二次函数的图像(第3课时)教案

合集下载

《二次函数的图象与性质》(第3课时)示范公开课教学设计【北师大版九年级数学下册】

《二次函数的图象与性质》(第3课时)示范公开课教学设计【北师大版九年级数学下册】

第二章 二次函数2.2 二次函数的图象与性质第3课时 教学设计一、教学目标1.经历探索二次函数y =a (x -h )2+k 的图象的作法和性质的过程.2.能够作出y =a (x -h )2和y =a (x -h )2+k 的图象,并能够理解它们与y =ax 2的图象的关系,理解a ,h 和k 对二次函数图象的影响.3.能够正确说出y =a (x -h )2+k 的图象的开口方向、对称轴和顶点坐标.二、教学重点及难点重点:1.经历探索二次函数y =a (x -h )2+k 的图象的作法和性质的过程.2.能够作出y =a (x -h )2和y =a (x -h )2+k 的图象,并能够理解它们与y =ax 2的图象之间的关系,理解a ,h 和k 对二次函数图象的影响.难点:1.能够理解y =a (x -h )2、y =a (x -h )2+k 与y =ax 2的图象之间的关系,理解a ,h 和k 对二次函数图象的影响.2.能够正确说出y =a (x -h )2+k 的图象的开口方向、对称轴和顶点坐标.三、教学用具多媒体课件、直尺或三角板。

四、相关资源《复习二次函数y =ax 2和y =ax 2+c 的图象与性质》动画,《画二次函数y =2(x -1)2和y =2x 2图象》动画,《画二次函数y =2(x -1)2和y =2x 2图象》图片,《二次函数y =2x 2,2122y x =-,y =2(x +3)2,212(3)2y x =+-图象》图片. 五、教学过程【复习导入】函数y =ax 2+c 的图象可以由函数y =ax 2的图象上下平移得到,那么它们平移的规律是怎样的?师生活动:教师给出问题,学生思考后回答.答:当c>0时,将二次函数y=ax2的图象向上平移|c|个单位长度可以得到二次函数y=ax2+c的图象;当c<0时,将二次函数y=ax2的图象向下平移|c|个单位长度可以得到二次函数y=ax2+c的图象.我们这节课要研究的问题——二次函数y=a(x-h)2与y=ax2的图象的关系.设计意图:创设问题情境,让学生通过类比已学过知识的研究方式来猜想、探究新内容,同时激发学生的好奇心和求知欲.【探究新知】做一做在同一直角坐标系中画出二次函数y=2(x-1)2和y=2x2的图象.师生活动:师生一起完成画图,教师先出示表格,由学生说出x对应的y值,再描点、连线.教师强调在连线时,注意要用平滑的曲线连线,不能直接用线段把点与点之间连接.解:(1)列表:在x的取值范围内列出函数的对应值表:(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点.(3)连线:用光滑的曲线顺次连接各点,得到函数y=2(x-1)2和y=2x2的图象,如下图.设计意图:通过学生动手绘制,加深对函数图象的认识.议一议二次函数y=2(x-1)2的图象与二次函数y=2x2的图象有什么关系?它的开口方向、对称轴和顶点坐标分别是什么?当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?类似地,你能发现二次函数y=2(x+1)2的图象与二次函数y=2x2的图象有什么关系吗?师生活动:教师出示问题,学生分组讨论,与组内同学交流自己的想法,教师找每组内学生代表回答.答:由右图可以看出,二次函数y=2(x-1)2的图象与二次函数y=2x2的图象形状相同,开口方向也相同,都向上,但对称轴和顶点坐标不同.二次函数y=2(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).实际上,只要将二次函数y=2x2的图象向右平移1个单位长度,就可以得到二次函数y=2(x-1)2的图象.对于二次函数y=2(x-1)2的图象,当x>1时,y 的值随x 值的增大而增大;当x <1时,y 的值随x 值的增大而减小.(画二次函数y =2(x -1)2和y =2x 2图象)类似地,二次函数y =2(x +1)2的图象与二次函数y =2x 2的图象形状相同,开口方向也相同,都向上,只是位置不同.将二次函数y =2x 2的图象向左平移1个单位长度,就可以得到二次函数y =2(x +1)2的图象,二次函数y =2(x +1)2的图象是轴对称图形,它的对称轴是直线x =-1,顶点坐标是(-1,0).对于二次函数y =2(x +1)2的图象,当x >-1时,y 的值随x 值的增大而增大;当x <-1时,y 的值随x 值的增大而减小.归纳 二次函数y =a (x -h )2的图象与二次函数y =ax 2的图象形状相同,位置不同;当h >0时,二次函数y =ax 2的图象向右平移|h |个单位长度可以得到二次函数y =a (x -h )2的图象;当h <0时,二次函数y =ax 2的图象向左平移|h |个单位长度可以得到二次函数y =a (x -h )2的图象.设计意图:通过在同一直角坐标中比较三个函数的图象,使三个函数的图象特点一目了然,启发学生寻找规律,从而得出结论.想一想 由二次函数y =2x 2的图象,你能得到二次函数2122y x =-,y =2(x +3)2,212(3)2y x =+-的图象吗?你是怎样得到的?与同伴进行交流. 师生活动:教师在同一直角坐标系中画出四个函数的图象,让学生通过观察图象、思考、讨论,最后得出结果.(二次函数y =2x 2,2122y x =-,y =2(x +3)2,212(3)2y x =+-图象) 答:通过观察图象可以得出,由二次函数y =2x 2的图象向下平移12个单位长度,就可以得到二次函数2122y x =-的图象;由二次函数y =2x 2的图象向左平移3个单位长度,就可以得到二次函数y =2(x +3)2的图象;由二次函数y =2x 2的图象先向左平移3个单位长度,再向下平移12个单位长度,就可以得到二次函数212(3)2y x =+-的图象. 设计意图:培养学生分析问题和解决问题的能力.议一议 二次函数y =a (x -h )2+k 与y =ax 2的图象有什么关系?师生活动:教师出示问题,学生思考、讨论,师生共同得出答案.答:二次函数y =a (x -h )2+k 的图象与二次函数y =ax 2的图象都是抛物线,它们的形状相同,但位置不同.把二次函数y =ax 2的图象向上(下)向左(右)平移,可以得到二次函数y =a (x -h )2+k 的图象,平移的方向、距离要根据h ,k 的值来决定.设计意图:将学生探索得出的信息总结出来形成结论.归纳 二次函数y =a (x -h )2+k 的图象的对称轴是直线x =h ,顶点坐标是(h ,k ).(1)当a >0时,二次函数y =a (x -h )2+k 的图象的开口向上,在对称轴的左侧(当x <h 时),图象自左向右下降,y 随x 的增大而减小;在对称轴的右侧(当x >h 时),图象自左向右上升,y 随x 的增大而增大.顶点是二次函数图象的最低点,此时,函数y 取得最小值,即当x =h 时,y 有最小值k .(2)当a <0时,二次函数y =a (x -h )2+k 的图象的开口向下,在对称轴的左侧(当x <h 时),图象自左向右上升,y 随x 的增大而增大;在对称轴的右侧(当x >h 时),图象自左向右下降,y 随x 的增大而减小.顶点是二次函数图象的最高点,此时,函数y 取得最大值,即当x =h 时,y 有最大值k .二次函数y =a (x -h )2+k 的图象可以由二次函数y =ax 2的图象平移得到.设计意图:对知识进行归纳,加深学生对知识的理解和掌握.【典例精析】例 若将抛物线y =x 2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是( ).A .y =(x +2)2+2B .y =(x +2)2-2C .y =(x -2)2+2D .y =(x -2)2-2师生活动:教师出示例题,找学生代表回答.答案:B .设计意图:巩固所学知识,加深对所学知识的理解.【课堂练习】1.对于抛物线的说法错误的是( ). A .抛物线的开口向下 B .抛物线的顶点坐标是(1,0)C .抛物线的对称轴是直线x =1D .当x >1时,y 随x 的增大而增大2.将抛物线向左平移2个单位后,其顶点坐标为( ). A .(-3,-2) B .(-2,0) C .(-5,0) D .(-3,0)3.将抛物线沿x 轴向左平移2个单位,再沿y 轴向下平移3个单位得到抛物线( ).A .B .C .D . 4.由二次函数y =2(x -3)2+1,可知( ).A .其图象的开口向下B .其图象的对称轴为直线x =-321(1)2y x =--21(3)2y x =+243y x =-24(2)33y x =---24(2)33y x =-+-24(2)33y x =--+24(2)33y x =-++C .其最小值为1D .当x <3时,y 随x 的增大而增大5.抛物线的对称轴是_________,顶点坐标是___________;当x >2时,y 随x 的增大而__________;当x <2时,y 随x 的增大而__________;当x =______时,函数有_______值,其值为_________.6.若二次函数的图象的对称轴是直线,且图象经过点A (0,-4)和B (4,0).求此二次函数的解析式.师生活动:教师先找几名学生代表回答,然后讲解出现的问题.参考答案1.D .2.C .3.B .4.C .5.直线x =2;(2,7);减小;增大;2;大;7. 6.解:设此二次函数的解析式为. 将点A ,点B 的坐标代入解析式,得解得 所以此二次函数的解析式为. 设计意图:通过本环节的学习,让学生巩固所学知识. 六、课堂小结1.二次函数y =a (x -h )2的性质二次函数y =a (x -h )2的图象是一条抛物线,它的对称轴是直线x =h ,顶点坐标是(h ,0).(1)当a >0时,抛物线y =a (x -h )2的开口向上,在对称轴的左侧(当x <h 时),图象自左向右下降,y 随x 的增大而减小;在对称轴的右侧(当x >h 时),图象自左向右上升,y 随x 的增大而增大.顶点是抛物线的最低点,此时,函数y 取得最小值,即当x =h 时,y 有最小值0.(2)当a <0时,抛物线y =a (x -h )2的开口向下,在对称轴的左侧(当x <h 时),图象自左向右上升,y 随x 的增大而增大;在对称轴的右侧(当x >h 时),图象自左向右下降,y 随x 的增大而减小.顶点是抛物线的最高点,此时,函数y 取得最大值,即当x =h 时,y 21(2)73y x =--+32x =23()2y a x k =-+9442504a k a k ⎧+=-⎪⎪⎨⎪+=⎪⎩,.1254a k =⎧⎪⎨=-⎪⎩,.232524y x ⎛⎫=-- ⎪⎝⎭有最大值0.2.二次函数y=a(x-h)2的图象与二次函数y=ax2的图象之间的关系二次函数y=a(x-h)2的图象与二次函数y=ax2的图象形状相同,位置不同.二次函数y=a(x-h)2的图象可由二次函数y=ax2的图象经过左右平移得到.当h>0时,二次函数y=a(x-h)2的图象可看成是将二次函数y=ax2的图象向右平移|h|个单位长度得到的;当h<0时,二次函数y=a(x-h)2的图象可看成是将二次函数y=ax2的图象向左平移|h|个单位长度得到的.3.二次函数y=a(x-h)2+k的性质二次函数y=a(x-h)2+k的图象是一条抛物线,它的对称轴是直线x=h,顶点坐标是(h,k).(1)当a>0时,抛物线y=a(x-h)2+k的开口向上,在对称轴的左侧(当x<h时),图象自左向右下降,y随x的增大而减小;在对称轴的右侧(当x>h时),图象自左向右上升,y随x的增大而增大.顶点是抛物线的最低点,此时,函数y取得最小值,即当x=h时,y 有最小值k.(2)当a<0时,抛物线y=a(x-h)2+k的开口向下,在对称轴的左侧(当x<h时),图象自左向右上升,y随x的增大而增大;在对称轴的右侧(当x>h时),图象自左向右下降,y随x的增大而减小.顶点是抛物线的最高点,此时,函数y取得最大值,即当x=h时,y 有最大值k.4.二次函数y=a(x-h)2+k的图象与二次函数y=ax2的图象之间的关系二次函数y=a(x-h)2+k的图象与二次函数y=ax2的图象形状相同,位置不同.把二次函数y=ax2的图象向上(下)向左(右)平移,可以得到二次函数y=a(x-h)2+k的图象.平移的方向、距离要根据h,k的值来决定.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计2.2二次函数的图象与性质(3)1.二次函数y=a(x-h)2的图象与性质2.二次函数y=a(x-h)2+k的图象与性质。

2第3课时二次函数y=ax2+k的图象PPT课件(人教版)

2第3课时二次函数y=ax2+k的图象PPT课件(人教版)

7
6
y 2x2 1
5
4
3
2
y 2x2
1
你能由函数y=2x2的性质,得到函数y=2x2+1的一些性 质吗?
完成填空:
当x__﹤__0__时,函数值y随x的增大而减小;当x_﹥___0__时, 函数值y随x的增大而增大,当x__=_0___时,函数取得最 ____小__值,最____小__值y=___1___.
上加下减
6
4 2
-4 -2 -2
-4
24
一般地,抛物线y=ax2+k有如下特点:
(1)当a>0时, 开口向上; 当a<0时,开口向下;
(2)对称轴是y轴; (3)顶点是(0,k).
yy 1 x2 1
1
2
y 10
9
-5 -4 -3 -2 y-1--12o121x2 2 3 4 5 x
8
-3
7
-4
6 5
将抛物线y=-x2+1向___下__平移___1__个单位得到抛物线y=-x2。
总结梳理 内化目标
二次函数y=ax²+k与y=ax²的关系
1.相同点: w (1)图象都是抛物线, 形状相同, 开口方向相 同. w(2)都是轴对称图形, 对称轴都是y轴. w(3)都有最(大或小)值.
2.不同点: (4)(增1)顶减点性不相同同:.分别是(0,k),(0,0). (2)最值不同:分别是k和0.
3.联系: y=ax²+k(a≠0) 的图象可以看成y=ax²的图象沿y轴整体平 移|k|个单位得到的.(当k>0时向上平移;当k<0时,向下平移).
达标检测 反思目标
C D
B 2

2.2 二次函数的图象与性质(第3课时)优秀教学设计

2.2 二次函数的图象与性质(第3课时)优秀教学设计

《二次函数的图象与性质(第3课时)》教学设计说明一、教学目标1、学生会画出特殊二次函数2)(h x a y -=的图象,正确地说出它们的开口方向,对称轴和顶点坐标,能理解它们的图象与抛物线2ax y =的图象的关系,理解h a ,对二次函数图象的影响.2、培养学生动手作图的能力,观察、类比、归纳的能力,以及用数形结合的方法思考并解决问题的能力.二、教学重点:二次函数2)(h x a y -=的图象与性质.教学难点:二次函数2)(h x a y -=图象与图象2ax y =之间的关系,h a ,对二次函数图象的影响.三、教学过程分析第一环节: 回顾,引入新课1、问题1 说说二次函数y=ax2+c(a ≠0)的图象的特征.问题2 说一说二次函数 y=ax2+c (a ≠0)与 y=ax2(a ≠ 0) 图象的平移关系?思考 函数的图象与函数 的图象有什么关系呢?(完成书37页的做一做)设计意图:复习前两节课内容,唤醒学生记忆,提出问题,为下面的教学作准备.第二环节: 合作探究,发现和验证探究:2)(h x a y -=的图象和性质学生独立完成课本37页上“做一做”,完成后小组内交流.()212-=x y 22x y =观察上表,比较22x 与2)1(2-x 的值,它们有什么样的关系?2、在同一坐标系中作出22x y =与2)1(2-=x y 的图象.同伴交流:你是怎样作的?3、结合图象,议一议二次函数2)1(2-=x y 的图象与二次函数22x y =的图象有什么关系?它的开口方向、对称轴和顶点坐标分别是什么?当x 取哪些值时,y 的值随x 值的增大而增大?当x 取哪些值时,y 的值随x 值的增大而减小?4、结合初二图形变换的知识,能否用移动的观点说明函数2)1(2-=x y 与22x y =的图象之间的关系呢?5、猜一猜:2)1(2+=x y 的图象是怎么样的?它的图象与22x y =的图象之间有什么样的关系?画图验证一下!得出结论:二次函数22x y =、2)1(2-=x y 、2)1(2+=x y 的图象都是抛物线,并且形状相同,位置不同.将22x y =的图象向右平移一个单位,就得到2)1(2-=x y 的图象; 将22x y =的图象向左平移一个单位,就得到2)1(2+=x y 的图象. 设计意图:通过填表、画图等活动,在帮助学生获取感性材料的同时,促使他们积极思考、探索、发现规律,揭示结论.先猜测,培养学生的合情推理能力和分析能力,再画图验证,亲身经历探索函数性质的过程.第三环节:巩固新知:1、将二次函数y =-2x 2的图象平移后,可得到二次函数y =-2(x +1)2的图象,平移的方法是( )A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位2.把抛物线y = -x 2沿着x 轴方向平移3个单位长度,那么平移后抛物线的解析式是 .3.二次函数y =2(x - )2图象的对称轴是直线_______,顶点坐标是________.4.指出下列函数图象的开口方向,对称轴和顶点坐标5. 若(- ,y 1)(- ,y 2)(,y 3)为二次函数y =(x -2)2图象上的三点,则y 1 ,y 2 ,y 3的大小关系为_______________. 第四环节:典例解析:例1 抛物线y =ax 2向右平移3个单位后经过点(-1,4),求a 的值和平移后的函数关系式.第五环节:课堂小结比较y=ax2 , y=ax ²+k , y=a(x-h)² 的图像的不同拓展探究二:k h x a y +-=2)(的图象和性质想一想:由二次函数y=2x ²的图象你能得到y=2(x+3)²的图象吗?由y=2(x+3)²的图象你能得到y=2(x+3)²- 的图象吗?设计意图:经过前期的探索,学生完全有能力推测出表达式的变化会引起图象的何种变化.因此,先让学生合情推理,再画图验证,培养学生的合情推理能力和分析能力, 有利于培养学生的数学直觉和感悟能力.利用图象,直观地研究二次函数的性质,可以培养学生用数形结合的方法思考,积累研究函数性质的经验.最后,总结规律, 有效地让学生从感性认识上升到了理性认识, 并形成自己对本节课重点内容的理解.23445421小结:学生交流后得出结论:当k>0时,向上平移|k| 个单位长度当k<0时,向下平移|k| 个单位长度2.练一练: 1)若抛物线y=-x2向左平移2个单位,再向下平移4个单位所得抛物线的解析式是________ 2) 如何将抛物线y=2(x-1) 2+3经过平移得到抛物线y=2x23) 将抛 物线y=2(x -1)2+3经过怎样的平移得到抛物线y=2(x+2)2-14) 若抛物线y=2(x-1)2+3沿x 轴方向平移后,经过(3,5),求平移后的抛物线的解析式_______ 小结:本节课主要运用了数形结合的思想方法,通过对函数图象的讨论,分析归纳出 的性质:(1)a 的符号决定抛物线的开口方向(2)对称轴是直线x=h。

2.2 二次函数的图象与性质 第3课时 教案

2.2  二次函数的图象与性质 第3课时 教案

一、情境导入二次函数y =ax 2+c (a ≠0)的图象可以由y =ax 2(a ≠0)的图象平移得到: 当c >0时,向上平移c 个单位长度; 当c <0时,向下平移-c 个单位长度.问题:函数y = (x -2)2的图象,能否也可以由函数y = x 2平移得到?本节课我们就一起讨论. 二、合作探究探究点:二次函数y =a (x -h )2的图象与性质 【类型一】 二次函数y =a (x -h )2的图象顶点为(-2,0),开口方向、形状与函数y =-12x 2的图象相同的抛物线的解析式为( )A .y =12(x -2)2B .y =12(x +2)2C .y =-12(x +2)2D .y =-12(x -2)2解析:因为抛物线的顶点在x 轴上,所以可设该抛物线的解析式为y =a (x -h )2(a ≠0),而二次函数y =a (x -h )2(a ≠0)与y =-12x 2的图象相同,所以a =-12,而抛物线的顶点为(-2,0),所以h =2,把a=-12,h =2代入y =a (x -h )2得y =-12(x +2)2.故选C.方法总结:决定抛物线形状的是二次项的系数,二次项系数相同的抛物线的形状完全相同. 变式训练:见《学练优》本课时练习“课堂达标训练” 第5题 【类型二】 二次函数y =a (x -h )2的性质若抛物线y =3(x +2)2的图象上的三个点,A (-32,y 1),B (-1,y 2),C (0,y 3),则y 1,y 2,y 3的大小关系为________________.解析:∵抛物线y =3(x +2)2的对称轴为x =-2,a =3>0,∴x <-2时,y 随x 的增大而减小;x >-2时,y 随x 的增大而增大.∵点A 的坐标为(-32,y 1),∴点A 在抛物线上的对称点A ′的坐标为(2,y 1).∵-1<0<2,∴y 2<y 3<y 1.故答案为y 2<y 3<y 1.方法总结:函数图象上点的坐标满足解析式,即点在抛物线上.解决本题可采用代入求值方法,也可以利用二次函数的增减性解决.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题 【类型三】 二次函数y =a (x -h )2的图象与y =ax 2的图象的关系将二次函数y =-2x 2的图象平移后,可得到二次函数y =-2(x +1)2的图象,平移的方法是( )A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位解析:抛物线y =-2x 2的顶点坐标是(0,0),抛物线y =-2(x +1)2的顶点坐标是(-1,0).则由二次函数y =-2x 2的图象向左平移1个单位即可得到二次函数y =-2(x +1)2的图象.故选C.方法总结:解决本题要熟练掌握二次函数的平移规律.变式训练:见《学练优》本课时练习“课堂达标训练”第6题 【类型四】 二次函数y =a (x -h )2与三角形的综合如图,已知抛物线y =(x -2)2的顶点为C ,直线y =2x +4与抛物线交于A 、B 两点,试求S △ABC .解析:根据抛物线的解析式,易求得点C 的坐标;联立两函数的解析式,可求得A 、B 的坐标.画出草图后,发现△ABC 的面积无法直接求出,因此可将其转换为其他规则图形的面积求解.解:抛物线y =(x -2)2的顶点C 的坐标为(2,0),联立两函数的解析式,得⎩⎪⎨⎪⎧y =2x +4,y =(x -2)2,解得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=6,y 2=16.所以点A 的坐标为(6,16),点B 的坐标为(0,4).如图,过A 作AD ⊥x 轴,垂足为D ,则S △ABC =S 梯形ABOD -S △ACD -S △BOC =12(OB +AD )·OD -12OC ·OB-12CD ·AD =12(4+16)×6-12×2×4-12×4×16=24. 方法总结:解决本题要明确以下两点:(1)函数图象交点坐标为两函数解析式组成的方程组的解;(2)不规则图形的面积通常转化为规则图形的面积的和差.变式训练:见《学练优》本课时练习“课后巩固提升”第10题 【类型五】 二次函数y =a (x -h )2的探究性问题某抛物线是由抛物线y =-2x 2向左平移2个单位得到. (1)求抛物线的解析式,并画出此抛物线的大致图象; (2)设抛物线的顶点为A ,与y 轴的交点为B . ①求线段AB 的长及直线AB 的解析式;②在此抛物线的对称轴上是否存在点C ,使△ABC 为等腰三角形?若存在,求出这样的点C 的坐标;若不存在,请说明理由.解析:(1)抛物线y =-2x 2向左平移2个单位所得的抛物线的解析式是y =-2(x +2)2;(2)①根据(1)得出的抛物线的解析式,即可得出其顶点A 和B 点的坐标,然后根据A ,B 两点的坐标即可求出直线AB 的解析式;②本题要分三种情况进行讨论解答.解:(1)y =-2(x +2)2,图略;(2)①根据(1)得出的抛物线的解析式y =-2(x +2)2,可得A 点的坐标为(-2,0),B 点的坐标为(0,-8).因此在Rt △ABO 中,根据勾股定理可得AB =217.设直线AB 的解析式为y =kx -8,已知直线AB 过A 点,则有0=-2k -8,k =-4,因此直线AB 的解析式为y =-4x -8;②本题要分三种情况进行讨论:当AB =AC 时,此时C 点的纵坐标的绝对值即为AB 的长,因此C 点的坐标为C 1(-2,217),C 2(-2,-217);当AB =BC 时,B 点位于AC 的垂直平分线上,所以C 点的纵坐标为B 点的纵坐标的2倍,因此C 点的坐标为C 3(-2,-16);当AC =BC 时,此时C 为AB 垂直平分线与抛物线对称轴的交点.过B 作BD 垂直于抛物线的对称轴于D ,那么在直角三角形BDC 中,BD =2(A 点横坐标的绝对值),CD =8-AC ,而BC =AC ,由此可根据勾股定理求出AC =174,因此这个C 点的坐标为C 4(-2,174). 综上所述,存在四个点,C 1(-2,217),C 2(-2,-217 ),C 3(-2,-16),C 4(-2,-174).方法总结:本题主要考查了二次函数图象的平移及等腰三角形的构成情况,主要涉及分类讨论、数形结合的数学思想方法的运用.变式训练:见《学练优》本课时练习“课后巩固提升”第10题 三、板书设计二次函数y =a (x -h )2的图象与性质。

5.2 二次函数的图像和性质(第3课时)-九年级数学下册教材配套教学课件(苏科版)

5.2 二次函数的图像和性质(第3课时)-九年级数学下册教材配套教学课件(苏科版)

-10 y
1
x2
3
抛物线y=ax2+k可以由抛物线y=ax2向上或2向下平移
|k|得到.
(k>0,向上平移;k<0向下平移.)
在同一直角坐标系中,画出下列二次函数的
图像:
y=
பைடு நூலகம்1 2
x2,y=
1 2
x2+2,y=
1 2
x2-2.
观察三条抛物线的位置关系,并分别指出它
们的开口方向、对称轴和顶点.你能说出抛物
2
y= 1 x2-2的顶点为(0,-2).
2
y=
1 2
x2+k的开口方向向上,对称轴为直线
x=0,顶点为(0,k);它是由抛物线
y= 1 x2向上平移k个单位长度得到.
2
二次函数y=ax2+k的性质
y=ax2+k
a>0
a<0
图像
开口 对称性
顶点
增减性
开口向上
开口向下
a的绝对值越大,开口越小
关于y轴对称
想一想,在同一坐标系中作出二次函数 y=3(x+1)2的图像,它的增减性会是什么 样?
真知从实践走来 1.在上面的坐标系中作出二次函数
y=3(x+1)2的图像.它与二次函数y=3x2和
y=3(x-1)2的图像有什么关系?它是轴对
称图形吗?它的对称轴和顶点坐标分别是
什么?
?
函数y=a(x-h)2(a≠0)的图像和性质
(1)当a>0时,开口向上;当a<0时,开口向下;
(2)对称轴是y轴;(3)顶点是(0,k).
y y 1 x2 1
1

1.2 第3课时 二次函数的图象与性质-2024-2025学年九年级数学下册课件(湘教版)

1.2 第3课时 二次函数的图象与性质-2024-2025学年九年级数学下册课件(湘教版)
直线x=h
(h,k)
当x=h时,y最小值=k
当x<h时,y随x的 增大而减小;x>h 时,y随x的增大而 增大.
a<0
向下 直线x=h
(h,k)
当x=h时,y最大值=k 当x>h时,y随x的 增大而减小;x<h 时,y随x的增大而 增大.
练一练
1点.坐标抛是物_线(_0_,-y_6_)_,12它x可2 以 看6 作的是开由口抛__向物__上线__,对y 称 轴12 是x2___y向_轴____下__,平顶
横坐标
a a
纵坐标
1 a-12
2
1 a-12 3
2
观察上表你 发现了什么?
从上表看出: 对于每一个相同的x 值, 函数
y
1 2
(
x
1)2
3的值都要比函数
y
1 2
(
x
1)2
的值大3,
y
8
y
1 2
(
x
1)2
3
76Leabharlann 5 4y1 2
(x
1)2
3
2
1
-4
-3
-2
y
1 2
(
x
1)2
-1
O1
2
3
4
5
6x
向上平移3个单位
y
1 2
(
x
1)2
3
探究三、 将二次函数
y
1 2
(x
1)2
的图象向下平移 7 个单位,
得到的是哪个函数的图象?
y
1 2
(
x
1)2
7
探究四、二次函数 y a( x h)2 与 y a(x h)2 k

人教版九上数学教学课件 第二十二章 二次函数 第3课时 二次函数y=a(x-h)2+k的图象和性质

人教版九上数学教学课件 第二十二章 二次函数 第3课时 二次函数y=a(x-h)2+k的图象和性质

答:这个喷水池的直径 AB 是 20 m。
Thank you!
y
hO k
x
y=ax2
y=a(x-h)2+k
例4 要修建一个圆形喷水池,在池中心竖直安装一根水管, 在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池 中心的水平距离为1m处达到最高,高度为3m,水柱落地处离 池中心3m,水管应多长.
解:如图,以水管与地面交点为原点,原点
3
与水柱落地处所在直线为x轴,水管所在直
随堂测试
基础巩固 1.抛物线y=(x+2)2-1可以由抛物线y=x2平移得到,下列平 移方法中正确的是( B ) A.先向左平移2个单位长度,再向上平移1个单位长度 B.先向左平移2个单位长度,再向下平移1个单位长度 C.先向右平移2个单位长度,再向上平移1个单位长度 D.先向右平移2个单位长度,再向下平移1个单位长度
3 4 m 处达到最高,高度为 6 m,之后落在水池边缘,求这个喷水池的直径 AB 的值.
解:设 y 轴右侧抛物线的解析式为 y=a(x-4)2+6,将(0,10 )代入得 3
16a+6=10 ,解得 a=-1 ,∴抛物线的解析式为 y=-1 (x-4)2+6,令 y
3
6
6
=0 得-1 6
(x-4)2+6=0,x1=10,x2=-2(舍) ∴AB=10-(-10)=20(m).
R·九年级上册
第二十二章 二次函数
22.1 二次函数的图像和性质 22.1.3 二次函数y=a(x-h)2+k的图象和性质
第3课时 二次函数y=a(x-h)2+k的图象和性质
新课导入
问题:说说抛物线y=ax2的平移规律.
y=ax2
y=ax2+k

22.1.3 第3课时 二次函数y=a(x-h)2+k的图象和性质说课稿

22.1.3 第3课时 二次函数y=a(x-h)2+k的图象和性质说课稿

22.1.3 第3课时二次函数y=a(x-h)2+k的图象和性质教学设计【典型例题】例1对二次函数y=-5(x+2)2-6的说法错误的是(C)A.开口向下B.最大值为-6C.顶点(2,-6) D.x<-2时,y随x的增大而增大例2如何平移二次函数y=4(x+3)2-7的图象,可得到二次函数y=4x2的图象?解:二次函数y=4(x+3)2-7的图象向右平移3个单位长度,向上平移7个单位长度即可得到二次函数y=4x2的图象.例3要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池中心3 m,如图所示,水管应多长?解:水管应长2.25 m.教师为学生理解问题、顺利解答问题,进行分层次设问:(1)分析该题的突破口是什么?(2)如何建立平面直角坐标系?(3)你能求出该抛物线的函数解析式吗?(4)根据解析式你能求出水管的长度吗?学生思考讨论,小组合作探究,教师进行点拨指导,进行板书过程. 【变式训练】1.抛物线y=a(x+k)2+k(k≠0),当k取不同的值时,抛物线的顶点恒在(B)A.直线y=x上B.直线y=-x上C.x轴上 D.y轴上2.对于抛物线y=-(x+2)2+3,下列结论中正确的有(A)【课堂检测】1.二次函数y =2(x -2)2-1的图象大致是(A)A B C D2.在平面直角坐标系中,对于二次函数y =(x -2)2+1,下列说法中错误的是(C) A.y 的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x =2C.当x <2时,y 的值随x 值的增大而增大,当x ≥2时,y 的值随x 值的增大而减小D.当x <2时,y 的值随x 值的增大而减小,当x ≥2时,y 的值随x 值的增大而增大3.把二次函数y =a(x -h)2+k 的图象先向左平移2个单位长度,再向上平移4个单位长度后,得到二次函数y =12(x +1)2-1的图象.(1)试确定a ,h ,k 的值.(2)指出二次函数y =a(x -h)2+k 的图象的开口方向、对称轴和顶点坐标.解:(1)a =12,h =1,k =-5.(2)开口向上,对称轴为直线x =1,顶点坐标为(1,-5). 学生进行当堂检测,完成后,教师进行批阅、点评、讲解.。

冀教版九年级数学下册30 第3课时 二次函数y=ax2+bx+c的图像和性质教案与反思

冀教版九年级数学下册30 第3课时 二次函数y=ax2+bx+c的图像和性质教案与反思

第3课时二次函数y=ax2+bx+c的图像和性质知人者智,自知者明。

《老子》原创不容易,【关注】店铺,不迷路!第1课时二次函数y=ax2+bx+c的图像和性质1.会画二次函数y=ax2+bx+c的图像.2.熟记二次函数y=ax2+bx+c的顶点坐标与对称轴公式.3.用配方法求二次函数y=ax2+bx+c的顶点坐标与对称轴.一、情境导入火箭被竖直向上发射时,它的高度)与时间t(s)的关系可以近似用h=-5t2+150t+10表示.那么经过多长时间,火箭达到它的最高点?二、合作探究探究点一:二次函数y=ax2+bx+c的图像和性质【类型一】二次函数图像的位置与系数符号互判如图,二次函数y=ax2+bx+c的图像开口向上,图像经过点(-1,2)和(1,0)且与y轴交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确的结论的序号是________;(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确的结论的序号是________.解析:由抛物线开口向上,得a>0;由抛物线y轴的交点在负半轴上,得c<0;由抛物线的顶点在第四象限,得-b2a>0,又a>0,所以b<0;由抛物线与x轴交点的横坐标是1,得a+b+c=0.因此,第(1)问中正确的结论是①④.在第(1)问的基础上,由a>0、b<0、c<0,可得abc>0;由-b2a<1、a>0,可得2a+b>0;由点(-1,2)在抛物线上,可知a-b+c=2,又a+b+c=0,两式相加得2a+2c=2,所以a+c=1;由a+c=1,c<0,可得a>1.因此,第(2)问中正确的结论是②③④.方法总结:观察抛物线的位置确定符号的方法:①根据抛物线的开口方向可以确定a的符号.开口向上,a>0;开口向下,a<0.②根据顶点所象限可以确定b的符号.顶点在第一、四象限,-b2a>0,由此得a、b异号;顶点在第二、三象限,-b2a<0,由此得a、b同号.再由①中a的符号,即可确定b的符号.【类型二】二次函数y=ax2+bx+c的性质如图,已知二次函数y=-x2+2x,当-1<x<a时,y随x的增大而增大,则实数a的取值范围是( )A.a>1B.-1<a≤1C.>0D.-1<a<2解析:抛物线的对称轴为直线x=-22×(-1)=1,∵函数图像开口向下,在对称轴左侧,y随x的增大而增大,∴a≤1.∵-1<x<a,∴a>-1,∴-10)个单位所得的函数关系式为y=ax2+k,向下平移k(k>0)个单位所得的函数关系式为y=ax2-k;向左平移h(h>0)个单位所得函数关系式为y=a(x+h)2;向右平移h (h >0)个单位所得函关系式为y =a (x -h )2;这一规律可简记为“上加下减,左加右减”. 【类型五】二次函数的图像与几何图形的综合应用如图,已知二次函数y =-12x 2+bx +c 的图像经过A (2,0)、B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图像的对称轴与x 轴交于点C ,连接BA 、BC ,求△AB 的面积.解:(1)把A (2,0)、B (0,-6)代入y =-12x 2+bx +c 得:⎩⎨⎧-2+2b +c =0,c =-6,解得⎩⎨⎧b =4,c =-6.∴这个二次函数的解析式为y =-错误!x 2+4x -6. (2)∵该抛物线的对称轴为直线x =-42×(-12)=4,∴点C 的坐标为(4,0).∴AC =OC -OA =4-2=2,∴S △ABC =12×AC ×OB =12×2×6=6. 三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=ax2+bx+c的图像与性质,体会数学建模的数形结合思想方法.【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。

《二次函数的图像》第3课时教案

《二次函数的图像》第3课时教案

《二次函数的图像》第3课时教案教学目标:1、了解二次函数图像的特点。

2、掌握一般二次函数c bx ax y ++=2的图像与2ax y =的图像之间的关系。

3、会确定图像的开口方向,会利用公式求顶点坐标和对称轴。

教学重点:二次函数的图像特征教学难点:例2的解题思路与解题技巧。

教学设计:一、回顾知识1、二次函数k m x a y ++=2)(的图像和2ax y =的图像之间的关系。

2、讲评上节课的选作题对于函数122+--=x x y ,请回答下列问题:(1)对于函数122+--=x x y 的图像可以由什么抛物线,经怎样平移得到的?(2)函数图像的对称轴、顶点坐标各是什么?思路:把122+--=x x y 化为k m x a y ++=2)(的形式。

122+--=x x y =[][]2)1(2)1(2)12()12(2222+--=-+-=-++-=-+-x x x x x x在2)1(2+--=x y 中,m 、k 分别是什么?从而可以确定由什么函数的图像经怎样的平移得到的?二、探索二次函数c bx ax y ++=2的图像特征1、问题:对于二次函数y=ax ²+bx+c ( a ≠0 )的图象及图象的形状、开口方向、位置又是怎样的?学生有难度时可启发:通过变形能否将y=ax ²+bx+c 转化为y = a(x+m)2 +k 的形式 ? c bx ax y ++=2 =a b ac a b x a a c a b a b x a b x a a c x a b x a 44)2()2()2()(222222-++=⎥⎦⎤⎢⎣⎡+-++=++ 由此可见函数c bx ax y ++=2的图像与函数2ax y =的图像的形状、开口方向均相同,只是位置不同,可以通过平移得到。

练习:课本第37页课内练习第2题(课本的例2删掉不讲)2、二次函数c bx ax y ++=2的图像特征(1)二次函数 c bx ax y ++=2( a ≠0)的图象是一条抛物线; (2)对称轴是直线x=a b 2-,顶点坐标是为(ab 2-,a b ac 442-) (3)当a>0时,抛物线的开口向上,顶点是抛物线上的最低点。

九年级数学下册 12 二次函数yax h2的图象与性质(第3课时)教案 (新版)湘教版 教案

九年级数学下册 12 二次函数yax h2的图象与性质(第3课时)教案 (新版)湘教版 教案

第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想. 【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象. 例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(某某某某中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h 决定向左右平移;从中领会数形结合的数学思想.。

【精】 《二次函数的图象和性质(第3课时)》精品教案

【精】 《二次函数的图象和性质(第3课时)》精品教案

《二次函数(第3课时)》精品教案
(1)抛物线顶点坐标___________;
(2)对称轴为________;
(3)当x=____时,y有最大值是_____;
(4)当________时,y随着x得增大而增大.(5)当____________时,y>0.
4.将函数y=3x+1的图象向______平行移动_____个单位,可使它经过点(1,-1).
5.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到________________。

课堂小结通过本节课的内容,你有哪些收获?
(2)对称轴是x=h.
(3)顶点是(h,k).
(4)平移规律:h值正右移,负左移;k值正上移,负下移. 学会总结学
习收获,巩
固知识点,
理清知识间
的联系。

让学生
来谈本
节课的
收获,培
养学生
自我检
查、自我
小结的
良好习
惯,将知
识进行
整理并
系统化。

《二次函数的图象与性质(第3课时)》优秀课件

《二次函数的图象与性质(第3课时)》优秀课件

小结:
本节课主要运用了数形结合的思想方法,通过对
函数图象的讨论,分析归纳出 y a(x h)2 k
的性质:(1)a的符号决定抛物线的开口方向 (2)对称轴是直线x=h
(3)顶点坐标是(h,k)
抛物线
开口方向 对称轴 顶点坐标
y ax2 (a 0)
y ax 2 k(a 0) y a(x h)2 (a 0)
开口向上 开口向上 开口向上
直线X=0 直线X=0 直线X=h
(0,0) (0,k)
(h,0)
y a(x h)2 k(a 0) 开口向上 直线X=h (h,k)
2
直线x=-1
(- 1, 0)4,y2)(
1 4
,y3)为二次函数
y=(x-2)2图象上的三点,则y1 ,y2 ,y3的大小关系为
___y_3_<__y_2_<__y1____.
典例精析
例1 抛物线y=ax2向右平移3个单位后经过点(-1,4), 求a的值和平移后的函数关系式.
解:设平移后的函数关系式为y=a(x-3)2,
把x=-1,y=4代入,得4=a(-1-3)2, ,

1 a=
4
∴平移后二次函数关系式为y= 1 (x-3)2.
4
小结
比较y=ax2 , y=ax²+k , y=a(x-h)²的图像的不同
y=ax2 y=ax²+k
对称轴 Y轴
Y轴
(直线x=0) (直线x=0)
2) 如何将抛物线y=2(x-1) 2+3经过平移得到 抛物线y=2x2
3) 将抛 物线y=2(x -1)2+3经过怎样的平移得 到抛物线y=2(x+2)2-1
4) 若抛物线y=2(x-1)2+3沿x轴方向平移后,经 过(3,5),求平移后的抛物线的解析式_______

九年级数学中考复习-函数及其图像专题-二次函数的图像3教案

九年级数学中考复习-函数及其图像专题-二次函数的图像3教案

一、素质教育目标(一)知识教学点1.使学生会用描点法画出二次函数y=ax2+k与y=a(x-h的图象;2.使学生了解抛物线y=ax2+k与y=a(x-h)2的对称轴与顶点;3.了解抛物线y=ax2+k与y=a(x-h)2同y=ax2的位置关系.(二)能力训练点:1.继续通过画图的教学,培养学生的动手能力;2.培养学生观察、分析、总结的能力;3.继续向学生进行数形结合的数学思想方法的渗透.(三)德育渗透点:向学生渗透事物总是不断运动、变化和发展的观点.二、教学重点、难点和疑点1.教学重点:画出形如y=ax2+k与形如y=a(x-h的二次函数的图象;能指出上述函数图象的开口方向,对称轴,顶点坐标.因为画出函数图象,是我们研究函数性质的重要方法,只有在准确的图象启发下,我们才能正确得出函数图象的变化趋势和性质,而这些特殊二次函数问题的研究,又是我们研究一般二次函数的基础.2.教学难点:恰当地选值列表,正确地画出形如y=ax2+k和形如y=a(x-h的函数图象.因为二次函数的图象,随着我们研究越来越深入,越来越一般,画起来也就越来越复杂,而恰当地选值,是画出二次函数图象,并能使我们从图象正确得出结论的关键.三、教学步骤(一)明确目标提问:1.什么是二次函数?2.我们已研究过了什么样的二次函数?3.形如y=ax2的二次函数的开口方向,对称轴,顶点坐标各是什么?通过这三个问题,进一步复习巩固所学的知识点,同时引出本节课要学习的问题.从这节课开始,我们就来研究二次函数y=ax2+bx+c的图象.(板书)(二)整体感知复习提问:用描点法画出函数y=x2的图象,并根据图象指出:抛物线y=x2的开口方向,对称轴与顶点坐标.教师可边提问边在黑板上列出表格,同时在事先准备好的有坐标系的小黑板上画出该函数的图象,然后可以找层次较低的学生来指出抛物线y=x2的开口方向,对称轴及顶点坐标,针对学生的回答情况加以总结,评价.下面,我们来看一下如何完成下面的例题?(出示幻灯)例1 在同一平面直角坐标系内画出函数y=与y=的图象.可以由学生先选择好自变量的值列表,就列在刚才复习中画函数y=x2的图象所列的表下面.如下表:列完表之后,可以让一名同学上黑板,把这两个函数的图象画在刚才复习中画有函数y=x2的图象的小黑板上,以便于下面的比较,其他同学在练习本上完成,教师巡回指导,等上黑板的同学画完,再集中加以总结即可.然后,由学生来观察小黑板上画出的三条抛物线,让学生思考下列问题:(1)抛物线y=的开口方向,对称轴与顶点坐标是什么?(2)抛物线y=x2-1的开口方向,对称轴与顶点坐标是什么?这两个问题可以由图象直接得到,可适当找一些层次较低的学生来回答,给他们以表现的机会.(3)抛物线y=x2+1,y=x2-1与y=x2的开口方向,对称轴,顶点坐标有何异同?(4)抛物线y=x2+1,y=x2-1与y=x2有什么关系?通过这两个问题,可使学生深入理解这三条抛物线之间的联系与区别,便于学生以后分析问题.答:形状相同,位置不同.关于上述回答可继续提问:(可按学生的层次不同来选择问题的深度)①你所说的形状相同具体是指什么?答:抛物线的开口方向和开口大小都相同.②根据你所学过的知识能否回答:为何这三条抛物线的开口方向和开口大小都相同?答:因为a的值相同.通过这一问题,使学生对此类问题形成规律:抛物线的形状相同就说明a的值相同,而a的值相同就可以说抛物线的形状相同.加深学生对系数a的作用的理解.③这三条抛物线的位置有何不同?它们之间可有什么关系?先由学生思考,讨论之后,给出答案.答:若沿y轴平移,这三条抛物线可重合.④抛物线y=x2+1是由抛物线y=x2沿y轴怎样移动了几个单位得到的?抛物线y=x2-1呢?答:抛物线y=x2+1是由抛物线y=x2沿y轴向上平移1个单位得到的;而抛物线y=x2-1是由抛物线y=x2沿y轴向下平移1个单位得到的.⑤你认为是什么决定了会这样平移?答:y=ax2+k中的k的值决定了会这样平移.若k>0,则向上平移,若k<0,则向下平移.练习题1由学生独立完成,口答.下面,我们再来看一类二次函数的图象:(出示幻灯)的图象.注意:画这两个图形时,参考前面画图列表时x的取值都是关于某一个值对称的,可先让学生猜测画这两个图时x的取值各以应什么数为中间点,然后左右能对称.通过这样的训练能帮助学生以后自主考虑问题时怎样找思路.列完表之后,与例1一样处理,找一名同学板演,教师最好能事先。

九年级下册《二次函数的图像和性质》第三课时说课稿

九年级下册《二次函数的图像和性质》第三课时说课稿

九年级下册《二次函数的图像和性质》第三课时说课稿一、教材及学情分析《二次函数的图像与性质》是北师大版九年级下册第二章第二节的内容,在学生已经学习过一次函数(包括正比例函数)、反比例函数的图像与性质,以及会建立二次函数模型和理解二次函数的有关概念的基础上进行的,它既是前面所学知识的应用、拓展,是对前面所学一次函数、反比例函数图像与性质的一次升华,又是今后学习《确定二次函数的表达式》《二次函数的应用》、《二次函数与一元二次方程》的预备知识,又是学生高中阶段数学学习的基础知识,它在教材中起着非常重要的作用。

另外,本节课最大特点,是结合图形来研究二次函数的性质,这充分体现了一个很重要的数学思想——数形结合数学思想。

因此,这一节课,无论是在知识上,还是对学生动手能力培养上都有着十分重要的作用。

二、教学目标及重、难点分析通过分析,我们知道,《二次函数的图像与性质》在整个教材体系中,起着承上启下的作用,有着广泛的应用。

我认为这节课的重点是:作出函数y=ax2+c的图象,比较函数y=ax2和函数y=ax2+c的异同,了解它们的性质;函数y=ax2+c的图象与性质的理解,掌握抛物线的上下平移规律是本节课的难点。

知识与技能目标(1)会做函数y=ax2和y=ax2+c的图象,并能比较它们的异同;理解a,c对二次函数图象的影响,能正确说出两函数的开口方向,对称轴和顶点坐标;(2)了解抛物线y=ax2上下平移规律。

过程与方法目标本节课,过程是由抽象到直观,再由直观到抽象(既二次函数y=ax2+c的关系式——作出图像——说出二次函数y=ax2+c的图像与性质),培养学生分析问题、解决问题的能力,培养学生观察、探讨、分析、分类讨论的能力。

情感、态度与价值观引导学生养成全面看问题、分类讨论的学习习惯,通过直观多媒体演示和学生动手作图、分析,激发学生学习数学的积极性。

三、教学结构设计建立以“实施主体性教学,培养学生自主探究的能力”为主的课堂教学结构模式——学教结合式。

《二次函数的图像和性质》第三课时教案

《二次函数的图像和性质》第三课时教案

5.4二次函数的图像和性质(3)教材分析:本节课是在学习了二次函数y=ax 2+k,y=a(x-h)2的图象和性质的基础上的再一次提高和升华,是在探索抛物线y=ax 2+k,y=a(x-h)2与y=ax 2的关系基础上,进一步讨论更一般的二次函数y=a(x-h)2+k 的性质,在本章中起到承前启后的作用.教学设想:在本节中,要让学生充分的参与到课堂学习中来,让学生成为学习的主人,鼓励学生自己动手,大胆猜想,敢于归纳,由此培养学生的归纳能力与逻辑思维能力. 教学目标:知识与技能:1.正确理解经过x 轴与y 轴的平移,可由抛物线y=ax 2得到y=a(x-h)2+k .2.理解二次函数y=a(x-h)2+k 图象和性质,并能够利用性质解决相关问题.过程与方法:经历探索抛物线y=a(x-h)2+k 与y=ax 2的关系的过程,发展学生学习数学中的转换、化归思维方法,体会平移知识在二次函数中的应用.情感态度和价值观:在合作探索、自主学习的过程中,让学生体验数学学习活动充满探索性、创造性和趣味性,培养学生学习数学的热情和自信心.教学重难点:重点:抛物线y=a(x-h)2+k 与y=ax 2的关系及二次函数y=a(x-h)2+k 的性质.难点:应用抛物线y=a(x-h)2+k 的性质解决相关问题.课前准备教具准备 教师准备PPT 课件课时安排:4课时教学过程:知识回顾:(1)抛物线 的开口方向、对称轴、顶点各是什么?(2)抛物线 与抛物线有什么关系? 可以看出,抛物线 的开口向下,对称轴是经过点(-1,0)且与x 轴垂直的直线,我们把它记为x =-1,顶点是(-1,0);抛物线 的开口向_____,对称轴是___________,顶点是_____________.可以发现,把抛物线 向左平移1个单位,就得到抛物线 ;把抛物线 向右平移1个单位,就得到抛物线 . 【设计意图】:通过对二次函数y=ax 2+k ,y=a(x-h)2与y=ax 2的图象、开口方向、对称轴和顶点坐标以及相互关系的回顾,为引入本节课的教学做好准备.合作探究: 二次函数y=a(x-h)²+k 的图象221,1y x y x =+=-221,1y x y x =+=-2y x =()2112y x =-+()2112y x =--212y x =-()2112y x =-+212y x =-()2112y x =--画出函数 的图象, 解:(1)作函数 的图象: (2)指出它的开口方向、对称轴及顶点.抛物线 的开口方向向下、对称轴是 x =-1,顶点是(-1,-1). (3)抛物线 经过怎样的变换可以得到抛物线 向下平移1个单位,再身左平移1个单位,得到的. 归纳:二次函数y =a (x -h )²+k 与y =ax ²的关系一般地,由y =ax ²的图象便可得到二次函数y =a (x -h )²+k 的图象:y =a (x -h )²+k (a ≠0) 的图象可以看成y =ax ²的图象先沿x 轴整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平移;当k<0时,向下平移)得到的.因此,二次函数y=a(x-h)²+k 的图象是一条抛物线,它的开口方向、对称轴和顶点坐标与a,h,k 的值有关.归纳:二次函数y =a (x -h )²+k 的性质归纳:二次函数y =a (x -h )²+k 与y =ax ²的区别与联系1.相同点:(1)形状相同(图像都是抛物线,开口方向相同).(2)都是轴对称图形.(3)都有最(大或小)值.(4)a>0时, 开口向上,在对称轴左侧,y 都随x 的增大而减小,在对称轴右侧,y 都随 x 的增大而增大. a<0时,开口向下,在对称轴左侧,y 都随x 的增大而增大,在对称轴右侧,y 都随 x 的增大而减小.2.不同点:(1)顶点不同:分别是(h,k)和(0,0).(2)对称轴不同:分别是直线x= h 和y 轴.(3)最值不同:分别是k 和0.3.联系: y=a(x-h)²+k(a ≠0) 的图象可以看成y=ax ²的图象先沿x 轴整体左(右)平移|h|个单位(当h>0时,向右平移;当h<0时,向左平移),再沿对称轴整体上(下)平移|k|个单位 (当k>0时向上平移;当k<0时,向下平移)得到的.【设计意图】:对相应的问题组织学生自己独立完成,然后小组讨论得出结论.例题讲解:例1:试讨论二次函数 的性质 解:由函数 的表达式可知,它有以下性质 ()21112y x =-+-()21112y x =-+-212y x =-()21112y x =-+-()522y =-x +3-2()522y =-x +3-2(1)图象是抛物线(2)对称轴为直线x=-3(3)顶点是图象的最高点,坐标为(-3,-2)(4)当x<-3时,函数值随x的增大而增大;当x>-3时,函数值随x的增大而减小.【设计意图】:通过例题讲解引导学生再一次经历探索过程,有助于对那点的突破,同时激发学生思维的宽度与广度.当堂检测:1.说出下列抛物线的开口方向、对称轴及顶点:(1)y =2( x+3)2+5; (2)y = -3(x-1)2-2;(3)y = 4(x-3)2+7; (4)y = -5(x+2)2-6.解:(1)a =2>0开口向上,对称轴为x=-3,顶点坐标为(-3,5)(2)a =-3<0开口向下,对称轴为x=1,顶点坐标为(1,-2)(3)a =4>0开口向上,对称轴为x=3,顶点坐标为(3,7)(4)a =-5<0开口向下,对称轴为x=-2,顶点坐标为(-2,-6).课堂小结:本节课学习了二次函数y=a(x-h)2+k的图象和性质作业:课本 P.38第1,2题板书设计:5.4二次函数的图像和性质(3)知识回顾:合作探究:二次函数y=a(x-h)²+k的图象归纳:二次函数y=a(x-h)²+k与y=ax²的关系归纳:二次函数y=a(x-h)²+k的性质归纳:二次函数y=a(x-h)²+k与y=ax²的区别与联系例1。

数学九年级上册《二次函数-第三课时》教案

数学九年级上册《二次函数-第三课时》教案
本节对应配套练习
板书设计:22.1.3 二次函数y=ax2+k的图象和性质
二次函数y=ax2+k的性质
教学后记(反思成败、总结经验):
3、二次函数y=ax2+k(a,k是常数),当x取值x1、x2时(x1≠x2),函数值相等,则当x取x1+x2时,函数值为
学生自主完成,小组内展示,点评,教师巡视
五、能力提升:(7分钟)
独立完成学思练巩固提升
六、课堂小结(2分钟,学生回答)
二次函数y=ax2+k的性质及平移规律
七、作业布置
教材习题22.1第5(1)题
(1)y=-x2-3 (2)y=1.5x2+7 (3)y=2x2-1
5.完成学思练自学检测部分
学生自主完成,小组内展示,点评,教师巡视
四、巩固练习(8分钟)
1、二次函数y=ax2+k的图象经过点A(2,3), B(3,5),求这个函数的解析式。
2、已知二次函数y=2x2+3,当x取何值时,y随x的增大而增大;当x取何值时,y随x的增大而减小?
会作函数的图象.
教学难点
能正确说出两函数图象的开口方向、对称轴和顶点坐标.
教学方法与手段
自主学习——合作交流——当堂训练
教学准备
课件、教材、三角板
第 一 课时
课时数
1 课时
教学流程
二次备课(标、增、改、删、调)
一、旧知回顾:(3分钟)
二次函数y=ax2有什么性
二、自主探究:(12分钟)
探究:
在同一直角坐标系中,画出下列二次函数的图象:y=x2,y=x2+2 , y=x2-2
初中20-20学年度第一学期教学设计

华东师大版数学九下26.2《二次函数的图象和性质(三)》教案设计

华东师大版数学九下26.2《二次函数的图象和性质(三)》教案设计

26.2.3 求二次函数的表达式教案设计一、学情分析1、教材分析本节课是初中数学华师大版九年级下册第26章第二节第三课时,是学生学过二次函数的图象和性质的基础上进行的,教材通过类比求一次函数反比例函数表达式进行待定系数法的,为学生学习函数的有关性质奠定基础。

2、学生情况分析对于初三学生来说,在学习一次函数的时候,学生对于用待定系数法求函数解析式的方法已经有所认识,他们已经积累了一定的学习经验.初三的学生已经具备了一定的分析问题、解决问题能力和创新意识,这些对本节课的学习都很有帮助.在今后高中的数学学习中,学生还会继续运用待定系数法解决相关问题.新课标对学生在探究问题的能力,合作交流的意识等方面有了更高的要求,在教学中还有待加强相应能力的培养.二、学习目标知识与能力:1、掌握二次函数解析式的表达方式。

2、会用待定系数法求二次函数的表达式。

3、学会利用二次函数解决实际问题。

过程与方法:能根据二次函数的图像及性质解决生活中的实际问题情感态度与价值观:通过数学活动,体会实际生活与数学的密切联系,感受数学带给人们的作用,激发学习热情,培养学习兴趣。

三、学习重难点学习重点:会用待定系数法求二次函数的表达式。

学习难点:会选取一般式和顶点式,运用待定系数法求二次函数的表达式。

四、学习过程1、复习回顾(1)我们学习了二次函数的哪几种表达式?你能熟练写出来吗?(2)一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数)0(≠+=k b kx y 的关系式时,通常需要两个独立的条件;确定反比例函数)0(≠=k x k y 的关系式时,通常只需要一个条件;如果要确定二次函数)0(2≠++=a c bx ax y 的关系式,又需要几个条件呢?(板书课题)2、自主学习(1)若抛物线y =x 2-2x +c 经过点(0,-1),则c =______.(2)若抛物线y =ax 2经过点(2,-0.8),则抛物线所对应的函数关系式为________________. (3)将抛物线 向左平移4个单位,再向 上平移1个单位,所得的抛物线解析式为__________________3、例题讲解例1、 已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的表达式?解:设二次函数的表达式为y=a(x-h)2+k∵顶点坐标是(8,9)∴ 二次函数的表达式为y=a(x-8)2+9又∵过点(0,1)∴ a(0-8)2+9=1解得 解得:a = -814、合作探究例2、已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题4:在图26.2.3中,你能再画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较吗?
教学要点
1.在学生画函数图象时,教师巡视指导;
2.对“比较”两字做出解释,然后让学生进行比较。
问题5:你能说出函数y=- (x-1)2+2的图象与函数y=- x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?
五、小结
1.通过本节课的学习,你学到了哪些知识?还存在什么困惑?
2.谈谈你的学习体会。
六、作业:
1.已知函数y=6x2、y=6(x-3)2+3和y=6(x+3)2-3。
(1)在同一直角坐标系中画出三个函数的图象;
(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;
(3)试说明,分别通过怎样的平移,可以由抛物线y=6x2得到抛物线y=6(x-3)2+3和抛物线y=6(x+3)2-3;
主备人Βιβλιοθήκη 年级学科九年级数学备课时间
使用人
初三数学组
课型
新授
上课时间
课题
二次函数y=a(x-h)2+k的图象
教学目标
教学目标:
1.使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。
2.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。
3.让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。
(函数y=2(x-1)2的图象可以看成是将函数y=2x2的图象向右平移1个单位得到的,见P10图26.2.3)
3.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?
二、试一试
你能填写下表吗?
y=2x2向右平移
的图象1个单位
y=2(x-1)2
向上平移
函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。
当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。
三、做一做
(4)试讨沦函数y=6(x+3)2-3的性质;
2.不画图象,直接说出函数y=-2x2-5x+7的图象的开口方向、对称轴和顶点坐标。
3.函数y=2(x-1)2+k的图象与函数y=2x2的图象有什么关系?
教学设计
二次备课
板书设计
二次函数y=a(x-h)2+k的图象
1.画图像2.性质
教学反思
教学设计
二次备课
一、提出问题
1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?
(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)
2.函数y=2(x-1)2的图象与函数y=2x2的.图象有什么关系?
教学重难点
重点难点:
重点:确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质是教学的重点。
难点:正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质是教学的难点。
(函数y=- (x-1)2+2的图象可以看成是将函数y=- x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)
四、课堂练习:P13练习1、2、3、4。
对于练习第4题,教师必须提示:将-3x2-6x+8配方,化为练习第3题中的形式,即
y=-3x2-6x+8 =-3(x2+2x)+8 =-3(x2+2x+1-1)+8 =-3(x+1)2+11
1个单位
y=2(x-1)2+1的图象
开口方向
向上
对称轴
y轴
顶点
(0,0)
问题2:从上表中,你能分别找到函数y=2(x-1)2+1与函数y=2(x-1)2、y=2x2图象的关系吗?
问题3:你能发现函数y=2(x-1)2+1有哪些性质?
对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识;
相关文档
最新文档