工程热力学中英文简介
工程热力学EngineeringThermodynamics
1. 2. 3.
.
工程热力学是一门研究热能有效利用及热能和其它形式能量 转换规律的科学 (能量转换), , .
4.
热电厂(热能→机械能) ( →
汽车 (热能→机械能) ( → )
飞机(热能→机械能) ( →
冰箱 (机械能→热能) ( →
? ?
.自然界中的能源 ( )
自然能源的种类 ( .化学能( ): : 煤炭 () 石油 ( ) 天然气( ) 沼气 (, ). )
() () () () () () () (问题陈述) (示意图) (假设) (物理定律) (物性参数) (计算) , , (推理、证明和讨论)
(对作业的要求)
(整洁) (有条理) (完整) (工整)
请在布置了作业以后的一周内交作业。 作业得分在及以下的同学可以重新做好之后 请老师另阅。
() 德国 发现能量子(量子理论) 热力学第二定律 年诺贝尔物理学奖
热力学方面获诺贝尔奖的科学家()
.能斯特
() 德国 热化学,熵基准 年因发现热力学第三定律获诺贝尔化学奖。(年 补发)
热力学方面获诺贝尔奖的科学家()
.昂萨格
() 美国 不可逆过程热力学理论 因创立多种热动力作用之间相互关系的理论获 诺贝尔化学奖。
(有效数字)
. (结果保留三位有效数字) .
考试成绩 、 (平时作业) 、 (课堂练习及讨论参与情况 %)
、 (实验情况及报告)
、 ( 期末考试)
热力学方面获诺贝尔奖的科学家()
.范.德瓦尔斯
() 荷兰 气体和液体状态方程 年诺贝尔物理学奖
热力学方面获诺贝尔奖的科学家()
.普朗克
水蒸气 湿空气
工程热力学与传热学(英文) 绪论
3. Basic Principles
(1)The first law of thermodynamics (2)The second law of thermodynamics
4. Main Contents
(1)The thermal properties of substances (2)Processes and cycles (3)Ways and technical measures to enhance the energy conversion efficiency
0-1 Energy
0-1-1 Energy
1. Energy(能量):
The measurement of the substance movement.
2. Various forms of energy
(1)Mechanical energy (2)Thermal energy
(3)Electrical energy
3. Research Approaches
Three basic approaches and their combination • Theory analysis • Numerical simulation • Experiment research
思考题
什么是能量?目前被人们认识和利用的能量形式有哪些? 什么是能源?能源是如何分类的? 热能利用的两种形式是什么? 热工基础的研究是什么? “热工基础”课与节能有怎样的关系? 以任意一种热能动力装置为例,分析其在热功转换过程 中所经历的过程。 7. 你能够从各种热能动力装置的工作过程中,初步概括出 它们在实现热功转换时的某些共同特性吗? 1. 2. 3. 4. 5. 6.
工程热力学英文版1
CHAPTER1INTRODUCTION1.1What is thermodynamics?Thermodynamics is the science which has evolved from the original investiga-tions in the19th century into the nature of“heat.”At the time,the leading theory of heat was that it was a type offluid,which couldflow from a hot body to a colder one when they were brought into contact.We now know that what was then called“heat”is not afluid,but is actually a form of energy–it is the energy associated with the continual,random motion of the atoms which compose macroscopic matter,which we can’t see directly.This type of energy,which we will call thermal energy,can be converted (at least in part)to other forms which we can perceive directly(for example, kinetic,gravitational,or electrical energy),and which can be used to do useful things such as propel an automobile or a747.The principles of thermodynamics govern the conversion of thermal energy to other,more useful forms.For example,an automobile engine can be though of as a device whichfirst converts chemical energy stored in fuel and oxygen molecules into thermal en-ergy by combustion,and then extracts part of that thermal energy to perform the work necessary to propel the car forward,overcoming friction.Thermody-namics is critical to all steps in this process(including determining the level of pollutants emitted),and a careful thermodynamic analysis is required for the design of fuel-efficient,low-polluting automobile engines.In general,thermody-namics plays a vital role in the design of any engine or power-generating plant, and therefore a good grounding in thermodynamics is required for much work in engineering.If thermodynamics only governed the behavior of engines,it would probably be the most economically important of all sciences,but it is much more than that.Since the chemical and physical state of matter depends strongly on how much thermal energy it contains,thermodynamic principles play a central role in any description of the properties of matter.For example,thermodynamics allows us to understand why matter appears in different phases(solid,liquid, or gaseous),and under what conditions one phase will transform to another.1CHAPTER1.INTRODUCTION2The composition of a chemically-reacting mixture which is given enough time to come to“equilibrium”is also fully determined by thermodynamic principles (even though thermodynamics alone can’t tell us how fast it will get there).For these reasons,thermodynamics lies at the heart of materials science,chemistry, and biology.Thermodynamics in its original form(now known as classical thermodynam-ics)is a theory which is based on a set of postulates about how macroscopic matter behaves.This theory was developed in the19th century,before the atomic nature of matter was accepted,and it makes no reference to atoms.The postulates(the most important of which are energy conservation and the impos-sibility of complete conversion of heat to useful work)can’t be derived within the context of classical,macroscopic physics,but if one accepts them,a very powerful theory results,with predictions fully in agreement with experiment.When at the end of the19th century itfinally became clear that matter was composed of atoms,the physicist Ludwig Boltzmann showed that the postu-lates of classical thermodynamics emerged naturally from consideration of the microscopic atomic motion.The key was to give up trying to track the atoms in-dividually and instead take a statistical,probabilistic approach,averaging over the behavior of a large number of atoms.Thus,the very successful postulates of classical thermodynamics were given afirm physical foundation.The science of statistical mechanics begun by Boltzmann encompasses everything in classical thermodynamics,but can do more also.When combined with quantum me-chanics in the20th century,it became possible to explain essentially all observed properties of macroscopic matter in terms of atomic-level physics,including es-oteric states of matter found in neutron stars,superfluids,superconductors,etc. Statistical physics is also currently making important contributions in biology, for example helping to unravel some of the complexities of how proteins fold.Even though statistical mechanics(or statistical thermodynamics)is in a sense“more fundamental”than classical thermodynamics,to analyze practical problems we usually take the macroscopic approach.For example,to carry out a thermodynamic analysis of an aircraft engine,its more convenient to think of the gas passing through the engine as a continuumfluid with some specified properties rather than to consider it to be a collection of molecules.But we do use statistical thermodynamics even here to calculate what the appropriate property values(such as the heat capacity)of the gas should be.CHAPTER1.INTRODUCTION3 1.2Energy and EntropyThe two central concepts of thermodynamics are energy and entropy.Most other concepts we use in thermodynamics,for example temperature and pres-sure,may actually be defined in terms of energy and entropy.Both energy and entropy are properties of physical systems,but they have very different characteristics.Energy is conserved:it can neither be produced nor destroyed, although it is possible to change its form or move it around.Entropy has a different character:it can’t be destroyed,but it’s easy to produce more entropy (and almost everything that happens actually does).Like energy,entropy too can appear in different forms and be moved around.A clear understanding of these two properties and the transformations they undergo in physical processes is the key to mastering thermodynamics and learn-ing to use it confidently to solve practical problems.Much of this book is focused on developing a clear picture of energy and entropy,explaining their origins in the microscopic behavior of matter,and developing effective methods to analyze complicated practical processes1by carefully tracking what happens to energy and entropy.1.3Some TerminologyMostfields have their own specialized terminology,and thermodynamics is cer-tainly no exception.A few important terms are introduced here,so we can begin using them in the next chapter.1.3.1System and EnvironmentIn thermodynamics,like in most other areas of physics,we focus attention on only a small part of the world at a time.We call whatever object(s)or region(s) of space we are studying the system.Everything else surrounding the system (in principle including the entire universe)is the environment.The boundary between the system and the environment is,logically,the system boundary. The starting point of any thermodynamic analysis is a careful definition of the system.EnvironmentSystemBoundarySystemCHAPTER 1.INTRODUCTION4Figure 1.1:Control masses and control volumes.1.3.2Open,closed,and isolated systemsAny system can be classified as one of three types:open,closed,or isolated.They are defined as follows:open system:Both energy and matter can be exchanged with the environ-ment.Example:an open cup of coffee.closed system:energy,but not matter,can be exchanged with the environ-ment.Examples:a tightly capped cup of coffee.isolated system:Neither energy nor matter can be exchanged with the envi-ronment –in fact,no interactions with the environment are possible at all.Example (approximate):coffee in a closed,well-insulated thermos bottle.Note that no system can truly be isolated from the environment,since no thermal insulation is perfect and there are always physical phenomena which can’t be perfectly excluded (gravitational fields,cosmic rays,neutrinos,etc.).But good approximations of isolated systems can be constructed.In any case,isolated systems are a useful conceptual device,since the energy and mass con-tained inside them stay constant.1.3.3Control masses and control volumesAnother way to classify systems is as either a control mass or a control volume .This terminology is particularly common in engineering thermodynamics.A control mass is a system which is defined to consist of a specified piece or pieces of matter.By definition,no matter can enter or leave a control mass.If the matter of the control mass is moving,then the system boundary moves with it to keep it inside (and matter in the environment outside).A control volume is a system which is defined to be a particular region of space.Matter and energy may freely enter or leave a control volume,and thus it is an open system.CHAPTER1.INTRODUCTION5 1.4A Note on UnitsIn this book,the SI system of units will be used exclusively.If you grew up anywhere but the United States,you are undoubtedly very familiar with this system.Even if you grew up in the US,you have undoubtedly used the SI system in your courses in physics and chemistry,and probably in many of your courses in engineering.One reason the SI system is convenient is its simplicity.Energy,no matter what its form,is measured in Joules(1J=1kg-m2/s2).In some other systems, different units are used for thermal and mechanical energy:in the English sys-tem a BTU(“British Thermal Unit”)is the unit of thermal energy and a ft-lbf is the unit of mechanical energy.In the cgs system,thermal energy is measured in calories,all other energy in ergs.The reason for this is that these units were chosen before it was understood that thermal energy was like mechanical energy, only on a much smaller scale.2Another advantage of SI is that the unit of force is indentical to the unit of(mass x acceleration).This is only an obvious choice if one knows about Newton’s second law,and allows it to be written asF=m a.(1.1)In the SI system,force is measured in kg-m/s2,a unit derived from the3primary SI quantities for mass,length,and time(kg,m,s),but given the shorthand name of a“Newton.”The name itself reveals the basis for this choice of force units.The units of the English system werefixed long before Newton appeared on the scene(and indeed were the units Newton himself would have used).The unit of force is the“pound force”(lbf),the unit of mass is the“pound mass”(lbm)and of course acceleration is measured in ft/s2.So Newton’s second law must include a dimensional constant which converts from Ma units(lbm ft/s2) to force units(lbf).It is usually written1F=2Mixed unit systems are sometimes used too.American power plant engineers speak of the “heat rate”of a power plant,which is defined as the thermal energy which must be absorbed from the furnace to produce a unit of electrical energy.The heat rate is usually expressed in BTU/kw-hr.CHAPTER1.INTRODUCTION6In practice,the units in the English system are now defined in terms of their SI equivalents(e.g.one foot is defined as a certain fraction of a meter,and one lbf is defined in terms of a Newton.)If given data in Engineering units,it is often easiest to simply convert to SI,solve the problem,and then if necessary convert the answer back at the end.For this reason,we will implicitly assume SI units in this book,and will not include the g c factor in Newton’s2nd law.。
机械类专业课程名称中英文对照.
机械类专业课程名称中英文对照机械制图Mechanical Drawing可编程序控制技术Controlling Technique for Programming金工实习Metal Working Practice毕业实习Graduation Practice理论力学Theoretical Mechanics材料力学Material Mechanics数字电子电路Fun dame ntal Digital Circuit机械控制工程Mechanical Control Engineering可靠性工程Reliability Engineering机械工程测试技术Measurement Techniques of Mechanic Engineering 计算机控制系统Computer Control System机器人技术基础Fun dame ntals of Robot Tech niq ues最优化技术Techniques of Optimum工程测试与信号处理Engineering Testing & Signal Processing金属工艺及设计Metal Technics & Design机械工业企业管理Mecha nic In dustrial En terprise Man ageme nt机械零件课程设计Course Design of Machinery Elements投资经济学Investment Economics现代企业管理Moder n En terprise Admi ni strati on市场营销学Market Selling生产实习Production Practice课程设计Course Exercise有限元法FI nite Element金工实习Metalworking Practice液压传动Hydraulic Transmission微机原理及接口技术Prin ciple & In terface Tech nique of Micro-computer 微机原理及接口技术Prin ciple & In terface Tech nique of Micro-computer 数控技术Digit Control Technique 活塞膨胀机Piston Expand er活塞式制冷压缩机Piston Refrigerant Compreessor活塞式压缩机Piston Compressor活塞式压缩机基础设计Basic Design of Piston Compressor活塞压缩机结构强度Structural Intensity of Piston Compressor活赛压机气流脉动Gas Pulsation of Piston Pressor货币银行学Currency Banking基本电路理论Basis Theory of Circuit基础写作Fun dame ntal Course of Compositi on机床电路Machine Tool Circuit机床电器Machine Tool El ectric Applianee机床电气控制El ectrical Control of Machinery Tools机床动力学Machine Tool Dynamics机床设计Machine Tool design机床数字控制Digital Control of Machine Tool机床液压传动Machinery Tool Hydraulic Transmission机电传动Mechanical & Electrical Transmission机电传动控制9 Mechanical & electrical Transmission Control机电耦合系统Mechanical & Electrical Combination System机电系统计算机仿真Computer Simulation of Mechanic/EI ectrical Systems机电一体化Mechanical & Electrical Integration机构学Structuring机器人Robot机器人控制技术Robot Control Technol ogy机械产品学Mechanic Products机械产品造型设计Shape Design of Mechanical Products机械工程控制基础Basic Mechanic Engineering Control机械加工自动化Automation in Mechanical Working机械可靠性Mechanical Reliability机械零件Mechanical El ements机械零件设计Course Exercise in Machinery Elements Design机械零件设计基础Basis of Mach in ery Eleme nts Design机械设计Mechanical Designing机械设计基础Basis of Mechanical Designing机械设计课程设计Course Exercise in Mechanical Design机械设计原理Principle of Mechanical Designing机械式信息传输机构Mechanical Information Transmission Device机械原理Principle of Mechanics机械原理和机械零件Mechanism & Machinery机械原理及机械设计Mechanical Designing机械原理及应用Mechanical Principle & Mechanical Applications机械原理课程设计Course Exercise of Mechanical Principle机械原理与机械零件Mechanical Principl e and Mechanical Elements 机械原理与机械设计Mechanical Principl e and Mechanical Design 机械噪声控制Control of Mechanical Noise机械制造概论Introduction to Mechanical Manufacture机械制造工艺学Tech no logy of Mecha ni cal Manu facture机械制造基础Fun dame ntal of Mecha ni cal Manu facture机械制造基础(金属工艺学Fun dame ntal Course of Mecha nic Manu facturi ng (Metal 机械制造系统自动化Automation of Mechanical Manufacture System机械制造中计算机控制Computer Control in Mecha nical Manu facture互换性与技术测量El ementary Technol ogy of Exchangeability Measurement焊接方法Welding Method焊接方法及设备Welding Method & Equipment焊接检验Welding Testing焊接结构Welding Structure焊接金相Welding Fractography焊接金相分析Welding Fractography Analysis焊接冶金Welding Metallurgy焊接原理Fun dame ntals of Weldi ng焊接原理及工艺Fun dame ntals of Weldi ng & Tech nology焊接自动化Automation of Welding工程材料的力学性能测试Mecha nic Test ing of Engin eeri ng Materials工程材料及热处理Engin eeri ng Material a nd Heat Treatme nt工程材料学Engineering Materials工程测量Engineering Surveying 工程测试技术Engineering Testing Technique 工程测试实验Experiment on Engineering Testing 工程测试信息Information of Engineering Testing 工程动力学Engineering Dynamics 工程概论Introduction to Engineering 工程概预算Project Budget工程经济学Engineering Economics工程静力学Engineering Statics工程力学Engineering Mechanics工程热力学Engineering Thermodynamics工程项目评估Engineering Project Evaluation 工程优化方法EngineeringOptimizational Method 工程运动学Engineering Kinematics工程造价管理Engineering Cost Management 工程制图Graphing of Engineering 电机学Electrical Motor电机学及控制电机El ectrical Machi nery Con trol & Techno logy。
工程热术语翻译
《工程热力学》中英文对照词汇表Absolute entropy(绝对熵)Absolute pressure(绝对压力)Absolute temperature(绝对温度)Absolute zero of temperature(绝对零度)Absolute zero of temperature(绝对零度)Adiabatic enthalpy drop(绝热焓降)Adiabatic exponent(绝热指数)Adiabatic flame temperature(绝热燃烧温度)Adiabatic process(绝热过程)Adiabatic system(绝热系)Anergy(无效能,火无)Atmosphere(大气)Available energy(有效能)Avogadro’s hypothesis(阿伏伽德罗假说)Binary vapor cycle(两气循环)Boltzmann’s constant(玻尔兹曼常数)Carnot cycle(卡诺循环)Carnot cycle(卡诺循环)Carnot,N.L.S.(卡诺)Carnot’s theorem(卡诺定理)Celsius temperature scale(摄氏温标)Characteristic function(特性函数)Chemical equilibrium constant (化学平衡常数)Chemical equilibrium(化学平衡)Chemical potential(化学势)Chemical thermodynamics(化学热力学)Clapeyron equation(克拉贝龙方程)Classical thermodynamics(经典热力学)Clausius,R.(克劳修斯)Clausius-Clapeyron equation(克劳修斯-克拉贝龙方程)Closed system(闭口系)Closed system(闭口系统0 Coefficient of performance of refrigerator(制冷系数)Coefficient of thermal expansion (热膨胀系数)Coefficient of utilization of thermal energy(热能利用系数)Combined cycle(联合循环)Compressibility factor(压缩因子)Compression ratio of cycle(循环压缩比)Compression work(压缩功)Condition of phase equilibrium (相平衡条件)Condition of stability(稳定条件)Conservation of energy(能量守恒)Conservation of mass(质量守恒)Continuity equation(连续性方程)Control mass(控制质量)Control surface(控制面)Control volume(控制容积)Convergent nozzle(渐缩喷管)Convergent-divergent nozzle(缩放喷管)Criteria for equilibrium(平衡判据)Critical point(临界点)Critical pressure ratio(临界压力比)Cycle(循环)Degradation of energy(能量贬值)Density(密度)Dew-point(露点)Diesel cycle(狄赛尔循环)Diffuser(扩压管)Dissipation of energy(能量耗散)Divergent nozzle(渐扩喷管)Dolton’s law of partial pressure (道尔顿分压定律)Dual cycle(混合加热循环)Effect of dissipation(耗散效应)Energy(能量)Engineering thermodynamics(工程热力学)Enthalpy drop(焓降)Enthalpy(焓)Entropy balance equation(熵方程)Entropy(熵)Equation of energy for steady flow(稳定流动能量方程)Equation of state in reduced form(对比态方程)Equation of state(状态方程)Equilibrium state(平衡状态)Equilibrium(平衡)Exergy(火用)Expansion work(膨胀功)Extensive quantity(尺度量)Fahrenheit temperature scale(华氏温标)First law of thermodynamics(热力学第一定律)Flow work(流动功)Flux of entropy(熵流)Force(力)Free energy(自由能)Free enthalpy(自由焓)Free expansion(自由膨胀)Friction(摩擦)Gas constant(气体常数)Gas(气体)Gauge pressure(表压力)Generalized compressibility chart(通用压缩因子图)Generalized work(广义功)Generation of entropy(熵产)Gibbs’function(吉布斯函数)Gibbs’J.W.(吉布斯)Gibbs’phase rule(吉布斯相律)Gravitational potential(重力位能)Heat of combustion(燃烧热)Heat of reaction(反应热)《传热学》课程专业英语词汇 1. heat transfer 传热学2. heat conduction 导热 3. convection heat transfer 对流换热4. thermal radiation 热辐射 5. condensation heat transfer 凝结换热6. boiling heat transfer 沸腾换热7. number of heat transfer unit 传热单元数8. heat exchanger 换热器9. temperature field 温度场10. Fourier’s law 傅里叶定律11. Isothermal surface 等温面12. temperature gradient 温度梯度13. unsteady heat conduction 非稳态导热14. Isotherms 等温线15. lumped method 集总参数法16. thermal conductivity 导热系数17. heat flux 热流密度18. thermal resistance 热阻19. Newton’s law of cooling 牛顿冷却公式20. boundary layer 边界层21. thermal boundary layer 热边界层22. continuity equation 连续性方程23. laminar flow in tube 管内层流24. turbulent flow in tube 管内湍流25. in-tube boiling 管内沸腾26. dimensional analysis 量纲分析27. flow boundary layer 流动边界层28. fin 肋片29. fin efficiency 热效率30. Reynolds number 雷诺数31. Nusselt number 努谢尔数32. Prandtl number 普朗克数33. Planck’slaw普朗克定律34. boundary layer integral equation 边界层积分方程35.boundary layer differential equation 边界层微分方程36.boundary condition 边界条件37.finite difference 差分38.initial condition 初始条件39.transmissivity 穿透比40.mass transfer process 传质过程41.natural convection in infinite space 大空间自然对流42.poor boiling 大容器沸腾43.partial differential equation of heat conduction 导热微分方程44.numerical solution of heat conduction 导热问题数值解45.directional radiation intensity 定向辐射强度46.log-mean temperature difference 对数平均温差47.multidimensional steady state heat conduction 多维稳态导热48.emissivity 发射率49.analytical solution of transient heat conduction 非稳态导热问题分析解50.Fourier number 傅里叶数work method of radiation heat exchange 辐射换热的网络法52.emissive power 辐射力53.Grashof number 格拉晓夫数54.insulating material 隔热材料(保温材料,绝热材料)55.spectral emissive power 光谱辐射力56.excess temperature 过余温度57.nucleate boiling 核态沸腾58.black body 黑体(绝对黑体)59.flow across single tube 横掠单管60.flow across non-circular cylinder 横掠非圆形截面柱体61.flow across tube bundles 横掠管束62.gray body 灰体63.effectiveness of heat exchanger 换热器的效能64.mixed convection 混合对流65.Kirchhoff’s law 基尔霍夫定律66.cross strings method 交叉线法67.view factor ,angle factor 角系数68.heat conduction with internal heat source 具有内热源的导热erning equation 控制方程place equation 拉普拉斯方程mbert’s law 兰贝特定律72.discretized equation 离散方程73.critical insulation radius 临界绝缘直径74 diffuse surface 漫射表面75.film-wise condensation 膜状凝结76.internal flow 内部流动77.counter-flow 逆流78.gaseous radiation 气体辐射79.enhancement of heat transfer 强化传热80.forced convection 强制对流81.heat pipe 热管82.heat transfer rate 热流量83.time constant 时间常数84.numerical solution 数值解85.Stefan-Boltzmann’s law 斯特潘-波耳兹曼定律86.velocity boundary layer 速度边界层87.solar radiation 太阳辐射88.characteristic length 特征长度89.characteristic number 特征数(准则数)90.irradiation 投入辐射91.turbulent flow 湍流92.external flow 外部流动93.flow along a flat plate 外掠平板94.Wien’s displacement law 维恩位移定律95.green house effect 温室效应96.steady –state heat conduction 稳态导热97.thermal resistance of fouling 污垢热阻98.absorptivity 吸收比99.back difference 向后差分100.forward difference 向前差分101.similarity principle 相似原理102.shape factor 形状因子103.1-dimensional steady state heat conduction 一维稳态导热。
工程热力学
3
4
二、工质(working substance; working medium)
定义:实现热能和机械能相互转化的媒介物质。 对工质的要求: 1)膨胀性 2)流动性 3)热容量 4)稳定性,安全性 5)对环境友善 6)价廉,易大量获取
5
三、热源(heat source; heat reservoir)
7
二、系统及边界示例
• 汽车发动机
8
• 汽缸-活塞装置(闭口系例)
• 移动和虚构边界
9
10
注意: 1)系统与外界的人为性 2)外界与环境介质 3)边界可以是: a)刚性的或可变形的或有弹性的 b)固定的或可移动的 c)实际的或虚拟的 1. 按组元和相
三、热力系分类
按组元数 单元系(one component system;pure substance system) 多元系(multicomponent system) 按相数 单相系(homogeneous system) 复相系(heterogeneous system)
— 平衡可不均匀 — 稳定未必平衡
37
38
状态公理
* 二、 状态公设(state postulate)
闭口系:
不平衡势差
状态变化 达到某一 方面平衡
能量传递 消除一种能量 传递方式
n f 1
n—系统独立的状态参数数; f—系统与外界交换功形式数。 简单可压缩系与外界仅有容积变化功一种形式
消除一种 不平衡势差
一、平衡状态(thermodynamic equilibrium state)
1.定义:无外界影响系统保持状态参数不随时间而改变的状态 •热平衡(thermal equilibrium) : 在无外界作用的条件下,系统内部、系统与外界 处处温 度相等。 •力平衡(mechanical equilibrium): 在无外界作用的条件下,系统内部、系统与外 界处处压力相等。
工程热力学与传热学(英文) 第1章 基本概念
Thermodynamic temperature scale in SI(热力学温标)
Thermodynamic temperature: symbol: T,unit: K. Datum point: the triple point of water.
The value on triple point is 273.16 K.
Q=0
adiabatic lysis
any non- isolated system
+
relative surrounding
=
Isolated system
环境
孤立系统
Most systems we discuss are:
The Universe
Simple compressible systems (简单可压缩系统).
(1)Definition: The force exerted by a fluid per unit area,p (2)Units(单位)
SI: Pa (pascal ), kPa Times of the atmospheric pressure: atm, at Height of liquid column: mH2O, mmHg bar, 1kgf/cm2 (in Europe): psi(lbf/in2) ( in English)
• •
Single-valued function of the system state. Related with States but have nothing to do with the path from one state to another.
1-2-2 Equilibrium State
中英文对照
工程热力学中英文对照词汇表整理:孙志坚AAbsolute entropy绝对熵Absolute pressure绝对压力Absolute temperature绝对温度Absolute zero of temperature绝对零度Adiabatic enthalpy drop绝热焓降Adiabatic exponent绝热指数Adiabatic flame temperature绝热燃烧温度Adiabatic process绝热过程Adiabatic system绝热系Anergy 火无,无用能Atmosphere大气Available energy有用能A vogadro’s hypothesis阿伏伽德罗假说BBinary vapour cycle两气循环B oltzman’s constant玻尔兹曼常数CCarnot cycle卡诺循环Carnot, N.L.S. 卡诺C arnot’s theorem卡诺定理Celsius temperature scale摄氏温标Characteristic function特性函数Chemical equilibrium化学平衡Chemical equilibrium constant化学平衡常数1Chemical potential化学势Chemical thermodynamics化学热力学Clapeyron equation克拉贝龙方程Classical thermodynamics经典热力学Clausius-Clapeyron equation克劳修斯-克拉贝龙方程Clausius, R. 克劳修斯Closed system闭口系Coefficient of performance of refrigerator制冷系数Coefficient of thermal expansion热膨胀系数Coefficient of utilization of thermal energy热能利用系数Combined cycle联合循环Compressibility factor压缩因子Compression ratio of cycle循环压缩比Compression work压缩功Condition of phase equilibrium相平衡条件Condition of stability稳定性条件Conservation of energy能量守恒Conservation of mass质量守恒Control mass控制质量Control surface控制面Control volume控制容积Continuty equation连续性方程Covergent-divergent nozzle缩放喷管Covergent nozzle渐缩喷管Criteria for equilibrium平衡判据Critical point临界点Critical state临界状态Critical flow临界流动Critical pressure ratio临界压力比Cycle循环DDegradation of energy能量贬值2Density密度Diesel cycle笛塞尔循环Divergent nozzle渐扩喷管Diffuser扩压管Dissipation of energy能量耗散D olton’s law of partial pressare道尔顿分压定律Dry saturated steam干饱和蒸汽Dual cycle混合加热循环EEffect of dissipation耗散效应Energy能量Engineering atmosphere工程大气压力Engineering thermodynamics工程热力学Enthalpy焓Enthalpy drop焓降Entropy熵Entropy balance equation熵方程Equation of energy for steady flow稳定流动能量方程Equation of state状态方程Equation of state in reduced form对比态方程Equilibrium平衡Equilibrium state平衡状态Ericsson cycle埃尔逊循环Exergy火用Expansion work膨胀功Extensive quantity尺度量FFahrenheit temperature scale华氏温标First law of thermodynamics热力学第一定律3Flow work流动功Flux of entropy熵流Free energy自由能Free enthalpy自由焓Free expansion自由膨胀Friction摩擦Force力GGas气体Gas constant气体常数Gauge pressure表压力Generalized compressibility chart通用压缩因子图Generalized work广义功Generation of entropy熵产G ibbs’ function吉布斯函数G ibbs’ J.W.吉布斯G ibbs’ phase rule吉布斯相律Gravitational potential重力位能HHeat热Heat of combustion燃烧热Heat (enthalpy) of formation生成热(生成焓)Heat of reaction反应热Heat pump热泵Heat source热源Helmhotz function亥姆霍兹函数H ess’ law赫斯定律Humidity湿度4IIdeal gas equation of state理想气体状态方程Inequality of Clausius克劳修斯不等式Intensive quantity强度量Internal combustion engine内燃机Internal energy热力学能(内能)Inversion curve转变曲线Inversion temperature转变温度Irreversible cycle不可逆循环Irreversible process不可逆过程Isentropic compressibility绝热压缩系数Isentropic process定熵过程Isobaric process定压过程Isolated system孤立系Isometric process定容过程Isothermal compressibility定温压缩系数Isothermal process定温过程JJoule, J.P. 焦耳Joule-Thomon effect焦—汤效应KKelvin, L. (Thomson, W.) 开尔文Kinetic energy动能K irchhoff’s law基尔霍夫定律5LLatent heat潜热Law of corresponding states对应态定律Law of partial volume分容积定律Le Cha telier’s principle吕—查德里原理Local velocity of sound当地声速Lost available energy有用能损失MMach number马赫数Mass flow rate质量流量Maximum work from chemical reaction反应最大功Maxwell, J.C. 麦克斯韦Maxwell relations麦克斯韦关系M ayer’s formula迈耶公式Mechanical equilibrium力学平衡Metastable equilibrium亚稳定平衡Mixture of gases混合气体Moist air湿空气Moisture content含湿量Molar specific heat摩尔比热NNernst heat theorem奈斯特热定理Nonequilibrium-thermodynamics非平衡热力学Nozzle喷管O6One dimensional flow一维流动Open system开口系Otto cycle奥托循环PParameter of state状态参数Perfect gas理想气体Perpetual motion engine永动机Perpetual motion engine of the second kind第二类永动机Phase相Polytropic process 多变过程Potential energy位能Power cycle动力循环Pressure压力Principle of increase of entropy熵增原理Process过程Psychrometer chart湿空气焓—湿图Push work推挤功Pure substance纯物质QQuantity of refrigeration制冷量Quality of vapor-liquid mixture, Dryness干度Quasi-equilibrium process准平衡过程Quasi-static process准静态过程RRankine cycle朗肯循环Ratio of pressure of cycle循环增压比Real gas实际气体7Reduced parameter对比参数Refrigerant制冷剂Refrigeration cycle制冷循环Refrigerator制冷机Regenerative cycle回热循环Reheated cycle再热循环Relative humidity相对湿度Revesed Carnot cycle逆卡诺循环Reversed cycle逆循环Reversible cycle可逆循环Reversible process可逆过程SSaturated air饱和空气Saturation pressure饱和压力Saturation state饱和状态Saturation tempperature饱和温度Saturated vapor饱和蒸汽Saturated water饱和水Second law of thermodynamics热力学第二定律Simple compressible system简单可压缩系Sink冷源Specific heat比热容Specific heat at constant pressure定压比热容Specific heat at constant volume定容比热容Specific humidity绝对湿度Specific volume比体积Stable equilibrium稳定平衡Stagnation enthalpy滞止焓Standard atmosphere标准大气压力Standard enthalpy of formation标准生成焓Standard state标准状况8State状态State postulate状态公理Statistical thermodynamics统计热力学Steady flow稳定流动Steam水蒸汽Subsonic亚声速Superheated steam过热蒸汽Supersonic超声速TTemperature温度Temperature of dew-point露点温度Temperature scale温度标尺Technical work技术功Theoretical flame temperature理论燃烧温度Thermal coefficient热系数Thermal efficiency热效率Thermal equilibrium热平衡Thermodynamic Probability热力学概率Thermodynamics热力学Thermodynamic system热力学系统Thermodynamic temperature scale热力学温标Third law of thermodynamics热力学第三定律Throttling节流Triple point 三相点UUnavailable energy无用能Universal gas constant通用气体常数9VVacuum真空度V an der Waals’ equation范德瓦尔斯方程Velocity of sound声速Virial equation of state维里状态方程WWet-Bulb temperature湿球温度Wet saturated steam湿饱和蒸汽Work功Working substance 工质ZZeroth law of thermodynamics热力学第零定律10。
热能与动力工程专业英语译文-第一章译文
1
TL TH
(1-1)
注意,提高 TH(提高吸热温度)或降低 TL(降低放热温度)均可使循环效率提高。 1.1.7 朗肯循环 我们所关心的第一类动力循环为电力生产工业所采用的,也就是说,动力循环按这样的方式运行: 工质发生相变,由液态变为气态。最简单的蒸汽-动力循环是朗肯循环,如图 1-5(a)所示。朗肯循环的一 个主要特征是泵耗费很少的功就能把高压水送入锅炉。其可能的缺点为工质在汽机内膨胀做功后,通常
3
进入湿蒸汽区,形成可能损害汽轮机叶片的液滴。 朗肯循环是一个理想循环,其忽略了四个过程中的摩擦损失。这些损失通常很小,在初始分析时可 完全忽略。朗肯循环由四个理想过程组成,其 T-s 图如图 1-5(b)所示:1→2 为泵内等熵压缩过程;2→3 为炉内定压吸热过程;3→4 为汽轮机内等熵膨胀做功过程;4→1 为凝汽器内定压放热过程。 泵用于提高饱和液体的压强。事实上,状态 1 和状态 2 几乎完全一样,因为由 2 点开始的较高压强 下的吸热过程线非常接近饱和曲线,图中仅为了解释说明的需要分别标出。锅炉(也称蒸汽发生器)和 凝汽器均为换热器,它们既不需要功也不产生功。 如果忽略动能和势能的变化,输出的净功等于 T-s 图曲线下面的面积,即图 1-5(b)中 1-2-3-4-1 所包 围的面积,由用热力学第一定律可证明 Wnet Qnet 。循环过程中工质的吸热量对应面积 a-2-3-b-a。因此, 朗肯循环的热效率可表示为
2
和比容分别称为临界温度、临界压强和临界比容。一些工质的临界点数据如表 1-1 所示。 1.1.4 热力学第一定律 通常把热力学第一定律称为能量守恒定律。在基础物理课程中,能量守恒定律侧重动能、势能的变 化以及和功之间的相互关系。更为常见的能量守恒形式还包括传热效应和内能的变化。当然,也包括其 它形式的能,如静电能、磁场能、应变能和表面能。 历史上统所做的净功。 1.1.5 热力学第二定律 热力学第二定律有多种表述形式。在此列举两种:克劳修斯表述和凯尔文-普朗克表述。 克劳修斯表述:制造一台唯一功能是把热量从低温物体传给高温物体的循环设备是不可能的。 以冰箱(或热泵)为例,不可能制造一台不用输入功就能把热量从低温物体传给高温物体的冰箱, 如图 1-3(a)所示。 凯尔文-普朗克表述:制造一台从单一热源吸热和做功的循环设备是不可能的。 换句话说,制造这样一台从某一热源吸热并对外做功,而没有与低温热源进行换热的热机是不可能 的。因此,该表述说明了不存在工作效率为 100%的热机,如图 1-3(b)所示。 1.1.6 卡诺循环 卡诺机是低温热源和高温热源间运行效率最高的热机。卡诺机是一个理想热机,利用多个可逆过程 组成一循环过程,该循环称为卡诺循环。卡诺机非常有用,因为它的运行效率为任何实际热机最大可能 的效率。因此,如果一台实际热机的效率要远低于同样条件下的卡诺机效率,则有可能对该热机进行一 些改进以提高其效率。 理想的卡诺循环包括四个可逆过程,如图 1-4 所示:1→2 等温膨胀;2→3 绝热可逆膨胀;3→4 等 温压缩;4→1 可逆绝热压缩。卡诺循环的效率为
课程中英文对照
课程中英文对照机械与能源工程学院04级主干课程(Academic main courses of 04 class for The College of Mechanical and Energy Engineering)装备专业主干课程(Main Courses of Process Equipment and Control Engineering)材料力学 Mechanics Of Material理论力学 Theories Mechanics机械原理 Principle Of Mechanism机械设计 Mechanism Design流体力学 Fluid Mechanics工程热力学 Engineering Thermodynamics化工原理 Chemical Engineering Principle计算机应用 The Apply Of Computer过程设备设计 Process Equipment Design过程机械 Process Mechanism控制系统设计 Control System Design机制专业主干课程Main Courses of Mechanical Design Manufacturing and Automation机械设计 mechanical design机械原理 principle of mechanics工程材料 metal materials engineering测试技术 measuring (testing) technology计算机辅助设计与制造 computer aided design and manufacturing液压与气动 hydraulic and air-pressure控制工程基础 control engineering foundation自动化制造系统 automatic manufacturing system机械制造技术基础 machine manufacture foundation数控技术 numerical control technology机电一体化系统设计 mechatronics (integration of mechanics and electronics) system design成型专业主干课程Main Courses of Material Formation and Control Engineering Program材料力学 Mechanics of Materials理论力学 Theoretical Mechanics机械原理 Principle of Mechanics机械设计 Mechanical Designing液压与气动 Hydraulic Transmission控制工程基础 Basis of Control Engineering,机械制造基础 Fundamental of Mechanical Manufacture高分子材料成型工艺学 High Polymer Material & Processing高分子材料成型机械 high polymer material formation machine高分子材料模具设计 High polymer material models design热能专业主干课程Main Courses of Energy and Power Engineering建环专业主干课程Main Courses of Building Environment and equipment Engineering机械设计 Mechanical design室给排水 Indoor Water System建筑节能 Building Energy Conservation建筑环境学 Construction Environment工程热力学 Thermodynamic Engineering传热学 Heat transfer工程流体力学 Engineering Fluid Dynamics锅炉及锅炉房设备 Boilers and boiler room equipment供热工程 Heating Project制冷技术 Refrigeration Technology热质交换原理 Heat and Mass Transfer Principle空调工程 Air conditioning works工业通风 Industrial Ventilation建筑智能化控制 Building Intelligent Control测试原理 Test Principle燃气输配 Gas Transmission and Distribution储运专业主干课程Main Courses of Oil&Gas Storage and Transportation Engineering 高等数学 Advanced Mathematics理论力学 Theories Mechanics材料力学 Mechanics Of Material流体力学 Fluid Mechanics机械技术 Mechanism Technology化工技术 Chemical TechnologyCAD CADPro/E制图 Pro/E石油炼制 Petroleum Refine管道设计 Tube design物理化学 Physic Chemistry传热学 Engineering Thermodynamics科技英语 Professional English生物物理学 Biophysics真空冷冻干燥技术 Vacuum Freezing & Drying Technology16位微机 16 Digit MicrocomputerALGOL语言 ALGOL LanguageBASIC 语言 BASIC LanguageBASIC 语言及应用 BASIC Language & ApplicationC 语言 C LanguageCAD 概论 Introduction to CADCAD/CAM CAD/CAMCOBOL语言 COBOL LanguageCOBOL语言程序设计 COBOL Language Program DesigningC与UNIX环境 C Language & Unix EnvironmentC语言与生物医学信息处理 C Language & Biomedical Information Processing dBASE Ⅲ课程设计 C ourse Exercise in dBASE ⅢFORTRAN语言 FORTRAN LanguageIBM-PC/XT Fundamentals of Microcomputer IBM-PC/XTIBM-PC微机原理 Fundamentals of Microcomputer IBM-PCLSI设计基础 Basic of LSI DesigningPASCAL大型作业 PASCAL Wide Range WorkingPASCAL课程设计 Course Exercise in PASCALX射线与电镜 X-ray & Electric MicroscopeZ-80汇编语言程序设计 Z-80 Pragramming in Assembly Languages板壳理论 Plate Theory板壳力学 Plate Mechanics半波实验 Semiwave Experiment半导体变流技术 Semiconductor Converting Technology半导体材料 Semiconductor Materials半导体测量 Measurement of Semiconductors半导体瓷敏元件 Semiconductor Porcelain-Sensitive Elements半导体光电子学 Semiconductor Optic Electronics半导体化学 Semiconductor Chemistry半导体激光器 Semiconductor Laser Unit半导体集成电路 Semiconductor Integrated Circuitry半导体理论 Semiconductive Theory半导体器件 Semiconductor Devices半导体器件工艺原理 Technological Fundamentals of Semiconductor Device 半导体物理 Semiconductor Physics半导体专业 Semiconduction Specialty半导体专业实验 Specialty Experiment of Semiconductor薄膜光学 Film Optics报告文学专题 Special Subject On Reportage报刊编辑学 Newspaper & Magazine Editing报纸编辑学 Newspaper Editing泵与风机 Pumps and Fans泵与水机 Pumps & Water Turbines毕业设计 Graduation Thesis编译方法 Methods of Compiling编译技术 Technique of Compiling编译原理 Fundamentals of Compiling变电站的微机检测与控制 Computer Testing & Control in Transformer Substation变分法与量 Calculus of Variations & Tensor变分学 Calculus of Variations变质量系统热力学与新型回转压 Variable Quality System Thermal Mechanics & Neo- Ro表面活性物质 Surface Reactive Materials并行算法 Parallel Algorithmic波谱学 Wave Spectrum材料的力学性能测试 Measurement of Material Mechanical Performance材料力学 Mechanics of Materials财务成本管理 Financial Cost Management财政学 Public Finance财政与金融 Finance & Banking财政与信贷 Finance & Credit操作系统 Disk Operating System操作系统课程设计 Course Design in Disk Operating System操作系统原理 Fundamentals of Disk Operating System策波测量技术 Technique of Whip Wave Measurement测量原理与仪器设计 Measurement Fundamentals & Meter Design测试技术 Testing Technology测试与信号变换处理 Testing & Signal Transformation Processing产业经济学 Industrial Economy产业组织学 Industrial Organization Technoooligy场论 Field Theory常微分方程 Ordinary Differentical Equations超导磁体及应用 Superconductive Magnet & Application超导及应用 Superconductive & Application超精微细加工 Super-Precision & Minuteness Processing城市规划原理 Fundamentals of City Planning城市社会学 Urban Sociology成组技术 Grouping Technique齿轮啮合原理 Principles of Gear Connection冲击测量及误差 Punching Measurement & Error冲压工艺 Sheet Metal Forming Technology抽象代数 Abstract Algebra传动概论 Introduction to Transmission传感器与检测技术 Sensors & Testing Technology传感器原理 Fundamentals of Sensors传感器原理及应用 Fundamentals of Sensors & Application传热学 Heat Transfer传坳概论 Introduction to Pass Col船舶操纵 Ship Controling船舶电力系统 Ship Electrical Power System船舶电力系统课程设计 Course Exercise in Ship Electrical Power System 船舶电气传动自动化 Ship Electrified Transmission Automation船舶电站 Ship Power Station船舶动力装置 Ship Power Equipment船舶概论 Introduction to Ships船舶焊接与材料 Welding & Materials on Ship船舶机械控制技术 Mechanic Control Technology for Ships船舶机械拖动 Ship Mechamic Towage船舶建筑美学 Artistic Designing of Ships船舶结构力学 Structual Mechamics for Ships船舶结构与制图 Ship Structure & Graphing船舶静力学 Ship Statics船舶强度与结构设计 Designing Ship Intensity & Structure船舶设计原理 Principles of Ship Designing船舶推进 Ship Propeling船舶摇摆 Ship Swaying船舶阻力 Ship Resistance船体建造工艺 Ship-Building Technology船体结构 Ship Structure船体结构图 Ship Structure Graphing船体振动学 Ship Vibration创造心理学 Creativity Psychology磁测量技术 Magnetic Measurement Technology磁传感器 Magnetic Sensor磁存储设备设计原理 Fundamental Design of Magnetic Memory Equipment 磁记录技术 Magnetographic Technology磁记录物理 Magnetographic Physics磁路设计与场计算 Magnetic Path Designing & Magnetic Field Calculati 磁盘控制器 Magnetic Disk Controler磁性材料 Magnetic Materials磁性测量 Magnetic Measurement磁性物理 Magnetophysics磁原理及应用 Principles of Catalyzation & Application大电流测量 Super-Current Measurement大电源测量 Super-Power Measurement大机组协调控制 Coordination & Control of Generator Networks大跨度房屋结构 Large-Span House structure大型锅炉概况 Introduction to Large-Volume Boilers大型火电机组控制 Control of Large Thermal Power Generator Networks大学德语 College German大学俄语 College Russian大学法语 College French大学日语 College Japanese大学英语 College English大学语文 College Chinese大众传播学 Mass Media代用运放电路 Simulated Transmittal Circuit单片机原理 Fundamentals of Mono-Chip Computers单片机原理及应用 Fundamentals of Mono-Chip Computers & Applications弹性力学 Theory of Elastic Mechanics当代国际关系 Contemporary International Relationship当代国外社会思维评价 Evaluation of Contemporary Foreign Social Thought 当代文学 Contemporary Literature当代文学专题 Topics on Contemporary Literature当代西方哲学 Contemporary Western Philosophy当代戏剧与电影 Contemporary Drama & Films党史 History of the Party导波光学 Wave Guiding Optics等离子体工程 Plasma Engineering低频电子线路 Low Frequency Electric Circuit低温传热学 Cryo Conduction低温固体物理 Cryo Solid Physics低温技术原理与装置 Fundamentals of Cryo Technology & Equipment低温技术中的微机原理 Priciples of Microcomputer in Cryo Technology低温绝热 Cryo Heat Insulation低温气体制冷机 Cryo Gas Refrigerator低温热管 Cryo Heat Tube低温设备 Cryo Equipment低温生物冻干技术 Biological Cryo Freezing Drying Technology低温实验技术 Cryo Experimentation Technology低温物理导论 Cryo Physic Concepts低温物理概论 Cryo Physic Concepts低温物理概念 Cryo Physic Concepts低温仪表及测试 Cryo Meters & Measurement低温原理 Cryo Fundamentals低温中的微机应用 Application of Microcomputer in Cryo Technology低温装置 Cryo Equipment低噪声电子电路 Low-Noise Electric Circuit低噪声电子设计 Low-Noise Electronic Designing低噪声放大与弱检 Low-Noise Increasing & Decreasing低噪声与弱信号检测 Detection of Low Noise & Weak Signals地理 Geography第二次世界大战史 History of World War II电测量技术 Electric Measurement Technology电厂计算机控制系统 Computer Control System in Power Plants电磁测量实验技术 Electromagnetic Measurement Experiment & Technology 电磁场计算机 Electromagnetic Field Computers电磁场理论 Theory of Electromagnetic Fields电磁场数值计算 Numerical Calculation of Electromagnetic Fields电磁场与电磁波 Electromagnetic Fields & Magnetic Waves电磁场与微波技术 Electromagnetic Fields & Micro-Wave Technology电磁场中的数值方法 Numerical Methods in Electromagnetic Fields电磁场中的数值计算 Numerical Calculation in Electromagnetic Fields 电磁学 Electromagnetics电动力学 Electrodynamics电镀 Plating电分析化学 Electro-Analytical Chemistry电工测试技术基础 Testing Technology of Electrical Engineering电工产品学 Electrotechnical Products电工电子技术基础 Electrical Technology & Electrical Engineering电工电子学 Electronics in Electrical Engineering电工基础 Fundamental Theory of Electrical Engineering电工基础理论 Fundamental Theory of Electrical Engineering电工基础实验 Basic Experiment in Electrical Engineering电工技术 Electrotechnics电工技术基础 Fundamentals of Electrotechnics电工实习 Electrical Engineering Practice电工实验技术基础 Experiment Technology of Electrical Engineering电工学 Electrical Engineering电工与电机控制 Electrical Engineering & Motor Control电弧电接触 Electrical Arc Contact电弧焊及电渣焊 Electric Arc Welding & Electroslag Welding电化学测试技术 Electrochemical Measurement Technology电化学工程 Electrochemical Engineering电化学工艺学 Electrochemical Technology电机测试技术 Motor Measuring Technology电机电磁场的分析与计算 Analysis & Calculation of Electrical Motor & Electromagnetic Fields电机电器与供电 Motor Elements and Power Supply电机课程设计 Course Exercise in Electric Engine电机绕组理论 Theory of Motor Winding电机绕组理论及应用 Theory & Application of Motor Winding电机设计 Design of Electrical Motor电机瞬变过程 Electrical Motor Change Processes电机学 Electrical Motor电机学及控制电机 Electrical Machinery Control & Technology电机与拖动 Electrical Machinery & Towage电机原理 Principle of Electric Engine电机原理与拖动 Principles of Electrical Machinery & Towage电机专题 Lectures on Electric Engine电接触与电弧 Electrical Contact & Electrical Arc电介质物理 Dielectric Physics电镜 Electronic Speculum电力电子电路 Power Electronic Circuit电力电子电器 Power Electronic Equipment电力电子器件 Power Electronic Devices电力电子学 Power Electronics电力工程 Electrical Power Engineering电力生产技术 Technology of Electrical Power Generation电力生产优化管理 Optimal Management of Electrical Power Generation电力拖动基础 Fundamentals for Electrical Towage电力拖动控制系统 Electrical Towage Control Systems电力系统 Power Systems电力系统电源最优化规划 Optimal Planning of Power Source in a Power System 电力系统短路 Power System Shortcuts电力系统分析 Power System Analysis电力系统规划 Power System Planning电力系统过电压 Hyper-Voltage of Power Systems电力系统继电保护原理 Power System Relay Protection电力系统经济分析 Economical Analysis of Power Systems电力系统经济运行 Economical Operation of Power Systems电力系统可靠性 Power System Reliability电力系统可靠性分析 Power System Reliability Analysis电力系统无功补偿及应用 Non-Work Compensation in Power Systems & Applicati 电力系统谐波 Harmonious Waves in Power Systems电力系统优化技术 Optimal Technology of Power Systems电力系统优化设计 Optimal Designing of Power Systems电力系统远动 Operation of Electric Systems电力系统远动技术 Operation Technique of Electric Systems电力系统运行 Operation of Electric Systems电力系统自动化 Automation of Electric Systems电力系统自动装置 Power System Automation Equipment电路测试技术 Circuit Measurement Technology电路测试技术基础 Fundamentals of Circuit Measurement Technology电路测试技术及实验 Circuit Measurement Technology & Experiments电路分析基础 Basis of Circuit Analysis电路分析基础实验 Basic Experiment on Circuit Analysis电路分析实验 Experiment on Circuit Analysis电路和电子技术 Circuit and Electronic Technique电路理论 Theory of Circuit电路理论基础 Fundamental Theory of Circuit电路理论实验 Experiments in Theory of Circuct电路设计与测试技术 Circuit Designing & Measurement Technology电器学 Electrical Appliances电器与控制 Electrical Appliances & Control电气控制技术 Electrical Control Technology电视接收技术 Television Reception Technology电视节目 Television Porgrams电视节目制作 Television Porgram Designing电视新技术 New Television Technology电视原理 Principles of Television电网调度自动化 Automation of Electric Network Management电影艺术 Art of Film Making电站微机检测控制 Computerized Measurement & Control of Power Statio电子材料与元件测试技术 Measuring Technology of Electronic Material and Element电子材料元件 Electronic Material and Element电子材料元件测量 Electronic Material and Element Measurement电子测量与实验技术 Technology of Electronic Measurement & Experiment电子测试 Electronic Testing电子测试技术 Electronic Testing Technology电子测试技术与实验 Electronic Testing Technology & Experiment电子机械运动控制技术 Technology of Electronic Mechanic Movement Control 电子技术 Technology of Electronics电子技术腐蚀测试中的应用 Application of Electronic Technology in Erosion Measurement 电子技术基础 Basic Electronic Technology电子技术基础与实验 Basic Electronic Technology & Experiment电子技术课程设计 Course Exercise in Electronic Technology电子技术实验 Experiment in Electronic Technology电子理论实验 Experiment in Electronic Theory电子显微分析 Electronic Micro-Analysis电子显微镜 Electronic Microscope电子线路 Electronic Circuit电子线路设计与测试技术 Electronic Circuit Design & Measurement Technology 电子线路实验 Experiment in Electronic Circuit电子照相技术 Electronic Photographing Technology雕塑艺术欣赏 Appreciation of Sculptural Art调节装置 Regulation Equipment动态规划 Dynamic Programming动态无损检测 Dynamic Non-Destruction Measurement动态信号分析与仪器 Dynamic Signal Analysis & Apparatus锻压工艺 Forging Technology锻压机械液压传动 Hydraulic Transmission in Forging Machinery锻压加热设备 Forging Heating Equipment锻压设备专题 Lectures on Forging Press Equipments锻压系统动力学 Dynamics of Forging System锻造工艺 Forging Technology断裂力学 Fracture Mechanics对外贸易概论 Introduction to International Trade多层网络方法 Multi-Layer Network Technology多目标优化方法 Multipurpose Optimal Method多项距阵 Multi-Nominal Matrix多元统计分析 Multi-Variate Statistical Analysis发电厂 Power Plant发电厂电气部分 Electric Elements of Power Plants法律基础 Fundamentals of Law法学概论 An Introduction to Science of Law法学基础 Fundamentals of Science of Law翻译 Translation翻译理论与技巧 Theory & Skills of Translation泛函分析 Functional Analysis房屋建筑学 Architectural Design & Construction非电量测量 Non-Electricity Measurement非金属材料 Non-Metal Materials非线性采样系统 Non-Linear Sampling System非线性光学 Non-Linear Optics非线性规划 Non-Linear Programming非线性振荡 Non-Linear Ocsillation非线性振动 Non-Linear Vibration沸腾燃烧 Boiling Combustion分析化学 Analytical Chemistry分析化学实验 Analytical Chemistry Experiment分析力学 Analytical Mechanics风机调节 Fan Regulation风机调节.使用.运转 Regulation,Application & Operation of Fans风机三元流动理论与设计 Tri-Variate Movement Theory & Design of Fans风能利用 Wind Power Utilization腐蚀电化学实验 Experiment in Erosive Electrochemistry复变函数 Complex Variables Functions复变函数与积分变换 Functions of Complex Variables & Integral Transformation 复合材料力学 Compound Material Mechanics傅里叶光学 Fourier Optics概率论 Probability Theory概率论与数理统计 Probability Theory & Mathematical Statistics概率论与随机过程 Probability Theory & Stochastic Process钢笔画 Pen Drawing钢的热处理 Heat-Treatment of Steel钢结构 Steel Structure钢筋混凝土 Reinforced Concrete钢筋混凝土及砖石结构 Reinforced Concrete & Brick Structure钢砼结构 Reinforced Concrete Structure高层建筑基础设计 Designing bases of High Rising Buildings高层建筑结构设计 Designing Structures of High Rising Buildings高等材料力学 Advanced Material Mechanics高等代数 Advanced Algebra高等教育管理 Higher Education Management高等教育史 History of Higher Education高等教育学 Higher Education高等数学 Advanced Mathematics高电压技术 High-Voltage Technology高电压测试技术 High-Voltage Test Technology高分子材料 High Polymer Material高分子材料及加工 High Polymer Material & Porcessing高分子化学 High Polymer Chemistry高分子化学实验 High Polymer Chemistry Experiment高分子物理 High Polymer Physics高分子物理实验 High Polymer Physics Experiment高级英语听说 Advanced English Listening & Speaking高能密束焊 High Energy-Dense Beam Welding高频电路 High-Frenquency Circuit高频电子技术 High-Frenquency Electronic Technology高频电子线路 High-Frenquency Electronic Circuit高压测量技术 High-Voltage Measurement Technology高压测试技术 High-Voltage Testing Technology高压电场的数值计算 Numerical Calculation in High-Voltage Electronic Field 高压电器 High-Voltage Electrical Appliances高压绝缘 High-Voltage Insulation高压实验 High-Voltage Experimentation高压试验技术 High-Voltage Experimentation Technology工程材料的力学性能测试 Mechanic Testing of Engineering Materials工程材料及热处理 Engineering Material and Heat Treatment工程材料学 Engineering Materials工程测量 Engineering Surveying工程测试技术 Engineering Testing Technique工程测试实验 Experiment on Engineering Testing工程测试信息 Information of Engineering Testing工程动力学 Engineering Dynamics工程概论 Introduction to Engineering工程概预算 Project Budget工程经济学 Engineering Economics工程静力学 Engineering Statics工程力学 Engineering Mechanics工程热力学 Engineering Thermodynamics工程项目评估 Engineering Project Evaluation工程优化方法 Engineering Optimizational Method工程运动学 Engineering Kinematics工程造价管理 Engineering Cost Management工程制图 Graphing of Engineering工业分析 Industrial Analysis工业锅炉 Industrial Boiler工业会计学 Industrial Accounting工业机器人 Industrial Robot工业技术基础 Basic Industrial Technology工业建筑设计原理 Principles of Industrial Building Design工业经济理论 Industrial Economic Theory工业经济学 Industrial Economics工业企业财务管理 Industrial Enterprise Financial Management工业企业财务会计 Accounting in Industrial Enterprises工业企业管理 Industrial Enterprise Management工业企业经营管理 Industrial Enterprise Adminstrative Management 工业社会学 Industrial Sociology工业心理学 Industrial Psychology工业窑炉 Industrial Stoves工艺过程自动化 Technics Process Automation公差 Common Difference公差技术测量 Technical Measurement with Common Difference公差与配合 Common Difference & Cooperation公共关系学 Public Relations公文写作 Document Writing古代汉语 Ancient Chinese古典文学作品选读 Selected Readings in Classical Literature固体激光 Solid State Laser固体激光器件 Solid Laser Elements固体激光与电源 Solid State Laser & Power Unit固体物理 Solid State Physics管理概论 Introduction to Management管理经济学 Management Economics管理数学 Management Mathematics管理系统模拟 Management System Simulation管理心理学 Management Psychology管理信息系统 Management Information Systems光波导理论 Light Wave Guide Theory光电技术 Photoelectric Technology光电信号处理 Photoelectric Signal Processing光电信号与系统分析 Photoelectric Signal & Systematic Analysis光辐射探测技术 Ray Radiation Detection Technology光谱 Spectrum光谱分析 Spectral Analysis光谱学 Spectroscopy光纤传感 Fibre Optical Sensors光纤传感器 Fibre Optical Sensors光纤传感器基础 Fundamentals of Fibre Optical Sensors光纤传感器及应用 Fibre Optical Sensors & Applications光纤光学课程设计 Course Design of Fibre Optical光纤技术实验 Experiments in Fibre Optical Technology光纤通信基础 Basis of Fibre Optical Communication光学 Optics光学测量 Optical Measurement光学分析法 Optical Analysis Method光学计量仪器设计 Optical Instrument Gauge Designing光学检测 Optical Detection光学设计 Optical Design光学信息导论 Introduction of Optical Infomation光学仪器设计 Optical Instrument Designing光学仪器与计量仪器设计 Optical Instrument & Gauge Instrument Designing 光学仪器装配与校正 Optical Instrument Installation & Adjustment广播编辑学 Broadcast Editing广播新闻 Broadcast Journalism广播新闻采写 Broadcast Journalism Collection & Composition广告学 Advertisement锅炉燃烧理论 Theory of Boiler Combustion锅炉热交换传热强化 Boiler Heat Exchange,Condction & Intensification锅炉原理 Principles of Boiler国际金融 International Finance国际经济法 International Economic Law国际贸易 International Trade国际贸易地理 International Trade Geography国际贸易实务 International Trade Affairs国际市场学 International Marketing国际市场营销 International Marketing国民经济计划 National Economical Planning国外社会学理论 Overseas Theories of Sociology过程(控制)调节装置 Process(Control) Adjustment Device过程调节系统 Process Adjustment System过程控制 Process Control过程控制系统 Process Control System海洋测量 Ocean Surveying海洋工程概论 Introduction to Ocean Engineering函数分析 Functional Analysis焊接方法 Welding Method焊接方法及设备 Welding Method & Equipment焊接检验 Welding Testing焊接结构 Welding Structure焊接金相 Welding Fractography焊接金相分析 Welding Fractography Analysis焊接冶金 Welding Metallurgy焊接原理 Fundamentals of Welding焊接原理及工艺 Fundamentals of Welding & Technology焊接自动化 Automation of Welding汉语 Chinese汉语与写作 Chinese & Composition汉语语法研究 Research on Chinese Grammar汉字信息处理技术 Technology of Chinese Information Processing毫微秒脉冲技术 Millimicrosecond Pusle Technique核动力技术 Nuclear Power Technology合唱与指挥 Chorus & Conduction合金钢 Alloy Steel宏观经济学 Macro-Economics宏微观经济学 Macro Micro Economics红外CCD Infrared CCD红外电荷耦合器 Infrared Electric Charge Coupler红外探测器 Infrared Detectors红外物理 Infrared Physics红外物理与技术 Infrared Physics & Technology红外系统 Infrared System红外系统电信号处理 Processing Electric Signals from Infrared Systems厚薄膜集成电路 Thick & Thin Film Integrated Circuit弧焊电源 Arc Welding Power弧焊原理 Arc Welding Principles互换性技术测量基础 Basic Technology of Exchangeability Measurement互换性技术测量 Technology of Exchangeability Measurement互换性与技术测量 Elementary Technology of Exchangeability Measurement互换性与技术测量实验 Experiment of Exchangeability Measurement Technology 画法几何及机械制图 Descriptive Geometry & Mechanical Graphing画法几何与阴影透视 Descriptive Geometry,Shadow and Perspective化工基础 Elementary Chemical Industry化工仪表与自动化 Chemical Meters & Automation化工原理 Principles of Chemical Industry化学 Chemistry化学反应工程 Chemical Reaction Engineering化学分离 Chemical Decomposition化学工程基础 Elementary Chemical Engineering化学计量学 Chemical Measurement化学文献 Chemical Literature化学文献及查阅方法 Chemical Literature & Consulting Method化学粘结剂 Chemical Felter环境保护理论基础 Basic Theory of Environmental Protection环境化学 Environomental Chemistry环境行为概论 Introduction to Environmental Behavior换热器 Thermal Transducer回旧分析与试验设计 Tempering Analysis and Experiment Design回转式压缩机 Rotary Compressor回转压缩机数学模型 Mathematical Modeling of Rotary Compressors会计学 Accountancy会计与财务分析 Accountancy & Financial Analysis会计与设备分析 Accountancy & Equipment Analysis会计原理及外贸会计 Principles of Accountancy & Foreign Trade Accountancy 会计原理与工业会计 Principles of Accountancy & Industrial Accountancy活力学 Energy Theory活塞膨胀机 Piston Expander活塞式制冷压缩机 Piston Refrigerant Compreessor活塞式压缩机 Piston Compressor活塞式压缩机基础设计 Basic Design of Piston Compressor活塞压缩机结构强度 Structural Intensity of Piston Compressor活赛压机气流脉动 Gas Pulsation of Piston Pressor货币银行学 Currency Banking基本电路理论 Basis Theory of Circuit基础写作 Fundamental Course of Composition机床电路 Machine Tool Circuit机床电器 Machine Tool Electric Appliance机床电气控制 Electrical Control of Machinery Tools机床动力学 Machine Tool Dynamics机床设计 Machine Tool design机床数字控制 Digital Control of Machine Tool机床液压传动 Machinery Tool Hydraulic Transmission机电传动 Mechanical & Electrical Transmission机电传动控制 Mechanical & electrical Transmission Control机电耦合系统 Mechanical & Electrical Combination System机电系统计算机仿真 Computer Simulation of Mechanic/Electrical Systems机电一体化 Mechanical & Electrical Integration机构学 Structuring机器人 Robot机器人控制技术 Robot Control Technology机械产品学 Mechanic Products机械产品造型设计 Shape Design of Mechanical Products机械工程控制基础 Basic Mechanic Engineering Control机械加工自动化 Automation in Mechanical Working机械可靠性 Mechanical Reliability机械零件 Mechanical Elements机械零件设计 Course Exercise in Machinery Elements Design机械零件设计基础 Basis of Machinery Elements Design机械设计 Mechanical Designing机械设计基础 Basis of Mechanical Designing机械设计课程设计 Course Exercise in Mechanical Design机械设计原理 Principle of Mechanical Designing机械式信息传输机构 Mechanical Information Transmission Device机械原理 Principle of Mechanics机械原理和机械零件 Mechanism & Machinery机械原理及机械设计 Mechanical Designing机械原理及应用 Mechanical Principle & Mechanical Applications机械原理课程设计 Course Exercise of Mechanical Principle机械原理与机械零件 Mechanical Principle and Mechanical Elements机械原理与机械设计 Mechanical Principle and Mechanical Design机械噪声控制 Control of Mechanical Noise机械制造概论 Introduction to Mechanical Manufacture机械制造工艺学 Technology of Mechanical Manufacture机械制造基础 Fundamental of Mechanical Manufacture机械制造基础(金属工艺学) Fundamental Course of Mechanic Manufacturing (Meta 机械制造系统自动化 Automation of Mechanical Manufacture System机械制造中计算机控制 Computer Control in Mechanical Manufacture机制工艺及夹具 Mechanical Technology and Clamps积分变换 Integral Transformation积分变换及数理方程 Integral Transformation & Mathematical Equations积分变换控制工程 Integral Transformation Control Engineering积分变换与动力工程 Integral Transforms & Dynamic Engineering激光电源 Laser Power Devices激光焊 Laser Welding激光基础 Basis of Laser激光技术 Laser Technology激光加工 Laser Processing激光器件 Laser Devices激光器件与电源 Laser Devices & Power Source激光原理 Principles of Laser激光原理与技术 Laser Principles & Technology极限分析 Limit Analysis集合论与代数结构 Set Theory & Algebraical Structure技术管理 Technological Management技术经济 Technological Economy技术经济学 Technological Economics技术市场学 Technological Marketing计量经济学 Measure Economics计算方法 Computational Method计算机导论 Introduction to Computers计算机导论与实践 Introduction to Computers & Practice计算机辅助设计 CAD计算机辅助设计与仿真 Computer Aided Design & Imitation计算机辅助语言教学 Computer-Aided Language Teaching计算机辅助制造 Computer-Aided Manufacturing计算机概论 Introduction to Computers计算机绘图 Computer Graphics计算机基础 Basis of Computer Engineering计算机接口技术 Computer Interface Technology计算机接口与通讯 Computer Interface & Communication计算机局域网 Regional Network of Computers计算机控制 Computer Controling计算机设计自动化 Automation of Computer Design计算机实践 Computer Practice计算机数据库 Computer Database计算机算法基础 Basis of Computer Algorithm计算机图形显示 Computer Graphic Demonstration计算机图形学 Computer Graphics计算机网络 Computer Networks计算机系统结构 Computer Architecture计算机语言处理 Computer Language Processing计算机原理 Principle of Computer Engineering计算机在化学中的应用 Application of Computer in Chemistry 计算机组成原理 Principles of Computer Composition计算力学 Computational Mechanics计算力学基础 Basis of Computational Mechanics计算流体 Fluid Computation继电保护新技术 New Technology of Relay Protection继电保护原理 Principles of Relay Protection继电保护运行 Relay-Protected Operation检测技术 Measurement Technique检测系统动力学 Detection System Dynamics检测与控制 Detection & Controling简明社会学 Concise Sociology简明世界史 Brief World History减振设计 Vibration Absorption Designing渐近方法 Asymptotical Method建筑材料 Building Materials建筑初步 Elementary Architecture。
工程热力学英语ppt
状态参数
( Q W ) ( Q W )
1a 2 1b 2
内能及闭口系热一律表达式
定义 dU = Q+W
闭口系热一律表达式
!!!两种特例 绝功系 Q = dU 绝热系 W = - dU
heat transfer to a system and work done by a system are positive; heat transfer from a system and work done on a system are negative. Heat is transferred by three mechanisms: conduction, convection, and radiation. Conduction is the transfer of energy from the more energetic particles of a substance to the adjacent less energetic ones as a result of interaction between particles. Convection is the transfer of energy between a solid surface and the adjacent fluid that is in motion, and it involves the combined effects of conduction and fluid motion. Radiation is the transfer of energy due to the emission of electromagnetic waves (or photons). An overview of the three mechanisms of heat transfer is given at the end of this chapter as a Topic of Special Interest.
工程热力学与传热学(英文) 第4章 热力学第二定律
1
T
q1
2
T1 q= 0 T2
3
1
2
q= 0
4
4
3
q2
0
v
0
Δs
s
3. The Efficiency of a Carnot Engine(卡诺热效率)
For any heat engine wnet q 1q 2 q2 t 1 q1 q1 q1 For a Carnot engine Method 1: From T-s diagram
A
the paddle wheel • The internal energy of the gas is increased
• The reverse process, raising the
B
mass by transferring heat from the fluid to the paddle wheel, does not occur in nature.
2. p-v and T-s Diagrams
p
1
T q1
2
T1
1
2
q= 0
4
q= 0
q2
3
T2 v 0
4
3
0
Δs
s
• 1-2 Reversible isothermal expansion
(T1=constant, heat absorbed q1) • 2-3 Reversible adiabatic expansion • 3-4 Reversible isothermal compression (T2=constant, heat rejected q2) • 4-1 Reversible adiabatic compression
(完整版)《工程热力学》、《传热学》课程专业词汇中英文对照表
(完整版)《⼯程热⼒学》、《传热学》课程专业词汇中英⽂对照表《⼯程热⼒学》课程专业词汇中英⽂对照表thermodynamics热⼒学heat热work功irreversible process不可逆过程energylaw of energy conservation能量守恒定律temperature 温度thermal equilibrium热平衡Zeroth law of thermodynamics热⼒学第零定律temperature scale温标thermometer温度计thermodynamics scale of temperature 热⼒学温标density密度mass质量pressure压⼒gauge pressure表压absolute pressure绝对压⼒system系统boundary边界surrounding外界closed system闭⼝系统open system开⼝系统quantity of state状态参数process过程reversible process可逆过程irreversible process不可逆过程quasistatic process准静态过程isovolumetric process定容过程adiabatic process绝热过程isothermal process定温过程polytrophic process多变过程P-V diagram P-V 图absolute work 绝对功technical work技术功kinetic energy动能potential energy势能internal energy内能specific internal energy⽐内能specific heat capacity⽐热容constant volume specific heat capacity定容⽐热容constant pressure specific heat capacity定压⽐热容flow energy流动能enthalpy焓specific enthalpy⽐焓latent heat潜热sensible heat显热law of conservation of energy能量守恒定律first law of thermodynamics热⼒学第⼀定律nozzle喷管heat engine热机perpetual-motion machine of first kind第⼀类永动机ideal gas理想⽓体imperfect gas⾮理想⽓体equation of state状态⽅程式universal gas constant通⽤⽓体常数ratio of specific heat capacity⽐热容⽐Joule-Thomson effect焦⽿-汤姆逊效应partial pressure分压⼒Dalton”s law道尔顿定律humidity湿度dry air⼲空⽓absolute humidity 绝对湿度saturated steam pressure饱和蒸汽压relative humidity相对湿度dew point露点cycle循环reciprocating engine往复式发动机bottom dead center下⽌点top dead center 上⽌点thermal efficiency热效率refrigerator制冷机heat pump热泵72 irreversibility不可逆性second law of thermodynamic热⼒学第⼆定律Clausius statement克劳修斯表述Kelven-Plank statement 开尔⽂-普朗克表述perpetual-motion machine of second kind第⼆类永动机isenthalpic process定焓过程Carnot cycle卡诺循环Clausius integral克劳修斯积分Clausius inequality克劳修斯不等式entropy熵absolute entropy绝对熵principle of the increase of entropy熵增原理T-S diagram T-S图real gas实际⽓体steam蒸汽boiling 沸腾evaporation汽化saturation pressure饱和压⼒wet saturated steam 湿蒸汽convergent nozzle渐缩喷管critical pressure临界压⼒Mach number马赫数compression ignition engine压缩点⽕发动机Diesel cycle狄赛尔循环combined cycle混合加热循环gas turbine燃⽓轮机steam prime mover蒸汽原动机boiler锅炉《传热学》课程专业词汇中英⽂对照表heat transfer热传递heat conduction导热convection对流natural convection⾃然对流free convection ⾃由对流forced convection 强制对流heat transfer by convection对流换热phase change 相变evaporation蒸发boiling沸腾condensation凝结melting融化solidification凝固thermal radiation热辐射temperature field温度场steady-state conduction稳态温度场transient conduction⾮稳态温度场temperature gradient 温度梯度isotherms 等温线cartesian coordinates直⾓坐标系heat flux热流密度⽮量Fourier’s law导热基本定律heat Diffusion Equation导热微分⽅程式initial conditions初始条件boundary conditions边界条件thermal contact resistance接触热阻isothermal place等温⾯heat transfer rate热流量heat flux lines热流线heat flux热流密度thermal conductivity 导热系数thermal diffusivity热扩散率heat transfer coefficient换热系数thermal resistance热阻thermal resistance of fouling污垢热阻overall thermal resistance总热阻overall coefficient of heat transfer传热系数convection heat transfer对流换热dimensional analysis量纲分析boundary layer边界层analysis of the order of magnitude in boundary layer边界层的数量级分析boundary layer integral equation 边界层积分⽅程boundary layer differential equation边界层微分⽅程boundary grid point边界节点boundary layer condition边界条件turbulent flow湍流Nusselt number努谢尔特数Reynolds number 雷诺数Prandtl number普朗特数Grashof number 格拉晓夫数external flow外部流动flow along a flat plate外掠平板reference temperature定性温度equivalent diameter当量直径boiling heat transfer沸腾换热flow across single tube横掠单管flow across tube bundles横掠管束pool boiling⼤容器沸腾flow boiling流动沸腾forced convection boiling强制对流沸腾subcooled boiling过冷沸腾surface boiling 表⾯沸腾subcool temperature过冷温度saturated boiling饱和沸腾bulx boiling容积沸腾superheat过热度maximum heat flux point最⼤热流密度点nucleation center核化中⼼nucleate boiling核态沸腾burn out烧毁minimum heat flux point最⼩热流密度点film boiling膜态沸腾transition boiling过渡沸腾spheroidal state 球形状态boiling curve沸腾曲线condensation凝结condenser冷凝器film condensation膜状凝结drop-wise condensation珠状凝结mixed condensation 混合凝结radiation heat transfer辐射换热absolute black body 绝对⿊体gray body灰体view factor ⾓系数spectrum 光谱Planck radiation law 普朗克辐射定律Rayleigh formula雷莱公式emissivity辐射率reflectivity 反射⽐emissive power辐射⼒degree of blackness⿊度irradiation投⼊辐射radiosity有效辐射diffuse reflection漫反射diffuse surface漫射表⾯thermal shield 遮热板heat exchanger换热器parallel-flow 顺流counter-flow逆流effectiveness of heat exchanger 换热器的效能log-mean temperature difference对数平均温差。
工程热力学与传热学(英文) 绪论
deals with the principles of energy conversion among thermal energy and mechanical energy, as well as other form energies.
Thermodynamics and Heat Transfer
Thermodynamics and Heat Transfer
--- Introduction ---
Introduction
❖ Energy and Energy Resources ❖ The Contents of Thermodynamics
Mechanical energy Thermal energy
Electrical energy Chemical energy
Nuclear energy
Radiation energy
0-1-2 Thermal Energy and Its utilization
1. Energy Resources(能源):
such as: cooking, warming, drying, smelting. etc
厨房用热
太阳能热水器
熔炼炉
➢ The powered utilization:
Converting heat into other form energy.
• Steam power equipment • Gas power equipment • Thermoelectricity power generation • Nuclear electric power generation • Solar power
(最新整理)高等工程热力学英文课件:Chapter1conceptsanddefinition
Everything external to the thermodynamic system is the environment or surrounding. The exchanges of mass or energy take place between the environment and the system.
environment. The boundary can be a real/physical interface or an imaginary one. It
can be mobile or fixed. It can be rigid or deformable.
2021/7/26
13
2021/7/26
Related concepts
(1) Working substance or working medium The medium for the inter-transformation between thermal energy and mechanical energy. Requirements: expansibility, mobility, thermal capacity, stability, safety, friendly to environment, low cost. Typical working media: combustion gas and steam. The state of working medium can be static or flowing.
5. Basic thermodynamic processes
6. Single phase systems
工程热力学知识点英语总结
工程热力学知识点英语总结1. Laws of Thermodynamics:The laws of thermodynamics are the foundation of engineering thermodynamics. There are four laws of thermodynamics, but the first and second laws are the most important for engineering applications.The first law of thermodynamics states that energy cannot be created or destroyed, only transformed from one form to another. This law is the basis for the conservation of energy principle. In other words, the total energy of a closed system remains constant.The second law of thermodynamics introduces the concept of entropy, which is a measure of the amount of energy in a system that is not available to do work. This law also states that the entropy of a closed system can never decrease.2. Properties of Pure Substances:In engineering thermodynamics, it is important to understand the thermodynamic properties of pure substances, such as water, steam, and refrigerants. These properties include temperature, pressure, specific volume, and internal energy. The most important property of a substance is its phase, which can be solid, liquid, or vapor.The behavior of pure substances is typically described using thermodynamic diagrams, such as the T-v (temperature-specific volume) and P-v (pressure-specific volume) diagrams. These diagrams provide a visual representation of the thermodynamic properties of a substance and are used to analyze processes such as phase changes, compression, and expansion.3. Power Cycles:Power cycles are used to convert thermal energy into mechanical work. The most common power cycles include the Carnot, Rankine, and Brayton cycles. These cycles are used in various applications, such as steam power plants, gas turbines, and refrigeration systems.The efficiency of a power cycle is an important parameter, as it determines the amount of useful work that can be obtained from a given amount of thermal energy input. The efficiency of a power cycle can be improved by increasing the temperature at which heat is added and reducing the temperature at which heat is rejected.4. Refrigeration Cycles:Refrigeration cycles are used to transfer heat from a lower temperature region to a higher temperature region. The most common refrigeration cycle is the vapor compression cycle, which is used in air conditioning and refrigeration systems.Refrigeration cycles are characterized by their coefficient of performance (COP), which is a measure of the amount of cooling produced per unit of work input. The COP of a refrigeration cycle can be improved by increasing the temperature at which heat is rejected and reducing the temperature at which heat is absorbed.5. Psychrometrics:Psychrometrics is the study of the thermodynamic properties of moist air. It is important in the design of heating, ventilation, and air conditioning (HVAC) systems, as well as in the design of industrial processes that involve the handling of air and water vapor.The key properties of moist air include temperature, humidity, and enthalpy. Psychrometric charts are used to visualize the thermodynamic properties of moist air and to analyze processes such as heating, cooling, and dehumidification.6. Combustion:Combustion is the chemical process of burning a fuel to release heat. It is an important process in many engineering applications, such as power generation, heating, and propulsion. The efficiency of combustion processes is determined by factors such as the fuel-air ratio, combustion temperature, and combustion completeness.The analysis of combustion processes involves the calculation of properties such as the adiabatic flame temperature, the products of combustion, and the heat release rate. This analysis is important in the design and optimization of combustion systems.In conclusion, engineering thermodynamics is a fundamental discipline for all engineers. It provides the theoretical foundation for the design, analysis, and optimization of energy systems. The key concepts and principles of engineering thermodynamics include the laws of thermodynamics, the properties of pure substances, power cycles, refrigeration cycles, psychrometrics, and combustion. Understanding these concepts is essential for the successful design and operation of engineering systems.。
工程热术语翻译
《工程热力学》中英文对照词汇表Absolute entropy(绝对熵)Absolute pressure(绝对压力)Absolute temperature(绝对温度)Absolute zero of temperature(绝对零度)Absolute zero of temperature(绝对零度)Adiabatic enthalpy drop(绝热焓降)Adiabatic exponent(绝热指数)Adiabatic flame temperature(绝热燃烧温度)Adiabatic process(绝热过程)Adiabatic system(绝热系)Anergy(无效能,火无)Atmosphere(大气)Available energy(有效能)Avogadro’s hypothesis(阿伏伽德罗假说)Binary vapor cycle(两气循环)Boltzmann’s constant(玻尔兹曼常数)Carnot cycle(卡诺循环)Carnot cycle(卡诺循环)Carnot,N.L.S.(卡诺)Carnot’s theorem(卡诺定理)Celsius temperature scale(摄氏温标)Characteristic function(特性函数)Chemical equilibrium constant (化学平衡常数)Chemical equilibrium(化学平衡)Chemical potential(化学势)Chemical thermodynamics(化学热力学)Clapeyron equation(克拉贝龙方程)Classical thermodynamics(经典热力学)Clausius,R.(克劳修斯)Clausius-Clapeyron equation(克劳修斯-克拉贝龙方程)Closed system(闭口系)Closed system(闭口系统0 Coefficient of performance of refrigerator(制冷系数)Coefficient of thermal expansion (热膨胀系数)Coefficient of utilization of thermal energy(热能利用系数)Combined cycle(联合循环)Compressibility factor(压缩因子)Compression ratio of cycle(循环压缩比)Compression work(压缩功)Condition of phase equilibrium (相平衡条件)Condition of stability(稳定条件)Conservation of energy(能量守恒)Conservation of mass(质量守恒)Continuity equation(连续性方程)Control mass(控制质量)Control surface(控制面)Control volume(控制容积)Convergent nozzle(渐缩喷管)Convergent-divergent nozzle(缩放喷管)Criteria for equilibrium(平衡判据)Critical point(临界点)Critical pressure ratio(临界压力比)Cycle(循环)Degradation of energy(能量贬值)Density(密度)Dew-point(露点)Diesel cycle(狄赛尔循环)Diffuser(扩压管)Dissipation of energy(能量耗散)Divergent nozzle(渐扩喷管)Dolton’s law of partial pressure (道尔顿分压定律)Dual cycle(混合加热循环)Effect of dissipation(耗散效应)Energy(能量)Engineering thermodynamics(工程热力学)Enthalpy drop(焓降)Enthalpy(焓)Entropy balance equation(熵方程)Entropy(熵)Equation of energy for steady flow(稳定流动能量方程)Equation of state in reduced form(对比态方程)Equation of state(状态方程)Equilibrium state(平衡状态)Equilibrium(平衡)Exergy(火用)Expansion work(膨胀功)Extensive quantity(尺度量)Fahrenheit temperature scale(华氏温标)First law of thermodynamics(热力学第一定律)Flow work(流动功)Flux of entropy(熵流)Force(力)Free energy(自由能)Free enthalpy(自由焓)Free expansion(自由膨胀)Friction(摩擦)Gas constant(气体常数)Gas(气体)Gauge pressure(表压力)Generalized compressibility chart(通用压缩因子图)Generalized work(广义功)Generation of entropy(熵产)Gibbs’function(吉布斯函数)Gibbs’J.W.(吉布斯)Gibbs’phase rule(吉布斯相律)Gravitational potential(重力位能)Heat of combustion(燃烧热)Heat of reaction(反应热)《传热学》课程专业英语词汇 1. heat transfer 传热学2. heat conduction 导热 3. convection heat transfer 对流换热4. thermal radiation 热辐射 5. condensation heat transfer 凝结换热6. boiling heat transfer 沸腾换热7. number of heat transfer unit 传热单元数8. heat exchanger 换热器9. temperature field 温度场10. Fourier’s law 傅里叶定律11. Isothermal surface 等温面12. temperature gradient 温度梯度13. unsteady heat conduction 非稳态导热14. Isotherms 等温线15. lumped method 集总参数法16. thermal conductivity 导热系数17. heat flux 热流密度18. thermal resistance 热阻19. Newton’s law of cooling 牛顿冷却公式20. boundary layer 边界层21. thermal boundary layer 热边界层22. continuity equation 连续性方程23. laminar flow in tube 管内层流24. turbulent flow in tube 管内湍流25. in-tube boiling 管内沸腾26. dimensional analysis 量纲分析27. flow boundary layer 流动边界层28. fin 肋片29. fin efficiency 热效率30. Reynolds number 雷诺数31. Nusselt number 努谢尔数32. Prandtl number 普朗克数33. Planck’slaw普朗克定律34. boundary layer integral equation 边界层积分方程35.boundary layer differential equation 边界层微分方程36.boundary condition 边界条件37.finite difference 差分38.initial condition 初始条件39.transmissivity 穿透比40.mass transfer process 传质过程41.natural convection in infinite space 大空间自然对流42.poor boiling 大容器沸腾43.partial differential equation of heat conduction 导热微分方程44.numerical solution of heat conduction 导热问题数值解45.directional radiation intensity 定向辐射强度46.log-mean temperature difference 对数平均温差47.multidimensional steady state heat conduction 多维稳态导热48.emissivity 发射率49.analytical solution of transient heat conduction 非稳态导热问题分析解50.Fourier number 傅里叶数work method of radiation heat exchange 辐射换热的网络法52.emissive power 辐射力53.Grashof number 格拉晓夫数54.insulating material 隔热材料(保温材料,绝热材料)55.spectral emissive power 光谱辐射力56.excess temperature 过余温度57.nucleate boiling 核态沸腾58.black body 黑体(绝对黑体)59.flow across single tube 横掠单管60.flow across non-circular cylinder 横掠非圆形截面柱体61.flow across tube bundles 横掠管束62.gray body 灰体63.effectiveness of heat exchanger 换热器的效能64.mixed convection 混合对流65.Kirchhoff’s law 基尔霍夫定律66.cross strings method 交叉线法67.view factor ,angle factor 角系数68.heat conduction with internal heat source 具有内热源的导热erning equation 控制方程place equation 拉普拉斯方程mbert’s law 兰贝特定律72.discretized equation 离散方程73.critical insulation radius 临界绝缘直径74 diffuse surface 漫射表面75.film-wise condensation 膜状凝结76.internal flow 内部流动77.counter-flow 逆流78.gaseous radiation 气体辐射79.enhancement of heat transfer 强化传热80.forced convection 强制对流81.heat pipe 热管82.heat transfer rate 热流量83.time constant 时间常数84.numerical solution 数值解85.Stefan-Boltzmann’s law 斯特潘-波耳兹曼定律86.velocity boundary layer 速度边界层87.solar radiation 太阳辐射88.characteristic length 特征长度89.characteristic number 特征数(准则数)90.irradiation 投入辐射91.turbulent flow 湍流92.external flow 外部流动93.flow along a flat plate 外掠平板94.Wien’s displacement law 维恩位移定律95.green house effect 温室效应96.steady –state heat conduction 稳态导热97.thermal resistance of fouling 污垢热阻98.absorptivity 吸收比99.back difference 向后差分100.forward difference 向前差分101.similarity principle 相似原理102.shape factor 形状因子103.1-dimensional steady state heat conduction 一维稳态导热。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程热力学Engineering Thermodynamics热力学是研究热现象中,物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时,系统与外界相互作用的学科。
Thermodynamics is the study of thermal phenomena, the material system in equilibrium and the establishment of the nature of the relationship between energy balance, as well as the state changes, the system of academic interaction with the outside world.工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。
Engineering thermodynamics Thermodynamics is a branch of the first development of its main research in heat and mechanical energy and other energy conversion between the law and its application in mechanical engineering is an important foundation for one subject.工程热力学的基本任务是:通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。
Thermodynamics of the basic tasks of the project is: through the thermal system, heat balance, heat, and thermal processes, and working fluid。
thermodynamic cycle analysis, improve and perfect heat engine, refrigerator and heat pump working cycle, to improve energy utilization and heat conversion efficiency.为此,必须以热力学基本定律为依据,探讨各种热力过程的特性;研究气体和液体的热物理性质,以及蒸发和凝结等相变规律;研究溶液特性也是分析某些类型制冷机所必需的。
现代工程热力学还包括诸如燃烧等化学反应过程,溶解吸收或解吸等物理化学过程,这就又涉及化学热力学方面的基本知识。
To this end, the basic law of thermodynamics must be based on a variety of thermodynamic properties of the process; study the thermal gas and liquid physical properties, as well as evaporation and condensation, such asphase-change rule; study analysis of solution properties is necessary for certain types of refrigerator . Modern Engineering Thermodynamics include chemical reactions such as combustion processes, such as dissolving the physical absorption or desorption chemical processes, which also involves the aspects of chemical thermodynamics of basic knowledge.工程热力学是关于热现象的宏观理论,研究的方法是宏观的,它以归纳无数事实所得到的热力学第一定律、热力学第二定律和热力学第三定律作为推理的基础,通过物质的压力、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究。
Engineering Thermodynamics is on the macro-theory of thermal phenomena, the study is a macro, it has been summarized by numerous facts of the first law of thermodynamics, and the second law of thermodynamicsthird law of thermodynamics as a basis for reasoning by the material pressure, temperature , specific volume and other macro parameters and heating, cooling, expansion, contraction, such as the overall behavior of themacro-phenomena and to study the thermal process.这种方法,把与物质内部结构有关的具体性质,当作宏观真实存在的物性数据予以肯定,不需要对物质的微观结构作任何假设,所以分析推理的结果具有高度的可靠性,而且条理清楚。
这是它的独特优点。
In this way, the internal structure and material to the specific nature, as a macro-physical properties of real data to be sure, do not need tomicro-structure of the material to make any assumptions, so analysis of the results of reasoning with a high degree of reliability, and coherent . This is its unique advantages.古代人类早就学会了取火和用火,不过后来才注意探究热、冷现象的实质。
但直到17世纪末,人们还不能正确区分温度和热量这两个基本概念的本质。
在当时流行的“热质说”统治下,人们误认为物体的温度高是由于储存的“热质”数量多。
1709~1714年华氏温标和1742~1745年摄氏温标的建立,才使测温有了公认的标准。
随后又发展了量热技术,为科学地观测热现象提供了测试手段,使热学走上了近代实验科学的道路。
Ancient man long ago learned to make fire and use of fire, but then pay attention to explore the hot, cold real phenomenon. However, until the end of the 17th century, people still can not correctly distinguish between temperature and heat of these two basic concepts of nature. Popular at that time, "saidHeat and Mass Transfer" under the rule, people mistakenly believe that the high temperature object is stored as a result of "thermal mass" number. 1709 ~ Fahrenheit temperature scale in 1714 and 1742 ~ 1745 Celsius temperature to establish the subject to move the temperature with accepted standards. Followed by calorimetry technology developed for Earth observation science and thermal testing means is provided so that thermal embarked on the path of modern experimental science.1798年,朗福德观察到用钻头钻炮筒时,消耗机械功的结果使钻头和筒身都升温。
1799年,英国人戴维用两块冰相互摩擦致使表面融化,这显然无法由“热质说”得到解释。
1842年,迈尔提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。
1798, Langford was observed drilling with drill barrel, the consumption of mechanical work and the result are warming bit. In 1799, the British David with two resulting in friction between the ice surface melting, which is obviously not from the "Heat and Mass said," be explained. 1842, Meyer made the conservation of energy theory, that heat is a form of energy can be transformed into mechanical energy with each other, and the air pressure from the specific heat capacity with constant volume specific heat capacity to calculate the difference between the mechanical equivalent of heat.英国物理学家焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。