第二章航空燃气轮机的工作原理
燃气轮机原理2
k k 1
可见 ,
opt,i
k 1 k
1)
2.等压加热过程(2-3)
在燃烧室中完成
1 2 1 2 q23 V2 h2 w23 V3 h3 2 2
其中:w23=0;V2=V3 工质吸收热量为
q1 q23 h3 h2 C p (T3 T2 ) C pT1 (
k 1 k
k 1 k
)
4.等压放热过程(4-1)
1 2 1 2 q41 V4 h4 w41 V1 h1 2 2
其中:w41=0;V3=V4 工质放出热量为
q2 q41 h4 h1 C p (T4 T1 ) C pT1 (
k 1 k
1)
整个循环中,单位质量工质
整个绝热压缩过程,对单位质量工质 所作的机械功为
wc,i wc1,i wc 2,i h2 h1
对单位质量工质所作的机械功为
wc ,i wc1,i wc 2,i h2 h1 C p (T2 T1 ) C pT1 (
Cp—定压比热 k----比热比 ---压比 =p2/p1
其中:q11’=0;w11’=0 进气道中,工质动能减小,静焓增加,对工 质作的压缩功为
wc1,i
1 2 1 2 V1 V1' h1' h1 2 2
航空燃气轮机:整个压缩过程分两个阶段完成
2). 在压气机中完成(1’-2) 对单位质量工质所作的机械功为
wc 2,i w1' 2 h2 h1'
从高温热源(燃烧室)中吸收能量
q1 q23 h3 h2 C p (T3 T2 ) C pT1 (
航空燃气轮机系统的研究开发
航空燃气轮机系统的研究开发航空燃气轮机是现代飞机的重要动力装置之一,不仅在民用航空领域,也在军用领域得到广泛应用。
为了满足对飞机性能不断提高的需求,航空燃气轮机系统研究开发也在不断推进。
一、航空燃气轮机系统的基本原理航空燃气轮机系统是由压气机、燃烧室、涡轮等部分组成,其基本工作原理是将空气通过压气机压缩并进入燃烧室,在燃烧室中与燃料混合燃烧,产生高温高压气体,然后再通过涡轮驱动压气机,形成轮机循环。
这样,从外界提取能量的过程即为航空燃气轮机系统的工作过程。
二、航空燃气轮机系统的分类根据不同的分类标准,航空燃气轮机系统可以分为多个类别,如按用途分类可以分为军用燃气轮机及民用燃气轮机;按推进方式分类则可分为喷气式燃气轮机、涡扇式燃气轮机等等。
目前,随着燃气轮机技术的不断发展,涡扇式燃气轮机已经成为主流。
三、航空燃气轮机系统的关键技术在航空燃气轮机系统的研究开发中,有一些技术尤为重要,如下:(一)高温材料技术随着航空燃气轮机系统推动效率不断提高,高温材料的应用也成为关键。
高温材料不仅可以承受高温和高压环境下的工作,还可以减轻整个系统的重量,提高燃气轮机推动效率。
(二)压气机技术航空燃气轮机系统中的压气机是一个重要的部件,它主要负责将空气压缩到高压状态。
为了提高航空燃气轮机系统效率,要求压气机尽可能高的压比,并保证良好的气流流动性能。
因此,压气机的设计和优化是燃气轮机系统研究开发中重要的技术。
(三)燃烧系统技术燃烧系统技术是航空燃气轮机系统中最为核心的技术之一。
在燃烧系统中,燃料和空气混合燃烧产生高温高压燃气,这些高温高压气体会直接决定燃气轮机性能。
因此,燃烧系统的设计和优化是提高燃气轮机整体效率、降低污染排放的关键。
(四)涡轮机技术涡轮机技术是航空燃气轮机系统中非常关键的部分。
涡轮机在轴流动和轴向紊流流动中将气体动能转变为机械能,是整个轮机系统驱动装置。
为了提高涡轮机的效率,研究人员需要改善涡轮机的流体动力性能以及涡轮机材料的高温强度等。
(861)航空燃气轮机原理
(861)航空燃气轮机原理
航空燃气轮机是一种使用燃气作为动力源的内燃机,其工作原理可以简述为燃烧气体通过喷嘴喷射到高速旋转的涡轮上,使得涡轮转动,并通过轴将动能传递给工作设备,最终产生推力或者做功。
航空燃气轮机主要由压气机、燃烧室和涡轮组成。
首先,空气通过进气道经过压气机被压缩。
压气机是由一系列圆盘或叶片组成的,当空气通过叶片时,叶片对空气施加作用力,将空气压缩。
压气机的任务是提供高密度的压缩空气。
然后,压缩后的空气进入燃烧室。
燃烧室内喷入燃油并点火,形成高温高压的燃烧气体,这些燃烧气体能够释放出巨大的热能。
燃烧气体通过喷嘴进入涡轮,由于喷嘴的作用,燃烧气体以高速喷射到涡轮叶片上,使涡轮旋转起来。
涡轮一般是由多级叶片组成的,其中前级涡轮通过轴与压气机相连,驱动压气机工作,后级涡轮通过轴与外部设备(例如飞机的螺旋桨)相连,产生推力。
涡轮旋转的同时,废气被排出,进一步利用余热燃烧废气发电,提高热效率。
总之,航空燃气轮机通过压缩空气,燃烧燃油产生高温高压气体,并利用这些气体的动能来驱动涡轮旋转,从而实现飞机的
推进。
由于其高效、可靠等特点,航空燃气轮机已经成为现代商用飞机和军用飞机的主要动力装置。
燃气轮机工作原理与应用技术
燃气轮机工作原理与应用技术燃气轮机是一种能够将燃料的热能转化为动能的发电机组,被广泛应用于发电、航空、船舶等领域。
本文旨在介绍燃气轮机的工作原理和应用技术。
一. 燃气轮机的工作原理燃气轮机的基本构成包括压气机、燃烧室、涡轮和发电机。
其工作原理可以简单概括为:压缩来自空气压力机的压缩空气,送入燃烧室燃烧燃料,产生高温高压气流,通过涡轮转子驱动发电机发电,同时排出尾气。
1. 压气机压气机的作用是将空气压缩并提高压力,为下一步的燃烧提供充足的氧气。
一般情况下,燃气轮机会使用多级离心式压气机,它的作用是将来自空气压力机的空气进行多级压缩,以达到较高的压力和温度。
2. 燃烧室燃烧室是将燃料燃烧,产生高温高压气流的空间。
在燃烧室中,燃料喷射器将燃料喷入燃烧室中,随后点火引燃。
经过燃烧后,气流温度达到1000℃以上,并且压力增加。
3. 涡轮涡轮是燃气轮机中最重要的组成部分之一。
涡轮的作用是将由燃烧室排出的高温高压气流转化为机械能,启动发电机转子,发电机转子通过旋转发电。
通常,燃气轮机会采用多级叶轮式涡轮,不同级数叶片的转速和角度不同,以适应不同的压力和温度。
4. 发电机发电机是将涡轮输出的机械能转化为电能的装置。
发电机一般采用在转子上安装绕组的感应式发电机。
整个燃气轮机的工作过程,最终会输出电能。
二. 燃气轮机的应用技术燃气轮机作为一种高效能、节能、环保的发电机组,具有着广泛的应用领域。
1. 发电在发电领域,燃气轮机可以单独或者联合热电联产的方式来输出电能和热能,具有高效能、低污染等优点。
另外,由于其响应速度较快,可以在短时间内投入运行,满足紧急情况下的电力需求。
2. 航空领域燃气轮机在航空领域中可以作为飞机推进装置,为飞机提供动力。
燃气轮机具有高可靠性、高效能、快速响应等优点,很好地满足了航空领域对发动机的高要求。
3. 船舶领域燃气轮机在船舶领域中可以作为动力装置,为船只提供足够的动力。
燃气轮机具有启动响应快、可调速、低振动、低噪音等优点,非常适合船舶的工作环境。
燃气轮机工作原理
燃气轮机工作原理燃气轮机是一种利用高速旋转的气流来驱动涡轮机转子工作的热力机械设备。
它是一种将燃气能转化为机械能的动力装置,广泛应用于航空、发电、船舶等领域。
燃气轮机工作原理的了解对于工程师和操作人员来说至关重要,下面我们将详细介绍燃气轮机的工作原理。
首先,燃气轮机的工作原理可以分为三个基本过程,压缩、燃烧和膨胀。
在压缩过程中,空气被压缩并送入燃烧室,然后与燃料混合并燃烧,释放出高温高压的燃气。
最后,这些高温高压的燃气通过涡轮机转子膨胀,驱动涡轮机转子旋转,产生机械能。
其次,燃气轮机的压缩过程是通过压气机完成的。
压气机是由若干个叶片组成的转子,当转子旋转时,叶片将空气压缩并送入燃烧室。
在燃烧室中,燃料被喷入,并在高温高压的环境中燃烧,产生燃气。
这些燃气将通过高速喷射进入涡轮机转子,推动转子旋转。
最后,燃气轮机的膨胀过程是通过涡轮机完成的。
涡轮机转子被燃气推动旋转,产生机械能,驱动发电机或其他设备工作。
最后,燃气轮机的工作原理可以简单概括为“压缩、燃烧、膨胀”。
在实际应用中,燃气轮机通常与发电机相连,利用旋转的涡轮机转子产生的机械能驱动发电机发电。
燃气轮机具有结构简单、启动快速、响应灵活等优点,因此在发电厂、航空、船舶等领域得到广泛应用。
总之,燃气轮机是一种重要的动力装置,其工作原理的了解对于工程师和操作人员来说至关重要。
通过对燃气轮机的压缩、燃烧、膨胀过程的详细介绍,相信读者对燃气轮机的工作原理有了更深入的了解。
希望本文能够帮助读者更好地理解燃气轮机的工作原理,为相关领域的工程实践提供帮助。
航空燃气轮机原理
航空燃气轮机原理航空燃气轮机是现代飞机动力系统的核心部件之一,它以其高效、可靠的特点成为了飞机动力系统的主力。
那么,究竟航空燃气轮机是如何工作的呢?接下来,我们将深入探讨航空燃气轮机的原理。
首先,我们来了解一下航空燃气轮机的基本构成。
航空燃气轮机主要由压气机、燃烧室、涡轮和推力矢量控制系统组成。
其中,压气机负责将大气中的空气压缩,提高空气的密度;燃烧室将压缩后的空气与燃料充分混合并燃烧,产生高温高压的燃气;涡轮则利用燃气的高温高压能量驱动风扇和压气机,推力矢量控制系统则用于调节发动机喷口的方向,从而实现飞机的姿态控制。
其次,我们来了解一下航空燃气轮机的工作原理。
当飞机起飞时,航空燃气轮机开始工作。
首先,压气机将大气中的空气压缩,提高空气的密度,然后将高压空气送入燃烧室。
在燃烧室内,高压空气与燃料充分混合并燃烧,产生高温高压的燃气。
随后,这些高温高压的燃气驱动涡轮旋转,涡轮带动风扇和压气机工作,产生推力。
最终,推力矢量控制系统调节发动机喷口的方向,实现飞机的姿态控制,飞机顺利起飞。
再者,我们来了解一下航空燃气轮机的优势。
相比于传统的活塞发动机,航空燃气轮机具有功率重量比高、燃料效率高、可靠性高、噪音低等优势。
这使得航空燃气轮机成为了现代飞机动力系统的主力,广泛应用于商用飞机、军用飞机以及直升机等领域。
最后,我们来了解一下航空燃气轮机的发展趋势。
随着科技的不断进步,航空燃气轮机的技术也在不断创新。
未来,航空燃气轮机将更加注重环保、节能和智能化,同时也将更加注重减少噪音和提高可靠性,以满足不断发展的航空市场需求。
综上所述,航空燃气轮机作为现代飞机动力系统的主力,其原理清晰明了,工作高效可靠,优势明显,发展前景广阔。
相信随着科技的不断进步,航空燃气轮机将会迎来更加美好的未来。
航空燃气涡轮发动机原理
航空燃气涡轮发动机原理
航空发动机是飞机的心脏,它直接影响着飞机的性能和安全。
它是利用燃气产生的推力来使活塞做往复运动,从而产生升力和推力。
航空发动机按工作原理可分为压气机、燃烧室、涡轮、喷管和尾喷管等部分,下面就来介绍一下航空发动机的基本工作原理。
1.压气机
压气机是用来产生空气动力的机械,通常在飞机中扮演着压缩空气的角色。
与飞机其他机械相比,发动机具有体积小、重量轻、推力大、推重比高等特点。
1.燃烧室
燃烧室是用来引燃燃料和空气以产生高温高压燃气的部分。
燃烧室是发动机的核心部件,其容积大小直接决定着发动机的最大推力。
1.涡轮
涡轮是航空发动机中转动部件之一,它将发动机排出的高温高压气体做功,使之变成具有一定速度的高压气体。
在航空发动机中,涡轮又是推动活塞运动的动力装置。
涡轮是由电动机或燃气轮机驱动的,其传动方式有齿轮传动和齿轮-轴传动两种。
涡轮旋转时带动轴旋转,产生一个与轴方向相反的推力,这就是推力矢量控制技
— 1 —
术(IFCV)。
— 2 —。
燃气轮机的工作原理
燃气轮机的工作原理
燃气轮机是一种将燃气动能转换为机械能的热力机械,它的工作原理主要是通过燃烧燃气来产生高温高压气体,然后利用这些气体的动能来驱动涡轮转子旋转,最终驱动发电机发电或者推动飞机飞行。
燃气轮机的工作原理涉及到燃气的燃烧、涡轮的旋转以及动能转换等多个方面,下面将逐一介绍。
首先,燃气轮机的工作原理与内燃机类似,都是通过燃烧燃料来产生高温高压气体,但不同的是,燃气轮机是通过外部燃烧室来燃烧燃气,而不是在气缸内部燃烧。
当燃气燃烧时,释放出的热能使空气膨胀,形成高温高压气体,然后这些气体被引入涡轮机中。
其次,涡轮机是燃气轮机中的核心部件,它由许多叶片组成,当高温高压气体进入涡轮机时,气体的动能被转化为机械能,推动涡轮机旋转。
涡轮机的旋转带动轴,最终驱动发电机发电或者推动飞机飞行。
最后,燃气轮机的工作原理还涉及到动能的转换,即将燃气的动能转化为机械能。
在涡轮机旋转的过程中,动能逐渐减小,而机械能则被传递到发电机或者飞机的动力系统中,从而实现发电或者推进飞行器飞行的目的。
总的来说,燃气轮机的工作原理是通过燃气燃烧产生高温高压气体,利用这些气体的动能驱动涡轮机旋转,最终将动能转化为机械能。
燃气轮机以其高效、可靠的特点,在发电、航空等领域有着广泛的应用。
希望通过本文的介绍,读者对燃气轮机的工作原理有了更深入的了解。
(完整版)第二部分航空燃气轮机的工作原理
总膨胀过程中,单位工质对外界做功:
wt c
cp (T3
T4 )
T3cp
(1
(
1
n1)
/
n
)
2020/6/16
航空发动机原理
29
2.1.2 燃气发生器的理想循环和实际循环
2. 实际循环
p2
3
1-2 多变压缩n >k 3-4 多变膨胀n’<k
2-3 等压加热 4-1 等压放热
实际循环的比功
1
w wt wc cp (T3 T4 ) cp (T2 T1)
绝热压缩效率
c
(k 1) / k
c
(n1) / n
c
1 1
c
航空发动机原理
27
2.1.2 燃气发生器的理想循环和实际循环
2. 实际循环
p2
3
1-2 多变压缩n >k 3-4 多变膨胀n’<k
2-3 等压加热 4-1 等压放热
表明膨胀过程流动损失:
1
4
n1 n2 n3
n1
e
n2
n3
绝热膨胀效率
(3)理想燃气轮机循环分析
③ 绝热膨胀过程 3~4
p23
3
整个过程吸热为0;
1
两个阶段:
1
✓ 3~3’ 在涡轮中完成,涡轮从
0
工质中获得的机械功为:
p-V
4
V
w3 h3 h3
✓ 3’~4 在尾喷管或动力涡轮中 完成,单位工质所做的功为。
w4
1 2
v42
1 2
v32h3
h3
h4
总机械功:
wt,i w3 w4 h3 h4 cp (T3 T4 )
燃气轮机原理
燃气轮机原理燃气轮机是一种将燃料的热能转换为机械能的发动机。
它具有高效率、功率密度大、响应迅速等优点,被广泛应用于飞机、火车、船舶等领域。
本文将介绍燃气轮机的原理,从燃料燃烧到机械输出的整个过程,以及燃气轮机的工作原理和组成部分。
一、燃料燃烧燃料的燃烧是燃气轮机的核心过程之一。
首先,燃料与空气混合形成燃气混合物,然后在燃烧室中被点火。
燃料的选择通常以石油类产品为主,例如柴油、天然气等。
点火后,燃气混合物的化学能被释放,产生高温高压气体,这是燃气轮机工作的基础。
二、燃气扩张燃气轮机的下一个步骤是将燃气的热能转化为机械能。
在燃气扩张过程中,高温高压的燃气进入轮叶,施加压力在叶片上,使得轮叶开始旋转。
此时,燃气流过轮叶,产生了推力,推动轴承输出机械能。
三、轴承和连杆在燃气轮机中,轴承和连杆是非常重要的组成部分。
轴承负责支撑和稳定旋转的轴,使得轮叶能够顺利工作。
连杆则将轮叶的旋转运动转化为线性运动,从而输出机械能。
这两个部分的设计和制造对于燃气轮机的性能和寿命至关重要。
四、废气排放在燃气轮机工作过程中,废气的排放是一个需要关注的问题。
废气中含有大量的二氧化碳、氮氧化物等有害物质,对环境造成污染。
为了减少废气排放对环境的影响,燃气轮机通常采取多重净化处理,包括除尘、脱硫、脱氮等技术手段,以确保废气排放符合相关的环保标准。
五、效率和性能燃气轮机的效率和性能是衡量其优劣的重要指标。
燃气轮机的效率通常指热效率,即输入的热能中有多少被转换为机械能。
为了提高燃气轮机的效率,可以采取一系列措施,例如提高燃烧效率、减少能量损失等。
此外,燃气轮机还具有快速启动、高响应性和负载适应性强等优点,使其在航空、交通等领域得到广泛应用。
综上所述,燃气轮机通过燃料的燃烧和热能的转换将热能转化为机械能。
它的工作原理涉及燃料燃烧、燃气扩张、轴承和连杆以及废气排放等多个方面。
燃气轮机以其高效率、功率密度大、响应迅速等优点在各个领域得到广泛应用。
燃气轮机的工作原理
燃气轮机的工作原理
燃气轮机是一种通过燃烧燃气来产生机械能的设备。
它的工作原理如下:
1. 空气压缩:燃气轮机内部有一个旋转的压气机,它通过旋转叶片将外界空气抽入轮机内部,并将空气逐渐压缩。
这个过程使得空气的能量增加,并且增加了空气分子的密度。
2. 燃烧:经过压缩的空气进入燃烧室,在其中与燃气混合并点燃。
燃气的燃烧产生高温高压的气体,使燃烧室内的压力迅速增加。
3. 转子运动:燃烧室的高压气体推动轴上的涡轮旋转。
涡轮连接着压气机和燃烧室,因此燃烧室的高压气体的运动传递给了压气机,进而推动压气机继续压缩空气。
4. 发电或推进:涡轮旋转的同时,也将动力传递给了输出轴,可以用于驱动发电机发电或用于推动飞机等载体。
由于燃气轮机的轴转速非常高,因此可以获得高功率输出。
总而言之,燃气轮机通过不断的空气压缩、燃烧和轮子旋转的循环过程,将燃气的热能转化为机械能,从而实现发电或推进等目的。
燃气轮机的工作原理及应用
燃气轮机的工作原理及应用一、燃气轮机的工作原理燃气轮机是一种通过将燃气释放到叶轮转子上产生动力的发动机。
燃气轮机有三个主要组成部分:压气机、燃烧室和涡轮。
在燃气轮机中,压气机将大量的空气压缩,然后将其送入燃烧室。
在燃烧室中,燃料被喷射到高压空气中,然后在点火器的作用下点燃燃料。
这样产生的高温高压气体通过涡轮驱动轴承,使轴承产生动力。
燃气轮机的工作原理可以简单概括为:空气被压缩,然后喷入燃料并点燃。
这些气体产生高温和高压,然后驱动涡轮,提供发动机所需的动力。
二、燃气轮机的应用燃气轮机广泛应用于发电和航空领域。
在发电领域中,燃气轮机可用于发电站、船只和许多其他类型的工业设备中。
在航空领域中,燃气轮机是现代民用航空发动机的核心。
1. 燃气轮机在发电站中的应用燃气轮机发电站可以在非常短的时间内启动,可以在几分钟内从停止状态达到最大输出功率。
这种优势非常适合满足瞬间电能需要的环境。
燃气轮机发电站还可以利用工业废气以及废水热回收,减少了能源的浪费。
2. 燃气轮机在船舶中的应用由于燃气轮机具有动力密度高、重量小、尺寸小、响应速度快、起动性能好等特点,可用于柴油机的备用或主要动力。
燃气轮机在燃油消耗率方面与柴油机相比优势不是太大,但由于其较小的体积和质量,船舶的稳定性较好。
3. 燃气轮机在航空中的应用燃气轮机是现代民用航空发动机的核心。
它的可靠性高,功率大,而且产生的噪音和废气都很少。
燃气轮机可以让飞机飞行得更快,更高,更远,并提高飞机性能和可靠性。
燃气轮机有以下优点:轻量化,提高了飞机的搭载货运量和距离;工作顺畅,启动、加速,跟踪性能良好;排放清洁,不会引起太多空气污染;节约油耗。
三、结论燃气轮机目前已成为一种高效、可靠、可适应性强的动力设备,逐渐进入各领域的市场。
尤其是在未来电力与航空交通等领域的应用需求中,燃气轮机具备重要的发展前景。
02第二章 燃气轮机基本原理和计算
提高燃气轮机效率,改进燃气
轮机的性能,主要要从燃气轮
机的燃气温度和压气机的压比
作手。
2020/11/1
编辑ppt
燃气轮机效率曲线
13
第一节 燃气轮机循环的过程方程 一)、燃气轮机的循环过程
3、燃气轮机的效率与比功关系
1)、燃气温度越高,燃气轮 机的比功就越大,每千克空气 产生的功就越多,一定功率的 机组体积就会越小。
气流在此处的实际状况的 状态参数符号:
温度:T1(t1) 比容:v 1 压强:p1 燃气轮机结构示意图
气流在此处的状态参数平均值:
温度:T * (t* ) 比容:v * 压强:p *
2020/11/1
编辑ppt
5
附加知识点:
燃气轮机四个截面的气体状态参数符号
2、)2截面(压气机出口截面, 燃烧室进口截面)
气流在此处的理想状况的 状态参数符号:
温度:T2s (t2s ) 比容:v 2 s 压强:p 2 s 气流在此处的实际状况的
状态参数符号: 温度:T2 (t2 ) 比容:v 2 压强:p 2 燃气轮机结构示意图
气流在此处的状态参数平均值:
温度:T2*02(0t/*11)/1比容:v * 压强:p * 编辑ppt
状态参数符号:
温度:T4 (t4 ) 比容:v 4 压强:p 4 燃气轮机结构示意图
气流在此处的状态参数平均值:
温度:T2*02(0t/*11)/1比容:v * 压强:p * 编辑ppt
8
第一节 燃气轮机循环的过程方程
一)、燃气轮机的循环过程
2020/11/1
编辑ppt
9
第一节 燃气轮机循环的过程方程 一)、燃气轮机的循环过程
燃气轮机原理 第二章 循环理论2-3&2-4&2-5
3).等压放热过程(4-1)放出的热量
q2, 41 = Cp(T4 − T1 ) = Cp( T3
k −1 k
π
− T1 ) = CpT1 (
τ π
k −1 k
− 1)
等温压缩理想燃气轮机循环的比功为
wi ' = q1, 2 ' 3 − q2,12 ' − q2, 41 ⎡ ⎤ 1 k −1 ln π ⎥ = CpT1 ⎢τ (1 − k −1 ) − k ⎢ ⎥ π k ⎣ ⎦
k −1 k
τ一定的条件下,π越小,ηt,R,i越高。原因是: π越小,压气机出口温度也越低,在回热器中排气 余热就利用得越充分。然而,很低的π对循环来讲 是没有意义的。 π增加,ηt,R,i下降。当π增加到使T2=T4时,排气余 热无法利用,理想回热循环退化为理想简单循环。 此时的压比定义为临界增压比πcr。
根据达到临界增压比πcr的条件: T2 = T4, 则有:
T 1 ( π cr )
k −1 k
=
T3
( π cr )
k −1 k
π cr = τ
k 2 ( k −1 )
此时,理想回热循环的热效率为:η t ,R ,i = 1 −
1
( π cr )
k −1 k
理想回热循环蜕化为理想简单燃气轮机循环。
虚线代表简单理想燃气轮机循环的比功
1
π
将π1=π1/2代入比功 表达式,可求出τ 值一定时比功达最 大值的总的最佳增 压比πWmax,opt
对热效率进行类似分析,存在一个使热效 率达到最大值的总的最佳增压比πηmax,opt, 且存在
πηmax,opt > πWmax,opt
燃气轮机-理论循环ppt课件
12 1'2 ' w v h h c , i 1 v 1 1 1 1 2 2
' w , w h h c 12 2 1 2i
w w , w , h h c , i c i c 2 1 1 2i
∴ 单位质量工质所作的机械功
k 1 w h h C ( T T ) C T ( k 1 ) c , i 2 1 p 2 1 p 1
按热力学第一定律
k 1 q C T ' p 1ln 2 , 12 k 2‘-3等压加热过程中吸收的热量:q C ( T T ) C ( T T ) C T ( 1 ) ' ' 3 p 3 1 p 1 1 , 2 3 p 2
w i 0
dw i 0 d
max, i
opt ,i
k 2(k 1)
t ,i ↑ 与 π ↑,
T3
无关
π↑
max, i↑
opt↑ ,i
π
第二章 燃气轮机循环理论
《燃气轮机原理》
§2-3 压缩过程中间冷却的理想简单燃气轮机循环
到达到相同压比,等温压缩过程所耗功比等熵压缩过程小,但真正等温难达到。 在航空燃气轮机压气机进口处喷水冷却来增加 功率 / 极限理想情况可看作等温过程; 两级压气机之间进行一次中间冷却或多级压气 机之间进行多次中间冷却 / 理想情况可看作 等压放热过程。 趋于无穷多个,其极限理想情况也可看成等温过程。
k
整个循环过程中单位质量工质从高温热源(燃烧室)中吸收热量,即燃烧过程加热量:
k 1 q q C ( T T C T ( k) 1 23 p 3 2 ) p 1
燃气轮机的工作原理
燃气轮机的工作原理
燃气轮机是一种常见的热力设备,可将化学能转化为机械能。
其工作原理可以概括为以下几个步骤:
1. 空气进气:燃气轮机通过引入大量气体来驱动轴,以产生动力。
这些气体主要包括空气和燃料,通常是天然气或石油燃料。
2. 压缩空气:从大气中引入的空气经过空气压缩机,会被压缩到高压状态。
通过增加空气的压力,可以提高燃烧效率和动力输出。
3. 燃烧:在空气经过空气压缩机之后,经过高压燃料喷嘴注入燃料,以实现混合燃烧。
混合物在燃烧室中起火,产生高温燃烧膨胀气体。
4. 高温高压气体膨胀:燃烧膨胀气体在高温高压下,被送入燃气轮机的涡轮部分。
高速旋转的涡轮将气体的动能转化为机械能,驱动轴旋转。
5. 功率输出:通过涡轮的旋转,将机械能传递给输出设备,如发电机或其他机械装置,从而产生所需的功率输出。
6. 废气排放:燃气轮机在能量转化过程中会产生高温废气,这些废气通过排气系统排出,防止对轮机造成过热损害,并用于外部过程,如发电厂中的锅炉。
总体来说,燃气轮机通过压缩空气、燃烧燃料,然后利用高温
高压气体膨胀和涡轮转动,将热能转化为机械能,实现功率输出。
通过这样的工作原理,燃气轮机被广泛应用于发电、航空、海洋和工业等领域。
第二章航空燃气轮机的工作原理
第2章航空燃气轮机的工作原理Principle of Aero Gasturbine Engine第2.1节概述Introduction涡轮喷气发动机是航空燃气轮机中最简单的一种,它是飞机的动力装置。
涡轮喷气发动机在工作时,连续不断地吸入空气,空气在发动机中经过压缩、燃烧和膨胀过程产生高温高压燃气从尾喷管喷出,流过发动机的气体动量增加,使发动机产生反作用推力(图2.1.1)图2.1.1 单轴涡轮喷气发动机涡轮喷气发动机(图2.1.2)作为一个热机,它将燃料的热能转变为机械能。
涡轮喷气发动机同时又作为一个推进器(,它利用产生的机械能使发动机获得推力。
图2.1.2 表示热机和推进器的单轴涡轮喷气发动机涡轮喷气发动机,作为热机,它和工程中常见的活塞式发动机一样,都是以空气和燃气作为工作介质。
它们的相同之处为:均以空气和燃气作为工作介质。
它们都是先把空气吸进发动机,经过压缩增加空气的压力,经过燃烧增加气体的温度,然后使燃气膨胀作功。
燃气在膨胀过程中所作的功要比空气在压缩过程中所消耗的功大得多。
这是因为燃气是在高温下膨胀的,于是就有一部分富余的膨胀功可以被利用。
它们的不同之处为:•进入活塞式发动机的空气不是连续的;而进入燃气轮机的空气是连续的。
•活塞式发动机中喷油燃烧是在一个密闭的固定空间里,称为等容燃烧,而燃气轮机则在前后畅通的流动过程中喷油燃烧,若不计流动损失,则燃烧前后压力不变,故称为等压燃烧。
下面给出了涡轮喷气发动机的简图,图中标出了发动机各部件名称和各个截面的符号。
对于单轴和双轴涡轮喷气发动机的尾喷管,若为收敛性喷管,其出口截面9在临界或超临界状态下成为临界截面,故也可以标注为8。
0---远前方,1---发动机进气道入口,2---压气机入口,3---燃烧室入口,4---涡轮入口,5---尾喷管入口,8---尾喷管临界截面,9---尾喷管出口图 2.1.3涡轮喷气发动机各部分名称请记住上图涡轮喷气发动机各个截面符号的含义。
燃气轮机的工作原理
燃气轮机的工作原理燃气轮机是一种将化学能转化为机械能的热能转换装置。
它利用燃料燃烧产生的高温高压气体来驱动涡轮,使其旋转,从而带动轴上的负载实现能量转换。
燃气轮机具有高效率、简单结构、启动迅速等优点,在发电、航空、船舶等领域得到广泛应用。
燃气轮机的工作原理可以分为四个基本过程:压缩、燃烧、膨胀和排气。
首先是压缩过程,燃气轮机的空气与燃料混合物首先经过一个压缩机。
压缩机将大量空气压缩成高压气体,并相应提高了气体的温度。
接下来是燃烧过程,压缩后的气体进入到燃烧室中。
燃烧室内喷入燃料并点燃,燃烧产生的高温高压气体使得燃气轮机的温度和压力急剧上升。
然后是膨胀过程,高温高压气体经过燃气轮机上的涡轮膨胀工作。
膨胀工作使得涡轮旋转,并将能量转化为机械能,用于驱动轴上的负载工作,如发电机、风扇,或直接驱动船舶等。
最后是排气过程,膨胀后的低温低压气体通过排气系统排出。
有些燃气轮机还可以利用废热产生蒸汽,用于热能回收,提高系统热效率。
燃气轮机的工作过程遵循热力学循环原理,通常采用布雷顿循环或奥特曼循环。
布雷顿循环是最常见的循环方式,它包括四个过程:压缩、燃烧、膨胀和排气。
压缩和膨胀过程是等熵过程,燃烧过程是定压过程,排气过程是等熵过程。
燃气轮机的性能主要由压缩比、热效率和功率密度等指标衡量。
压缩比是指压缩机出口气体的最高压力与进口气体的压力之比。
热效率是指燃气轮机输出功率与供给燃料热值之比。
功率密度是指单位体积或单位质量内燃气轮机的输出功率。
燃气轮机的工作原理可以通过物理、化学和热力学原理来解释。
其中燃烧过程涉及到燃料的氧化反应,其化学反应方程式为燃料加氧气生成二氧化碳、水和燃烧产物的能量。
燃气轮机的性能与内外部参数的优化调整密切相关,包括空气与燃料的混合比例、压缩机和涡轮的设计和材料选择等。
总之,燃气轮机是一种通过燃料燃烧产生动力并转换为机械能的装置。
它基于燃烧室、涡轮和压缩机等组件,以压缩、燃烧、膨胀和排气的工作原理实现能量转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章航空燃气轮机的工作原理Principle of Aero Gasturbine Engine第2.1节概述Introduction涡轮喷气发动机是航空燃气轮机中最简单的一种,它是飞机的动力装置。
涡轮喷气发动机在工作时,连续不断地吸入空气,空气在发动机中经过压缩、燃烧和膨胀过程产生高温高压燃气从尾喷管喷出,流过发动机的气体动量增加,使发动机产生反作用推力(图2.1.1)图2.1.1 单轴涡轮喷气发动机涡轮喷气发动机(图2.1.2)作为一个热机,它将燃料的热能转变为机械能。
涡轮喷气发动机同时又作为一个推进器(,它利用产生的机械能使发动机获得推力。
图2.1.2 表示热机和推进器的单轴涡轮喷气发动机涡轮喷气发动机,作为热机,它和工程中常见的活塞式发动机一样,都是以空气和燃气作为工作介质。
它们的相同之处为:均以空气和燃气作为工作介质。
它们都是先把空气吸进发动机,经过压缩增加空气的压力,经过燃烧增加气体的温度,然后使燃气膨胀作功。
燃气在膨胀过程中所作的功要比空气在压缩过程中所消耗的功大得多。
这是因为燃气是在高温下膨胀的,于是就有一部分富余的膨胀功可以被利用。
它们的不同之处为:•进入活塞式发动机的空气不是连续的;而进入燃气轮机的空气是连续的。
•活塞式发动机中喷油燃烧是在一个密闭的固定空间里,称为等容燃烧,而燃气轮机则在前后畅通的流动过程中喷油燃烧,若不计流动损失,则燃烧前后压力不变,故称为等压燃烧。
下面给出了涡轮喷气发动机的简图,图中标出了发动机各部件名称和各个截面的符号。
对于单轴和双轴涡轮喷气发动机的尾喷管,若为收敛性喷管,其出口截面9在临界或超临界状态下成为临界截面,故也可以标注为8。
0---远前方,1---发动机进气道入口,2---压气机入口,3---燃烧室入口,4---涡轮入口,5---尾喷管入口,8---尾喷管临界截面,9---尾喷管出口图 2.1.3涡轮喷气发动机各部分名称请记住上图涡轮喷气发动机各个截面符号的含义。
思考题: 作为热机,燃气轮机与活塞式发动机有何相同和不同之处?第2.2节航空燃气轮机的分类Kinds of Aerogasturbine Engine一、概述用于飞机的航空燃气轮机有:1. 涡轮喷气发动机,简称涡喷发动机。
2. 涡轮风扇发动机,简称涡扇发动机。
3. 涡轮螺桨发动机,简称涡桨发动机。
用于直升飞机的航空燃气轮机有:涡轮轴发动机简称涡轴发动机。
作为燃气轮机,它们都有一个共同的部分:“燃气发生器”。
顾名思义,燃气发生器为各类燃气轮机产生可转化为机械功的高温高压燃气。
由于对高温高压燃气使用方法的不同,形成了不同类型的航空燃气轮机。
燃气发生器有单轴(图2.2.1 )和双轴(图2.2.2 )之分。
二、各类航空燃气轮机简图1、涡轮喷气发动机涡轮喷气发动机是最简单的一种航空燃气轮机,它只是在燃气发生器出口处安装了尾喷管,将高温高压燃气的能量通过尾喷管(推进器) 转变为燃气的动能,使发动机产生反作用推力。
图2.2.1 单轴涡轮喷气发动机图2.2.2 双轴涡轮喷气发动机对于军用歼击机所用的涡轮喷气发动机,为了能在飞机起飞和投入战斗时,在短时间内进一步增加发动机的推力,在涡轮后面再喷入燃油进行燃烧,为此在涡轮与尾喷管之间设置加力燃烧室,成为加力涡轮喷气发动机(图2.2.3)。
图2.2.3 加力涡轮喷气发动机2、涡轮螺桨发动机图2.2.4 涡轮螺桨发动机在燃气发生器出口增加动力涡轮,涡轮螺桨发动机将燃气发生器产生的可用功大部分或全部从动力涡轮轴上输出,通过减速器驱动飞机的螺桨(图2.2.4)产生拉力;可用功的少部份作为燃气的动能从尾喷管喷出,产生较小的反作用推力,当喷射速度与飞行速度相等时,反作用推力为零,显然,飞机的螺桨是发动机的主要推进器。
飞行高度低飞行速度慢是使用涡轮螺桨发动机的主要缺点。
装有涡轮螺桨发动机的飞机其飞行高度不超过5000米,其飞行速度一般不超过700公里/小时。
飞行速度慢是由螺桨特性决定的。
3、涡轮风扇发动机为了克服涡轮螺桨发动机的缺点,提高飞机的飞行速度和高度,20世纪50年代中开始发展涡轮风扇发动机(图2.2.5)。
涡轮风扇发动机有内外两个涵道,在内涵燃气发生器出口增加动力涡轮,将燃气发生器产生的一部分或大部分可用功,通过动力涡轮传递给外涵通道中的压气机,大多数情况下,外涵压气机叶片是将内涵压气机叶片向外延伸,习惯上将内外涵共用的压气机称为风扇。
在外涵道中的风扇叶片、尾喷管和内涵尾喷管是涡轮风扇发动机的推进器。
外涵空气流量与内涵空气流量之比,称为涵道比,用B表示。
目前民用旅客机都采用大涵道比的涡轮风扇发动机,而军用歼击机所用的涡轮风扇发动机则为带有加力燃烧室的小涵通比涡轮风扇发动机。
图2.2.5 涡轮风扇发动机图2.2.6 民用大涵道比涡轮风扇发动机图2.2.7 军用小涵道比涡轮风扇发动机4、涡轮轴发动机涡轮轴发动机如图2.2.8所示,它用于直升机,与涡桨发动机相类似,将燃气发生器产生的可用功几乎全部从动力涡轮轴上输出,带动直升机的旋翼和尾桨。
图2.2.8 涡轮轴发动机三、各类发动机截面划分对于单轴和双轴涡轮喷气发动机的尾喷管,若为收敛性喷管,其出口截面9在临界或超临界状态下成为临界截面,故也可以标注为8。
2---压气机入口,2.5---低压压气机出口,3---燃烧室入口,4---涡轮入口,4.5---高压涡轮出口,5---尾喷管入口,8---尾喷管临界截面,9---尾喷管出口图 2.2.9 双轴发动机截面划分对于涡扇发动机,其内涵截面标注方法与涡喷发动机相同。
其外涵截面标注方法在相应截面后加2。
如风扇压气机出口3截面写为32截面,尾喷管出口9截面写为92截面。
2---压气机入口,2.5(内涵)---低压压气机出口,32(外涵)---外涵风扇出口,3---燃烧室入口,4---涡轮入口,4.5---高压涡轮出口,5---尾喷管入口,8---尾喷管临界截面,92---外涵尾喷管出口图 2.2.10 涡扇发动机截面划分对于带有加力燃烧室的涡喷或混排涡扇发动机,加力燃烧室进口截面为6截面,加力燃烧室出口截面为7截面。
2---压气机入口,2.5---低压压气机出口,3---燃烧室入口,4---涡轮入口,4.5---高压涡轮出口,5---尾喷管入口,6---加力燃烧室入口,7---加力燃烧室出口,8---尾喷管临界截面,9---尾喷管出口图 2.2.11 带加力燃烧室的涡轮喷气发动机思考题:⑴何谓涵道比? 如外涵空气流量为80kg/s,而内涵空气流量为40kg/s,问涵道比=?⑵不能用作飞机发动机的航空燃气轮机是哪个?涡扇发动机涡桨发动机涡轮轴发动机涡喷发动机⑶能用于飞机发动机的几种航空燃气轮机其区别何在?第2.3节航空燃气轮机的热机部分──燃气发生器Thermomachine Part of Aerogasturbine Engine──Gasgenerator一.概述燃气发生器是各类燃气轮机的热机部分。
它包括了压气机、燃烧室和带动压气机的那一部分涡轮。
如果涡轮的功率大于压气机所需的功率,因而还带动其它设备,那么假想将这涡轮分为二个功率较小的涡轮,将其中前面一个恰好为带动压气机所需要的涡轮,归入燃气发生器部分。
燃气发生器和其它热机一样,都是利用工作物质(简称工质),重复地进行着某些工作过程而不断地吸热作功。
为了便于分析研究,需要将燃气发生器的实际工作过程加以简化,并假设为某一团气体的反复循环运作,以便作循环过程的理论分析。
循环过程的理论分析对于提高燃气发生器设计状态的性能和研究变工况性能都是必不可少的。
燃气轮机问世以来,通过对其循环理论的分析研究,认识了怎样才能使得燃气发生器具有良好的性能,提出了一系列提高性能的途径。
二.燃气轮机的理想循环分析循环过程作如下两点假设以后称为理想循环:1. 工质是空气,可视为理想气体。
整个工作过程中,空气的比热为常数,不随气体的温度和压力而变化。
2. 整个工作过程中没有流动损失,压缩过程与膨胀过程为绝热等熵,燃烧前后压力不变,没有热损失(排热过程除外)和机械损失。
理想燃气轮机循环由布雷顿(Brayton)于1872年提出,它由下述过程组成:绝热压缩等压加热绝热膨胀等压放热图2.3.1给出了燃气轮机循环布置,图中C为压气机,B为燃烧室,T为涡轮。
图2.3.1 燃气轮机循环布置图图2.3.2给出了理想燃气轮机循环的p-V图和T-S图(图中1、2、3、4不代表发动机的工作截面)。
图2.3.2 理想燃气轮机循环衡量燃气发生器性能的优劣有二个指标:(Thermo Efficiency),即加入每公斤空气的热量中所1、热效率ηt,i产生的可用功的百分比。
2、比功w(Specific Work),单位质量空气所作的功。
表示理想燃气轮机循环工作状态的有二个重要参数:1、增压比π,压气机出口静压与周围大气压力之比。
其中包括飞机进气道的冲压增压和压气机的加功增压。
2、加热比Δ,燃烧室出口温度与外界大气温度之比。
理想燃气轮机循环分析单位质量工质在各个过程中吸热和作功都可以从能量方程进行计算,定常流的能量方程为(2.3-1)式中q─工质在过程中吸热;v0、v─过程进口和出口处的流速;h、h─工质在进口和出口处的静焓;w─工质对叶轮机(压气机或涡轮)所作的机械功。
1)绝热压缩过程(1~2)过程中工质吸热为零,即(2.3-2)过程中对单位质量工质作的机械功,可由能量方程求得。
对于航空燃气轮机,绝热压缩过程分二个阶段完成,第一阶段是迎面高速气流在进气道中的绝能流动,使工质减速增压,可由下式表示:式中h'1、v'1──进气道出口即压气机进口处的静焓和流速。
h1、v1──进气道进口处的静焓和流速。
在进气道中动能减小静焓增加,对工质作的压缩功为第二阶段在压气机中完成,压气机对工质作功为式中w──工质对压气机作功。
1,2在整个绝热压缩过程中,对单位质量工质所作的总机械功应为由绝热过程,上式可改写为(2.3-3) 式中π──全压缩过程增压比。
2)等压加热过程(2~3)等压加热过程是在燃烧室内完成的,工质通过燃烧室与外界没有机械功的传递,工质的流速变化也可忽略不计,因此工质所作的机械功为零。
即工质吸热q为23(2.3-4)式中,称为循环的加热比。
3)绝热膨胀过程(3~4)过程中工质吸热为零,即过程中单位质量工质所作机械功的情况与绝热压缩过程相类似,可由能量方程求得。
对于航空燃气轮机,绝热膨胀分二个阶段,第一阶段在涡轮中完成,涡轮从单位质量工质所获得的机械功用w表示,应为3应等于压气机所需的对单位质量工质所作的功。
w3──涡轮出口处的静焓。
式中h'3绝热膨胀的第二阶段在尾喷管(或动力涡轮)中完成,在尾喷管中为绝能流动,而在动力涡轮中则为绝热流动。