强为基准计量的压强。
pe p pa gh (测压计显示压强)
真空:绝对压强小于当地大气压
pV pa p pe (又称负压)
1 p fx 0 x
同理:
1 p fy 0 y 1 p fz 0 z
——流体平衡方程式(欧拉方程)
5
2013年9月21日
《工程流体力学》 樊小朝 电气学院

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结流体力学知识点总结第一章绪论1液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3流体力学的研究方法:理论、数值、实验。

4作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

ΔFΔPΔTAΔAVτ法向应力pA周围流体作用的表面力切向应力作用于A上的平均压应力作用于A上的平均剪应力应力为A点压应力,即A点的压强法向应力为A点的剪应力切向应力应力的单位是帕斯卡(pa),1pa=1N/㎡,表面力具有传递性。

(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5流体的主要物理性质(1)惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下):4℃时的水20℃时的空气(2)粘性huu+duUzydyx牛顿内摩擦定律:流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知——速度梯度,剪切应变率(剪切变形速度)粘度μ是比例系数,称为动力黏度,单位“pa·s”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度单位:m2/s同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体T↑μ↓气体T↑μ↑无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

(3)压缩性和膨胀性压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。

T一定,dp增大,dv减小膨胀性:流体受热,体积膨胀,密度减小,温度下降后能恢复原状的性质。

P一定,dT增大,dV增大A液体的压缩性和膨胀性液体的压缩性用压缩系数表示压缩系数:在一定的温度下,压强增加单位P,液体体积的相对减小值。

第3章-流体静力学-例题

第3章-流体静力学-例题
Dr W-X Huang, School of Chemical Engineering, Sichuan University, Chengdu 610065, P.R. China
工程流体力学——第三章 流体静力学——例题
CH3-7
z
z
pw
R h R y o b a o R
pw
β
R y
液柱顶部
A A1 A2
p0
CH3-3
n2
h2
= − ∫ ρ g (h1 + h2 − y )(−idy + j tanθ dy ) − ∫ ρ g (h1 + h2 − y )(−idy )
0 h1
h1
h2
n1
θ θ
= +∫
h1 + h2
0
ρ g (h1 + h2 − y )dyi − ∫ ρ g ( h1 + h2 − y ) tanθ dyj
p − p0 = ρ g ( h 1 + h2 − y )
p0
n2
h2
hc =
n1
dl
θ dy
h1+h 2 2
θ θ
dx
y
o
h1 tan θ
h1
x
流体静压 ( p − p0 ) 对水坝内侧表面 A 的总作用力为
A A
图 3-11 例 3-3 附图
FA = − ∫∫ ( p − p0 )ndA = − ρ g ∫∫ ( h1 + h2 − y )ndA
= −1000 × 9.8 ×
302 ⎛ 30 ⎞ tan 230o ⎜ + 20 ⎟ = −44.10MN-m/m 2 ⎝ 3 ⎠

大学课程《工程流体力学》PPT课件:第三章

大学课程《工程流体力学》PPT课件:第三章

§3.1 研究流体运动的方法
➢ 欧拉法时间导数的一般表达式
d (v ) dt t
d :称为全导数,或随体导数。
dt
:称为当地导数。
t
v
:称为迁移导数。
例如,密度的导数可表示为: d (v )
dt t
§3.1 研究流体运动的方法
3.1.2 拉格朗日法
拉格朗日法的着眼点:特定的流体质点。
lim t0
(
dV
III
)
t
t
t
CS2 vndA
单位时间内流入控制体的物理量:
z

Ⅱ’

y
lim
t 0
(IdV )t t t CS1vndA
x
§3.3 雷诺输运方程
➢ 雷诺输运方程
dN dt
t
CV dV
CSvndA
雷诺输运方程说明,系统物理量 N 的时间变化率,等于控 制体该种物理量的时间变化率加上单位时间内经过控制面 的净通量。
d dt
V
dV
t
CV
dV
CS
vndA
0
因此,连续性方程的一般表达形式为:
t
CV
dV
CS
vndA
0
连续性方程是质量守恒定律在流体力学中的表现形式。
对定常流动,连续性方程简化为:
CS vndA 0
§3.4 连续性方程
对一维管流,取有效截面 A1 和 A2,及
v2
管壁 A3 组成的封闭空间为控制体:
ay
dv y dt
v y t
vx
v y x
vy
v y y
vz
v y z
az

第三章 流体静力学

第三章 流体静力学
1 2 2 p ( r gz ) C 2
条件:r 0,z 0,p pa
因此: C pa
p pa g (
2r 2
2g
z)
实例2:封闭容器装满液体, 顶盖边缘开口通大气
1 2 2 p ( r gz ) C 2
条件:r R,z 0,p pa
圆柱体底面上各点所受到的计 示压强为:
F mg pe d2 4
pe H h g
pe g H h
例3-2 假设容器A中水面上的计示压强为pe,已知h,h1, h2,h3,水的密度ρ1,酒精的密度ρ3,试求容器B中气体 的计示压强。
p1e pe 1 g h h1 p2 e p1e 3 gh1 pe 1 g h h1 3 gh1 pe 1 g h h1 3 gh1 2 gh2 pe 1 g h h1 3 gh1 2 gh2 3 gh3
EXIT
一、水平等加速运动容器中液体的相对平衡 装着液体的车以等加速度a向右行驶,液面上气体压强为p0, 达到相对平衡后,液面与水平面间的夹角α。
• 液体静压强分布规律
p ax gz C
• 等压面方程
ax gz C1
•自由液面方程
ax gzs (几何) 0 (压力) p p 0 1 =-tan a g
第三节 重力场中流体的 平衡帕斯卡原理
一、绝对压强 计示压强 (1)绝对压强p:以完全真空(p=0)为基准计量的压强。 (2)计示压强pe:以当地大气压(pa)为基准计量的压强。 (3)真空pv:绝对压强小于当地大气压强的负计示压强。 绝对压强 计示压强 p=pa+ρgh pe=p-pa= ρgh

流体力学第3章

流体力学第3章

相应的流体静压强增加dp,压强的增量取决于质量力。
22.04.2021
12
二、流体平衡条件
对于不可压缩均质流体,有
dpfxdxfydyfzdz
上式的左边是全微分,它的右边也必须是全微分。由数学
分析知:该式右边成为某一个函数全微分的充分必要条
件是
f y f z z y
f z f x x z
f x f y y x
22.04.2021
15
第三节 重力场中流体的平衡帕斯卡原理
一、重力作用下的静力学基本方程式
P0
P2 P1 Z1 Z2
推导静力学基本方程式用图
22.04.2021
16
作用在液体上的质量力只有重力G=mg,其单位质 量力在各坐标轴上的分力为 fx=0,fy=0,fz=-g
代入压强差公式,得
dpgdz
及烟囱的底部等处的绝对压强都低于当地大气压强,这些地
方的计示压强都是负值,称为真空或负压强,用符号pv表示,

pv pa p
如以液柱高度表示,则
hv
pv
g
pa p
g
式中hv称为真空高度。
22.04.2021
29
(1)当地大气压强是某地气压表上测得的压强值, 它随着气象条件的变化而变化,所以当地大气压强 线是变动的。
M点的绝对压强为 p=pa+ρ2gh2-ρ1gh1
M点的计示压强为 pe=p-pa=ρ2gh2-ρ1gh1
于是,可以根据测得的h1和h2以及已知的ρ1和ρ2计 算出被测点的绝对压强和计示压强值。
22.04.2021
37
• (2) 被测容器中的流体压强小于大气压强(即p<pa):

化工原理

化工原理

p1
设指示液的密度: 0
被测流体的密度:
A与A′面 为等压面,即 p A p A'
而 pA ቤተ መጻሕፍቲ ባይዱp1 g(m R)
A
p A' p2 gm 0 gR
p2
m R A’
所以 整理得
p1 g(m R) p2 gm 0 gR p1 p2 (0 )gR
若被测流体是气体, 0 ,则有
重力场中对液柱进行受力分析: (1)上端面所受总压力 P1 p1 A 方向向下 (2)下端面所受总压力
P2 p2 A
方向向上
(3)液柱的重力
G gA(z1 z2 ) 方向向下
p0
p1
G z1
p2
z2
液柱处于静止时,上述三项力的合力为零:
p2 A p1 A gA(z1 z2 ) 0
p2 p1 g(z1 z2 )
(3)在静止的、连续的同种流体内,处于同一水平面上各点的压力处处相等。 压力相等的面称为等压面。
(4)压力具有传递性:液面上方压力变化时,液体内部各点的压力也将发生相 应的变化。 ——巴斯噶原理
P1
P2
p
1
1
32 54
2 354
1.4 静力学基本方程的应用
1. 压力及压力差的测量
(1)U形压差计
(2)双液体U管压差计(微差压计)
适用于压差较小的场合。
密度接近但不互溶的两种指示
液A和C

(A C )
扩大室内径与U管内径之比应大于10 。
p1 p2 Rg( A C )
p1
p2
z1
1
z1
R 2
(3) 倒U形压差计
指示剂密度小于被测流体密度, 如空气作为指示剂

工程流体力学第三章

工程流体力学第三章

则总压力P 则总压力P为: 其中 代入上式,则: 代入上式,
(1)
对于本例即
它表明作用在平面 A 的液体总压力,等于浸水面积 A 与形心点 的液体总压力, 的静压力 γhc的乘积。 的乘积。 可理解为一假想体积的液重,即以浸水面积 A 为底,面积 A 的 为底, 可理解为一假想体积的液重, 形心淹没深度h 为高的这样一个体积包围的液体重量。 形心淹没深度hc为高的这样一个体积包围的液体重量。
一点的质量力必然垂直于通过该点的等压面。 一点的质量力必然垂直于通过该点的等压面。 等压面概念对解决许多流体平衡问题很有用处, 等压面概念对解决许多流体平衡问题很有用处,它是液柱式压力计测压原理的重 要基础。 要基础。 根据等压面性质,我们可以在已知质量力的方向,去确定等压面的形状, 根据等压面性质,我们可以在已知质量力的方向,去确定等压面的形状,或已知 等压面的形状去确定质量力的方向。 等压面的形状去确定质量力的方向。
根据等压面的特性可以更普遍地证明:两种不同流体处于平衡状态时,其 根据等压面的特性可以更普遍地证明:两种不同流体处于平衡状态时, 相互接触的(但互不相混)分界面必然是等压面。 相互接触的(但互不相混)分界面必然是等压面。
( 4 )正压流场 流体的密度只是压力的函数的流场称之为正压流场,即在正压流场中 流体的密度只是压力的函数的流场称之为正压流场,
§3 . 3 某些流体静力学基本问题
在工程技术中,许多的工业过程与流体静力学相关,研究这些问 在工程技术中,许多的工业过程与流体静力学相关, 题就需要流体静力学的知识。 题就需要流体静力学的知识。 一、压力分布与受力分析 对于流体静力学基本方程: 对于流体静力学基本方程:
∂P = ρ fx; ∂x ∂P = ρ fy; ∂y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Definition
Fluid statics is the study of fluids in which there is no relative motion between fluid particles.
“静”——绝对静止、相对静止
作用在流体上的力 The forces on fluid
第三章 流体静力学
流体模型分类
流体模型
按粘性分类
无粘性流体 粘性流体
牛顿流体 非牛顿流体
按可压缩性分类
可压缩流体 不可压缩流体
其他分类
完全气体 正压流体 斜压流体
均质流体 等熵流体 恒温流体
本章基本要求
• 流体静压强及其特性,流体的平衡微分方程式,
绝对与相对静止流体中的压强分布规律及计算, 平面与曲面上的流体总压力。
以x方向为例,列力平衡方程式
表面力:
pbdydz
pcdydz
p x
dxdydz
质量力:
f x ρdxdydz
据Fx 0,
ρf
xdxdydz
p x
dxdydz
0
y p- p/x•dx/2 f,p,ρ
dy b a
f
x
1
p x
0
o z
x
dx y
第二章 流体静力学
p+ p/x•dx/2 c dz
z
y
§3.2 流体平衡微分方程式
p gz p0 gz0
p p0 gz0 z p0 gh
——帕斯卡原理 (压强的传递性)
§3.4 绝对压强 计示压强 液柱式测压计
一、压强的计量
p
1.绝对压强 p>pa
以完全真空为基准计量的压强。
计示 压强
大气压强 p=p a
2.计示压强
绝对 压强
计示 压强 (真空)
以当地大气压强为基准计量的压强。
第三章 流体静力学
h pa
§3.4 绝对压强 计示压强 液柱式测压计
h1
h
2
二、液柱式测压计
2.U形管测压计 p1 p gh1 p2 pa 2gh2
p1 p2
pa
p
ρ
A
p pa 2gh2 gh1 pe 2gh2 gh1
优点:可以测量较大的压强
第三章 流体静力学
1
2
ρ2
§3.4 绝对压强 计示压强 液柱式测压计
二、液柱式测压计
3.U形管差压计
测量同一容器两个不同位置的压差或不同容器的压强差。
p1 pA g(h h2)
p2 pB g(h z) 2gh2
B
△z
p1 p2
pA g(h h2) pB g(h z) 2gh2
A
h2 h
1
2
pA pB g(z h2) 2gh2 gz 2g(h2 h)
3.几何意义
z p C g
位压 静 置强 水 水水 头 头头
A
完全真空
p1/g z1
p0
p22 p1 1
A pa/g A' p2/g pe1/g
z2 基准面 z1
pa
p0 p2
2
p1
1
A' pe2/g
z2
在重力作用下的连续均质不可压静止流体中,静水头线为水平线。
第三章 流体静力学
§3.3 流体静力学基本方程式
§3.2 流体平衡微分方程式
一、平衡微分方程式(续)
2.压强差公式
dp p dx p dy p dz x y z
fx
1
p x
0
fy
1
p y
0
fz
1
p z
0
p
x
f x
p
y
f y
p z
f z
dp ( f xdx f ydy f zdz)
物理意义: 流体静压强的增量决定于质量力。
§3.3 流体静力学基本方程式
一、流体静力学基本方程式
1.基本方程式
作用在流体上的质量力只有重力 均匀的不可压缩流体
fx fy
0 0
fz
-g
dp gdz
dz dp 0 g
z
g
积分得:
z p C g
z1
p1 g
z2
p2 g
o
第三章 流体静力学
p0 p2 p1 2
1
z1 z2
基准面
x
f
grad
p
p
第三章 流体静力学
§3.2 流体平衡微分方程式
二、力的势函数和有势力(续)
2.正压流体
( p)
dp
d
dp
( p)
(
fxdx
f ydy
f z dz)
f
grad
p
dp
( p)
重力是否有势?
f
x
x
0
f
y
y
0
fz z g
gz c
重力有势!
一、流体静力学基本方程式(续)
4.帕斯卡原理
z
a点压强:
z
p g
(z
h)
p0 g
p0 hp
h
p
p p0 gh
a
z o
x
在重力作用下不可压缩流体表面上的压强,将以同一数值沿各 个方向传递到流体中的所有流体质点。
第三章 流体静力学
适用范围: 1.重力场、不可压缩的流体 2.同种、连续、静止
压强分布规律的最常用公式:
• 质量力 Mass Force
• 表面力 Surface force
表面力的分类
内法线方向 Normal compressive force : 法向应力——压强
p lim Fn A0 A
切线方向Shear force : 切向应力——剪切力
lim F
A0 A
ΔFn ΔF
ΔA ΔFτ
流体相对运动时因粘性而产生的内摩擦力
1. 方向性
流体静压力的方向总是沿着作用面的内法线方向;
原因:(1)静止流体不能承受剪力,即τ=0,故p垂直受压面; (2)因流体几乎不能承受拉力,故p指向受压面。
第三章 流体静力学
§3.1 流体静压强及其特性
二、流体静压强的两个特性
2. 大小性
流体静压力与作用面在空间的方位无关,仅是该点坐标的函数。
z
积分
p (ax gz) C
利用边界条件:
a
z
h
s
am z
o
p 0
x
x0 z0
p p0
f g
得: C p0
p p0 (ax gz)
p
p0
g( a
g
x
z)
ax gzs 0
p p0 g(zs z) p0 gh 第三章 流体静力学
§3.5 液体的相对平衡
一、等加速水平运动容器中液体的相对平衡(续)
两杯中分别装入互不相溶密度相近的两种液体, ρ酒精 =870kg/m3, ρ煤油=830kg/m3,当气体压强差这P1-P2=0 时,两种液体的初始交界面在标尺O处,已知U形管直径 d=5mm,两杯直径相同D=50mm.试确定使交界面上升至 h=280mm时的压强差.
§3.5 液体的相对平衡
流体相对于地球有相对运动,而流体微团及流体与容器壁之 间没有相对运动。
一、平衡微分方程式(续)
ቤተ መጻሕፍቲ ባይዱ
1.平衡微分方程式 (续)
同理,考虑y,z方向,可得:
物理意义:
fx
1
p x
0
fy
1
p y
0
fz
1
p z
0
在静止流体中,单位质量流体上 的质量力与静压强的合力相平衡
适用范围: 所有静止流体或相对静止的流体。
上式即为流体平衡微分方程 (欧拉平衡微分方程)
第三章 流体静力学
3.与绝对静止情况比较
z
(1)等压面
绝对静止: 相对静止:
(2)压强分布
zc
水平面
za xc g
斜面
a
z
h
s
am z
o
px
1 2
dydz
pn
dAcos(n,x)
fx
ρ
1 6
dxdydz
0
px
pn
fx
1 dx 3
0
y D
pz
px
pn
fx
1 dx 3
0
p
y
pn
fy
1 dx 3
0
pz
pn
fz
1 dx 3
0
略去无穷小项
px py pz pn
px
dy
pn
dz o dx C x B
z
py
第三章 流体静力学
静压强特征
第三章 流体静力学
§3.2 流体平衡微分方程式
三、等压面
1. 定义
流场中压强相等的各点组成的面。 dp 0
2. 微分方程
dp ( fxdx f ydy fzdz)
fxdx f ydy fzdz 0

f
dr
0
dp 0
3. 性质
等压面恒与质量力正交。
f
dr
0
f
dr
第三章 流体静力学
• 1.静压强方向沿作用面的内法 线方向
• 2.任一点静压强的大小与作用面的方位 无关
§3.2 流体平衡微分方程式
一、平衡微分方程式
在静止流体中取如图所示微小六面体。 设其中心点a(x,y,z)的密度为ρ,压强为p,所受质量力为f。
相关文档
最新文档