管理运筹学韩伯棠习题答案
管理运筹学_韩伯棠_第4章作业习题
![管理运筹学_韩伯棠_第4章作业习题](https://img.taocdn.com/s3/m/c739a77c284ac850ac0242de.png)
管理运筹学_韩伯棠_第4章作业习题第四章思考题、主要概念及内容人力资源的分配问题;生产计划的问题;套裁下料问题;配料问题;投资问题。
复习题1、某锅炉制造厂,要制造一种新型锅炉10台,需要原材料为63.5×4 mm的锅-12所示( 炉钢管,每台锅炉需要不同长度的锅炉钢管数量如表4表4-12库存的原材料的长度只有5 500 mm一种规格,问如何下料,才能使总的用料根数最少?需要多少根原材料?答案:296.667根2、某快餐店坐落在一个旅游景点中(这个旅游景点远离市区,平时游客不多,而在每个星期六游客猛增(快餐店主要为旅客提供低价位的快餐服务(该快餐店雇佣了两名正式职工,正式职工每天工作8小时(其余工作由临时工来担任,临时工每班工作4个小时(在星期六,该快餐店从上午11时开始营业到下午10时关门( 根据游客就餐情况,在星期六每个营业小时所需职工数(包括正式工和临时工)如表4-13所示(表4-13已知一名正式职工11点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时;另一名正式职工13点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时(又知临时工每小时的工资为4元((1) 在满足对职工需求的条件下,如何安排临时工的班次,使得使用临时工的成本最小?(2) 这时付给临时工的工资总额为多少?一共需要安排多少临时工的班次?请用剩余变量来说明应该安排一些临时工的3小时工作时间的班次,可使得总成本更小((3) 如果临时工每班工作时间可以是3小时,也可以是4小时,那么应如何安排临时工的班次,使得使用临时工的总成本最小?这样比(1)能节省多少费用?这时要安排多少临时工班次?答案:(2)工资总额为320元;一共需要安排80个班次;(3)此时总成本为264元;需要安排66个临时班次;3、前进电器厂生产A,B,C三种产品,有关资料如表4-14所示( 表4-14(1) 在资源限量及市场容量允许的条件下,如何安排生产使获利最多? (2) 说明A,B,C三种产品的市场容量的对偶价格以及材料、台时的对偶价格的含义,并对其进行灵敏度分析(如要开拓市场应当首先开拓哪种产品的市场?如要增加资源,则应在什么价位上增加机器台时数和材料数量? 答案:该厂的最大利润为6400元。
管理运筹学第三版课后答案
![管理运筹学第三版课后答案](https://img.taocdn.com/s3/m/73c511e44028915f814dc223.png)
管理运筹学第三版课后答案【篇一:管理运筹学(第三版)课后习题答案】ss=txt>1、解:ax= 150 x= 7012目标函数最优值 103000b 1,3 使用完2,4 没用完 0,330,0,15c 50,0,200,0含义: 1 车间每增加 1 工时,总利润增加 50 元3 车间每增加 1 工时,总利润增加 200 元 2、4 车间每增加 1 工时,总利润不增加。
d 3 车间,因为增加的利润最大e 在 400 到正无穷的范围内变化,最优产品的组合不变f 不变因为在 [0,500]的范围内g 所谓的上限和下限值指当约束条件的右边值在给定范围内变化时,约束条j 不发生变化允许增加的百分比与允许减少的百分比之和没有超出100% k 发生变化 2、解:a 4000 10000 62000b 约束条件 1:总投资额增加 1 个单位,风险系数则降低 0.057约束条件 2:年回报额增加 1 个单位,风险系数升高 2.167 c 约束条件 1 的松弛变量是 0,约束条件 2 的剩余变量是 0约束条件 3 为大于等于,故其剩余变量为 700000 d 当 c不变时,c在 3.75 到正无穷的范围内变化,最优解不变21当 c不变时, c在负无穷到 6.4 的范围内变化,最优解不变12e 约束条件 1 的右边值在 [780000,1500000]变化,对偶价格仍为0.057(其他同理)f 不能,理由见百分之一百法则二 3 、解:a 18000 3000 102000 153000b 总投资额的松弛变量为 0基金 b 的投资额的剩余变量为 0c 总投资额每增加 1 个单位,回报额增加 0.1基金 b 的投资额每增加 1 个单位,回报额下降 0.06 d c不变时, c 在负无穷到 10 的范围内变化,其最优解不变12c不变时, c在 2 到正无穷的范围内变化,其最优解不变21e 约束条件 1 的右边值在 300000 到正无穷的范围内变化,对偶价格仍为 0.1约束条件 2 的右边值在 0 到 1200000 的范围内变化,对偶价格仍为-0.06 + = 100% 故对偶价格不变900000 900000 f4、解:a x=1x= 1.52x= 03x= 1 最优目标函数 18.548.5b 约束条件 2 和 3 对偶价格为 2 和 3.5c 选择约束条件 3,最优目标函数值 22d 在负无穷到 5.5 的范围内变化,其最优解不变,但此时最优目标函数值变化e 在 0 到正无穷的范围内变化,其最优解不变,但此时最优目标函数值变化 5、解:a 约束条件 2 的右边值增加 1 个单位,目标函数值将增加 3.622b 才有可能大于零或生产2c 根据百分之一百法则判定,最优解不变15 65d + 100 % 根据百分之一百法则二,我们不能判定? 30 ? 9.189因为111.25 15其对偶价格是否有变化第 4 章线性规划在工商管理中的应用1、解:为了用最少的原材料得到 10 台锅炉,需要混合使用 14 种下料方4286398505479691180剩余758设按 14 种方案下料的原材料的根数分别为 x1,x2,x3,x4,x5,x6,x7,x8,x9, x10,x11,x12,x13,x14,则可列出下面的数学模型: min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14 s.t. 2x1+x2+x3+x4 ≥ 80x2+3x5+2x6+2x7+x8+x9+x10≥ 350 x3+x6+2x8+x9+3x11+x12+x13≥ 420x4+x7+x9+2x10+x12+2x13+3x14 ≥ 10x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14≥ 0 用管理运筹学软件我们可以求得此问题的解为:x1=40,x2=0,x3=0,x4=0,x5=116.667,x6=0,x7=0,x8=0, x9=0,x10=0,x11=140,x12=0,x13=0,x14=3.333 最优值为 300。
韩棠伯管理运筹学习题答案
![韩棠伯管理运筹学习题答案](https://img.taocdn.com/s3/m/c21e88210a1c59eef8c75fbfc77da26925c59627.png)
韩棠伯管理运筹学习题答案韩棠伯管理运筹学习题答案韩棠伯是一位热爱学习的年轻人,对于管理运筹学这门课程也充满了兴趣。
每天晚上,他都会认真完成老师布置的学习题,以便更好地掌握这门学科的知识。
在这里,我们将为大家分享韩棠伯管理运筹学习题的答案。
第一题:线性规划韩棠伯在学习线性规划时,遇到了以下一道题目:某公司生产两种产品A和B,每个单位产品A的利润为10元,产品B的利润为15元。
产品A每个单位需要2个工时,产品B每个单位需要3个工时。
公司每天可用的总工时为60个。
问应该如何安排生产,才能获得最大利润?答案:设产品A的产量为x,产品B的产量为y。
根据题目中的条件,我们可以列出以下线性规划模型:目标函数:Maximize 10x + 15y约束条件:2x + 3y ≤ 60非负约束:x ≥ 0, y ≥ 0通过求解这个线性规划模型,我们可以得到最大利润的产量分配方案。
第二题:排队论在学习排队论时,韩棠伯碰到了以下一道题目:某家餐厅有一个服务台,平均每小时有30名顾客到达,服务员平均每小时能为25名顾客提供服务。
问在稳定状态下,平均顾客等待时间是多少?答案:根据排队论的基本原理,我们可以使用排队模型来解决这个问题。
根据题目中的条件,我们可以得到以下参数:顾客到达率(λ)= 30人/小时服务率(μ)= 25人/小时利用排队模型中的公式,我们可以计算出平均顾客等待时间(Wq):Wq = λ / (μ - λ)将具体数值代入公式,我们可以计算出平均顾客等待时间。
第三题:决策树在学习决策树时,韩棠伯遇到了以下一道题目:某公司要决定是否投资于一个新的项目。
如果投资成功,公司将获得300万元的利润;如果投资失败,公司将损失200万元。
根据市场分析,投资成功的概率为0.6,失败的概率为0.4。
问公司应该如何决策?答案:我们可以使用决策树来解决这个问题。
根据题目中的条件,我们可以绘制出以下的决策树:投资成功(0.6)/ \获得300万元损失200万元投资失败(0.4)/ \获得0万元损失200万元根据决策树,我们可以计算出投资的期望值,即投资成功的利润乘以成功的概率加上投资失败的利润乘以失败的概率。
管理运筹学 第3版 韩伯棠 高教社 课后答案
![管理运筹学 第3版 韩伯棠 高教社 课后答案](https://img.taocdn.com/s3/m/aea737c5bb4cf7ec4afed093.png)
(1) 、满足对职工需求的条件下,如何安排临时工的班次,使得临时工成本最小。 (2) 、这时付给临时工的工资总额是多少,一共需要安排多少临时工班次。请用剩余变量来说明应该安排一些临时
6
工的 3 小时工作时间的班次,可使得总成本更小。 (3) 、如果临时工每班工作时间可以是 3 小时,也可以是 4 小时,那么如何安排临时工的班次,使得临时工总成本 最小。这样比(1)节省多少费用,这时要安排多少临时工班次。 解题如下: (1)临时工的工作时间为 4 小时,正式工的工作时间也是 4 小时,则第五个小时需要新招人员,临时工只要招用,无 论工作多长时间,都按照 4 小时给予工资。每位临时工招用以后,就需要支付 16 元工资。从上午 11 时到晚上 10 时共计 11 个班次,则设 Xi(i =1,2,…,11)个班次招用的临时工数量,如下为最小成本: minf=16(X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11) 两位正式工一个在 11-15 点上班,在 15-16 点休息,然后在 16-20 点上班。另外一个在 13-17 点上班,在 17 -18 点休息,18-22 点上班。则各项约束条件如下: X1+1>=9 X1+X2+1>=9 X1+X2+X3+2>=9 X1+X2+X3+X4+2>=3 X2+X3+X4+X5+1>=3 X3+X4+X5+X6+2>=3 X4+X5+X6+X7+2>=6 X5+X6+X7+X8+1>=12 X6+X7+X8+X9+2>=12 X7+X8+X9+X10+1>=7 X8+X9+X10+X11+1>=7 Xi>=0(i=1,2,…,11) 运用计算机解题,结果输出如下; **********************最优解如下************************* 目标函数最优值为 : 320 变量 最优解 -------------x1 8 x2 0 x3 1 x4 0 x5 1 x6 4 x7 0 x8 6 x9 0 x10 0 x11 0 目标函数最优值为 : 320 这时候临时工的安排为: 变量 班次 临时工班次 -------------x1 8 x2 0 x3 1 x4 0
《管理运筹学》第三版习题答案(韩伯棠教授)_khdaw
![《管理运筹学》第三版习题答案(韩伯棠教授)_khdaw](https://img.taocdn.com/s3/m/1424a325bcd126fff7050bb7.png)
课后答案网
f
有唯一解
x1
=
20 3
函数值为 92
m x2
=
8 3
3
o 3、解: .c a 标准形式:
max f = 3x1 + 2x2 + 0s1 + 0s2 + 0s3
khdaw om b 标准形式:
9x1 + 2x2 + s1 = 30 3x1 + 2x2 + s2 = 13 2x1 + 2x2 + s3 = 9 x1, x2 , s1, s2 , s3 ≥ 0
30 − 9.189 111.25 −15
其对偶价格是否有变化
若侵犯了您的版权利益,敬请来信通知我们! ℡
课后答案网
第 4 章 线性规划在工商管理中的应用
m 1、解:为了用最少的原材料得到 10 台锅炉,需要混合使用 14 种下料方案
w o x1, x2,s1,s2 ≥ 0
khdaw.c s1 = 2,s2 =0
若侵犯了您的版权利益,敬请来信通知我们! ℡
课 后 答 案 网
课后答案网
5 、解: 标准形式: min f = 11x1 + 8x2 + 0s1 + 0s2 + 0s3 10x1 + 2x2 − s1 = 20
e x1 ∈ [4,8] x2 = 16 − 2x1
w f 变化。原斜率从 − 2 变为 −1 3
a 7、解: 模型: d max z = 500x1 + 400x2 h 2x1 ≤ 300 .k 3x2 ≤540 2x1 + 2x2 ≤ 440 1.2x1 +1.5x2 ≤ 300 wx1, x2 ≥ 0 a x1 = 150 x2 = 70 即目标函数最优值是 103000 w b 2,4 有剩余,分别是 330,15。均为松弛变量 m c 50, 0 ,200, 0 额外利润 250 w o d 在[0,500]变化,最优解不变。 .c e 在 400 到正无穷变化,最优解不变。 khdaw f 不变
韩伯棠《管理运筹学(第2版)》案例题解
![韩伯棠《管理运筹学(第2版)》案例题解](https://img.taocdn.com/s3/m/e8817c232f60ddccda38a0d5.png)
《管理运筹学》案例题解案例1:北方化工厂月生产计划安排解:设每月生产产品i (i=1,2,3,4,5)的数量为X i ,价格为P 1i ,Y j 为原材料j 的数量,价格为P 2i ,a ij 为产品i 中原材料j 所需的数量百分比,则:510.6j i ij i Y X a ==∑总成本:1521i i i TC Y P ==∑总销售收入为:511i i i TI X P ==∑目标函数为:MAX TP (总利润)=TI-TC 约束条件为:1030248002151×××≤∑=j j Y X 1+X 3=0.7∑=51i i XX 2≤50.05∑=51i i XX 3+X 4≤5X 1 Y 3≤54000 X i ≥0,i=1,2,3,4,5 应用计算工具求解得到:X 1=19639.94kg X 2=0kg X 3=7855.97kg X 4=11783.96kgX5=0kg最优解为:348286.39元案例2:石华建设监理工程师配置问题解:设X i表示工地i在标准施工期需要配备的监理工程师,Y j表示工地j在高峰施工期需要配备的监理工程师。
约束条件为:X1≥5X2≥4X3≥4X4≥3X5≥3X6≥2X7≥2Y1+Y2≥14Y2+Y3≥13Y3+Y4≥11Y4+Y5≥10Y5+Y6≥9Y6+Y7≥7Y7+Y1≥14Y j≥ X i (i=j,i=1,2, (7)总成本Y为:Y=∑=+71)12/353/7(ii iY X解得X1=5;X2=4;X3=4;X4=3;X5=3;X6=2;X7=2;Y1=9;Y2=5;Y3=8;Y4=3;Y5=7;Y6=2;Y7=5总成本Y=167案例3:北方印染公司应如何合理使用技术培训费解:变量的设置如下表所示,其中X ij为第i类培训方式在第j年培训的人数:第一年第二年第三年1.高中生升初级工X11X12X132.高中生升中级工X213.高中生升高级工X314.初级工升中级工X41X42X435.初级工升高级工X51X526.中级工升高级工X61X62X63则每年年底培养出来的初级工、中级工和高级工人数分别为:第一年底第二年底第三年底初级工X11X12X13中级工X41X42X21 +X43高级工X61X51 +X62X31 +X52+X63则第一年的成本TC1为:1000X11+3000X21+3000X31+2800X41+2000X51+3600 X61≤550000;第二年的成本TC2为:1000X12+3000X21+2000X31+2800X42+(3200 X51+2000X52)+3600X62≤450000;第三年的成本TC3为:1000X13+1000X21+4000X31+2800X43+3200 X52+3600X63≤500000;总成本TC= TC1 +TC2 +TC3≤1500000;其他约束条件为:X41 +X42 +X43+X51 +X52≤226;X61+X62 +X63≤560;X1j≤90 (j=1,2,3);X21 +X41≤80;X21 +X42≤80;X21 +X43≤80;X31 +X51+X61≤80;X31 +X51+X52+X62≤80;X31 +X52+X63≤80;以下计算因培训而增加的产值Max TO=(X11+ X12+ X13) + 4(X41 +X42 +X21 +X43) +5.5(X61 +X51 +X62 +X31 +X52+X63);利用计算机求解:X11=38;X41=80;X42=59;X43=77;X61=80;X62=79;X63=79;其余变量都为0;TO=2211案例4:光明制造厂经营报告书设直径4.76、6、8、10和12的钢管的需求量分别是X1,X2,X3,X4,X5。
《管理运筹学》第三版习题答案(韩伯棠教授)(修复的)
![《管理运筹学》第三版习题答案(韩伯棠教授)(修复的)](https://img.taocdn.com/s3/m/5febb487bb68a98271fefaa0.png)
苏科大 管理运筹学答案第二章4 、解:标准形式:max z =10x 1 + 5x 2 + 0s 1 + 0s 23x 1 + 4x 2 + s 1 = 95x 1 + 2x 2 + s 2 = 8 x x 1, 2,s s 1, 2 ≥ 0 s 1 = 2,s 2 = 05 、解:23,s ≥ 0d x 1= 6x 2 = 4 e x 1 ∈[4,8] x 2 =16 − 2x 1 标准形式: 1 2 10 min 11 8 0 0 f x x s s s + + + + =, , , 36 9 4 18 3 3 202 10 12 32 1 23 1 1 2 2 1 1 2 − + = + − = = − + xx ss x x s x x s x s x 3 2 1 0 , 0 , 13 s s s = = = 6 、解: b 1 3 1 ≤ ≤ cc 2 6 2 ≤ ≤ cf 变化。
原斜率从−变为−18 、解: a 模型:min f = 8x a+ 3x b50x a +100x b ≤12000005x a + 4x b ≥ 60000 100x b ≥300000 x a ,x b ≥ 0基金a,b 分别为4000,10000。
回报率:60000 b 模型变为:max z = 5x a + 4x b50x a +100x b ≤1200000100x b ≥ 300000 x a ,x b ≥ 0 推导出:x1 =18000 x2 = 3000 故基金a 投资90 万,基金b 投资30 万。
第 3 章线性规划问题的计算机求解1、解:a x1 =150 x2 = 70 目标函数最优值103000b 1,3 使用完 2,4 没用完 0,330,0,15 c 50,0,200,0含义: 1 车间每增加1 工时,总利润增加50 元3 车间每增加1 工时,总利润增加200 元2、4 车间每增加1 工时,总利润不增加。
《管理运筹学》第三版(韩伯棠 )课后习题答案 高等教育出版社
![《管理运筹学》第三版(韩伯棠 )课后习题答案 高等教育出版社](https://img.taocdn.com/s3/m/78358be8f8c75fbfc77db235.png)
a、 在满足对职工需求的条件下,在 10 时安排 8 个临时工,12 时新安排 1 个临时工,13 时新安排 1 个临时工,15 时新安排 4 个临时工,17 时新 安排 6 个临时工可使临时工的总成本最小。
50xa + 100xb ≤ 1200000 5xa + 4xb ≥ 60000 100xb ≥ 300000 xa , xb ≥ 0 基金 a,b 分别为 4000,10000。 回报率:60000
b 模型变为: max z = 5xa + 4xb
50xa + 100xb ≤ 1200000 100xb ≥ 300000 xa , xb ≥ 0
xi ≥ 0, yi ≥ 0 i=1,2,…,11
稍微变形后,用管理运筹学软件求解可得:总成本最小为 264 元。 安排如下:y1=8( 即在此时间段安排 8 个 3 小时的班),y3=1,y5=1,y7=4,x8=6 这样能比第一问节省:320-264=56 元。
x2+x3+x4+x5+1 ≥ 3 x3+x4+x5+x6+2 ≥ 3 x4+x5+x6+x7+1 ≥ 6 x5+x6+x7+x8+2 ≥ 12 x6+x7+x8+x9+2 ≥ 12 x7+x8+x9+x10+1 ≥ 7 x8+x9+x10+x11+1 ≥ 7 x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11≥ 0 用管理运筹学软件我们可以求得此问题的解为:
b、 这时付给临时工的工资总额为 80 元,一共需要安排 20 个临时工的班 次。
约束 -------
1 2 3 4 5 6 7 8 9 10 11
管理运筹学_韩伯棠版答案_word版
![管理运筹学_韩伯棠版答案_word版](https://img.taocdn.com/s3/m/97b82752cc22bcd127ff0c2a.png)
第 2 章 线性规划的图解法a.可行域为 OABC 。
b.等值线为图中虚线所示。
c.由图可知,最优解为 B 点,最优解: x 1=1215x 2=, 最优目标函数值: 69 。
77x 1=0.2有唯一解 x 2= 0.6 函数值为 3.6b 无可行解c 无界解d 无可行解e 无穷多解f 有唯一解3、解:a 标准形式:x1x2==20383函数值为923max f= 3x1+2x2+ 0s1+ 0s2+ 0s3 x+91+ =2x s30x+31x+21222 1+ s=x22+ s=139b 标准形式:x1x23s s, x2, s1, ,2 3≥ 0max f= −x x s s41− 63− 01− 023 − x− s= 6x12 1x+ + =1 2x s2 2107 x1− 6x2= 4c 标准形式:x1, x2, , ss12= − +x'x'≥ 0' −max f 2 − 2x s s0 − 021−x+2x' −2 1' + =x s3 5 5 701 2 2 12x'− 5x'+ 5x'= 501x'+312x'−222' −=2x s30x', x2',x2',, s 2 ≥ 024、解:1s 12z = x + x + + max 10 5 s s标准形式: 1 2 0 0x + 31x + 514 2 1+ s = x 21+ s = x 229 82s 1= 2, s 2= 0x 1, x 2, , s s 12≥ 05 、解:f = x + x + ++ min118s s s 标准形式:12x + 101x +2 1− s = x 21− =220331x +413x s 2 2− =9xs1836s 1= 0, s 2= 0, s 3= 13 6 、解: b 1 ≤ c 1≤ 3c 2 ≤ c 2≤ 6x 1= 6x123s s , x 2, s 1, ,23≥ 0 de x 2= 4x 1∈ [ ]8x = 16 − 2x221f 变化。
管理运筹学韩伯棠答案
![管理运筹学韩伯棠答案](https://img.taocdn.com/s3/m/192c00f328ea81c758f578ca.png)
管理运筹学韩伯棠答案【篇一:管理运筹学(第四版)第五章习题答案】时间为x2小时;产品i加班生产时间为x3小时,产品ii加班生产时间为x4小时。
minzp1d1p2d2p3d3s.t.3x1?2.5x2?d1??d1??1203x3?2.5x4?d2?d2?4010x1?8x2??10?1.5?x3??8?1?x4?d3??d3??640xj,di?,di??0,i?1,2,3;j?1,2,3,4运行结果:5.10解:设a电视机生产x1台,b电视机生产x2台,c电视机生产x3台。
minz?p1d1??p2d2?p3d3??d3??d4?d4?d5??d5s.t.500x1?650x2?900x3?d1??d1??18000??6x1?8x2?10x3?d2?d2?224x1?d3??d3??14x2?d4?d4?15x3?d5??d5??10xj,di?,di??0,i?1,2,3,4,5;j?1,2,3运行结果:5.10解:设电台a时间x1分钟,电台b时间x2分钟,电台c时间x3分钟。
minz?p1d1p22d2?d2?p3d3?s.t.400x1?600x2?80x3?24002000x1?4000x2?1000x3?d1??d1??80000 ??x1?x2?x3?d2?d2?30x3?d3??d3??0xj,di?,di??0,i?1,2,3;j?1,2,3运行结果:【篇二:《管理运筹学》第二版习题答案(韩伯棠教授)1】txt>11a.可行域为 oabc。
b.等值线为图中虚线所示。
c.由图可知,最优解为 b 点,最优解: x1 = 1215x2=69 7,7 。
2、解: a x210.60.1o1有唯一解x1= 0.2x函数值为 3.62= 0.6b 无可行解c 无界解d 无可行解e 无穷多解最优目标函数值:20 x1=3 函数值为92f 有唯一解8 3x2=33、解:a 标准形式:b 标准形式:max f = 3x1 + 2 x2+ 0s1 + 0s2+ 0s3 9 x1 + 2x2+ s1= 30 3x1 + 2 x2+ s2= 13 2 x1 + 2x2+ s3= 9 x1 , x2 , s1 , s2 , s3≥ max f = ?4 x1 ? 6x3 ? 0s1 ? 0s23x1 ? x2? s1=6x1 + 2x2+ s2= 10 7 x1 ? 6 x2= 4c 标准形式:x1 , x2 , s1 , s2≥max f = ?x1 + 2x2 ? 2 x? 0s ? 0s 2 1 23x1 + 5x2 5x2+ s1= 70 2 x 5x + 5x = 50123x1 + 2 x 2? 2x2? s2= 302x, x, x, s1 , s2≥ 04 、解:标准形式: max z = 10 x1 + 5x2+ 0s1 + 0s23x1 + 4 x2+ s1= 9 5x1 + 2 x2+ s2= 8 x1 , x2 , s1 , s2≥ 0s1 = 2, s2= 01 225 、解:标准形式: min f = 11x1 + 8x2+ 0s1 + 0s2+ 0s310 x1 + 2x2? s1= 203x1 + 3x2? s2= 18 4 x1 + 9x2? s3= 36 x1 , x2 , s1 , s2 , s3≥ 0s1 = 0, s2= 0, s3 = 136 、解:b 1 ≤ c1≤ 3 c 2 ≤ c2≤ 6 d x1= 6 x2= 4e x1 ∈ [4,8] x2= 16 ? 2x1 2f 变化。
管理运筹学(第五版)韩伯棠主编第三章 线性规划问题的计算机求解课后习题参考答案
![管理运筹学(第五版)韩伯棠主编第三章 线性规划问题的计算机求解课后习题参考答案](https://img.taocdn.com/s3/m/f60da92680eb6294dc886c10.png)
第三章线性规划问题的计算机求解3-1(1)甲、乙两种柜的日产量是分别是4和8,这时最大利润是2720。
(2)油漆工艺生产增加1小时,可以使总利润提高13.333元。
(3)常数项的上下限是指常数项在指定的范围内变化时,与其对应的约束条件的对偶价格不变。
比如油漆时间变为100,因为100在40和160之间,所以其对偶价格不变仍为13.333。
(4)不变,因为还在120和480之间。
3-2(1)最优决策为截第一种钢板6张,第二种钢板7张。
(2)需要A种规格的小钢板成品个数在12和27范围内时,第一个约束条件的对偶价格不变。
(3)B种规格的小钢板成品的剩余变量值为4,表示此决策下,截得B种规格成品的实际数量比B种规格的成品的需求量多了4个。
3-3(1)农用车有12辆剩余。
(2)300到正无穷范围内。
(3)每增加一辆大卡车,总运费降低192元。
3-4(1)是最优解。
(2)此常数项在-∞到2范围内变化时,约束1的对偶价格不变。
3-5(1)圆桌和衣柜的生产件数分别是350和100件,这时最大利润是3100元。
(2)相差值为0代表,不需要对相应的目标函数系数进行改进就可以生产该产品。
(3)最优解不变,因为C1允许增加量200-6=140;C2允许减少量为100-30=70,所有允许增加百分比和允许减少百分比之和(75-60)/140+(100-90)/70<100%,所以最优解不变。
3-6(1)1150x=,270x=,即产品I的产量为150,产品II的产量为70;目标函数最优值103 000,即最大利润为103 000。
(2)1、3车间的加工工时数已使用完;2、4车间的加工工时数没用完;没用完的加工工时数为2车间330小时,4车间15小时。
(3)50,0,200,0。
含义:1车间每增加1工时,总利润增加50元;3车间每增加1工时,总利润增加200元;2车间与4车间每增加一个工时,总利润不增加。
(4)3车间,因为增加的利润最大。