八年级数学(上)14.1幂的运算

合集下载

八年级数学上册高效课堂(人教版)14.1.1同底数幂的乘法优秀教学案例

八年级数学上册高效课堂(人教版)14.1.1同底数幂的乘法优秀教学案例
在实际教学中,本章节内容具有一定的抽象性,对于八年级的学生来说,理解起来存在一定的困难。因此,教师在设计教学活动时,要充分考虑学生的认知规律,以激发学生学习兴趣为出发点,创设生动、有趣的学习情境,让学生在实践中感知、体验、理解同底数幂的乘法法则。
为了提高教学效果,教师应运用多样化的教学手段,如PPT、教学课件、数学实验等,将抽象的数学概念形象化、具体化,降低学生学习难度。同时,注重启发式教学,引导学生主动探究、积极思考,提高学生分析问题和解决问题的能力。
八年级数学上册高效课堂(人教版)14.1.1同底数幂的乘法优秀教学案例
一、案例背景
本案例背景针对的是八年级数学上册(人教版)14.1.1同底数幂的乘法章节。该章节是初中数学的重要内容,旨在让学生理解同底数幂的乘法法则,掌握幂的运算性质。通过对同底数幂的乘法的学习,培养学生逻辑思维能力、创新意识和解决问题的能力。
(2)注重培养学生的团队合作精神,让学生在合作中成长。
(3)联系生活实际,让学生感受数学与生活的紧密联系,提高学生的数学应用能力。
三、教学策略
(一)情景创设
1.生活情境:结合学生的生活实际,创设含有同底数幂的乘法问题的情境,让学生感受到数学与生活的紧密联系。
2.数学情境:通过展示数学史料、数学实验等方式,引发学生对同底数幂的乘法的好奇心,激发学生学习兴趣。
1.合理分组,确保每个小组成员都能发挥自己的优势。
2.明确合作任务和要求,引导学生有序进行合作。
3.关注小组合作的过程,及时给予指导和反馈。
(四)反思与评价
1.引导学生对学习过程进行反思,让学生总结经验、提高认识。
2.组织学生进行自我评价、同伴评价,让学生了解自己的优点和不足,激发学生自我改进的动力。
为实现上述目标,教师在教学过程中应注重以下几点:

幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)(人教版)(教师版)25学年八年级数学上册

幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)(人教版)(教师版)25学年八年级数学上册

专题14.1幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的乘法法则+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.【要点提示】(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m nm n aa a +=⋅(,m n 都是正整数).【知识点2】幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.【要点提示】(1)公式的推广:(())=m n pmnpa a (0≠a ,,,m n p 均为正整数)(2)逆用公式:()()nmmnm n a aa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识点3】积的乘方法则()=⋅n n nab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.【要点提示】(1)公式的推广:()=⋅⋅nnnnabc a b c(n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识点4】注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【题型目录】【题型1】同底数幂的乘法运算及逆运算...........................................2;【题型2】幂的乘方运算及逆运算.................................................4;【题型3】积的乘方运算及逆运算.................................................7;【题型4】幂的混合运算.........................................................9;【题型5】幂的运算的应用.......................................................11;【题型6】直通中考.............................................................13;【题型7】拓展与延伸...........................................................14.第二部分【题型展示与方法点拨】【题型1】同底数幂的乘法运算及逆运算【例1】(23-24七年级上·河南周口·期中)在学习第一章有理数时,类比小学两个正数的运算法则学习了有理数的加减法、有理数的乘除法,在第二章整式的加减时,类比第一章有理数的学习过程学习了整式的加减,那么整式的乘法是否可以类比有理数的乘法进行学习呢?我们从特殊情况入手对两个同底数幂相乘进行探究.(1)探究根据乘方的意义填空,观察计算结果,你能发现什么规律①53( )222⨯=,②42( )a a a ⋅=,③( )555m n ⨯=,(2)规律( )m n a a a ⋅=(,m n 都是正整数).即__________________________.(文字表达)(3)应用①计算31m m a a +⋅;②把(2)x y +看成一个整体,计算23(2)(2)x y x y +⋅+.【答案】(1)①8;②6;③;m n +(2);m n +同底数幂相乘,底数不变,指数相加(3)①41m a +;②5(2)x y +【分析】本题考查了同底数幂的乘法公式的推导和应用.掌握同底数幂的乘法公式的计算公式是关键;(1)(2)(3)根据同底数幂相乘,底数不变,指数相加解答即可;解:(1)①853(35)2222+⨯==,②642(4+2)a a a a ⋅==,③555m n m n +⨯=,故答案为:8;6;;m n +(2)m n m n a a a +⋅=,即同底数幂相乘,底数不变,指数相加;故答案为:;m n +同底数幂相乘,底数不变,指数相加;(3)①1314m m m a a a ++⋅=;②253.(2)(2)(2)x y x y x y +=+⋅+【变式1】(23-24七年级下·全国·单元测试)计算3()()x y y x -⋅-=()A .4()x y -B .4()x y --C .4)y x -(D .4()x y +【答案】B【分析】本题考查了同底数幂的乘法法则,把()x y -看作一个整体,利用同底数幂的乘法法则即可求解.解题的关键是熟练的掌握同底数幂的乘法法则.解:334()()()()()x y y x x y x y x y -⋅-=--⋅-=--,故选:B .【变式2】(23-24七年级下·全国·单元测试)已知1222162x x ⋅⋅=,则x =.【答案】4【分析】本题主要考查了同底数幂的乘法运算,根据同底数幂相乘,底数不变指数相加,将1222162x x ⋅⋅=变形为:241222x +=,从而得出2412x +=,再求出x 的值即可.解:42421622222x x x x x +⋅=⋅⋅⋅=,∵1222162x x ⋅⋅=,∴241222x +=,∴2412x +=,解得:4x =.故答案为:4.【例2】(2024七年级下·全国·专题练习)(1)已知23x =,求32x +的值;(2)若21464a +=,求a 的值.【答案】(1)24;(2)1a =【分析】本题考查的是同底数幂的乘法运算的逆运算,熟记运算法则是解本题的关键;(1)由33222x x +=⨯,再代入数据计算即可;(2)由21344a +=,再建立方程求解即可.解:(1)∵23x =,∴332238242x x +=⨯=⨯=;(2)∵21464a +=,∴21344a +=,∴213a +=,解得1a =.【变式1】(23-24七年级下·江苏淮安·期中)已知23x =,26y =,则2x y +的值是()A .12B .18C .36D .54【答案】B【分析】本题考查了同底数幂的乘法的逆用,根据同底数幂的乘法法则进行变形即可求解,解题的关键是熟练掌握同底数幂的乘法法则.解:由8232261x y x y +=⨯=⨯=,故选:B .【变式2】(2024七年级上·上海·专题练习)已知4222112x x +-⋅=,则x 的值为.【答案】3【分析】本题主要考查同底数幂的乘法运算以及提取公因式法分解因式,熟练并正确掌握相关运算法则是解题的关键.解:∵4222112x x +-⋅=,∴()13221112x +⨯-=,故142162x +==,解得:3x =故答案为:3.【题型2】幂的乘方运算及逆运算【例3】(21-22七年级上·上海·期末)计算:()()()3254652x x x x x x ⎡⎤⋅-⋅+-⋅+-⎣⎦.【答案】12x 【分析】先计算幂的乘方和同底数幂的乘法,再合并同类项即可.解:()()()3254652x x x x x x ⎡⎤⋅-⋅+-⋅+-⎣⎦121212x x x =-++12x =.【点拨】本题考查了整式的运算法则,解题的关键是熟记幂的乘方,同底数幂的乘法,合并同类项的知识.【变式1】(2022·江苏镇江·中考真题)下列运算中,结果正确的是()A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a =【答案】C【分析】根据合并同类项法则,同底数幂的乘法法则,幂的乘方法则逐项计算即可判断选择.解:222325a a a +=,故A 计算错误,不符合题意;3332a a a -=-,故B 计算错误,不符合题意;235a a a ⋅=,故C 计算正确,符合题意;()326a a =,故D 计算错误,不符合题意.故选C .【点拨】本题考查合并同类项,同底数幂的乘法,幂的乘方.熟练掌握各运算法则是解题关键.【变式2】.若25 3 0x y +-=,则432⋅=x y .【答案】8【分析】根据已知条件可得2+5=3x y ,根据幂的乘方运算以及同底数幂的乘法进行计算即可求解.解:∵25 3 0x y +-=∴2+5=3x y ,∴432⋅=x y 2525322228x y x y +⨯===,故答案为:8.【点拨】本题考查了幂的乘方运算以及同底数幂的乘法,熟练掌握幂的运算法则是解题的关键.【例4】(2023八年级上·全国·专题练习)(1)若23m n a a ==,,求32m n a +的值;(2)若2639273x x ⨯⨯=,求x 的值.【答案】(1)72;(2)5【分析】(1)利用幂的乘方和同底数幂的乘法法则进行变形,再利用整体代入计算即可;(2)把2639273x x ⨯⨯=变形为1232633x x ++=,得到关于x 的方程,解方程即可得到答案;熟练掌握幂的乘方、同底数幂的乘法法则,并利用整体思想是解题的关键.解:(1)∵23m n a a ==,,∴32m na +32m na a =⋅()()32m na a =⋅3223=⨯89=⨯72=;(2)2639273x x ⨯⨯=,23263333x x=⨯⨯()(),23263333x x ⨯=⨯,1232633x x ++=,12326x x ++=,5x =.【变式1】已知553a =,444b =,335c =,则a 、b 、c 的大小关系为()A .c a b <<B .c b a<<C .a b c<<D .a c b<<【答案】A【分析】把a 、b 、c 三个数变成指数相同的幂,通过底数可得出a 、b 、c 的大小关系.解:∵a =(35)11=24311,b =(44)11=25611,c =(53)11=12511,又∵125243256<<,∴c a b <<.故选:A .【点拨】本题考查了幂的乘方的逆运算,解答本题关键是掌握幂的乘方法则,把各数的指数变成相同.【变式2】(23-24八年级上·重庆九龙坡·阶段练习)已知433,33a b ==,则239a b ⨯=.【答案】16【分析】直接根据同底数幂的乘法以及幂的乘方运算法则进行计算即可得到答案.解:∵433,33a b==,∴()()()()222222243933333163a b a ba b ⎛⎫⨯=⨯=⨯=⨯= ⎪⎝⎭故答案为:16.【点拨】本题主要考查了同底数幂的乘法以及幂的乘方,熟练掌握运算法则是解答本题的关键.【题型3】积的乘方运算及逆运算25.【例5】(22-23八年级上·黑龙江哈尔滨·阶段练习)(1)()34222x x x ⋅-;(2)()()23332232x y x y +-【答案】(1)6x ;(2)66x y 【分析】(1)根据同底数幂乘法法则及幂的乘方计算法则计算,再合并同类项即可;(2)根据积的乘方计算法则去括号,再合并同类项即可.解:(1)()34222x x x ⋅-662x x =-6x =;(2)()()23332232x y x y +-666698x y x y =-66x y =.【点拨】此题考查了整式的计算,正确掌握同底数幂乘法法则及幂的乘方计算法则、积的乘方计算法则、合并同类项法则是解题的关键.【变式1】(2022·广东深圳·中考真题)下列运算正确的是()A .268a a a ⋅=B .()3326a a -=C .()22a b a b+=+D .235a b ab+=【答案】A【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,单项式乘多项式及合并同类项的法则逐一判断即可.解:A 、268a a a ⋅=,计算正确,故此选项符合题意;B 、33(2)8a a -=-,原计算错误,故此选项不符合题意;C 、2()22a b a b +=+,原计算错误,故此选项不符合题意;D 、23a b +,不是同类项不能合并,原计算错误,故此选项不符合题意.故选:A .【点拨】本题考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【变式2】(20-21七年级下·江苏扬州·期末)已知am =10,bm =2,则(ab )m =.【答案】20【分析】根据积的乘方计算法则解答.解:∵am =10,bm =2,∴(ab )m =10220m m a b ⋅=⨯=,故答案为:20.【点拨】此题考查积的乘方计算法则:积的乘方等于积中每个因式分别乘方,再把结果相乘,熟记法则是解题的关键.【例6】(2023九年级·全国·专题练习)用简便方法计算:(1)88552510.25(4)57⎛⎫⎛⎫-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()201720180.1258⨯-.【答案】(1)1-;(2)8-.【分析】(1)原式逆用积的乘方运算法则进行计算即可;(2)先将20188-变形为201788-⨯,再逆用积的乘方运算法则进行计算即可.解:(1)88552510.25(4)57⎛⎫⎛⎫-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭8585715()()()(4)547=-⨯⨯⨯-8855751(4)574⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-⨯⨯⨯-⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦58751(4)574⎛⎫⎡⎤=-⨯⨯⨯- ⎪⎢⎥⎝⎭⎣⎦1(1)=⨯-1=-;(2)()201720180.1258⨯-()201720171888⎛⎫=⨯-⨯ ⎪⎝⎭()201720171888⎛⎫=⨯-⨯ ⎪⎝⎭20171888⎛⎫=-⨯⨯ ⎪⎝⎭18=-⨯8=-.【点拨】本题主要考查了积的乘方的逆运算,熟练掌握运算法则是解答本题的关键.【变式1】(22-23七年级下·河北沧州·期中)若n 为正整数.且24n a =,则()()223224nn a a -的值为()A .4B .16C .64D .192【答案】D【分析】根据积的乘方以及逆运算对式子进行化简求解即可.解:()()2232642444nnn na a a a -=-()()322232444444nna a =-=⨯-⨯()32444448192=⨯-=⨯=,故选D .【点拨】此题考查了幂的有关运算,解题的关键是熟练掌握幂的有关运算法则.同底数幂相乘(除),底数不变,指数相加(减);幂的乘方,底数不变,指数相乘;积的乘方,把每个因式分别乘方.【变式2】已知2232336x x x ++-⋅=,则x =.【答案】8.【分析】根据积的乘方和幂的乘方的逆运算,把等式变形,根据指数相同求解即可.解:2232336x x x ++-⋅=,根据积的乘方和幂的乘方,等式可变形为:223(23)(6)x x +-⨯=,即22666x x +-=,226x x +=-,解得,8x =故答案为:8.【点拨】本题考查了幂的运算的逆运算,解题关键是把等式恰当变形,依据底数相同,指数也相同列方程.【题型4】幂的混合运算【例7】(21-22八年级上·全国·课后作业)计算:(1)()()()2243224249()(2)--+-a a b a b ;(2)()()()22112()3------n n n nx x x x x .【答案】(1)8425a b ;(2)31n x -.【分析】(1)先计算幂的乘方,再计算同底数幂,最后合并同类项即可;(3)先计算幂的乘方,再计算同底数幂,最后合并同类项即可.解:(1)()()()2243224249()(2)--+-a a b a b ,=62484916a a b a b ⋅⋅+,=8484916a b a b +,=8425a b ;(2)()()()22112()3------n n n nx x x x x ,=()()21212()3n n n n xx x x x -----,=()2112123n n n n x x -+++--+,=313123n n x x ---+,=31n x -.【点拨】本题考查整式的幂指数运算,掌握幂的乘方,同底数幂的乘法,合并同类项是解题关键.【变式1】(20-21七年级下·甘肃兰州·阶段练习)下列各式计算正确的是()A .-3xy ·(-2xy )2=12x 3y 3B .4x 2·(-2x 3)2=16x 12C .(-a 2)·a 3=a 6D .2a 2b ·(-ab )2=2a 4b 3【答案】D【分析】根据幂的运算法则逐一计算,可得结果.解:A 、()2333212xy xy x y -⋅--=,故选项错误;B 、()22384216x x x ⋅-=,故选项错误;C 、()236a a a -⋅=-,故选项错误;D 、()224322a b ab a b ⋅-=,故选项正确;故选D .【点拨】本题考查了幂的混合运算,熟练掌握运算法则是解题的关键.【变式2】已知2,3x x a t ==,则24x =.(用含,a t 的代数式表示)【答案】3a t解:∵2x =a ,3x =t ,∴24x =(23×3)x =23x ×3x =(2x )3×3x =a 3t .故答案为a 3t .【题型5】幂的运算的应用【例8】(23-24八年级上·山西长治·阶段练习)我们知道,一般的数学公式、法则、定义可以正向运用,也可以逆向运用.对于“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为m n m n a a a += ,()()n m mn m n a a a ==,()mm m a b ab =;(m ,n 为正整数).请运用这个思路和幂的运算法则解决下列问题:(1)已知552a =,443b =,334c =,请把a ,b ,c 用“<”连接起来:;(2)若2a x =,3b x =,求32a b x +的值;(3)计算:2001001011284⎛⎫⨯⨯ ⎪⎝⎭.【答案】(1)a c b <<;(2)72;(3)8.【分析】(1)根据逆用幂的乘方,化成指数相同的幂,再比较大小;(2)根据逆用同底数幂的乘法和逆用幂的乘方即可求解;(3)根据逆用同底数幂的乘法和逆用幂的乘方,化成指数相同的幂,再计算即可求解;本题主要考查了同底数幂的乘法、幂的乘方法则,掌握法则的逆用是解题的关键.(1)解:∵()11555112232a ===,()11444113381b ===,()11333114464c ===.又∵326481<<,∴a c b <<,故答案为:a c b <<;(2)解:32a bx +32a b x x =⋅,()()32a b x x =⋅,∵2a x =,3b x =,∴原式3223=⋅,89=⨯,72=;(3)解:2001001011284⎛⎫⨯⨯ ⎪⎝⎭()200210110031222⎡⎤⎛⎫=⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,4001003031222⎛⎫=⨯⨯ ⎪⎝⎭,400403122⎛⎫=⨯ ⎪⎝⎭,40040031222⎛⎫=⨯⨯ ⎪⎝⎭,40031222⎛⎫=⨯⨯ ⎪⎝⎭,402312=⨯,8=.【变式1】(21-22八年级上·河南三门峡·期末)下列运算中,错误的个数是()(1)224a a a +=;(2)236a a a ⋅=;(3)2n n n a a a ⋅=;(4)()448a a a --⋅=A .1个B .2个C .3个D .4个【答案】D 【分析】利用同底数幂的乘法运算法则,合并同类项的法则对各式进行运算,即可得出结果.解:(1)22242a a a a ≠+=,故(1)错误;(2)2356a a a a ⋅≠=,故(2)错误;(3)22n n n n a a a a ⋅≠=,故(3)错误;(4)()4488a a a a ---⋅≠=,故(4)错误,综上所述,错误的个数为4个,故选:D .【点拨】本题主要考查同底数幂的乘法运算法则、合并同类项运算等知识,解题的关键是对相应的运算法【变式2】(20-21九年级下·湖南永州·期中)将边长为1的正方形纸片按如图所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,12320202021S S S S S +++++= .【答案】202111()2-【分析】先具体计算出S 1,S 2,S 3,S 4的值,得出面积规律,表示S 2021,再设12320202021S S S S S S =+++++ ①,两边都乘以12,得到42320212022111111((()()+()222222S =++++ ②,利用①−②,求解S ,从而可得答案.解:∵42320211234202111111111,(,(),(),(242821622S S S S S ======== 设S =42320211234202111111()()((22222S S S S S +++++=+++++ ①12320202021111111222222S S S S S S ∴=+++++ 4232021202211111(()()()+()22222=++++ ②①-②得,2022111()222S ∴=-202111()2S ∴=-故答案为:202111()2-.【点拨】本题考查的是图形的面积规律的探究,有理数的乘方运算的灵活应用,同底数幂的乘法与除法的应用,方程思想的应用,正方形的性质,掌握以上知识是解题的关键.第三部分【中考链接与拓展延伸】【题型6】直通中考【例9】(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b =C .83a b +=D .38a b=+【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .【例10】(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【答案】D【分析】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,解题的关键是熟练掌握以上运算法则;根据同底数幂的乘法同底数幂的除法,合并同类项,幂的乘方,运算法则计算即可解:A .23235a a a a +⋅==,故选项不符合题意;B .12212210a a a a -÷==,故选项不符合题意;C .3332a a a +=,故选项不符合题意;D .()32236a a a ⨯==,故选项符合题意;故选:D .【题型7】拓展延伸【例11】(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +【答案】D 【分析】本题考查了整式的加法运算,整式的乘法运算,理解题意,正确的逻辑推理时解决本题的关键.设一个三位数与一个两位数分别为10010x y z ++和10m n +,则20,5,2,mz nz ny nx a ====,即4=m n ,可确定1,2n y ==时,则4,5,m z x a ===,由题意可判断A 、B 选项,根据题意可得运算结果可以表示为:()1000411002541001025a a a +++=+,故可判断C 、D 选项.解:设一个三位数与一个两位数分别为10010x y z ++和10m n+如图:则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz=,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A 、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .【例12】(19-20七年级下·江苏南京·期中)观察等式(2a ﹣1)a +2=1,其中a 的取值可能是()A .﹣2B .1或﹣2C .0或1D .1或﹣2或0【答案】D 【分析】存在3种情况:一种是指数为0,底数不为0;第二种是底数为1,指数为任意值;第三种是底数为-1,指数为偶数,分别求解可得.解:情况一:指数为0,底数不为0即:a +2=0,2a -1≠0解得:a =-2情况二:底数为1,指数为任意值即:2a -1=1解得:a =1情况三:底数为-1,指数为偶数即:2a -1=-1,解得a =0代入a +2=2,为偶数,成立故答案为:D【点拨】本题考查0指数和底数为±1的指数的特点,本题底数为-1的情况容易遗漏,需要关注.。

人教版八年级数学上册14.1.1《同底数幂的乘法》教学设计

人教版八年级数学上册14.1.1《同底数幂的乘法》教学设计

人教版八年级数学上册14.1.1《同底数幂的乘法》教学设计一. 教材分析《同底数幂的乘法》是人教版八年级数学上册第14章幂的运算中的一节内容。

本节主要让学生掌握同底数幂的乘法法则,理解幂的运算性质,并能够熟练地进行计算。

为后续学习幂的乘方、积的乘方等知识打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数的乘法、幂的定义等知识。

他们对于幂的概念和运算有一定的了解,但还需要进一步引导他们理解同底数幂的乘法法则,并能够运用到实际计算中。

三. 教学目标1.理解同底数幂的乘法法则,掌握幂的运算性质。

2.能够熟练地进行同底数幂的乘法计算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.同底数幂的乘法法则的理解和运用。

2.幂的运算性质的掌握。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索;通过案例教学,让学生直观地理解同底数幂的乘法;通过小组合作学习,培养学生的团队合作精神和解决问题的能力。

六. 教学准备1.PPT课件2.教学案例和习题3.笔记本和计算器七. 教学过程导入(5分钟)通过一个实际问题引入:某商店举行打折活动,原价为2^5元,打8折后的价格是多少?引发学生思考,引出同底数幂的乘法运算。

呈现(10分钟)通过PPT展示同底数幂的乘法法则,用具体的案例进行解释,让学生直观地理解同底数幂的乘法运算。

操练(10分钟)学生独立完成一些同底数幂的乘法运算,教师巡回指导,及时解答学生的疑问。

巩固(10分钟)学生分组合作,解决一些实际问题,运用同底数幂的乘法运算。

教师参与各小组的讨论,给予指导和鼓励。

拓展(10分钟)引导学生思考同底数幂的乘法运算的推广,即幂的乘方和积的乘方。

通过案例和习题进行讲解和练习。

小结(5分钟)教师引导学生总结本节课所学的同底数幂的乘法法则和运算性质,学生分享自己的学习心得和体会。

家庭作业(5分钟)布置一些同底数幂的乘法运算的练习题,要求学生在课后进行巩固和复习。

14.1.1同底数幂的乘法-课件-人教版数学八年级上册

14.1.1同底数幂的乘法-课件-人教版数学八年级上册
【点评】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是 解题的关键.

6.已知32m=5,32n=10,则9m﹣n+1的值
【分析】先逆用幂的乘方法则,把32m、32n转化为9m、9n的形式,再逆用同底 数幂的乘除法法则,把9m﹣n+1转化为同底数幂的乘除法的形式后代入求值.
【解答】解:∵32m=(32)m=9m=5,32n=(32)n=9n=10, ∴9m﹣n+1=9m÷9n×9 =5÷10×9 =
∴102+n﹣1=106,
∴2+n﹣1=6,
解得n=5,
故答案为:5.
【点评】本题主要考查了同底数幂的乘法法则,同底数幂相乘,底数不
变,指数相加.
2.已知272=a6=9b,则a2+ab的值为 .
【分析】直接利用幂的乘方运算法则将已知变形得出a,b,进而得出答案. 【解答】解:∵272=a6=9b, ∴36=a6=9b=32b, ∴a=±3,b=3, 当a=3,b=3时, ∴a2+ab=9+9=18, 当a=﹣3,b=3时, ∴a2+ab=9﹣9=0, 故a2+ab的值为0或18. 故答案为:0或18. 【点评】此题主要考查了有理数的乘方,正确得出a,b的值是解题关键.
人教版八年级上册第十四章
同底数幂的乘法
教学设计一:
故事引入:大家都知道“手拉面”吧,厨师把和好的面切成相等的 段,然后用手拉,第一次拉成1米,再折回成2根,每根米长;第 二次将这2根都拉成1米,折回成4根,每根仍是米;第三次将这4 根拉成1米,折回成米长的8根,总长是4米。这样一直拉下去, 拉到一定的细度,一般要拉十几次。假如要拉14次,那么第14次 拉完时,拉面的总长度是多少呢?我们来算一算。第1次 1根 1米, 第2次 2根 2米,第3次 4根 4米, ···,第15次 =8192根 8192米, 也就是拉到第14次的时候,所有面条的总长度达8千多米。这拉 面可真长啊!差不多是珠穆朗玛峰的海拔高度了。

人教版八年级上册课件 14.1.2 幂的乘方和积的乘方 (共48张PPT)

人教版八年级上册课件 14.1.2 幂的乘方和积的乘方  (共48张PPT)
2018/8/1
温故知新
1.幂的乘方的法则 语言叙述 幂的乘方,底数不变,指数相乘.
符号叙述 ( a ) a
m n
m n
(m、n都是正整数) .
公式中的a可表示一 个数、字母、式子等 .
2.幂的乘方的法则可以逆用.即
a
mn
(a ) (a )
m n
n m
3.多重乘方也具有这一性质.如
[(a ) ] a
已知:am=2, an=3.
m+n 求a
= ?.
=2 × 3=6
解: am+n = am · an
2018/8/1
1.( x) ( -x) ( x)
6 5
2.( y x) ( x-y)
3 4
2018/8/1
判断下面计算是否正确,如有错误请改正。
a +a a
6 6
12
(×)
2018/8/1
(3) (am)2= a mΧ 2 = a 2m ; (4) -(x4)3 = - x 4Χ3 = - x12 .
计算: (1) (103)3; (2) (x3)2;
(3) - ( xm )5 ; ⑸ ( y 3 )2
(4) (a2 )3∙ a5;

[(a b) 3 ]4
幂的乘方法则(重点) 例 2:计算: (1)(x2)3; (3)(a3)2-(a2)3; (2)-(x9)8; (4)(a2)3· a5.
a
6
a a
6
2a
2018/8/1
6
2、
(1) [(x y) ]
3 4
⑵ (a-b)3[(a-b)3]2
⑶[(x-y)2]2[(y-x)2]3

人教版八年级数学上册14.1.1《同底数幂的乘法》说课稿

人教版八年级数学上册14.1.1《同底数幂的乘法》说课稿

人教版八年级数学上册14.1.1《同底数幂的乘法》说课稿一. 教材分析《同底数幂的乘法》是人教版八年级数学上册第14章幂的运算的第一节内容。

本节课的主要内容是让学生掌握同底数幂的乘法法则,并能灵活运用该法则进行幂的运算。

教材通过引入实例,引导学生发现并归纳同底数幂的乘法法则,进而培养学生的观察、思考、归纳能力。

本节课的内容是学生进一步学习幂的运算的基础,对于学生来说具有重要的意义。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法、幂的定义等知识,对于幂的概念和运算有一定的了解。

但学生对于幂的运算规则还没有形成系统的认识,对于同底数幂的乘法可能还存在困惑。

因此,在教学过程中,教师需要根据学生的实际情况,引导学生通过观察、思考、归纳等方法,发现并理解同底数幂的乘法法则。

三. 说教学目标1.知识与技能目标:让学生掌握同底数幂的乘法法则,能正确进行同底数幂的乘法运算。

2.过程与方法目标:通过观察、思考、归纳等方法,培养学生发现、分析和解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生体验到成功的喜悦。

四. 说教学重难点1.教学重点:同底数幂的乘法法则。

2.教学难点:同底数幂的乘法法则的灵活运用。

五. 说教学方法与手段1.教学方法:采用引导发现法、归纳总结法、例题教学法等。

2.教学手段:利用多媒体课件辅助教学,直观展示幂的运算过程,帮助学生理解和掌握同底数幂的乘法法则。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考同底数幂的乘法问题,激发学生的学习兴趣。

2.探究新知:引导学生观察、思考、归纳同底数幂的乘法法则,学生在教师的引导下,发现并总结出同底数幂的乘法法则。

3.例题讲解:教师通过讲解典型例题,让学生理解并掌握同底数幂的乘法法则。

4.巩固练习:学生进行课堂练习,教师及时给予指导和反馈,帮助学生巩固所学知识。

5.课堂小结:教师引导学生总结本节课的主要内容,加深学生对同底数幂的乘法法则的理解。

14.1.1同底数幂的乘法 课件 2024—2025学年人教版数学八年级上册

14.1.1同底数幂的乘法 课件 2024—2025学年人教版数学八年级上册
(4)同底数幂的乘法性质可推广到一般情况,即对于3个或以上的同底
数幂相乘,运算性质仍成立:
a m·
an·
a p a m n p(m,n,p是正整数).
a m1 ·
a m2 ·
·
a mn a m1 m2 mn
(m1:m2,…,mn是正整数).
性质巩固
例1 计算下列各题,并写出每步计算步骤的依据.
-2n1 +2n
(n≥2,n是正整数),结果总为6.
总结提升
1.本节课学习了哪些主要内容?
2.同底数幂的乘法的运算性质是怎么被探究并推导出来的?
在运用时要注意什么?
达标检测
A级
1.计算:
(1)x5 x 2
(4) a 2 a n 1 a ;
(2) x n x n 1
(3) a 2 n a n 1
m n
a m·
a n(m,n是正整数)
解:原式
=2-22 -23 -24 -
-28 +29
2 22 23 24 28 2 28
2 22 23 24 27 28
=…
2 22
=6
事实上,一般性算式可写成
2-22 -23 -24 -
(2)已知
求a的值;
x 31,
x m 2,x n 3,求x m n的值.
5.计算:
3
(1) a 2 (
a)
(2) (a b c) 2 (b a c)3 (a c b) 4 ;
(3) 8 24 n 22 n 1 .
6.计算:x n 1·
( 5 ) (a b)( a b) 4 .

八年级数学上册第十四章同底数幂的乘法教学课件新版新人教版ppt

八年级数学上册第十四章同底数幂的乘法教学课件新版新人教版ppt

新课导入
规 律 以上6个式子都是两个底数相同的幂相乘,其结果的幂的底数仍与 原来两个幂的底数相同,结果的幂的指数是原两个幂的指数相加. (其中指数均为正整数)
思考:你能总结出同底数幂相乘的运算法则吗?
新课讲解
知识点1 同底数幂的乘法 性质:同底数幂相乘,底数不变,指数相加.
am×an=(a∙a∙a∙a∙a∙a∙∙∙∙∙∙a∙a∙a∙a∙a∙a∙a)(a∙a∙a∙a∙a∙a∙∙∙∙∙∙a∙a∙a∙a∙a∙a∙a)
m个a
n个a
=a∙a∙a∙a∙a∙a∙∙∙∙∙∙a∙a∙a
m+n个a
=am+n
符号表示:am×an=am+n (m,n 都是正整数).
新课讲解
知识点1 同底数幂的乘法 性质:同底数幂相乘,底数不变,指数相加.
符号表示:am×an=am+n (m,n 都是正整数).
(1)使用该性质运算的前提条件有两个:①乘法运算; ②底数相同. (2)单个字母或数字可以看成指数为1的幂,参与同底数幂的乘法运 算时, 不能忽略指数为x+2=36,则 3x 2 . 2
提示:3x+2=3x·32=36,3x=4.
新课讲解
知识点1 同底数幂的乘法
示例:
指数相加
指数相加
a3×a5 = a8
(-a)×(-a)2×(-a)3 = (-a) 1+2+3 =(-a)6
底数a不变
底数-a不变
(-a)的指数为1
新课讲解
知识点1 同底数幂的乘法 (1)同底数幂的乘法的性质也适用于三个及三个以上的同底
数幂相乘,即 am∙ an∙ ap = am+n+p(m,n,p都为正整数). (2)同底数幂的乘法的性质可以逆用,即 am+n = am∙ an (m,n都为正 整数).

14.1.1 幂的运算 课件 人教版数学八年级上册

14.1.1 幂的运算  课件 人教版数学八年级上册

感悟新知
知3-练
例 5 计算: (1)(x·y3)2; (2)(-3×102)3;
(3)

1 3
a3
2 2; (4)(-a2b3)3.
解题秘方:运用积的乘方、幂的乘方的运算法则
进行计算.
感悟新知
知3-练
解:(1)(x·y3)2=x2·(y3)2=x2y6;
最后结果要符合 学记数法的要求

(2)(-3×102)3=(-3)3×(102)3=-27×106=-2.7×107;
感悟新知
知1-练
解:(1)108×102=108+2=1010; (2)x7·x=x7+1=x8; (3)an+2·an-1=an+2+n-1=a2n+1; (4)-x2·(-x)8=-x2·x8=-x10; (5)(x+3y)3·(x+3y)2·(x+3y)=(x+3y)3+2+1=(x+3y)6; (6)(x-y)3·(y-x)4=(x-y)3·(x-y)4=(x-y)7.
感悟新知
1-3. 计算(-a)3·a2的结果等于__-__a_5___.
知1-练
感悟新知
知1-练
例 2 (1)若am=2,an=8,求am+n的值; (2)已知2x=3,求2x+3 的值. 解题秘方:逆用同底数幂的乘法法则求解,即am+n= am·an(m,n都是正整数).
感悟新知
知1-练
解:(1)∵ am=2,an=8,∴ am+n=am·an=2×8=16 . (2)∵ 2x=3,∴ 2x+3=2x·23=3×8=24 .
幂的乘方
公式
am·an=am+n (m,n都是正整数)
(am)n=amn (m,n都是正整数)
法则中 的运算 乘法

八年级幂的运算知识点

八年级幂的运算知识点

八年级幂的运算知识点在八年级数学中,幂的运算是一个非常重要的知识点。

掌握了幂的运算,可以更好地理解和解决数学题目,为高中数学打下坚实的基础。

那么,幂数学在八年级具体有哪些内容呢?下面就来一一讲解。

一、幂的定义和简单运算幂是指一个数的几次方,比如$a^2$就是a的平方,表示为a×a。

幂具有以下运算法则:1.同底数幂相乘规则:两个数的底数相同,指数相加,即$a^m×a^n=a^{m+n}$。

2.同底数幂相除规则:两个数的底数相同,指数相减,即$\frac{a^m}{a^n}=a^{m-n}$。

3.幂的乘方规则:一个数的幂的幂,底数不变,指数相乘,即$(a^m)^n=a^{m×n}$。

4.负指数的意义:$a^{-n}=\frac{1}{a^n}$,即分母是$a^n$,分子为1的分数。

二、零数幂和整数幂1.零数幂的概念:$0^n=0$(n≠0),因为任意数乘以0都等于0,所以0的n次方都等于0。

2.整数幂的概念:正整数幂是指将正整数作为底数所得到的幂;负整数幂是指将负整数作为底数所得到的幂。

正整数的n次方表示为$a^n$,负整数的n次方表示为$(-a)^n$。

对于负整数,以下四条规律需要注意:(1)奇数次方的负数结果为负数,如$(-5)^3=-125$。

(2)偶数次方的负数结果为正数,如$(-6)^4=1296$。

(3)负数的奇次方与其相反数的奇次方相反,如$(-3)^3=-27$,$3^3=27$,$-3^3=-27$。

(4)负数的偶次方与其相反数的偶次方相等,如$(-2)^4=16$,$2^4=16$。

三、小数幂小数幂是指将小数作为底数的幂,如$0.5^3=0.125$。

小数幂的计算方法与整数幂的计算规律相同。

四、分数幂分数幂是指将分数作为底数的幂,如$(\frac{1}{2})^3=\frac{1}{8}$。

分数幂的计算方法需要使用根式,将分数幂转化为根的形式,如$(\frac{1}{2})^3=\sqrt[3]{\frac{1}{8}}=\frac{1}{\sqrt[3]{8}}=\frac{1 }{2}$。

人教版八年级上册14.1.1《同底数幂的乘法》优秀教学案例

人教版八年级上册14.1.1《同底数幂的乘法》优秀教学案例
在讲解同底数幂乘法法则时,我运用了多媒体课件和教具,以生动形象的方式展示幂的运算过程,帮助学生直观地理解同底数幂乘法的概念。同时,我注重个体差异,针对不同学生的学习需求,给予个性化的指导,使他们在课堂上充分参与,提高学习效果。
此外,我还设计了一系列练习题,让学生在课后巩固所学知识,提高运用同底数幂乘法法则解决实际问题的能力。整个教学过程注重知识与技能、过程与方法、情感态度与价值观的全面发展,充分体现新课程标准的要求。
人教版八年级上册14.1.1《同底数幂的乘法》优秀教学案例
一、案例背景
本案例背景以人教版八年级上册14.1.1《同底数幂的乘法》为教学内容,旨在提高学生对同底数幂乘法法则的理解与应用。在课程设计中,我以学生已掌握的幂的运算法则为基础,通过生活实例引入同底数幂的乘法概念,引导学生探讨、发现并总结同底数幂乘法的运算规律。
2.合作探究:学生小组内部进行讨论,分享自己的思路和解题方法。每个小组成员都要积极参与,互相帮助,共同解决给定的问题。
(四)总结归纳
1.小组汇报:每个小组都会向全班汇报他们的讨论结果和解题方法。我会引导学生对每个小组的汇报进行评价,并给出自己的建议。
2.教师讲解:根据学生的讨论和汇报,我会对同底数幂乘法的运算规律进行总结和归纳,明确正确的运算方法和注意事项。
在情景创设环节,我将注重引导学生主动参与,激发学生的学习兴趣,为后续教学环节奠定基础。
(二)问题导向
1.设计具有启发性的问题:提出与同底数幂乘法相关的问题,引导学生思考、探究,激发学生的求知欲。
2.引导学生自主解决问题:鼓励学生运用已学知识,尝试解决同底数幂乘法的问题,培养学生的自主学习能力。
3.分层次提问:针对不同学生的学习水平,设计不同难度的问题,使所有学生都能在解决问题中提高自己的数学素养。

八年级数学人教版上册同步练习同底数幂的乘法(解析版)

八年级数学人教版上册同步练习同底数幂的乘法(解析版)

14.1.1同底数幂的乘法一、单选题1.已知32,33x y ==,则3x y +的值为( )A .6B .5C .36D .3【答案】A【分析】原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【详解】∵32,33x y ==,∴3=33236x y x y +⋅=⨯=,故选:A【点评】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键,2.已知2,3m n a a ==,则m n a +的值为( )A .6B .5C .3D .1 【答案】A【分析】根据同底数幂的乘法的逆用可直接进行求解.【详解】∵2,3m n a a ==,∴236m n m n a a a +=⋅=⨯=;故选A .【点评】本题主要考查同底数幂的乘法的逆用,熟练掌握同底数幂的乘法的逆用是解题的关键.3.计算(-2)99+(-2)100结果等于 ( )A .(-2)199B .-2199C .299D .-299 【答案】C【分析】原式利用乘方的意义计算即可得到结果.【详解】原式=(-2)99+(-2)99×(-2)=(-2)99×(1-2)=299,故选:C .【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.若23a =,25b =,215c =,则( )A .a b c +=B .1a b c ++=C .2a b c +=D .22a b c +=【分析】根据同底数幂乘法的逆运算进行计算即可【详解】∵23a =,25b =,215c =,∵21535222+==⨯=⨯=a b c a b∴a b c +=故选:A【点评】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键5.计算()()9910022-+-的结果为( ) A .992-B .992C .2-D .2 【答案】B【分析】根据同底数幂的乘法法则运算即可.【详解】()()9910022-+- =9100922-=9999222-⨯=()99212-⨯ =992故选B .【点评】本题考查了有理数的混合运算,解题的关键是合理利用同底数幂的乘法法则进行简便运算. 6.计算23a a ⋅的结果是( )A .6aB .5aC .4aD .3a【答案】B【分析】根据同底数幂相乘的法则进行计算,然后判断即可.【详解】23235a a a a +⋅==,故选:B .【点评】本题考查了同底数幂相乘,按照法则—同底数幂相乘,底数不变,指数相加进行计算是关键,属于基础题型.7.若3x =10,3y =5,则3x +y 的值是( )A .15B .50C .0.5D .2【分析】直接逆用同底数幂的乘法法则计算得出答案.【详解】∵3x =10,3y =5,∴3x +y =3x •3y =10×5=50.故选:B .【点评】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.8.10102(2)+-所得的结果是( )A .0B .102C .112D .202【答案】C【分析】先把10(2)-化为102,合并后再根据同底数幂的运算法则计算即可.【详解】10102(2)+-=1010101122222=⋅=+.故选:C .【点评】本题考查了同底数幂的运算和合并同类项,属于常考题型,明确求解的方法是解题关键.二、填空题目9.如果23x =,27y =,则2x y +=_____________.【答案】21【分析】根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x =, 27y =,∴2223721x y x y +=⋅=⨯=,故答案为:21.【点评】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算. 10.已知5122120m m ++-=,则m 的值是_________________.【答案】2【分析】根据同底数幂的乘法法则将原式变形可得52222120m m ⨯-⨯=,再利用乘法分配律合并计算,得到m 值.【详解】∵5122120m m ++-=,∴52222120m m ⨯-⨯=,∴()2322120m ⨯-=,∴24m =,∴m=2,故答案为:2.【点评】本题考查了同底数幂的乘法,解题的关键是灵活运用运算法则.11.我们规定一个新数“i ”,使其满足i 1=i ,i 2=﹣1,并且进一步规定:一切有理数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1.那么i 6=____,i 1+i 2+i 3+…+i 2022+i 2023=____.【答案】-1 -1【分析】各式利用题中的新定义计算即可求出值.【详解】i 6=i 5•i =-1,由题意得,i 1=i ,i 2=﹣1,i 3=i 2•i =﹣i ,i 4=i 2•i 2=﹣1×(﹣1)=1,i 5=i 4•i =i ,i 6=i 5•i =-1,故可发现4次一循环,一个循环内的和为0,2023÷4=505 (3)i 1+i 2+i 3+…+i 2022+i 2023=505×0+(i -1-i )=-1.故答案为:-1,-1.【点评】本题考查了同底数幂的乘法运算,解答本题的关键是计算出前面几个数的值,发现规律,求出一个循环内的和再计算,有一定难度.12.已知4222112x x +-⋅=,则x =________【答案】3【分析】利用同底数幂乘法的逆运算求解即可.【详解】∵()4411312222222172x x x x x x +++++-⋅-=⋅=⋅-=,∴172112x +⋅=,即:142162x +==,∴14x +=,∴3x =,故答案为:3.【点评】本题主要考查同底数幂乘法的逆运算,灵活运用同底数幂乘法法则是解题关键.13.已知8m x =,6n x =,则2m n x +的值为______.【答案】384【分析】利用同底数幂相乘的逆运算得到2m n m m n x x x x +⋅⋅=,将数值代入计算即可.【详解】∵8m x =,6n x =,∴2886m n m m n x x x x +⋅⋅==⨯⨯=384,故答案为:384.【点评】此题考查同底数幂相乘的逆运算,正确将多项式变形为2m n m m n x x x x +⋅⋅=是解题的关键. 14.已知25,23a b ==,求2a b +的值为________.【答案】15.【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点评】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.三、解答题15.光的速度约为3×105千米/秒,太阳光射到地球需要时间约是5×102秒,地球与太阳的距离约是多少千米?【答案】81.510⨯【分析】根据路程=速度×时间,先列式表示地球到太阳的距离,再用科学记数法表示.【详解】3×105×5×102=15×107=1.5×108千米.故地球与太阳的距离约是1.5×108千米.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.表示时关键要正确确定a 的值以及n 的值.同时考查了同底数幂的乘法.16.判断23221()()()()n m a m a b b a a b a b -++-⋅-⋅-=-是否正确,并说明理由.【答案】不正确,理由见解析【分析】根据题意,要进行幂的乘法运算,先把每一项写成同底数的形式,所以把()3b a -转换成()3a b --,然后进行同底数幂的乘法运算,底数不变指数相加.【详解】不正确.理由如下:232()()()n m a b b a a b --⋅-⋅-232()[()]()n m a b a b a b -=-⋅--⋅-232()()()n m a b a b a b -=--⋅-⋅-21()n m a b ++=--.【点评】本题考查了同底数幂的乘法,需要注意的是当指数是奇数的时候,底数变为原来的相反数,幂的前面要加上负号.17.计算:2726733333(3)⨯-⨯+⨯-.【答案】83【分析】由题意先根据同底数幂相乘指数相加进行运算,再进行同类项合并即可求值.【详解】2726733333(3)⨯-⨯+⨯-272617333+++=--883323=⨯-⨯83=.【点评】本题考查整式乘法,熟练掌握同底数幂的乘法运算法则以及合并同类项原则是解题的关键. 18.若3a =5,3b =10,则3a+b 的值.【答案】50【分析】根据同底数幂乘法的逆运算即可得出答案【详解】3a+b =3a ⨯3b =5⨯10=50【点评】此题考查了同底数幂乘法的逆运算,熟练掌握运算法则是解题的关键19.如果c a b =,那么我们规定()a b c =,.例如:因为328=,所以(2,8)3=.(1)根据上述规定,填空:(4,16)= ,(2,32)= .(2)记(3,5)a =,(3,6)b =,(3,30)c =.求证:a b c +=.【答案】(1)2,5;(2)证明见解析.【分析】(1)由新定义设()4,16,x =可得416,x = 从而可得答案,同理可得()2,32的结果;(2)由新定义可得:35a =,36b =,330c =,从而可得:333=30,a b a b += 从而可得33a b c +=,从而可得结论.【详解】(1)()a b c =,,,c a b ∴=设()4,16,x =24164,x ∴==2,x ∴=()4,16=2∴,设()2,32,y =52322,y ∴==5,y ∴=()2,32 5.∴=故答案为:2,5.(2)证明:根据题意得:35a =,36b =,330c =∵5630⨯=∴333a b c ⋅= 则33a b c +=∴a b c +=.【点评】本题考查的新定义情境下幂的运算,弄懂新定义的含义,掌握同底数幂的乘法,幂的含义是解题的关键.20.规定两正数a ,b 之同的一种运算,记作:E(a ,b),如果a c =b ,那么E(a ,b)=c .例如23=8,所以E(2,8)=3(1)填空:E(3,27)= ,E 11,216⎛⎫ ⎪⎝⎭= (2)小明在研究这和运算时发现一个现象:E(3n ,4n )=E(3,4)小明给出了如下的证明:设E(3n ,4n )=x ,即(3n )x =4n ,即(3n ,4n )=4n ,所以3x =4,E(3,4)=x ,所以E(3n ,4n )=E(3,4),请你尝试运用这种方法说明下面这个等式成立:E(3,4)+E(3,5)=E(3,20)【答案】(1)3;4;(2)证明见解析.【分析】(1)根据规定的两数之间的运算法则:知4311327,,216⎛⎫== ⎪⎝⎭ 从而可得答案; (2)设E (3,4)=x ,E (3,5)=y ,根据定义得:34,35,x y ==利用同底数幂的乘法可得答案.【详解】(1)∵3327,=∴E (3,27)=3; ∵411,216⎛⎫= ⎪⎝⎭ ∴11,4,216E ⎛⎫= ⎪⎝⎭故答案为:3;4;(2)设E (3,4)=x ,E (3,5)=y ,则34,35,x y ==∴3334520,x y x y +=•=⨯=∴E (3,20)=x+y ,∴E (3,4)+E (3,5)=E (3,20).【点评】本题是利用新定义考查幂的运算的逆运算,掌握幂的运算,同底数幂的乘法运算是解题的关键. 21.(1)若2x a =,3y a =,求x y a -的值; (2)计算2310012222++++⋅⋅⋅+的值.【答案】(1)23;(2)10121-. 【分析】(1)逆用同底数幂的除法的运算法则解答即可;(2)设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+, 把这两个式子相减即可求解.【详解】(1)∵2x a =,3y a =, ∴23x y x y a a a -=÷=; (2) 设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+,∴S=2S-S=10121-.【点评】本题考查了同底数幂的除法及同底数幂的乘法的应用,熟练运用法则是解决问题的关键.22.已知a x=5,a x+y=30,求a x+a y的值.【答案】11.【详解】分析:首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出y a的值是多少;然后把x a、y a的值相加,求出x a+y a的值是多少即可.本题解析:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.祝福语祝你考试成功!。

人教版八年级上册数学:同底数幂的除法

人教版八年级上册数学:同底数幂的除法

(3) (-a)10÷(-a)7; -a3 (4) (xy)5÷(xy)3. x2y2
3.下面的计算对不对?如果不对,应当怎样改正?
(1) x6÷x2=x3; x4 (2) 64÷64=6; 1
(3)a3÷a=a3; a2 (4)(-c)4÷(-c)2=-c2. (-c)2=c2
拓展应用
(1)311÷ 27; (2)516 ÷ 125.
(5)(-b)5÷(-b)2=(-b)5-2=(-b)3=-b3
探究
分别根据除法的意义填空,你能得什
么结论? (1)32÷32= ( 30 );
再利用am÷an=amn计算,发现了什么?
(2)103÷103= ( 100 );
(3)am÷am=( a0 ) (a≠0).
规定
a0=1 (a≠0). 即任何不等于0的数的0次幂都等于1
❖思维延伸
则am-n=am÷an
已知:xa=4,xb=9,求(1)x a-b;(2)x 3a-2b
解(1)xa-b=xa÷xb=4÷9= 4
9
这种思维
(2)x3a-2b=x3a÷x2b=(xa)3÷(xb)2
叫做逆向
=43÷92= 64
思维!
81
谈谈你今天这节课 的收获
同底数幂相除法则:同底数幂相除, 底数不变,指数相减。
am÷an=am-n(a≠0,m,n都 是正整数,并且m>≥n).
练习
1.填空:
(1)a5•( a2)=a7;
(2) m3•( m5) =m8;
(3) x3•x5•( x4) =x12 ;
(4) (-6)3( (-6)2 ) = (-6)5.
2.计算:
(1) x7÷x5; x2

人教版初中数学八年级上册第十四章 同底数幂的乘法

人教版初中数学八年级上册第十四章  同底数幂的乘法
“特殊→一般→特殊”
例子 公式 应用 (1)不要忽略指数是“1”的因式. (2)底数可以是单项式,也可以是多项式, 通常把底数看成一个整体来运算.
课后作业
作业 内容
14.1 整式的乘法/
教材作业 从课后习题中选取 自主安排 配套练习册练习
课堂检测
14.1 整式的乘法/
3.计算: (1) x n ·xn+1 ;
解: x n ·xn+1 = xn+(n+1) = x2n+1 (2) (x+y)3 ·(x+y)4 .
am · an = am+n
公式中的a可代表 一个数、字母、 式子等.
解: (x+y)3 ·(x+y)4 = (x+y)3+4 =(x+y)7
解:2x+y =2x×2y =3×6 =18
链接中考
14.1 整式的乘法/
1.计算a6•a2的结果是( C )
A.a3
B.a4
C.a8
2.计算:a2•a3= a5 .
D.a12
课堂检测
14.1 整式的乘法/
基础巩固题
1. x3·x2的运算结果是( C )
A. x2
B. x3
C. x5
D. x6
2.计算2x4•x3的结果等于_2_x__7 _.
(-2)×(-2)4×(-2)3 ≠-21+4+3=-28 =-256
巩固练习
14.1 整式的乘法/
下面的计算对不对?如果不对,怎样改正?
(1)b5 ·b5= 2b5 (×) (2)b5 + b5 = b10 (×)
b5 ·b5= b10

14.1.1同底数幂的乘法(教案)-2023-2024学年人教版数学八年级上册

14.1.1同底数幂的乘法(教案)-2023-2024学年人教版数学八年级上册
3.重点难点解析:在讲授过程中,我会特别强调同底数幂乘法法则和指数相加的概念这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与同底数幂乘法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示同底数幂乘法的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“同底数幂乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在今天的课堂中,我们探讨了同底数幂的乘法,这个概念对于学生们来说是一个新的挑战。我注意到,在引入这个话题时,通过提问日常生活中的实例,学生们很快就产生了兴趣,这为后续的教学奠定了良好的基础。然而,我也发现了一些需要改进的地方。
首先,我发现有些学生在理解同底数幂乘法法则时遇到了困难,特别是在将指数相加的概念应用到具体的计算中。在未来的教学中,我需要更加耐心地解释这一过程,并可能采用更多的直观教具或动画来帮助学生形象化理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解同底数幂的乘法的基本概念。同底数幂的乘法是指当底数相同时,幂的乘法可以转化为指数的加法,即am × an = am+n。这个法则在数学运算中非常重要,能够帮助我们简化计算过程。
2.案例分析:接下来,我们来看一个具体的案例,如2^3 × 2^4的计算。这个案例展示了同底数幂乘法在实际中的应用,以及它如何帮助我们解决问题。

人教版数学八年级上册 14.1 整式的乘法习题梳理

人教版数学八年级上册 14.1   整式的乘法习题梳理

第十四章 整式的乘法与因式分解14.1 整式的乘法考点一幂的运算1. 同底数幂的乘法法那么:n m n m a a a +=• (n m ,都是正整数 )同底数幂相乘 ,底数不变 ,指数相加 .注意底数可以是多项式或单项式2. 幂的乘方法那么:mn n m a a =)( (n m ,都是正整数 )3. 积的乘方法那么:n n n b a ab =)( (n 是正整数 ) 4. 同底数幂的除法法那么:n m n m a a a -=÷ (n m a ,,0≠都是正整数 ,且)n m 5. 零指数;10=a ,即任何不等于零的数的零次方等于1例1.计算 (1 )43x x ⋅ =; (2 )()()()22252+⋅+⋅+b b b =; (3 )34∙35 =; (4 )−34(−3)5=. 过关检测1. 计算(1 )=•23a a ; (2 )(a +b)3·(a +b)2 =;(3 )a a a n n ⋅⋅+1 =; (4 ) 5422• =___________________;例2计算(1 )32)(s =;(2 )43()x y ⎡⎤+=⎣⎦; 过关检测1. 计算(1 )()=32a (2 )21)(+n a =__________(3 )[]43)2(b a + =________例3计算(1 )32)3(b a =________ (2 )323)31(y x -=_________ (3)0)14.3(-π =_______ 过关检测(1 )()=2ab ________ (2 )()223y x - =_________ (3 )( -4a 2b)3 =_________ (4 )()4323b a -- =________ (5 )0)20182017(-=_________ (6 )02)1(+x =______ 例4 假设()()003236x x -+-有意义 ,求x 应满足的条件. 过关检测1. 假设()50x -无意义 ,那么x 的值为________2. 假设 (2x -3 )0有意义 ,那么x 的取值范围是__________例5 3325198,16,32a b c === ,试比拟a,b,c 的大小. 过关检测1. 计算20182018201812--=4⨯⨯(2)()___________ 2. 假设5x -3y -2 =0,那么531010x y ÷=_________ 3. 如果3,9m na a ==,那么32m n a -=________ 4. 5544332,3,4abc ===,那么a 、b 、c 的大小关系是( )>c>a >b>c >a>b <b<c5. 23,46,812,a b c === 试求a 、b 、c 之间的数量关系 .考点二 单项式、多项式的乘法运算1. 单项式与单项式相乘 ,把他们的系数 ,相同字母分别相乘 ,对于只在一个单项式里含有的字母 ,那么连同它的指数作为积的一个因式如:5252527()()ac bc a b c c abc abc +⋅=⋅⋅⋅==2. 单项式乘以多项式 ,就是用单项式去乘多项式的每一项 ,再把所得的积相加 如:(+)m a b c ma mb mc +=++3. 多项式与多项式相乘 ,用多项式的每一项乘以另一个多项式的每一项 ,再把所有积相加如:)()a b m n am an bm bn ++=+++(例1计算(1 ))3()2(32xy y x -⋅ (2 )2222)2()2(y x x -⋅ (3 ))7-3()12(2x x ⋅+ (4 ))623()4(322x xy xy x +-⋅- (5 ))7()5(+⋅-x x 过关检测1.(x -2)(x +3) = x 2+px +q ,那么p =q = .(1 ) )21()3(2323xy y x -⋅-; (2 ) 225246x ab x b a ⋅⋅⋅-; (3 ))3(32x x x +⋅-; (4 ))3()5(+⋅-x x ; (5 ))12()7-3(22+⋅b a ab(6 ))34)(34(a b a b --+- (7 ))34()623(232y x y x xy xy -⋅+- 例2当,m n 为何值是 ,()()112x x x m nx x m ⎡⎤⎣⎦++++的展开式中不含23x x 和的项 过关检测1. 假设(2x-a )(x+5)的积中不含x 的一次项 ,那么a =. 2. 要使()()2316x ax x ++- 的展开式中不含4x 项 ,那么a =.3. 2(8)x mx ++和2(3)x x n -+的乘积中不含x 2和x 3的项 ,那么m 、n 的值为 ? 考点三 单项式、多项式的除法运算1. 同底数幂的除法法那么:n m n m a a a -=÷ (n m a ,,0≠都是正整数 ,且)n m 2. 单项式的除法法那么:单项式相除 ,把系数、同底数幂分别相除 ,作为商的因式 ,对于只在被除式里含有的字母 ,那么连同它的指数作为商的一个因式如:5252333()()()()ab ab ab ab a b -÷===3. 多项式除以单项式的法那么:多项式除以单项式 ,先把这个多项式的每一项除以这个单项式 ,在把所的的商相加如:()am bm cm m a b c ++÷=++ 例1计算(1)2334728y x y x ÷ (2 ))21(33447b a b a -÷ (3 )x x x x 3)3612(23÷+- (4 ))2()628(32365247b a b a b a b a -÷-+ 过关检测(1 )24575xy y x ÷; (2 ))41(33258b a b a ÷- (3 )xy xy xy y x 3)936(523÷+-; (4 ))2()64(223665243c b a b a c b a b a -÷-- (5 )(21x 4y 3 -35x 3y 2 +7x 2y 2)÷( -7x 2y) (6 )()[]x y x y x y x y x 6)(4)2)(2(÷--+-+例2先化简 ,再求值:()()2()()()(4)a b a b b a b a b a b b ⎡⎤-----+-÷-⎣⎦ ,其中 1a = ,14b =-.过关检测1. 求值:()()141(2)241xy xy xy xy xy ⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭--+-÷-() 其中12,5x y =-=- 2. 化简求值: (2x -y )13÷[ (2x -y )3]2÷[ (y -2x )2]3 ,其中x =2 ,y = -1 .3. 一个多项式除以231aa -+得到商式是21a + ,求这个多项式 . 4.22|(1)0x y +++= ,求333(2)2(2)x y x y ----的值.小节学习效果检测一. 根底稳固1. (1 )32-2-2⨯=()() ________;23-39⨯=() _________; (2 )假设23,25==,x y 那么x 32y ++ 的值等于_________; (3 )假设4312882,n ⨯= 那么n =________.(4 )()78••()---x x x =_____________ 2. (1 )比拟大小:341133⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭____________ 1213⎛⎫ ⎪⎝⎭ (填 ">〞, "<〞或 " =〞 ) (2 )7777707711,77m n == ,那么m 与n 的大小关系是___________ 2590x y +-=,求42•3x y 的值.12,2x y == ,求()32232122x y x y xy +÷的值 . (1 )2332733 ••(3)(4)(5);a a a a a -+-- (2 )2223213()()3m n mn +- ; (4 )()2212332x x x x x ⎡⎤-+-÷⎣⎦ (5 )()()()3462322•m m x x ÷÷; (6 )()()32322421-32392xy x x xy y x y ⎡⎤-÷⎢⎥⋅⋅⋅⎣⎦ 二. 突破提高1. 计算(1)221•-33(-3)n n -+(); (2 )()()32422393m n m n +- (3 )()()()()2342121212••1x x x x --+---⎡⎤⎣⎦ (4 )()()()21222•n n n a b b a b a ++--÷- 2. 2212•••53236n n n n ++-能被13整除吗 ?并说明理由 .3. 5554442222,3,6,a b c ===请用 ">〞把它们按从大到小的顺序连接起来 ,并说明理由 .4. (1 )先化简 ,再求值:()()2223241x xy xy x x ---+++ ,其中12x =- ,3y =. (2 )先化简 ,再求值:()()()122452x y x y y y x xy x ⎛⎫-----÷⎡⎤ ⎪⎣⎦⎝⎭ ,其中12,2x y ==- .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学(上)14.1幂的运算知识网络重难突破知识点一整式乘法幂的运算性质(基础):●a m·a n=a m+n(m、n为正整数)同底数幂相乘,底数不变,指数相加.【同底数幂相乘注意事项】1)底数为负数时,先用同底数幂乘法法则计算,根据指数是奇偶数来确定结果的正负,并且化简到底。

2)不能疏忽指数为1的情况。

3)乘数a可以看做有理数、单项式或多项式(整体思想)。

4)如果底数互为相反数时可先变成同底后再运算。

典例1(2019·新蔡县期末)若2x=5,2y=3,则22x+y=_____.典例2(2017·洪泽县期中)已知,则x的值为____________.典例3(2018·台州市期末)已知,则n的值是________________.●(a m)n=a mn (m、n为正整数)幂的乘方,底数不变,指数相乘.【同底数幂相乘注意事项】负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。

典例1(2018·长春市期末)若,,则的值为_____.典例2(2019·中山市期末)已知m+2n+2=0,则2m•4n的值为_____.典例3(2019·襄樊市期末)若,则的值是_______.●(ab)n=a n b n(n为正整数)积的乘方等于各因式分别乘方,再把所得的幂相乘.典例1(2019·富阳市期末)(-2)2018×(-)2019 =____________。

典例2(2019·临潼区期末)若,,则__________.典例3(2017·成都市期末)(﹣2ab2)3=_____.●a m ÷a n=a m-n (a≠0,m、n都是正整数,且m>n)同底数幂相除,底数不变,指数相减.【同底数幂相除注意事项】1.因为0不能做除数,所以底数a≠0.2.运用同底数幂法则关键看底数是否相同,而指数相减是指被除式的指数减去除式的指数。

3.注意指数为1的情况,如x8÷x= x7,计算时候容易遗漏或将x的指数当做0.4.多个同底数幂相除时,应按顺序计算。

●a0=1 (a≠0)任何一个不等于零的数的零指数幂都等于l.典例1(2018·邯郸市期末)已知4x=2x+3,则x=_________.32÷8n-1=2n,则n=_________.典例2(2017·太仓市期末)已知,则=_______.典例3(2018·深圳市期末)已知3a=5,9b=10,则3a-2b=____.巩固训练一、选择题(共10小题)1.(2018·龙岩市期末)若,,则下列结论正确是()A.a<bB.C.a>bD.2.(2017·齐齐哈尔市期中)把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-33.(2017·东营市期中)计算的结果为( )A. B. C. D.4.(2019·腾冲市期末)下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3 5.(2019·青岛市期中)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.46.(2017·南宁市期中)x5·(x m)n的计算结果是( )A.x m+n+5B.x5mnC.x5+mnD.3()m nx 7.(2017·日照市期中)( )A. B.1 C.0 D.1997 8.(2017·金华市期中)已知x a=3,x b=4,则x3a-2b的值是()A. B. C.11 D.199.(2018·新余市期末)已知:,则A.16B.25C.32D.64 10.(2018·聊城市)如果a=355,b=444,c=533,那么a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a二、填空题(共5小题)11.(2019·荔湾区期末)已知a m=3,a n=2,则a2m﹣n的值为_____.12.(2018·桂林市期中)计算:x•(﹣2x2)3=_____.13.(2018·聊城市期末)已知2x+3y-5=0,则9x•27y的值为______.14.(2018·武威市期末)计算:(﹣2)2016×()2017=______.15.(2019·慈利县期中)若2018m=6,2018n=4,则20182m﹣n=_____.三、解答题(共2小题)16.(2019·丽水市期末)已知x2m=2,求(2x3m)2-(3x m)2的值.17.(2018·岳阳市期中)①已知求的值,②若值.答案专题15 幂的运算知识点一整式乘法典例1(2019·新蔡县期末)若2x=5,2y=3,则22x+y=_____.【答案】75【详解】∵2x=5,2y=3,∴22x+y=(2x)2×2y=52×3=75,故答案为:75.典例2(2017·洪泽县期中)已知,则x的值为____________.【答案】6【解析】把因数的底数都转化为2,再运用同底数幂的乘法法则,所以:,则有3x+5=23,解得x=6.故答案是:6.典例3(2018·台州市期末)已知,则n的值是________________.【答案】5【解析】详解:∵,∴,∴,∴n+3=8,∴n=5.故答案为:5.典例1(2018·长春市期末)若,,则的值为_____.【答案】18【详解】∵x m=2,x n=3,∴x m+2n=x m x2n=x m(x n)2=2×32=2×9=18;故答案为:18.典例2(2019·中山市期末)已知m+2n+2=0,则2m•4n的值为_____.【答案】【详解】∵m+2n+2=0,∴m+2n=-2,∴2m•4n=2m•22n=2m+2n=2-2=.故答案为:典例3(2019·襄樊市期末)若,则的值是_______.【答案】32【详解】8x×16y=(23)x×(24)y=23x×24y=23x+4y=25=32.故答案为:32典例1(2019·富阳市期末)(-2)2018×(-)2019=____________。

【答案】【详解】(-2)2018×(-)2019=[(-2)×(-)]2018×(-)=1×(-)=-.故答案为:-.典例2(2019·临潼区期末)若,,则__________.【答案】20【详解】∵,,∴.故答案为:20.典例3(2017·成都市期末)(﹣2ab2)3=_____.【答案】﹣8a3b6【详解】.故答案为:.典例1(2018·邯郸市期末)已知4x=2x+3,则x=_________.32÷8n-1=2n,则n=_________.【答案】3 2【解析】∵4x=22x,4x=2x+3,可得:2x=x+3,解得:x=3;∴32÷8n-1=25÷23n-3,32÷8n-1=2n,可得:5-3n+3=n,解得:n=2.典例2(2017·太仓市期末)已知,则=_______.【答案】100【详解】由已知可得2x-3y=2,所以=102x÷103y=102x-3y=102=100.故答案为:100.典例3(2018·深圳市期末)已知3a=5,9b=10,则3a-2b=____.【答案】【详解】∵9b=10,∴32b=10,∵3a=5,∴3a-2b=3a÷32b=,故答案为:.巩固训练一、选择题(共10小题)1.(2018·龙岩市期末)若,,则下列结论正确是()A.a<bB.C.a>bD.【答案】B【解析】,故选B.【名师点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.2.(2017·齐齐哈尔市期中)把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-3【答案】B【解析】详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.3.(2017·东营市期中)计算的结果为( )A. B. C. D.【答案】D【解析】根据同底数幂相乘,底数不变,指数相加,可得=,再根据幂的乘方,底数不变,指数相乘,可得.故选:D.4.(2019·腾冲市期末)下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【答案】D【解析】详解:A、3x、4y不是同类项,不能合并,此选项错误;B、(-a)3•a2=-a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.5.(2019·青岛市期中)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.4【答案】B【解析】详解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选B.6.(2017·南宁市期中)x5·(x m)n的计算结果是( )A.x m+n+5B.x5mnC.x5+mnD.3()m nx【答案】C【详解】x5•(x m)n=x5•x mn=x5+mn.故选:C.【名师点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.7.(2017·日照市期中)( )A. B.1 C.0 D.1997【答案】B【解析】根据积的乘方,等于各个因式分别乘方,可得==1.故选:B8.(2017·金华市期中)已知x a=3,x b=4,则x3a-2b的值是()A. B. C.11 D.19【答案】B【解析】根据同底数幂的除法和幂的乘方的逆运算,可知x3a-2b=x3a÷x2b=(x a)3÷(x b)2,然后整体代入即可得原式=33÷42=.故选:B9.(2018·新余市期末)已知:,则A.16B.25C.32D.64【答案】C【解析】∵,∴.故选C.10.(2018·聊城市)如果a=355,b=444,c=533,那么a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【答案】C【详解】a=355=(35)11=24311,b=444=(44)11=25611,c=533=(53)11=12511,∵256>243>125,∴b>a>c.故选C.【名师点睛】本题考查了幂的乘方,关键是掌握a mn=(a n)m.二、填空题(共5小题)11.(2019·荔湾区期末)已知a m=3,a n=2,则a2m﹣n的值为_____.【答案】4.5【解析】详解:∵a m=3,∴a2m=32=9,∴a2m-n==4.5.故答案为:4.5.12.(2018·桂林市期中)计算:x•(﹣2x2)3=_____.【答案】﹣4x7【解析】详解:x•(﹣2x2)3=x•(﹣8x6)=﹣4x7.故答案为:﹣4x7.13.(2018·聊城市期末)已知2x+3y-5=0,则9x•27y的值为______.【答案】243【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x⋅27y=32x⋅33y=32x+3y=35=243.故答案为:243.【名师点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.14.(2018·武威市期末)计算:(﹣2)2016×()2017=______.【答案】【解析】(﹣2)2016×(2017=(﹣)2016×(2016×(=[(﹣)×(2016×(= (−1)2016×=1×=故答案为:.15.(2019·慈利县期中)若2018m=6,2018n=4,则20182m﹣n=_____.【答案】9【详解】20182m-n=(2018m)2÷2018n=62÷4=36÷4=9,故答案为9.【名师点睛】本题主要考查了幂的运算法则,解本题的要点在于利用已知条件求出答案.三、解答题(共2小题)16.(2019·丽水市期末)已知x2m=2,求(2x3m)2-(3x m)2的值.【答案】14【解析】∵∴====32-18=1417.(2018·岳阳市期中)①已知求的值,②若值.【答案】①;②56 .【详解】解:①a2•(a m)n=a2•a mn=a2•a2=a4,当a=时,原式=()4=;②(-3x3n)2-4(-x2)2n=9x6n-4x4n=9(x2n)3-4(x2n)2,当x2n=2时,原式=9×23-4×22=72-16=56.【名师点睛】此题主要考查幂的乘方、同底数幂的运算,要熟练且灵活掌握.。

相关文档
最新文档