利息理论 第1章 利息的基础知识
利息理论第一章——利息度量
n
n
lim
x0
exp
ln(1 x
ix)
lim
x0
exp
1
i
ix
ei
24
1.4 复利 (compound interest)
单利:本金保持不变。 复利:前期的利息收入计入下一期的本金,即 “利滚利”。 例:
假设年初投资1000元,年利率为5%,则年末可获利50元, 因此在年末有1050元可以用来投资。
21
(1)精确天数为238,在“实际/365”规则下,t = 238/365, 利息金额为:
10000 0.08 238 521.6 365
(2)在“实际/360”规则下,t = 238/360,利息金额为:
10000 0.08 238 528.9 360
(3)在“30/360”规则下,两个日期之间的天数为:
累积函数:时间零点的1元在时间 t 的累积值, 记为a (t) 。 性质:
a (0) = 1; a (t) 通常是时间的增函数; 当利息是连续产生时,a (t) 是时间的连续函数。
注:一般假设利息是连续产生的。
7
例:
常见的几个积累函数 (1)常数:a (t) = 1 (2)线性:a (t) = 1 + 0.1 t (3)指数:a (t) = (1+0.1) t
(1 i)t
t 年累积因子:t-year accumulation factor
34
实际贴现率:d
(effective rate of discount with compound interest)
实际贴现率等于一个时期的利息收入与期末累积值之比:
实际贴现率(d
)
利息理论第一章-1
i 对整数n 1
故常数的复利意味着常数的实际利率,且两者相等, 从而虽然复利利率与实际利率定义不同,但其实两 者是一致的。
19
例题
例3 某银行以单利计息,年息为6%,某人存入 5000元,问5年后的积累值是多少?
A(5) 5000 a(5) 5000(1 5 6%) 5000 1.3 6500
28
0时刻银行预收6%(即6元)的利息, 而仅付给张三94元;1年后,张三支付 给银行100元。 分析:从上面两个例子来看,实际利率是 对期末支付利息的度量,而实际贴现率 是对期初支付利息的度量。即实际利率 说明了资本在期末获得利息的一种能力。 而实际贴现率说明了资本在期初获得利 息的一种能力。
29
解:由于i=8%,故 a(4)=(1+8%) 4 从而现值 10000 pv=10000 a (4)= 7350.3 4 (1 8%)
1
即4年后支付10000元的现值为7350.3
24
1.1.3
实际贴现率
1、定义: 一个度量期内的实际贴现率为该度量期内 取得的利息金额与期末的投资可回收金额之比。 d 通常用字母 来表示实际贴现率 2、实际贴现率的表达式的推导
3
二、利息度量的基本概念: 1、本金:每项业务开始时投资的金额称为本 金。 2、积累值:业务开始一定时间后回收的总金 额称为该时刻的积累值(或终值)。 3、利息金额:积累值与本金的差额就是这一 时期的利息金额。 注意:假定 一旦给定了本金金额,在投资期间不再加入 或抽回本金。
4
故:对第一个度量期,即当t=1时,a(t)=a (t ); 当t 1时,a(t)>a* (t ); 当t 1时,a(t)<a* (t );
第一章 利息理论基础
A (5 )
5000
1 5 2%
( 4 ) 2 % 复贴现计息
5556
5000 A ( 5 ) ( 1 2 % )5 5531
3、名义(年)利率和名义(年)贴现率
(1)名义利率
名义利率
i m ,是指每
1 m
个度量期支付利息一
次,而在每 1 个度量期的实质利率为:i m
m
m
A nA n 1 In an an 1 d n A n A n an
n1,n为整数
同样有,第 1期的实质贴现率为:
d1A1 AA 111a1a 1a01a11 a111d1
(3)利率与贴现率之间的等关系
等价——相同的本金经过相同的计息周期 产生相同的累积值。
(1)d i v i(v 1 折现因子,discountfactor)
i 1 i
d m m
1
m im
m
d m
m im m im
1 d m
1 m
1 im
例1.3
1、确定500元以季度转换8%年利率投资5年 的积累值。
2、如以6%年利,按半年为期预付及转换, 到第6年末支付1000元,求其现时值。
3、确定季度转换的名义利率,使其等于月度 转换6%名义贴现率。
例1.3答案
季、月、日、小时、分钟、秒等等。利 率通常是指年利率。) 时期长度(计息周期,Measure period)
举例说明:利率的度量期与计息周期
二、积累函数与贴现函数
1、积累函数(Accumulation Function)
a(t)
1--------------------------------- a (t )
1、单利和复利(假设时间t内利率相 同)
《利息理论》复习提纲
《利息理论》复习提纲第一章 利息的基本概念 第一节 利息度量 一. 实际利率某一度量期的实际利率是指该度量期内得到的利息金额与此度量期开始时投资的本金金额之比,通常用字母i 来表示。
利息金额I n =A(n)-A(n-1)对于实际利率保持不变的情形,i=I 1/A(0); 对于实际利率变动的情形,则i n =I n /A(n-1); 例题:1.1.1二.单利和复利考虑投资一单位本金,(1) 如果其在t 时刻的积累函数为 a(t)=1+i*t ,则称这样产生的利息为单利;实际利率 )()()()(1111-+=---=n i in a n a n a i n(2) 如果其在t 时刻的积累函数为a(t)=(1+i)t ,则称这样产生的利息为复利。
实际利率 i i n =例题:1.1.3 三.. 实际贴现率一个度量期的实际贴现率为该度量期内取得的利息金额与期末的投资可回收金额之比,通常用字母d 来表示实际贴现率。
等价的利率i 、贴现率d 和贴现因子(折现因子)v 之间关系如下:,(1),1111,,,1d ii d i i d d iv d d iv v i d idi=+==-+=-==-=+例题:1.1.6 四.名义利率与名义贴现率用()m i 表示每一度量期支付m 次利息的名义利率,这里的m 可以不是整数也可以小于1。
所谓名义利率,是指每1/m 个度量期支付利息一次,而在每1/m 个度量期的实际利率为()/m i m 。
与()m i 等价的实际利率i 之间的关系:()1(1/)m m i i m +=+。
名义贴现率()m d ,()1(1/)m m d d m -=-。
名义利率与名义贴现率之间的关系:()()()()m m m m i d i d m m m m-=⋅。
例题:1.1.9 五.利息强度定义利息强度(利息力)为()()()()t A t a t A t a t δ''==, 0()ts ds a t e δ⎰=。
利息论第一章
3、以后在没有特别申明时,都指复利。 例1.3.1 (书上例1-3,1-4) 解:利用总累积函数单利时 A5 5000 a 5 5000 1 5 6% 6500元 用复利计算有 5 A 5 5000 a 5 5000 1 6% 6691.13 元
2、增长形式不同。单利在同样长时间增 长的绝对金额为常数;复利是增长的相对 金额为常数;
a t s a t si (仅仅与s有关) a t s a t s t s t 1 i 1 1 i 1 仅仅与s有关 a t
27
m
名义贴现率—— d 类似,可以定义 d ( m) 为在一个标准度量期 ( m) 内,换算m次,以实质贴现率 d /m在每 一个1/m期初支付利息一次。 同样,利用等价定义可以得到等价的 名义贴现率与实质贴现率之间的关系:
m m d m d 1 1 d m m 1 d 1 m 1 1 m m m d m 1 1 d m 1
i1 ka(1) k i a(1) 1 A(0) k
9
例1.2.1(P3例1-1) 解:显然利用总量累积函数有
A 0 1000 元 A 1 1000 a 1 1050 元 A 2 1000 a 2 1100 元 A 0 A 1 A 2 A 1 50 50 则:i1 5%; i2 4.762% A 0 1000 A 1 1050
4
3.折现函数 a t 1 a t 为t时的1元钱在0时的现值. 1 a 1 为折现因子.
1
利息理论第一章 1 优质课件
a(t)是1单位的本金在t个周期末的积累值,而a1(t) 是为使在t个周期期末的积累值为1,而在开始时 投资的本金金额。
23
例题1-5
已知年实际利率为8%,求4年后支付10000元的 现值。
解:由于i=8%,故
a(4)=(1+8%) 4 从而现值
pv=10000 a1(4)=
27
(2)实际利率是对期末支付的利息的度量, 而实际贴现率是对期初支付的利息的度量。
例:(1)张三到一家银行去,以年实际利率6% 向银行借100元,为期1年,则张三的借款流 程如下: 0时刻张三收到100元,。 1时刻张三支付100+100×6%=106元。
(2)张三到一家银行去,以年实际贴现率6% 向银行借款100元,为期1年,则张三的借款 流程如下:
(2)从积累形式来看
在单利下,上一个度量期上所产生的利息并不作为
投资本金在以后的时期再赚取利息。
16
在复利下,在任何时刻,本金和到该时刻为止所得到 的利息,总是用于投资以赚取更多的利息。
(3)单利与复利在计算上的区别 在常数的单利i下,积累函数a(t)=1+it;在常数的 复利i下积累函数a*(t)=(1+i)t。
28
0时刻银行预收6%(即6元)的利息, 而仅付给张三94元;1年后,张三支付 给银行100元。 分析:从上面两个例子来看,实际利率是 对期末支付利息的度量,而实际贴现率 是对期初支付利息的度量。即实际利率 说明了资本在期末获得利息的一种能力。 而实际贴现率说明了资本在期初获得利 息的一种能力。
29
25
a(1) 1 i,a1(1) 1 。根据实际贴现率的定义,知 1 i
第1章利息理论
2.1.6 利息问题求解
一个简单的利息问题通常包括以下四个基本量: 1.原始投资的本金 2.投资时期的长度 3.利率 4.本金在投资期末的积累值 如果已知其中的任何三个,就可以建立一个 价值等式,由此等式确定第四个量。
利息问题求解举例
例1: 某人借款50000元,每半年结算一次利息, 年名义利率为6%,两年后他还了30000元,又过3 年后还了20000元,求7年后的欠款额为多少。
●
积累函数a (t)有时也称作 t 期积累因子;
称 a-1(t)为折现函数或 t 期折现因子。特别地, 把一期折现因子a-1(1)简称为折现因子。
●
在复利方式下,当年利率不变时 通常记
1 a (t ) (1 i)t
1
1 v a (1) 1 i
1
a (t )
现值
1
1 本金
a (t )
常数利率时
A(t ) A(0)(1 பைடு நூலகம் it )
• 复利:利上生利的计息方式
A(n) A(0)(1 i1)(1 i2)(1 in)
常数利率时
A(t ) A(0)(1 i)t
a(t ) (1 i)t 此时累积函数为
例1. 某人到银行存入1000元,第一年末他存折上的余 额为1050元,第二年末他存折上的余额为1100元, 问:第一年、第二年的实际利率分别是多少?
价值等式
f (i) =2000×(1+i)5+3000×(1+i)2 -6000
可利用中点插值法求解
补充作业:
1、设 m 1,请把 的次序排列。
i, i
( m)
, d, d
( m)
, 按从大到小
利息理论第一章 利息的基本概念
从而有,
∫0 δ s ds = A(t ) = a (t ) = a(t ) e A(0) a (0)
t
这样我们便得到了利息强度和积累函数之间的关 系。如果已知各个时刻利息强度,便可以求得人一时 刻的积累函数。 例、如果δ t = 0.01t , 0 ≤ t ≤ 2, ,确定投资1000元 ,确定投资1000元 在第一年末的积累值和第二年内的利息金额。 解:
在《利息理论》这门课程中,我们将着重讨 论以下几个方面的问题: 1、金融产品价格的确定。例如,年金、 债券、股票等。 2、分析投资的可行性,确定投资的收益率。 3、设计债务人的各种偿还计划,并且分析 各种偿还计划的特点。 4、分析企业的财务状况,如固定资产的折 旧和固定资产的选择。
在西方资本主义发达的国家,《利息理论》 这门课程也被称作《Financial Mathematics》 这门课程也被称作《Financial Mathematics》, 即《财务数学》。也就是说《利息理论》这门 课程实际上是利用数学的方法定量分析个人、 企业的财务状况,包括:投资收益分析、融资 成本分析、债务偿还分析以及企业自身内部的 固定称的分析。因此,学好利息理论这门课程 十分必要,它是我们先前所学到的诸如《财务 管理》、《金融市场学》等课程的必要补充, 能帮助我们用数学的方法精确的度量各种金融
前面定义的各种利息度量方式都是用来度量在规定 的时间去间内的利息。实际利率和实际贴现率度量的是 一个度量期内的利息,而名义利率和名义贴现率则用来 度量在1/m 度量在1/m个度量期内的利息。 在很多情形下,我们还希望能度量在每一时间点上 的利息,也就是在无穷区间上的利息。这种对利息在各 个时间点上的度量叫做利息强度。 利息强度 δ t 定义如下:
利息理论1.ppt
1------------------------------ a(t ) K------------------------------ A(t )
a 1 (t )-----------------------------1
0
t
A(0) k,a(0) 1, A(t) ka(t)
n期的利息:I(n) A(n) A(n 1)
解:由A(5) A(0)a(5),可得A(0) A(5) / a(5) 单利时,a(5) 1 11% 5 1.55 于是 A(0) 1000/ 1.55 645.16(元) 复利时,a(5) (1 11%)5 1.685 于是 A(0) 1000/ 1.685 593.47(元)
解:A(0) 5,则a(t) A(t) 2t t 5
A(0)
5
I3 A(3) A(2) 2.318
A(4) A(3) i4 A(3) 17.81%
利息的计算方法
➢单利(simple interest) ➢复利(compound interest) 图示!
单利:累积函数是时间的线性函数a(t) 1 it。 复利:累积函数是时间的指数函数a(t) (1 i)t。
积累与折现
➢ 某种意义上,积累与折现是相反的过程 ➢ 积累相对与过去的时刻而言 ➢ 折现相对于将来的时刻而言
利率(interest rate)
为了表示单位货币价值的相对变化幅度引入“利 率”
1.实际利率(effective rate of interest) 定义:某一度量期内所获得的利息金额与此度 量期开始投资的金额之比。用“i”表示。表为 百分利数息。 I(n) A(n) A(n 1) a(n) a(n 1)
单利计算与复利计算的区别
利息理论第一章 利息的基本概念
A′(t ) a′(t ) δt = = A(t ) a(t )
称 δ t 该投资在t时的利息强度,即 δ t 为利息在时刻t一 该投资在t 为利息在时刻t 种度量,通过如上定义可将 δ 表示为如下形式:
t
d d δ t = ln A(t ) = ln a (t ) dt dt
对两边积分可得,
A(t ) ∫0 δ s ds = ∫0 d ln A(s) = ln A(s) | = ln A(0)
利息理论
绪论
利息是债务人(borrower) 利息是债务人(borrower)对债权人 (lender)因为资金被借用而牺牲了当前消费, lender) 以及对其面对的机会成本的一种补偿。不同经济 学以及货币银行学等课程讨论利息是如何形成的 以及分析决定利息大小的具体因素,在本门课程 中假定存在于债权人和债务人之间的利息是一种 既定的事实,并在此基础上分析债权人和债务人 之间的权利与义务的关系。
假如不是以年实际利率6%,而是以年实际贴现率 假如不是以年实际利率6%,而是以年实际贴现率 6%向银行借款,为期一年,则银行将预收6% 6%向银行借款,为期一年,则银行将预收6% (即6元)的利息,仅付给张三94元。一年后, (即6元)的利息,仅付给张三94元。一年后, 张三将还给银行100元。 张三将还给银行100元。 由此可见,实际利率和实际贴现率反映的 是一个先后付息的问题。
就是只有本金生息,本金产生的利息并不积累 生息。 (2)如果单位投资在t时的积累值为: )如果单位投资在t a(t)=(1+i)t )=(1+i) 那么,则称该笔投资以每期复利i计息, 那么,则称该笔投资以每期复利i计息,并将 这样产生的利息称为复利。实际上,复利就是 指民间俗称的“利滚利”,即当其产生的利息 计入本金,在下一期可以生息。
利息理论——第一章1.1
1
这里我们引入一个新的概念:现值。我们把 为了在t期末得到某个积累值,而在开始时 投资的本金金额称为该积累值的现值(或折 现值,Present Value)。
我们将 k a (t ) 代入(1.1.1)式,可以得到
1
1 A(t ) ka(t ) a(t ) 1 a(t )
例1 甲向乙借款1 000元,两人商定从2006年 12月31日归还,且归还时,甲一次性向乙支 付利息100元。
在该项借贷往来中,可将乙借钱给甲看成是一项投 资,其初始投资为1 000元,即本金为1 000元 ( P=1 000元);投资期从2006年1月1日至2006年12月 31日,为期1年( n=1年);乙的该项投资在1年后除 了收回本金外,还额外可得100元,即利息( I=100元)。 因为两人商定利息是在1年结束时才一次性支付,即1年 才计算一次利息,所以计息期为1年。且其单位本金获得 的利息为0.1元( 100/1 000=0.1),所以年利率为10% ( i=10%)。在2006年12月31日时,该项投资的积累值 为1 100元。
利息
我们将从投资日起第n个时期所得到的利息 金额记为I n ,则 I n A(n) A(n 1) 对整数n≥1 (1.1.2)
注:这里注意 I n 表示的是一个时间区间上 所得利息的量,而A(n)则是在一特定时刻的 积累量。
§1.1.1
实际利率
定义:某一度量期的实际利率(Effective Rate of Interest) 是指该度量期内得到的利息金额 与此度量期开始时投资的本金金额之比。通常, 实际利率用字母i表示。 实际利率i是利息的第一种度量方式,由定义可 以看出,实际利率是一个不带单位的数,实务 中常用百分数来表示; 它与给定的时期有关; 它其实是单位本金在给定的时期上产生的利息 金额。
利息理论
未知时间问题
计算方法
利用计算器 利用复利表 利用Taylor展式 利用 展式 非整数期部分采用单利近似替代
72律:利率为i时,使得积累值是本金的 律 利率为 时 2倍所需的时间大致是 倍所需的时间大致是72/i。 倍所需的时间大致是 。
24
预定在第1、 、 、 年末分别付 例1.2.4 预定在第 、3、5、8年末分别付 款200元、400元、300元、600元,假设 元 元 元 元 实际年利率为5%,试确定一个付款 实际年利率为 ,试确定一个付款1500 元的时刻,使这次付款与上面4次付款等 元的时刻,使这次付款与上面 次付款等 价。
6
二 实际利率
某一度量期的实际利率是指该度量期内 得到的利息金额与此度量期开始时投资 的本金金额之比,通常用字母i来表示 来表示。 的本金金额之比,通常用字母 来表示。 对于实际利率保持不变的情形, 对于实际利率保持不变的情形,i=I1/A(0); ; 对于实际利率变动的情形, 对于实际利率变动的情形,则in=In/A(n1); ;
(m)
/ m)
m
1 − d = (1 − d ( m ) / m) m: 名义贴现率与名义利率之间的关系: 名义贴现率与名义利率之间的关系
i (m) d (m) i (m) d (m) − = ⋅ m m m m
15
例1.1.9 (1)求与实际利率 等价的每年 )求与实际利率8%等价的每年 计息2次的年名义利率 以及每年计息4次的 次的年名义利率, 计息 次的年名义利率,以及每年计息 次的 年名义贴现率;( ;(2)已知每年计息12次的 年名义贴现率;( )已知每年计息 次的 年名义贴现率为8%,求等价的实际利率。 年名义贴现率为 ,求等价的实际利率。 例1.1.10 求1万元按每年计息 次的年名义利 万元按每年计息4次的年名义利 万元按每年计息 投资三年的积累值。 率6%投资三年的积累值。 投资三年的积累值 以每年计息2次的年名义贴现率为 例1.1.11 以每年计息 次的年名义贴现率为 10%,在6年后支付 万元,求其值。 年后支付5万元 , 年后支付 万元,求其值。
利息理论课件 (1)
(1-4)
n≥1 为整数 (1-5)
例1-1 某人到银行存入1000元,第一年末 他存折上的余额为1050元,第二年末他存 折上的余额为1100元,问:第一年、第二 年银行存款的实质利率分别是多少?
例1-2 某人借款10000元,为期一年,年实质 利率为 10% 。问:一年后,此人需要还款 多少?其中利息为多少?
例1-7 重新考虑例1-1中存款,所述的事件 不变,求第一、第二年的实质贴现率。
“等价”
对于同一笔业务,用不同的率去度量,其结 果是“等价”的。
等价 关系式
i=d/(1-d) i-id=d d(1+i)=i d=i/(1+i) d=iv d= i/(1+i)=1-1/(1+i) =1-v v=1-d d =iv=i(1-d) =i-id i-d=id (1-12A) (1-12B) (1-12C) (1-12D) (1-12E) (1-12F) (1-12G) (1-12H) (1-12I)
d (m) d ( m ) m 1 (1 ) 贴现: m m
d ( m) d ( m) m2 (1 ) m m
d (m) d (m) (1 ) m m
d (m) 1 m
d ( m) m ) 余额: 1 d (1 m
d ( m ) m 1 (1 ) m
…
d (m) 2 (1 ) m
d (m) 1 m
1
图(1-2B) 名义贴现率图
例1-9 ( 1 )求与实质利率 8% 等价的每年计息 2 次的年 名义利率以及每年计息4次的年名义贴现率; (2)已知每年计息12次的年名义贴现率为8%, 求等价的实质利率; (3)已知i(3/2)=8%,求等价的d(12)。
利息理论第一章.ppt
注意:积累和折现的区别
积累和折现是两个相反的过程,积累值 和过去支付的款项有关,现值和未来得 到的款项有关。
a(t)是0时刻的1单位本金在t时刻的积累 值;a1(t) 是t时刻的1单位本金在0时刻的 现值。
8
8、利息金额 把从投资日起第n个时期所得的利息金额记为 In ,则
In A(n) A(n 1) In 表示在一个时间区间上所产生的,在最后 时刻支付利息的量,A(n) 表示在一特定时刻的积累量。
2
例如:1000元以年实际利率5%存款1年, 可得利息50元。
3、利息的定义 总结来说,利息是一定时期内,资金拥有 人将资金的使用权转让给借款人后得到的 报酬。
注意:理论上利息和资金可以不均为货币 形式,但几乎所有的实际应用中,资金和 利息均是用货币来表示的,故本书中的所 有的资金和利息均为货币形式。
假设每期以单利 i 计息,则在投资期间,每一度量
期产生的利息均为常数i ;令 in (n 1)为第n个度
量期内的实际利率,则
in
a(n) a(n 1) a(n 1)
(1 in) [1 i(n 1 i(n 1)
1)]
i
i
对整数n 1
1 i(n 1)
in关于n递减,且当n取值较大时,实际利率in将变得较小。 故常数的单利意味着递减的实际利率。
6
6、t期折现因子
▪(1)定义: 称积累函数a(t)的倒数 a1(t) 为t期折 现因子或折现函数。特别地,把一期折现因子 a1(1)
简称为折现因子,并记为 v 。
▪ (2)意义: 第t期折现因子a1(t) 是为了使在t 期末的积累值为1,而在开始时投资的本金金额。
7、现值或折现值
我们把为了在t期末得到某个积累值,而在开始时投 资的本金金额称为该积累值的现值(或折现值)。在 t期末支付k的现值为k a1(t)
利息理论基础
1
1
d(m)= m[1 (1 d )m ] = m(1 v m )
(1-16A) (1-16B) (1-16C)
• 相同度量期内等价的名义利率与名义贴现率有如下 的关系(m,p可以不相同)
1) (1 i(m) )m (1 d ( p) ) p
m
p
2) 若m p,则有
(1 i(m) )m (1 d (m) )m
(3) A(t) = P(1+it)=2000×(1+8%×4)=2640 (元)
2、复利条件下的积累函数
• 复利息
– 所赚的利息收入记入下一期的本金可以进行再投 资以赚取额外利息。即通常所说的“利滚利”。
– 一个投资者开了一个储蓄帐户并存入1元,该帐 户按每年复利率i支付利息,那么一年后投资积累 值1+i元;接下来用1+i金额作投资,在第二年 末的积累值是(1+i)+i(1+i)=(1+i)2; 在第三年末的积 累值将达到(1+i)2+i(1+i)2=(1+i)3;以此类推,第t年可 得到该投资的积累值为(1+i)t,t是非负数。
• 一般表示形式
假设:I-利息;P-期初本金;i-利率; A(t) -经 过时间t后的积累值
A(t) =P(1+i)t t≥0
• 当利率相同,计息期相同时,比较单利累积 值和复利累积值的大小
例:如果年复利率8%,投资额为2000元,分别 求三个月末、一年末和四年末的终值。
解:
时间t时的终值:A(t)=P(1+i)t A(1/4)= 2000(1+8%)1/4=2038.35(元) A(1) = 2000(1+8%)=2160(元) A(4) = 2000(1+8%)4=2720.98(元)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二种方法:购买时90元,一年后按面 值返还。 10元为期初利息,是期末值的减少额。-元为期初利息, 元为期初利息 是期末值的减少额。 -贴现额。 贴现额。 贴现额
.
2)贴现率的定义:单位货币在一年内的贴现额。
dn =
An An1 An
=
an an1 an
年贴现额=A 年贴现额 ndn=An-An-1 为标准的减少额。 以An为标准的减少额。 年利息=A 年利息 n-1 in=An-An-1 为标准的增加额。 以An-1为标准的增加额。
3)贴现率与利率
d=
或:
an an1 an
=
(1+i )n (1+i ) n1 (1+i ) n
=
i 1+i
d = i v i=
d 1 d
4)贴现率与折现因子
公式一 公式二
d = 1 v
及:
vt = v = (1 d )
t
t
及:
v = 1 d
at = (1 d )
t
日的积累值为1, 例:94年1月1日的积累值为 ,000元,d=10% 年 月 日的积累值为 元 日的现值为多少? 求:1)90年1月1日的现值为多少? ) 年 月 日的现值为多少 2)年利率为多少? )年利率为多少 3)折现因子为多少? )折现因子为多少? 解: 1)A0=1000(1-d)4 =656.1元 2) d 1d
m→∞
(m)
δ = lim m[(1 + i ) 1]
1 m
m →∞
= lim
= lim
m →∞
1 (1 + i ) m 1 m
1
m→∞
= lim
1 ) m2
1 [( 1+ i ) m 1 ( m )'
。
1 ] '
m→∞
1 ln(1+i )(1+ i ) m
(
12 m
= lim (1 + i) ln(1 + i)
或:
(m)
i( m ) m m
) 1
1 m
1 + i = (1 +
i( m ) m m
i
= m[(1 + i ) 1]
)
2)实际贴现率:每个度量期内贴现一次的贴现率。 )实际贴现率:每个度量期内贴现一次的贴现率。 名义贴现率:每个度量期内多次贴现的贴现率。 名义贴现率:每个度量期内多次贴现的贴现率。 设年名义贴现率为d(m), 实际贴现率为d, d (m) 则:每次的贴现率为 m 所以:
1 0 1+i 1+2i 1+it
1
1/1+i 1/1+2i
1
1
折 现 过 程
1
vt =
1 1+it
1 1+it
.
(2)复利
设年利率为i 各年1 设年利率为i ,各年1元的
现值。 现值。
1 0 1+i (1+i )2 (1+i)t )
1
1 1+ i
1 (1+i ) 2
1
1
折 现 过 程
1
1 vt = (1+i)t
1 (1+i)t
复利条件下:
折现因子:
v=
折现函数:
1 1+i
vt = v
t
贴现率
1)计息的方式。 滞后利息 期初利息 例:购买一年期面值为100元的国债, 第一种方法:一年后还本付息110元; 10元为滞后利息,是期初本金上的增加额。---利 元为滞后利息, 元为滞后利息 是期初本金上的增加额。 利 息。
i=
= 11 .1%
3)v=1-d=0.9
作业
1、李华90年1月1日在银行帐户上有5,000 元存款。 1)在每年10%的单利下,求94年1月1日的 存款。 2)在每年8%的复利下,求94年1月1日的存 款。
。
2、张军94年初在银行帐户上有10,000元存 款。 1)在复利11%下计算90年的现值。 2)在11%的贴现率下计算90年的现值。
解
1)共计息10次 2)由公式
6% 10 4
At = 2000(1 +
)
i( m ) m
d ( m) m
=
i( m ) m
d ( m) m
得:
0.06 4 d ( 4) 4
= 2321.08元
=
0.06 d ( 4) 4 4
d = 0.05911
( 4)
一张尚需6个月到期的债券 例:一张尚需 个月到期的债券,其面值为 ,000元, 一张尚需 个月到期的债券,其面值为2, 元 如果名义贴现率为6%,一年贴现4次 如果名义贴现率为 ,一年贴现 次,求该债券现在 的价格为多少? 的价格为多少? 解:1) P=
6、一年计息m次的实际利率与贴现率
例:期初本金为1元,年利率为10%。 期初本金为1 年利率为10%。 10% 如果一年计息一次,则年末积累值为 如果一年计息一次, 1.10元 1.10元。 如果一年计息两次, 如果一年计息两次,则年末积累值为 1+10%/2) =1.1025元 (1+10%/2)2=1.1025元 即年实际利率为10.25% 即年实际利率为10.25%
d
(4)
3 ) 1 d = (1 d
(4)
4
)4
= 0 . 07623
= 0 . 9259
二、利率问题、时间问题求解
利率问题求解 1)解析法 2)线性插值法 3)迭代法
i
(12 )
i = (1 +
12
) 1
12
d = 1 (1 = 9.63%
d ( 4) 4 4
)
= 12.68%
结论:结转次数越多, 结论:结转次数越多, 实际利率越大, 实际利率越大,实际贴 现率越小。 现率越小。
例
2,000元的本金在6%的名义利率下 投资,如果每年结转4次利息,求: 1)2年零6个月后的积累值; 2)年名义贴现率。
d = 1 (1
或:
d (m) m m
)
1 d = (1
d (m) m m
)
d
(m)
= m[1 (1 d ) ]
1 m
3)i(m)与d(m) 的关系
1元钱在年末的累积值 为: 则:
i( m) m (1 + ) m
(1 +
或:
i
(m)
= (1
d (m) m m
)
m
)
m
得:
i( m ) m
(1)单利 设年利率为i ,期初本金为1
1 1+i 1+2i 1+it
0
1
2
t
at=1+it
复利
设利率为i,期初本金为1。
1 1+i (1+i)2 (1+i)t
0
1
2
t
at=(1+i)t
单利、复利的比较
(1)单利条件下,每年利息相等,实际 利率减少。 每年的利息:In=An-An-1 =A0(an-an-1)=A0i 每年的利率:
利息理论
主讲:沈治中
第一章
利息的基础知识
主要内容
一、利息的度量 二、利率问题、时间问题的求解 利率问题、
一、利息的度量
主要内容
累积函数 利息 利率 单利与复利 现值函数 一年计息m次的实际利率与实际贴现率 一年计息 次的实际利率与实际贴现率 利息力
1、累积函数
单位货币经过t 年后的价值。
A0为本金,At为t年后的价值。
2000(1
6% 2 4
) = 1940.45元
或:2)
06 d = 1 (1 0.4 ) 4 = 5.8663%
P = 2000(1 5.8663%)
0 .5
= 1940.45元
7、利息力
瞬时利率。 瞬时利率。度量资本在某一时点上的获 利能力。 利能力。 1)常数利息力 定义 :
δ = lim i
解:
(1)A1=1,000(1+it) =1,000 (1+0.12×2)=1,240元 A2=1,000(1+i)2=1,254.4元 (2)1,500=1,000(1+it1) t1=4.17年 1,500=1,000(1+i)t t2=3.58年
5、现值和贴现率
现值函数。未来t年1单位货币在现在的值。 现值函数 (1)单利:各年1元的现值。
例一
设:at =ct2+d (c、d为常数), a 5=126 , A0=100 求:A10、 、 i10 A
at = ct 2 + d
解:
a0=1 a5=126 得: c=5 d=1 所以:at=5t2+1 A10=A0a10=50100 i10=(a10-a9)/a9=0.233
4、单利与复利
1)实际利率:每个度量时期内结转一次利息的利率。 )实际利率:每个度量时期内结转一次利息的利率。 名义利率:每个度量时期内多次结转利息的利率。 名义利率:每个度量时期内多次结转利息的利率。
设年名义利率为i(m), 年实际利率为i。 每次计息的实际利率为 ) i(m)/m 。 则:
所以:
i = (1 +
0
t
= ln a (t ) ln a ( 0 ) = ln a (t )
∫0 δ s ds a (t ) = e
t
。
为常数时: 当 δ s = δ 为常数时:
a(t ) = e