蔗糖水解反应速率常数
蔗糖水解反应速率常数的测定
贵州大学实验报告大学化学实验II实验报告——物理化学实验学院:化学与化工学院专业:化学工程与工艺班级:化工122 姓名杨云实验日期成绩学号1208110212指导教师同组人汤富勇、殷江、季节实验项目名称蔗糖水解反应速率常数的测定实验目的1、测定一个温度下蔗糖水解反应的速率常数和半衰期2、掌握自动旋光仪的使用方法实验原理蔗糖水溶液在酸性介质下,按下式发生水解反应:C12H22O11 + H2O H+C6H12O6 + C6H12O6蔗糖葡萄糖果糖上述反应为二级反应,反应速率方程为:-dc蔗/dt=k'c蔗c(1)当溶液浓度较稀时,反应物水是大量的,尽管有部分水参与反应,但可以近似认为在整个反应过程中水的浓度基本是恒定的。
H+是催化剂,其浓度也保持不变。
因此反应可以看作是准一级反应,其速率方程为:-dc蔗/dt=kc蔗(2)将式(2)移项积分,得ln(c0/c t)=kt (3) 式中,C0为反应开始时蔗糖的初始浓度;C t为t时刻蔗糖的浓度,k为速率常数,t为反应时间。
当C t=½C0时,t可用t½表示,即为反应的半衰期。
由式(2)可得t½=ln2/k=0.0693/k (4)测定c t的方法有化学法和物理法两种。
1.化学法化学法即在反应过程中每过若干时间,取出一部分反应混合物,并使取出的反应物迅速停止反应(可采用降温,加阻化剂,稀释等),记录时间,然后此时反应物的浓度(容量法)。
但要使反应迅速停止是有困难的,故误差较大。
2.物理法物理法是根据反应物和生成物的某一物理性质与反应物浓度呈单值对应的特点,通过测定反应体系中物理性质的变化跟踪反应进程。
随着反应的进行,该物理量将不断改变,在不同时间测定该物理量,就可以计算出反应物浓度的改变。
本实验是通过测定体系的旋光度来跟踪反应进程的。
当一束平面偏振光通过某些物质时,其振动方向会发生改变,此时光的振动面旋转一定的角度,这种现象称为物质的旋光现象。
蔗糖水解反应速率常数的测定
蔗糖水解反应速率常数的测定一、实验目的:1.根据物质的光学性质研究蔗糖水解反应,测定其反应速率常数。
2.了解旋光仪的基本原理、掌握使用方法。
二、实验安排2人一组,一批10~15人,实验时间4小时。
三、实验原理蔗糖在水中水解成葡萄糖和果糖的反应为612661262112212O H C O H C O H O H C H +−→−++蔗糖(右旋) 葡萄糖(右旋)果糖(左旋)为使水解反应加速,反应在酸性介质中进行,以O H 3作催化剂。
反应中水是大量的,与蔗糖浓度相比,可以认为它的浓度没变,故反应可视为一级,其动力学方程为: kc dt dc =-kt C C t =0ln 积分得 t C C t k 0lg 303.2=或当02/1C C =时,反应的半衰期为k t 2ln 2/1=蔗糖及其水解产物均为旋光物质,因此,可以利用体系在反应过程中旋光度的改变来量度反应的进程,旋光度与浓度成正比,且溶液的旋光度具有加和性。
若反应时间为∞,,0t 时溶液的旋光度各为∞ααα,,0t ,则溶液浓度与旋光度的关系为:)(00∞-=ααK C)(∞-=ααt K C代入上式,可得:∞∞--=ααααt t k 0lg 303.2 将上式改写成: )lg(303.2)lg(0∞∞-+⋅-=-ααααt k t显然,以)lg(∞-ααt 对t 作图可得一条直线,由直线的斜率即可求得反应速率常数k 。
四、仪器药品旋光仪 1台; 秒表 1个容量瓶(50ml ) 1个; 锥形瓶(100ml ) 2个天平 1台; 移液管(25ml ) 2支烧杯(100ml , 500ml 各1个3mol /LHCl 溶液, 20%蔗糖五、实验步骤1.开动旋光仪预热15-20分钟后开始测定。
2.用自来水洗旋光管(3次),再用蒸馏水洗(3次),然后装满蒸馏水,放入旋光仪暗室中调零点。
3.用移液管取25ml 的蔗糖水溶液于100ml 锥形瓶中,再用另一支移液管吸取25ml3mol/l 盐酸(25ml 移液管滴入一半时开始计时),注入已装满蔗糖水溶液的锥形瓶中,同时记录时间,把溶液摇匀。
蔗糖水解反应速率常数的测定实验报告
蔗糖水解反应速率常数的测定实验报告实验报告:蔗糖水解反应速率常数的测定摘要:本实验旨在测定蔗糖水解反应速率常数。
实验采用酵母发酵蔗糖的方法,通过观察产生的CO2气体的体积变化来确定反应速率。
实验数据经过处理后,通过线性回归法求得反应速率常数。
实验结果表明,在一定温度范围内,反应速率与蔗糖浓度呈线性关系。
此外,本实验也揭示了酵母酶活性受温度影响较大,随着温度升高,酵母酶活性增强,反应速率也加快。
引言:蔗糖水解反应是糖酵母发酵的过程,并伴随着CO2气体的产生。
通过研究蔗糖水解反应速率常数,可以了解各种因素对反应速率的影响,以及蔗糖酵母发酵的机理。
本实验将通过实验测定蔗糖水解反应速率常数,并分析温度对反应速率的影响。
实验方法:1.准备工作:-将实验室器材清洗干净。
-准备一定浓度的蔗糖溶液。
-调节酵母的浓度。
2.实验步骤:-在试管中加入一定量的蔗糖溶液和酵母溶液。
-用实验室标准气密管连接试管,并将气密管的一端浸入水中。
-观察并记录水面上升的气泡体积变化。
-按照一定时间间隔记录气泡体积,并记录温度。
3.数据处理:-根据每个时间间隔的气泡体积变化,计算反应速率。
-绘制反应速率与蔗糖浓度的关系图。
-运用线性回归法求得反应速率常数。
结果与讨论:实验数据还表明,随着温度的升高,反应速率也会加快。
这可以归因于酵母酶活性的增强,随温度升高,酵母酶的分子运动性增强,使得酵母酶与蔗糖分子碰撞的机会增加,从而提高了反应速率。
根据实验数据,使用线性回归法求得了蔗糖水解反应速率常数。
表1列出了不同温度下的反应速率常数及相关系数。
可以看出,随着温度的升高,反应速率常数增大,且相关系数也相对较高,说明获取的实验数据较为可靠。
结论:本实验通过酵母发酵蔗糖的方法,测定了蔗糖水解反应速率常数,并研究了温度对反应速率的影响。
实验结果表明,在一定温度范围内,反应速率与蔗糖浓度呈线性关系,同时反应速率随温度的升高而增加。
这一研究有助于深入理解蔗糖酵母发酵的机理,并对相关工业生产和食品加工有一定参考价值。
实验报告蔗糖水解反应速率常数的测定
蔗糖水解反应速度常数的测定一、实验目的1.根据物质的光学性质研究蔗糖水解反应,测定其反应速度常数。
2.了解旋光仪的基本原理、掌握使用方法。
3.学习用Origin 或Excel 处理实验数据。
二、实验原理蔗糖在水中水解成葡萄糖与果糖的反应为:122211261266126HC H O H O C H O C H O ++−−→+蔗糖葡萄糖果糖为使水解反应加速,反应常常以H 3O +作催化剂,故在酸性介质中进行。
水解反应中水是大量的,反应达终点时虽有部分水分子参加反应,但与溶质浓度相比可认为它的浓度没有改变,故此反应可视为一级反应,其动力学方程式为:dckc dt -= (7-1) 或 01ln ck t c= (7-2)式中:0c 为反应开始时蔗糖的浓度,c 为时间t 时蔗糖的浓度。
当0/2c c =时,t 可用1/2t 表示,即为反应的半衰期。
1/2ln 2t k=(7-3) 上式说明一级反应的半衰期只决定于反应速度常数k 而与反应物起始浓度无关,这是一级反应的一个特点。
蔗糖及其水解产物均为旋光物质。
当反应进行时,如以一束偏振光通过溶液则可观察到偏振面的转移。
蔗糖是右旋的,水解的混合物中有左旋的,所以偏振面将由右边旋向左边。
偏振面的转移角度称之为旋光度,以α表示。
因此可利用体系在反应过程中旋光度的改变来量度反应的进程。
溶液的旋光度与溶液中所含旋光物质的种类、浓度、液层厚度、光源的波长以及反应时的温度等因素有关。
为了比较各种物质的旋光能力引入比旋光度[]α这一概念并以下式表示[]tD lcαα=(7-4)式中,t 为实验时的温度;D 为所用光源的波长,α为旋光度,l 为液层厚度(常以10cm 为单位);c 为浓度(常用100mL 溶液中溶有m 克物质来表示),式可写成: []/100tD l m αα=⋅或 []tD lc αα= (7-5)由(7-5)式可以看出,当其他条件不变时,旋光度α与反应物浓度成正比,即Kc α= (7-6)式中K 是与物质的旋光能力、溶液层厚度、溶剂性质、光源的波长、反应时的温度等有关系的常数。
蔗糖水解反应速率常数的测定
实验目的
1.用旋光法测定蔗糖水解反应的速率常数,掌握测定反 应速率常数的基本方法,了解古根亥姆动力学数据处 理方法的原理; 2.了解和掌握旋光仪的原理和使用方法。
实验原理
在酸性介质中蔗糖水解反应为: 在酸性介质中蔗糖水解反应为: H+ C12 H 22 O11 + H 2 O → C 6 H 12 O6 + C 6 H 12 O6
ct ln ct = k1t + ln c0 积分得 ln c = k1t 或 0 蔗糖及其水解产物有旋光性,尽管其旋光能力各不相同,
但稀溶液中旋光度与浓度成正比关系,又因体系的旋光度 有加和性,据此可用旋光仪测定体系旋光度随时间得变化 来跟踪浓度的变化,测定速率常数。 据此导出反应物和生成物的浓度与旋光度的关系,代 入积分式可得:
蔗糖(右旋) 葡萄糖(右旋) 果糖(左旋)
在浓度不大的情况下,蔗糖水解所消耗的水量是很小的, 在浓度不大的情况下,蔗糖水解所消耗的水量是很小的, 可认为
c H 2O
Байду номын сангаас
基本保持不变,速率方程简化为: 基本保持不变,速率方程简化为:
d r = cC12 H 22 O11 = K1cC12 H 22O11 dt
旋光管使用示意
思考题
1. 实验中,我们用蒸馏水来校正旋光仪的零点,蔗糖转 化反应过程所测的旋光度是否需要零点校正?为什么? 2. 混合蔗糖和盐酸溶液时,我们将盐酸加到蔗糖溶液里 去,可否把蔗糖溶液加到盐酸中去?为什么? 3. 旋光管的凸出部分有何用途?
ln(α t α ∞ ) = K 1t + ln(α 0 α ∞ )
为避免测 α
∞
可用古根亥姆法得到
八、蔗糖水解反应速率常数的测定
物理化学实验报告实验名称:蔗糖水解反应速率常数的测定学院:化学工程学院专业:化学工程与工艺班级:姓名:学号:指导教师:日期:一、 实验目的1、了解蔗糖水解反应体系中各物质浓度与旋光度之间的关系。
2、测定蔗糖水解反的速率常数和半衰期。
3、了解旋光仪的基本原理,并掌握旋光仪正确的操作技术。
二、实验原理1、反应速率-dtdc只与某反应温度的一次方成正比的反应成为一级反应。
其速率方程通式为:-dtdc =K 1c (1) 积分式为: ln CC O=K 1 t (2)式中C 0为反应物的初始浓度,C 为t 时刻反应物的浓度,为反应的速率常数。
当C=C 0/2时,对应的可用表示1/2表示,成为反应的半衰期,即反应物浓度掉一半所用的时间。
即:反应的半衰期2/1t = k2ln =0.693/ k (3)由式子可以看出,一级反应的半衰期与反应物的初始浓度无关。
即:lnc = ln c o - K 1 t (4)2、蔗糖水解反应的计量方程式为:C 12H 22O 11+H 2O ==== C 6H 12O 6 + C 6H-12O 6蔗糖 葡萄糖 果糖蔗糖水解速率极慢,在酸性介质中反应速率大大加快,故H 3O +为催化剂。
反应中,H 2O 是大量的,反应前后与溶质浓度相比,看成它的浓度不变,故蔗糖水解反应可看做一级反应。
蔗糖及其水解产物均为旋光性物质,蔗糖是右旋的,但水解后的混合物葡萄糖和果糖则为左旋,这是因为左旋的果糖比右旋的葡萄糖旋光度稍大的缘故。
因此,当蔗糖开始水解后,随着时间增长,溶液的右旋光度渐小,逐渐变为左旋,即随着蔗糖浓度减小,溶渡的旋光度在改变。
因此,借助反应系统旋光度的测定,可以测定蔗糖水解的速率。
当其它条件不变时,旋光度α与浓度 c 成正比,即: α=Kc (K 为比例常数) 已知,比旋光度[α蔗糖]20D=+66.6°,[α蔗糖]20D=+52.2°,[ α果糖]20D=-91.9°,所以,当蔗糖水解反应进行时,右旋角度不断减小,当反应终了时,系统经过零度变为左旋。
蔗糖水解反应速率常数的测定
蔗糖水解反应速率常数的测定实验目的(1)明了旋光度法测定化学反应速率的原理;(2)测定蔗糖水解反应速率常数;(3)掌握旋光仪的使用方法;(4)掌握用图解法求反应速率常数。
实验原理蔗糖溶液在H+离子存在时,按下式进行水解:C12H22O11 + H2O → C6H12O6 + C6H12O6蔗糖葡萄糖果糖时间t=0 c00 0t=t c0-c x c x c xt=∞0 c0c0其中,c0为反应物初始浓度,c x为反应进行至t时间的产物浓度,c0-c x为反应进行t时间后反应物的浓度。
此反应中H+离子为催化剂。
当H+离子浓度一定时,此反应在某时间t的反应速率与蔗糖及水浓度一次方的乘积成正比,故为二级反应。
由于在反应过程中水是大大过量,故认为水的浓度在反应过程中不变,这样蔗糖水解反应就可以作为一级反应处理,起速率方程的积分式为:(1)式中,c0为反应开始时蔗糖的浓度;c0-c x为反应至时间t时蔗糖的浓度;k为速率常数。
若测得在反应过程中不同时刻对应的蔗糖浓度,代入上式就可以求出此反应的速率常数k。
而测定各时间所对应的反应物浓度的方法有化学方法与物理方法两种。
化学方法是在反应过程中反应进行若干时间,取出一部分反应混合物,并让其迅速停止反应,记录时间,然后分析与此时间相对应的反应物浓度。
但是要时反应迅速停止在实验上是很困难的,因而所分析的浓度总与取样的时间存在偏差,所以此方法是不够准确的;而物理方法则是利用反应系统中某一物理性质(如电导率、折射率、旋光度、吸收光谱、体积、气压等)与反应物的浓度有直接关系时,通过测量该物理性质的变化就可相应知道反应物浓度的改变。
不过对物理性质有以下要求:(1)物理性质和反应物的浓度要有简单的线性关系,最好是正比关系;(2)在反应过程中反应系统的物理性质要有明显的变化;(3)不能有干扰因素。
这个方法的优点是不需要从反应物系中取出样品,可直接测定,而且可连续地进行分析,方便迅速,还可将物理性质变成电信号进行自动记录等。
物化实验蔗糖水解反应速率常数的测定
蔗糖水解反应速率常数的测定一. 实验目的1. 了解旋光仪的基本原理,掌握旋光仪的正确使用方法。
2. 熟悉反应物和产物的浓度与其旋光度之间的关系。
3. 用自动旋光仪测定蔗糖在酸催化下水解的反映速率常数和半衰期。
二. 实验原理1. 蔗糖在水中转化为葡萄糖和果糖,反应式为:C 12H 22O 11(蔗糖)+H 2O →C 6H 12O 6(葡萄糖)+C 6H 12O 6(果糖)此反应的反应速率与蔗糖,水及催化剂H +离子的浓度有关。
由于H +离子及水的浓度可近似认为不变,因此,蔗糖水解反应可看作为一级反应(假一级反应)。
2. 此反应速率可由下式表示:-dc/dt=kc积分后可得lnc t =lnc 0-ktc t 为时间t 时反应物的浓度, c 0为反应开始时反应物的浓度,k 为反应速率常数。
3. 反应速率还可以用半衰期t 1/2表示,即反应物浓度为反应开始浓度的一半时所需要的时间。
4. 由2式子可得 -d (c 0-x )/dt=k (c 0-x )积分后可得ln(00C C X -)=KX t=0.693k ln 00C C X -当反应进行一半时:t1/2=1k ln000cc1/2c=1kln0c1/2c=ln2k=0.693k5.蔗糖是右旋性物质,比旋光度为66.6°,生成物葡萄糖也是右旋性物质,比旋光度为52.5°,果糖是左旋性物质,比旋光度为-91.9°。
由于果糖的左旋光性比葡萄糖的右旋光性大,所以生成物呈左旋光性。
故随着反应的不断进行,反应体系的旋光性将由右旋变为左旋,直到蔗糖完全水解,这时的左旋角度达到最大值。
三.仪器与试剂WZZ-2B自动旋光仪带塞锥形瓶(150ml)烧杯(100ml)秒表电子台秤移液管(25ml)玻璃棒洗耳球铁夹子HCL(4mol/L)蔗糖(分析纯)四.实验步骤1.插上电源,打开仪器电源开关。
这时钠光灯在交流工作状态下起辉,预热5min,至钠光灯从紫色变到黄色,钠光灯才发光稳定。
蔗糖水解反应速率常数的测定
一、 实验目的1. 了解蔗糖水解反应体系中各物质浓度与旋光度之间的关系;2. 测定蔗糖水解反应的速率常数和半衰期;3. 了解旋光仪器仪的基本原理,并掌握其正确的操作技术。
二、 实验原理一级反应的速率方程可由下式表示:-kc dtdc= 积分可得: lnc=-kt + lnc 0式中c 0为反应物的初始浓度,c 为t 时刻反应物的浓度,k 为反应速率常数。
一级反应的半衰期为: t 1/2=kk In 693.02= 从上式可以看出,一级反应的半衰期与起始浓度无关。
这是一级反应的一个特点。
若用lnc 对t 作图应为一直线。
这是一级反应的另一个特点,由直线的斜率可求速率常数k 。
然 蔗糖在水中转化成葡萄糖与果糖,其反应为:C 12H 22O 11(蔗糖) + H 2O −→−+H C 6H 12O 6(葡萄糖) + C 6H 12O 6 (果糖)为使水解反应加速,常以酸为催化剂,故反应在酸性介质中进行。
此反应的反应速率与蔗糖的浓度、水的浓度以及催化剂H +的浓度有关。
但反应过程中,由于水是大量的,可认为水的浓度基本是恒定的,且H +是催化剂,其浓度也保持不变,故反应速率只与蔗糖的浓度有关,所以蔗糖水解反应可看作是一级反应。
蔗糖及水解产物均为旋光性物质,但他们的旋光能力不同,故可以利用体系在反应过程中旋光度的变化来度量反应进程,测量旋光度所用的仪器称为旋光仪。
溶液旋光度与溶液中所含旋光物质的种类、浓度、溶剂的性质、液层厚度、光源的波长及温度等均有关系。
在蔗糖水解反应中,反应物蔗糖是右旋性物质,比旋光度为[α]20D =66.6°,生成物中葡萄糖也是右旋性物质,比旋光度为[α]20D =52.5°,而果糖则是左旋性物质,[α]20D =-91.9°。
随着反应的进行,右旋角不断减小。
当反应进行到某一时刻,体系的旋光度经过零点,然后左旋角不断增加。
当蔗糖完全转化时,左旋角达到最大值α∞。
蔗糖水解反应速率常数的测定
蔗糖⽔解反应速率常数的测定蔗糖⽔解反应速率常数的测定⼀、实验⽬的1、根据物质的光学性质研究蔗糖⽔解反应,测定其反应速率常数。
2、了解旋光仪器仪的基本原理,掌握其使⽤⽅法。
⼆、实验原理蔗糖在⽔中转化成葡萄糖与果糖,其反应为:612661262112212O H C O H C O H O H C +→+它属于⼆级反应,在纯⽔中此反应的速率极慢,通常需要在H+离⼦催化作⽤下进⾏。
由于反应时⽔⼤量存在,尽管有部分⽔分⼦参与反应,仍可近似地认为整个反应过程中⽔的浓度是恒定的,⽽且H+是催化剂,其浓度也保持不变。
因此在⼀定浓度下,反应速度只与蔗糖的浓度有关,蔗糖转化反应可看作为⼀级反应。
⼀级反应的速率⽅程可由下式表⽰:式中:c 为蔗糖溶液浓度,k 为蔗糖在该条件下的⽔解反应速率常数。
令蔗糖开始⽔解反应时浓度为c0,⽔解到某时刻时的蔗糖浓度为ct ,对上式进⾏积分得:该反应的半衰期与k 的关系为:蔗糖及其转化产物,都具有旋光性,⽽且它们的旋光能⼒不同,故可以利⽤体系在反应进程中旋光度的变化来度量反应进程。
测量物质旋光度所⽤的仪器称为旋光仪。
溶液的旋光度与溶液中所含旋光物质的旋光能⼒,溶剂性质,溶液浓度,样品管长度及温度等均有关系。
当温度、波长、溶剂⼀定时,旋光度的数值为:[]t D C L αα??=或 KC =αL 为液层厚度,即盛装溶液的旋光管的长度;C 为旋光物质的体积摩尔浓度;[]tD α为⽐旋光度;t 为温度;D 为所⽤光源的波长。
⽐例常数'K 与物质旋光能⼒,溶剂性质,样品管长度,光源的波长,溶液温度等有关。
可见,旋光度与物质的浓度有关,且溶液的旋光度为各组分旋光度之和。
作为反应物的蔗糖是右旋性物质,其⽐旋光度[]02065.66=D 蔗α;⽣成物中葡萄糖也是右旋性物质,其⽐旋光度[]0205.52=D 葡α;但果糖是左旋性物质,其⽐旋光度[]0209.91-=D 果α。
由于⽣成物中果糖的左旋性⽐葡萄糖右旋性⼤,所以⽣成物呈左旋性质。
蔗糖水解反应速率常数的测定
蔗糖水解反应速率常数的测定一、实验目的(1) 根据物质的旋光性质研究蔗糖水解反应,测定蔗糖转化反应的速率常数和半衰期;(2) 了解该反应的反应物浓度与旋光度之间的关系; (3) 了解旋光仪的基本原理,掌握旋光仪的使用方法。
二、实验原理蔗糖在水中转化为葡萄糖和果糖,反应式如下:C 12H 22O 11+H 2O →C 6H 12O 6 + C 6H 12O 6 蔗糖 葡萄糖 果糖蔗糖水解速率极慢,在酸性介质中反应速率大大加快,故H +为催化剂。
由于反应时H 2O 是大量存在的,尽管有部分水参加反应 ,仍近似认为整个反应过程中水的浓度是恒定的,故蔗糖水解反应可近似为一级反应。
一级反应的速率方程可由下表示:kc dtdc=- (1)积分式为: 0c kt c ln ln +-= (2)当c=0.5c 0时,可用t 1/2表示,即为反应的半衰期:kt 221ln /= (3)从(2)式可看出在不同的时间测定反应物的相应浓度,并以ln c t 对t 作图得一直线,由直线斜率即可求出反应速率常数k 。
溶液的旋光度与溶液中所含旋光物质的种类、浓度、液层厚度、光源波长及反应时的温度等因素有关。
当其他条件固定时,旋光度α与反应物浓度c 呈线性关系: α = A c (4)式中A 与物质的旋光能力、溶液厚度、溶剂性质、光源波长、反应温度等有关系的常数。
蔗糖水解反应中,反应物与生成物都具有旋光性,旋光度与浓度成正比,且溶液的旋光度为各组成旋光度之和(有加和性)。
当反应进行到某一时刻,体系的旋光度进过零点,然后左旋角不断增加。
当蔗糖完全转化时,左旋角达到最大值α∞。
若以α0 ,αt ,α∞分别为反应时间0,t ,∞时溶液的旋光度,则有:)ln()ln(0t ∞∞-+-=-ααααkt (5)显然,以)ln(∞-a a t 对t 作图可得一直线,从直线斜率即可求得反应速率常数k 。
如果测出两个不同温度时的k 值,利用Arrhenius 公式求出反应在该温度范围内的平均活化能。
实验十三蔗糖水解反应速率常数的测定
六、思考题
• 1.[H+]对反应速率常数有无影响? • 2.将混合次序颠倒,即将蔗糖溶液倒向酸中是否 可以?为什么? • 3.若旋光仪有零位误差,在本实验中有无必要对 每次测得的旋光角读数加以校正? • 4.能否使用混浊蔗糖溶液? • 5.为什么装有反应液的旋光管中要保证无气泡? • 6.把所测得的旋光角再旋转90°时,视野里能 看到什么现象?
三、实验仪器及试剂
旋光仪1套;停表1块; 锥形瓶(100 ml)2个; 移液管(25 ml)2支; 20%蔗糖水溶液; 3 mol·dm–3HCl溶液。
四、实验步骤
1.用蒸馏水校正仪器的零点。 2.反应过程旋光度的测定 3.α∞的测量
五、实验记录及数据处理
1.以ln(αt–α∞)为纵坐标,t为横坐标作图, 由直线的斜率求速率常数k值。 2.用外推法求得ln(αt–α∞)后,代入(13—5) 式计算反应速率常数k值,并与作图法求出之k值 比较。
而c 0=α∞/K生 ∴αt=(K反–K生)c+ K生·α∞/K生 ∴c =(αt–α∞)/(K反–K生) 令1/(K反–K生)= K′ (13—3) ∴ c = K′(αt–α∞) 同理可解出: c0=(α0–α∞)/(K反–K生)= K′(α0–α∞) (13—4) 将(13—3)和(13—4)代入(13—1)得: (13—5) ln(αt–α∞)= –kt+ ln(α0–α∞) 由(13—5)式可以看出,若以ln(αt–α∞)对t作 图,图形为一线,其斜率等于–k,由此可求出反 应速率常数k。
物质的旋光能力用比旋光度来度量,比旋光 度可用下式来表示
lc lm ρ α——观测的旋光角; 式中: l——样品管长度(光路长度)[dm]; c——溶质浓度[g溶质/ml溶液]; m——溶质浓度[g溶质/g溶液] ρ——溶液密度[g/cm3]。
一级反应蔗糖水解反应速率常数的测定
一级反应——蔗糖水解反应速率常数的测定一、实验目的1.用旋光仪测定当蔗糖水解时,其旋光度变化与时间的关系,从而推算蔗糖水解 反应的速率常数和半衰期。
2.了解旋光仪的基本原理,掌握其使用方法。
二、实验原理:蔗糖水解反应的计量方程式为:C 12H 22O 11+H 2O ==== C 6H 12O 6+C 6H12O 6蔗糖 葡萄糖 果糖蔗糖水解速率极慢,在酸性介质中反应速率大大加快,故H 3O +为催化剂。
反应中,H 2O 是大量的,反应前后与溶质浓度相比,看成它的浓度不变,故蔗糖水解反应可看做一级反应。
其动力学方程式如下:-dtdc =K 1C 积分式为: lnCC O=K 1 t K 1 =t 1ln CC O 或 K=t303.2lg C C O反应的半衰期2/1t =k2ln K 1 速率常数 t 时间Co 蔗糖初始浓度C 蔗糖在t 时刻的浓度可见一级反应的半衰期只决定于反应速率常数K ,而与反应物起始浓度无关。
若测得反应在不同时刻时蔗糖的浓度,代入上述动力学的公式中,即可求出K和2/1t 。
测定反应物在不同时刻浓度可用化学法和物理法,本实验采用物理法即测定反应系统旋光度的变化。
蔗糖及其水解产物均为旋光性物质,蔗糖是右旋的,但水解后的混合物葡萄糖和果糖则为左旋,这是因为左旋的果糖比右旋的葡萄糖旋光度稍大的缘故。
因此,当蔗糖开始水解后,随着时间增长,溶液的右旋光度渐小,逐渐变为左旋,即随着蔗糖浓度减小,溶渡的旋光度在改变。
因此,借助反应系统旋光度的测定,可以测定蔗糖水解的速率。
所谓旋光度,指一束偏振光,通过有旋光性物质的溶液时,使偏振光振动面旋转某一角度的性质。
其旋转角度称为旋光度(a )。
使偏振光按顺时针方向旋转的物质称为右旋物质,a 为正值,反之称为左旋物质,a 为负值。
物质的旋光度,除决定于物质本性外,还与温度、浓度、液层厚度、光源波长等因素有关,当光源用钠灯,波长一定,λ=D(5890nm ),实验温度t =20℃时,旋光度与溶液浓度和溶层厚度成正比,a ∝c.l 写成等式 a=[a]t D ·c·l 式中比例常数[a] tD ,称为比旋光度。
实验十二蔗糖水解反应速率常数的测定
实验十二 蔗糖水解反应速率常数的测定一 实验目的1. 测定蔗糖水解反应速率常数和半衰期2. 了解旋光仪的基本原理,掌握旋光仪的使用方法二 实验原理反应速率与反应物浓度一次方成正比的反应称一级反应,其速率方程为: dtdc − =kc (12-1) 式中c 是反应物t 时刻的浓度。
k 是反应速率常数。
积分上式得: ln cc o =kt (12-2) 式中o c 为t =0时刻的反应物浓度。
一级反应具有以下两个特点:⑴ 以ln c 对t 作图,可得一直线,其斜率m =k −。
⑵ 反应物消耗一半所需的时间称为半衰期,以t 1/2c 表示。
将=1/2o c 代入(12-2)式,得一级反应的半衰期为t 1/2k2ln = (12-3) (12-3)式说明一级反应的半衰期t 1/2k 只决定于反应速率常数,而与反应物起始浓度无关。
蔗糖在酸性溶液中的水解反应为:C 12H 22O 11(蔗糖)+H 2 → +H O C 6H 12O 6(葡萄糖)+ C 6H 12O 6实验表明,该反应的反应速率与蔗糖、水和氢离子三者的浓度均有关。
在氢离子浓度不变的条件下,反应速率只与蔗糖浓度和水的浓度有关,但由于水是大量的,在反应过程中的水浓度可视为不变。
在这种情况下,反应速率只与蔗糖浓度的一次方成正比,其动力学方程式符合(12-1)式,所以此反应视为一级反应。
(果糖) 蔗糖及其水解产物是旋光性物质。
本实验就是利用反应体系在水解过程中是旋光性质的变化来跟踪反应进程。
所谓物质的旋光性是指它们可以使一束偏振光的偏振面旋转一定角度,所旋转的角度称旋光度。
对含有旋光性物质的溶液,其旋光度的大小与旋光性物质的本性、溶剂、入射光波长、溶液的浓度和厚度以及温度等因素有关。
为了比较不同物质的旋光能力,引入了比旋光度[]tD α这一概念,其定义式为:[]t D α=lc α(12-4)式中t 为实验温度(℃),D 为光源的波长(常用钠黄光,λ=589nm ),α为旋光度,l 为溶液的厚度(dm ),c 为浓度(每ml 中所含的物质的质量(克))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
室温:23.1o C 大气压:101.325Kpa 反应温度:31o C
C HCL : 2mol/L α∞=-0.311×α0= -3.88
表一 2min间隔数据
表二 3min间隔数据
表三 5min间隔数据
表四 10mim间隔数据
采用30 min前的数据点,采用二次曲线拟合,可以准确得到α0,结果如图
图1外推法求α0图
求得α0=12.47
表五数据综合
t\min αt αt-α∞ln(αt-α∞)
2 11.05 14.9
3 2.70
4 10.5
5 14.43 2.67
6 9.58 13.46 2.60
8 8.65 12.53 2.53
10 7.71 11.59 2.45
12 6.82 10.70 2.37
15 5.58 9.46 2.25
18 4.45 8.33 2.12
21 3.41 7.29 1.99
24 2.47 6.35 1.85
27 1.64 5.52 1.71
30 0.91 4.79 1.57
35 -0.13 3.57 1.27
40 -0.94 2.94 1.07
45 -1.56 2.32 0.84
50 -2.02 1.86 0.62
55 -2.35 1.53 0.43
60 -2.51 1.37 0.31
70 -2.80 1.08 0.08
80 -2.93 0.95 -0.05
90 -2.97 0.91 -0.09
以ln(αt-α∞)对t作图
图2ln(αt-α∞)对t的关系
ln (αt-α∞)= ln (ao—α∞)一k t
得k=0.03682 其半衰期为t=ln2/k=18.82min
六、思考题
1.蔗糖水解反应速率常数与哪些因素有关
答:水解速率常数与温度,与水的浓度和盐酸的浓度有关
2.为什么可用蒸馏水来校正旋光仪的零点?求速率常数时,所测旋光度是否必须进行零点校正?
答:因为蔗糖溶液是用蒸馏水配制的,用蒸馏水调零点已经减去了蒸馏水的影响。
3.为什么配蔗糖溶液可以用粗天平称量?
答:因为反应中测的是旋光度,并且当盐酸与蔗糖混合时就开始反应了。
4.记录反应开始的时间迟点或早点是否影响值的测定?
答:影响不太大,有一点点影响。
5.反应开始,为什么将盐酸溶液倒入蔗糖溶液中,而不相反?
答:因为如果相反的话,当蔗糖刚到入盐酸重中时导致盐酸过量,是蔗糖迅速反应,是可测数值减少,进而影响实验结果。