同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-矩阵的初等变
工程数学线性代数课后答案解析同济第五版
A
E
1 5 1
1 2 b
321~r 100
0 1 0
101
知 R(AE)2 所以齐次线性方程组(AE)x0 的基础解系只有一个解向量 因此 A
不能相似对角化
16 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:
(1)
2 2 0
证明 设 R(A)r R(B)t 则 rtn 若 a1 a2 anr 是齐次方程组 Ax0 的基础解系 显然它们是 A 的对应于特 征值0 的线性无关的特征向量
类似地 设 b1 b2 bnt 是齐次方程组 Bx0 的基础解系 则它们是 B 的对应
得方程(AE)x0 的基础解系 p1(1 1 1)T 向量 p1 就是对应于特征值1 的特
征值向量.
(2) 132
2 1 3
633 ;
1 2 3 解 | AE| 2 1 3 ( 1)( 9)
3 3 6
故 A 的特征值为10 21 39
11 已知 3 阶矩阵 A 的特征值为 1 2 3 求|A35A27A|
解 令()3527 则(1)3 (2)2 (3)3 是(A)的特征值 故 |A35A27A||(A)|(1)(2)(3)32318
12 已知 3 阶矩阵 A 的特征值为 1 2 3 求|A*3A2E|
2 5 1
1 a
b
2 3 2
111
000
解之得 1 a3 b0
(2)问 A 能不能相似对角化?并说明理由
解由
2 1 2 | AE| 5 3 3 ( 1)3
1 0 2
得 A 的特征值为1231 由
于特征值0 的线性无关的特征向量
同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-线性空间与线
第6章线性空间与线性变换6.1本章要点详解本章要点■线性空间的定义与性质■维数、基与坐标■基变换与坐标变换■线性变换■线性变换的矩阵表示式重难点导学一、线性空间的定义与性质1.两种运算(1)加法运算设V是一个非空集合,R为实数域.如果在V中定义了一个加法,即对于任意两个元素α,β∈V,总有唯一的一个元素γ∈V与之对应,称为α与β的和,记作γ=α+β.(2)数乘运算在V中又定义了一个数与元素的乘法(简称数乘),即对于任一数λ∈R与任一元素α∈V,总有唯一的一个元素δ∈V与之对应,称为λ与α的数量乘积,记作δ=λα.2.线性空间定义设V是一个非空集合,R为实数域.如果在V中取任意两个元素α,β∈V,加法运算和乘法运算满足以下八条运算规律(设α、β、γ∈V,λ、μ∈R):(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)在V中存在零元素0,对任何α∈V,都有α+0=α;(4)对任何α∈V,都有α的负元素β∈V,使α+β=0;(5)1α=α;(6)λ(μα)=(λμ)α;(7)(λ+μ)α=λα+μα;(8)λ(α+β)=λα+λβ,则V称为线性空间,又称向量空间.3.线性空间的性质(1)零向量是唯一的;(2)任一向量的负向量是唯一的,α的负向量记作-α;(3)0α=0,(-1)α=-α,λ0=0;(4)如果λα=0,则λ=0或α=0.4.子空间(1)定义设V是一个线性空间,L是V的一个非空子集,如果L对于V中所定义的加法和数乘两种运算也构成一个线性空间,则L称为V的子空间.(2)定理线性空间V的非空子集L构成子空间的充分必要条件是:L对于V中的线性运算封闭.二、维数、基与坐标1.维数与基在线性空间V中,如果存在n个向量,满足:(1)线性无关;(2)V中任一向量α总可由线性表示,则就称为线性空间V的一个基,n称为线性空间V的维数.注:维数为n的线性空间称为n维线性空间,记作V n.2.坐标设是线性空间V n的一个基.对于任一向量α∈V n,总有且仅有一组有序数,使这组有序数就称为向量α在这个基中的坐标,并记作3.同构设V与U是两个线性空间,如果在它们的向量之间有一一对应关系,且这个对应关系保持线性组合的对应,则线性空间V与U同构.三、基变换与坐标变换1.基变换定义设α1,…,αn及β1,…,βn是线性空间V n中的两个基,有(6-1)把α1,…,αn这n个有序向量记作(α1,…,αn),记n阶矩阵P=(p ij),利用向量和矩阵的形式,式(6-1)可表示为(6-2)式(6-2)称为基变换公式,矩阵P称为由基α1,…,αn到基β1,β2,…,βn的过渡矩阵.又β1,β2,…,βn线性无关,故过渡矩阵P可逆.2.坐标变换公式设V n中的向量α在基α1,…,αn中的坐标为(x1,x2,…,x n)T,在基β1,β2,…,βn 中的坐标为.若两个基满足关系式(6-2),则有坐标变换公式四、线性变换1.定义设V n,U m分别是n维和m维线性空间,T是一个从V n到U m的映射,若映射T满足:(1)任给α1、α2∈V n(从而α1+α2∈V n),有T(α1+α2)=T(α1)+T(α2);(2)任给α∈V n,λ∈R(从而λα∈V n),有T(λα)=λT(α).则T称为从V n到U m的线性映射,又称线性变换.2.线性变换基本性质(1)T0=0,T(-α)=-Tα;(2)若则;(3)若α1,α2,…,αm线性相关,则Tα1,Tα2,…,Tαm亦线性相关,反之不成立;(4)线性变换T的像集T(V n)是一个线性空间,称为线性变换T的像空间;(5)使Tα=0的α的全体N T={α|α∈V n,Tα=0}也是一个线性空间,且N T称为线性变换T的核.五、线性变换的矩阵表示式1.定义设T是线性空间V n中的线性变换,在V n中取定一个基α1,α2,…,αn,如果这个基在变换T下的像为记,上式可表示为其中则A就称为线性变换T在基α1,α2,…,αn下的矩阵.2.定理设线性空间V n中取定两个基α1,α2,…,αn;β1,β2,…,βn,由基α1,α2,…,αn到基β1,β2,…,βn的过渡矩阵为P,V n中的线性变换T在这两个基下的矩阵依次为A和B,则B=P-1AP.6.2配套考研真题解析本章为非重点,暂未编选考研真题,若有最新真题会及时更新.。
工程数学线性代数(同济大学第五版)答案223页PPT
谢谢!
223
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
▪41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
线性代数(同济大学第五版)线性方程组讲义、例题
第四章 线性方程组本章以矩阵的理论作为工具,研究线性方程组有解的条件及其解法.§1 线性方程组的几种表示一、一般形式n m ⨯的齐次线性方程组的一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 二、向量形式n m ⨯的齐次线性方程组的向量形式为βααα=+++n n x x x 2211,其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mi i i i a a a 21α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=m b b b 21β.三、矩阵形式n m ⨯的齐次线性方程组的矩阵形式为β=Ax其中n m ⨯矩阵][ij a A =是方程组的系数矩阵,T n x x x x ],,,[21 =是n 维未知数向量,特别地,当0=β时,0=Ax 称为齐次线性方程组,而当0≠β时,β=Ax 称为非齐次线性方程组,并称0=Ax 为β=Ax 的导出组.§2 齐次线性方程组的解任何一个齐次线性方程组一定有解,因为当021====n x x x 就是它的一个解,通常称为零解或平凡解.一、齐次线性方程组有非零解的充分(或必要)条件(1) 0=Ax 有非零解的充分必要条件是A 的列向量组相性相关 (2) 若方程个数小于未知向量个数,则0=Ax 必有非零解.(3) 当n m =,即A 为方阵时,则0=Ax 有非零解的充分必有条件是.0=A二、齐次线性方程组解的性质性质 1 如果 1ξ=x ,2ξ=x 是方程组0=Ax 的解,那么21ξξ+=x 也是方程组0=Ax 的解.性质 2 如果是1ξ=x 方程组0=Ax 的解,k 为实数,那么也1ξk x =是方程组0=Ax 的解.推论:如果m ξξξ,,,21 都是方程组0=Ax 的解,m k k k ,,,21 是常数,那么m ξξξ,,,21 的线性组合m m k k k ξξξ+++ 2211也是方程组0=Ax 的解.性质3 n 维向量ξ是n 齐次线性方程组0=Ax 的解,ξ一定与A 的每一个行向量均正交.由于0=ξ必是0=Ax 解向量,所以有性质1、2可知0=Ax 全体解向量的集合对于通常意义上的向量加法和数乘运算可构成向量空间,称为解空间.三、齐次线性方程组解的结构设s ξξξ,,,21 是0=Ax 的一组线性无关解向量,如果0=Ax 的任一解向量均可由s ξξξ,,,21 线性表示出,则称s ξξξ,,,21 为0=Ax 的解空间的一个基.亦即是0=Ax 的一个基础解系.对于0=Ax ,若n r A R <=)(,则下面将证明0=Ax 的基础解系,并给出了求基础解系的方法:不妨设A 的前r 个列向量线性无关,则A 经若干初等变换可得行最简形矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=--000000001001,1,111r n r r r n b b b b B0=Bx 与0=Ax 同解,而0=Bx ,即 ⎪⎪⎩⎪⎪⎨⎧---=---=---=-+-+-+nr n r r r n n r n r n r n r x b x b x x b x b x x b x b x ,11,21212,11111其中n r r x x x ,,,21 ++称为自由未知数,显然任给自由未知数的一组值,由上即可唯一确定r x x x ,,,21 的值,于是就得0=Bx 的一个解,也就是0=Ax 的一个解,现在分别取.100,,010,00121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ n r r x x x (n r r x x x ,,,21 ++的r n -组取值形式线性无关的向量组)可得0=Ax 的r n -个线性无关的解向量.,0011111⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--= r b b ξ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=0012122 r b b ξ,, ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-100212 r r n b b ξ下面证明0=Ax 的任一解向量()T n r r ,,1,21,,,,λλλλλξ +=均可由r n -ξξξ,,,21 线性表示.作向量r n n r r -+++++=ξλξλξλη 2211则由于r n -ξξξ,,,21 是0=Ax 的解,所以η也是0=Ax 的解,而η的后面r n -个分量与ξ的刚好对应相等,于是知η与ξ的前r 个分量也对应相等,所以ξη=,即r n n r r -+++++=ξλξλξλξ,2,211所以,r n -ξξξ,,,21 是0=Ax 的一个基础解系,亦即是解空间的一个基,从而知解空间的维数是r n -,此时,0=Ax 的解向量可表示为r n n k k k x -+++=ξξξ 2211,其中r n k k k -,,,21 为任意常数,此式称为=Ax 的通解,而解空间可表示为|{2211r n n k k k x -+++=ξξξ },,,21R k k k r n ∈- .例1 求齐次线性方程组⎪⎩⎪⎨⎧=++=-+=++,0,0,0543321521x x x x x x x x x 的基础解系.解:设系数矩阵为A⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=010001010010011~111000*********A25125545322521,0c x c x x x x x x x x x x x ==⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==--=∴令∴基础解系为:。
线性代数(同济大学第五版)行列式讲义、例题
第1页 第2页第一章 行列式行列式是研究线性方程组的一个有力工具,本章给出了行列式的定义、性质及其计算方法.§1 全排列及其逆序数一、排列及其逆序数定义对于n 个不同的元素,可以给它们规定一个次序,并称这规定的次序为标准次序.例如1,2,,n 这n 个自然数,一般规定由小到大的次序为标准次序.定义 1 由n 个自然数n ,,2,1 组成的一个有序数组n i i i ,,,21 ,称为一个n 元全排列,简称为排列.例如由1,2,3这三个数组成的123,132,213,231,312,321都是3元(全)排列.定义 2 在一个排列里,如果某一个较大的数码排在一个较小的数码前面,就说这两个数码构成一个逆序(反序),在一个排列里出现的逆序总数叫做这个排列的逆序数,用),,,(21n i i i τ表示排列n i i i ,,,21 的逆序数.根据定义2,可按如下方法计算排列的逆序数: 设在一个n 级排列12n i i i 中,比(1,2,,)t i t n =大的且排在t i 前面的数共有i t 个,则t i 的逆序的个数为i t ,而该排列中所有数的逆序的个数之和就是这个排列的逆序数.即12121().nn n i i i i i t t t t τ==+++=∑例1 计算排列45321的逆序数.解 因为4排在首位,故其逆序数为0;比5大且排在5前面的数有0个,故其逆序数为0; 比3大且排在3前面的数有2个,故其逆序数为2; 比2大且排在2前面的数有3个,故其逆序数为3; 比1大且排在1前面的数有4个,故其逆序数为4. 可见所求排列的逆序数为(45321)002349τ=++++=.定义 3 逆序数为偶数的排列叫做偶排列, 逆序数为奇数的排列叫做奇排列.),,,(21n i i i τ=2i 前面大于2i 的元素个数+3i 前面大于3i 的元素的个数++ n i 前面大于n i 的元素的个数,例如:3300)2341(=++=τ, 逆序数为3,)2341(τ为奇排列. 6321)4321(=++=τ, 逆序数为6,)4321(τ为偶排列.定义4 把一个排列中某两个数码i 和j 互换位置,而其余数码不动,就第3页 第4页得到一个新排列.对一个排列所施行的这样一个变换叫做一个对换.例如排列2341经过元素2,4对换变成排列4321,可记为43212341)4,2(−−→−定理1 对换改变排列的奇偶性. 证明 先证相邻对换设排列为m l b b ab a a 11对换a 与b .m l b b ba a a 11 当b a <时, 经对换后a 的逆序数增加1 ,b 的逆序数不变; 当b a >时, 经对换后a 的逆序数不变,b 的逆序数减少1. 因此对换相邻两个元素,排列改变奇偶性.再证非相邻对换,现设排列为 n m l c bc b ab a a 111现来对换a 与bn m l m n m l c c b abb a a c bc b ab a a 111111−−−−→−次相邻对换nm l m n m l c ac b bb a a c bc b abb a a 1111111−−−−→−+次相邻对换nm l m n m l c ac b bb a a c bc b ab a a 11112111−−−−−→−∴+次相邻对换因此对换两个元素,排列改变奇偶性.也就是说,只要经过一次对换,奇排列变成偶排列,而偶排列变成奇排列.推论 奇排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数.二、排列及其逆序数性质与定理性质1设n i i i 21和n j j j 21是n 个数码的任意两个排列,那么总可以通过一系列对换由n i i i 21得出n j j j 21.引理1 对换的可逆性——即对同一排列连续施行两次同一对换排列还原.所以任意n 元排列n i i i 21可经过一系列对换变为自然排列n 12.而自然排列n 12可经一系列对换变为任意一个n 元排列n j j j 21.事实上,由引理1可知:任意一个n 元排列n j j j 21可经一系列对换变为自然排列n 12,由引理1对换的可逆性,故自然排列可经(同样的)一系列对换变为任一排列.定理2 2≥n 时,n 个数码的排列中,奇排列与偶排列的个数相等,均为2!n 个. 证明:设n 个数的排列中,奇排列有p 个,偶排列有q 个,则!n q p =+,对p 个奇排列,施行同一对换,则由定理1得到p 个偶排列.(而且是p 个不同的偶排列)因为总共有q 个偶排列,所以q p ≤.同理 p q ≤.第5页 第6页所以 2!n q p ==.§2行列式的定义引言 三阶行列式的构成规律为:322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a ---其中:符号333231232221131211a a a a a a a a a 是由23个元素ij a 构成的三行、三列方表,横排叫行,纵排叫列;在上述形式下元素ij a 的第一个下标叫行下标,第二个下标叫列下标.从形式上看,三阶行列式是上述特定符号表示的一个数,这个数由一些项的和而得:1)项的构成:由取自不同的行又于不同的列上的元素的乘积; 2)项数:三阶行列式是3!=6项的代数和;3)项的符号:每项的一般形式可以写成321321j j j a a a 时,即行标为自然排列时,该项的符号为)(321)1(j j j τ-,即由列标排列321j j j 的奇偶性决定.一、n 阶行列式的定义 定义5 n 阶行列式定义为∑+-==nn nn n n j j j i i i j i j i j i i i i j j j nnn n nna a a a a a a a a a a a A212122112121)()(212222111211)1(ττ用符号nnn n nn a a a a a a a a a 212222111211表示由2n 个数ij a 所组成的n 阶行列式,简记为A 或D ,这是一个数,其中n i i i 21和n j j j 21都是n 级排列,∑表示对所有的n 级排列求和.由定义可以看出,n 阶行列式的值等于所有取自不同的行、不同的列上的n 个元素的乘积n n j i j i j i a a a 2211的代数和,共有!n 项,每一项前面的符号由排列n i i i 21和n j j j 21的逆序数)(21n i i i τ+)(21n j j j τ决定.第7页 第8页另外行列式的还可以定义为∑-==nn nj j j j j j nnn n nna a a a a a a a a a a a A 212121)(212222111211)1(τ或∑-==n i i i i i i nnn n nnn n a a a a a a a a a a a a A 21)(2122221112112121)1(τ以上两个定义式分别以行列的排列为标准序列,其每一项前面的符号有n j j j 21和n i i i 21的逆序数决定.例2 在四阶行列式中,21321443a a a a 应带什么符号?解 1)按行列式定义5计算,因为2132144314213243a a a a a a a a =,而4123的逆序数为 (4123)01113τ=+++=,所以21321443a a a a 的前面应带负号. 2)按行列式定义5计算,因为21321443a a a a行指标排列的逆序数为 (2314)00202τ=+++=,列指标排列的逆序数为 (1243)00011τ=+++=. 所以21321443a a a a 的前面应带负号.例3 计算行列式44322321121100000000a a a a a a .分析 按行列式定义,每一项都是取自不同行不同列的4个元素的乘积,共有!4项.但此行列式中有很多零元素,因此有的项为零,故只需找出不含零元素的项,不妨设各个字母表示的都是非零元素.于是在第一行中只有两个非零元素11a 和12a .当第一行取11a 时,第二行只能取23a (21a 与11a 同列,故不能取),第三行只能取32a ,第四行只能取44a ,即44322311a a a a 是其中的一项.另外,当第一行取12a 时,第二行可以取21a 和23a ,但当第二行取23a ,第三行只能取零元素,故第二行只可以取21a ,第三行取33a ,第四行取44a ,即另一非零项为44332112a a a a .解 44332112)2134(44322311)1324()1()1(a a a a a a a a D ττ-+-= 4433211244322311a a a a a a a a --=第9页 第10页例4 证明n 行列式(1)nn nnnnnnn n a a a a a a a a a a a a a a a 22112221121121222111000==,(2)11,212)1(1,121,21)1(n n n n n nn n n n n n na a a a a a a a a-----=证 (1) 记nnn n a a a a a a D21222111100=nnnna a a a a a D 0222112112=由于当i j >时,0=ij a ,故1D 中可能不为0的元素i ip a ,其下标应有i p i ≤,即,11≤p ,22≤p .,n p n ≤在所有排列n p p p 21中,能满足上述关系的排列只有一个自然排列n 12,所以1D 中可能不为0的项只有一项nn a a a 2211)1(τ-,此项的符号所以,1)1()1(0=-=-τnn a a a 22111D =.由于当i j <时,0=ij a ,故2D 中可能不为0的元素i ip a ,其下标应有i p i ≥,即,11≥p,22≥p .,n p n ≥在所有排列n p p p 21中,能满足上述关系的排列只有一个自然排列n 12,所以2D 中可能不为0的项只有一项nn a a a 2211)1(τ-,此项的符号所以,1)1()1(0=-=-τnn a a a 22112D = 得证.(2) 根据行列式定义11,211,121,21)1(n n n t nnn n n n n n a a a a a a a a a----=其中t 为排列21)1( -n n 的逆序数,故2)1(210-=++++=n n n t 证毕. 二、子式、余子式与代数余子式第11页 第12页(1)k 阶子式:设nij a D =,在D 中取定某k 行k 列,位于这些行列相交处的元素构成的k 阶行列式,叫做D 的一个k 阶子式.(2)余子式:设nija D =)1(>n ,将元素ij a 所在的行、所在的列的元素划掉后余下的1-n 阶子式,叫做元素ij a 的余子式,记为ij M .nnj n j n n n ni j i j i i i n i j i j i i i n j j n j j ij a a a a a a a a a a a a a a a a a a a a a a a a a M1,1,21,11,11,12,11,1,11,11,12,11,121,21,2222111,11,11211+-+++-+++-+-----+-+-= (3)代数余子式:设nija D =)1(>n ,元素ij a 的余子式ij M 附以符号ji +-)1(后,叫做元素ij a 的代数余子式,记为ij A .即ij A =ji +-)1(ij M .三、行列式展开式定理定理3 设nij a D =,则D 等于它的任意一行(列)的所有元素与各自对应的代数余子式的乘积的和.即⎩⎨⎧++++++=nj nj j j jj inin i i i i A a A a A a A a A a A a D 22112211 ),,2,1,(n j i =.例5 已知,3256411222245233355554321=A求(1)55545552515432A A A A A ++++,(2)333231A A A ++及3534A A +.解:由行列式的性质可知(1) 55545552515432A A A A A ++++=05432111222245233355554321=(2) 5A 31+5A 32+5A 33+3A 34+3A 35 =03256411222335553355554321=第13页 第14页2A 31+2A 32+A 33+A 34+A 35 =03256411222112223355554321=解出A 31+A 32+A 33=0,A 34+A 35 =0 .§3行列式的性质设行列式nnn n n n a a a a a a a a a D212222111211=nnn nn n Ta a a a a a a a a D 212221212111=行列式TD 叫做行列式D 的转置行列式. 性质1 行列式与它的转置行列式相等,即TD D =.证明 用数用归纳法证明,对于二阶行列式性质1显然成立,假设对于n-1阶行列式性质1成立,把n 阶行列式D按第一行展开,依据归纳法假设可得∑∑=+=+=-=-=nj T j T j j nj j j jD M a M a D 11111111)1()1(右端恰为T D 按第一列的展开式.性质2 互换行列式的两行(列),行列式变号.证:先证明邻行互换时行列式变号,设1D 是由n 阶行列式D 的第i 行与第1+i 行互换得到的行列式:行行1,1,,11,1,11,11+=++--i i a a a a a a D n i i ni i n i i把1D 按第1+i 行展开∑∑=+=++-=--=-=nj ij ij j nj ij ij ji D M a M a D 11111)1()1(设2D 是由n 阶行列式D 的第i 行与第j 行互换得到的行列式,不妨设j i <,于是2D 可看成D 的第i 行依次经过i j -个邻行互换后到第j 行位置,而原第j 行又依次经过1--i j 邻行互换后到第i 行位置,因此D D D i j i j -=-=--+-)1()(2)1(推论:如果行列式有两行(列)完全相同,那么此行列式为零.第15页 第16页性质3:行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.即111211112112121212.n n i i in i i in n n nnn n nna a a a a a ka ka ka k a a a a a a a a a = 第i 行(或列)乘以k ,记为k i ⨯γ(或i c k ⨯).推论:行列式中某一行(列)所有元素的公因子可以提到行列式符号的外面.性质4:行列式中如果有两行(列)元素成比例,则此行列式为零. 性质5:若行列式的某一行(列)的元素都是两数之和.nnn inin i i n a a a a a a a a D111111'+'+= 那么D 等于下列两个行列式之和nnn ini n nn n in i n a a a a a a a a a a a a D1111111111''+= 若n 阶行列式每个元素都表示成是两数之和,则它可分解成2n个行列式.如a xb y a b yx b yc zd w c d w z d w ++++=+++++a b ayx b xyc dc wz dz w=+++性质6 把行列式的某一行(列)各元素乘以同一数后加到另一行(列)对应元素上去,行列式的值不变,即j i ≠时nnn in i nnn n jn in j i n a a a a a a a a ka a ka a a a 11111111111=++性质7 行列式任一行(列)各元素与另一行(列)对应元素的代数余子式乘积之和等于零,即第17页 第18页)(02211j i A a A a A a jn in j i j i ≠=+++或)(02211j i A a A a A a nj ni j i j i ≠=+++§4行列式的计算在计算三阶以上的行列式时,一般要注意观察其结构特点,利用行列式的有关性质,结合使用定义法、数学归纳法、递推法、换元法、析因子法、加边法等方法简化计算.一、直接利用行列式定义的证明 例6 证明行列式000000000055544544353425242322211514131211==a a a a a a a a a a a a a a a a D 证 按行列式定义,每一项都是取自不同行不同列的5个元素的乘积,在第一列中只有两个非零元素11a 和21a ,当第一列取元素11a ,第二列只能取22a ,而第三列所能够取的元素只有零元素,故这一项为零.同理,当第一列取21a 时,这一项也为零.行列式其它项也都为零因子,所以.0=D注 (1) 用n 阶行列式的定义直接计算行列式是相当麻烦的,因此仅当一个行列式的每一行(列)上n 个元素中有少数元素不为零,才用定义计算.其关键是处理好每一项前的符号,求出逆序数.一般方法是按行序排好,计算列排列的逆序数.(2) 结论:在一个n 阶行列式中,等于零的元素如果比)(2n n -还多,那么这个n 阶行列式必为零.二、利用行列式的性质化成三角形行列式计算例7 计算n 阶行列式ab b b b abbb b a bb b b aD=.解 这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,从第2列开始到第n 列都加到第1列上得ab b b n a babbn a b b a b n a b b b b n a D)1()1()1()1(-+-+-+-+=第19页 第20页ab b b abb b a b b b b n a1111])1([-+=ba b a b b a b bbb n a ----+=0001])1([1)]()1([---+=n b a b n a注 行列式每行(列)元素的和相等时,可将行列式的各行(列)加至第一行(列),利用行列式性质提取公因子后化简计算.三、降阶法:利用行列式按行(列)展开定理,化成较低行列式的计算例8 计算n 阶行列式)1(10)2(00000220000111321--------=n n n n n D n.解 注意到第2,3n ,, 行的元素之和都是零,将第2,3n ,, 列都加到第1列上去,然后按第1列展开,得:)1(10)2(00000220000101322)1(--------+=n n n n n n n D n)1(10)2(0000033000022000012)1(--------+=n n n n n)!1()1(211+-=-n n 四、递推公式法:应用行列式的性质,把一个n 阶行列式表示为具有相同结构的较低阶行列式的线性关系式,再根据此关系式递推得n 阶行列式的值.第21页 第22页例9 计算n 阶行列式xyx y x ya a a a xa D n ---+= 0000000. 解: 将行列式按第n 列展开,可得yx xyx ya xD D nn n ----+=+-11)1(11--+=n n ay xD=++=+=∴-----12211)(n n n n n n ay ay xD x ay xD D22111----++++=n n n n ayx x ay ay D x )(221---++++=n n n n yx x y y a x注:此题可按第一行展开即得结果.例10 计算n 阶行列式312300000310023100023=n D .解: 将行列式按第1列展开,可得2123---=n n n D D D (1)设)(211----=-n n n n xD D y xD D …….……(2) 比较(1)式与(2)式系数得⎩⎨⎧==+23xy y x所以⎩⎨⎧==⎩⎨⎧==12212211y x y x 或. 分别代入(2)式得⎩⎨⎧=-==-=-=-==-=--------1)2()2(22)(2)(212211122211D D D D D D D D D D D D n n n n nn n n n n (3)其中7,321==D D消去(3)式中的1-n D 得:.121-=+n n D第23页 第24页注 (1) 若行列式的某一行(列)至多有两个非零元素一般按此行(列)展开计算.(2) 递推法是计算或证明高阶行列式的惯用方法,有时和数学归纳法结合使用.五、用数学归纳法进行计算或证明. 例11 用数学归纳法证明θθθθθθθsin )1sin(cos 211cos 200000cos 210001cos 210001cos 2+==n D n证明 当1=k 时,θθθθθθsin 2sin sin sin cos 2cos 21===D 等式成立. 假设1-≤n k 时,等式成立,则只需证明当n k =时,等式也成立. n D 按第一行展开有θθθθθθcos 211cos 200000cos 210001cos 210001cos 2cos 2=n Dθθθθcos 211cos 200000cos 210001cos 2000011)1(21+-+21cos 2---=n n D D θ.根据归纳假设得:θθθθθθθsin )1sin(sin ]1)2sin[(sin sin cos 2+=---=n n n D n . 例12 证明n 阶行列式)(1000001000100011βαβαβαβααββαβααββααββα≠--=+++++=++n n n D证明 当1=n 时,βαβαβαβα--=+=+=221D 结论成立.当2=n 时,第25页 第26页βαβααββαβααββα--=-+=++=3322)(1D 结论成立. 假设k n <时,等式成立,则只需证明当k n =时,把k D 按其第1行展开,有βααββαβααββααββα+++++=100000010001000k D110000010001000)(-++++++=k βααββαβααββααββαβα210000010001000-+++++=k βααββαβααββααββααβ21)(---+=k k D D αββαβαβααββαβαβα-----+=--11)(k k k kβαβα--=++11k k故对一切自然数n ,结论都成立.六、 利用已知行列式,进行计算,其中最重要的已知行列式是范德蒙行列式.例13计算n 阶行列式1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+. 解:把D n+1的第n+1行换到第1行,第n 行换到第2行,…,同时将D n+1的第n+1列换到第1列,第n 列依次换到第2列,…,再有范德蒙行列式,得第27页 第28页nn nn a n a n a a n a n a D)1()(11111+--+--=+)(!2)!1(!11j i n n n i j -=-=∏+≤<≤ .七、加边升阶法,即不改变行列式的值的前提下适当增加一行一列或m 行m 列,以便容易求值.例14计算n 阶行列式1112212221212121+++=n n n nn n x x x x x x x x x x x x x x x D.解 1010101221222121212121+++=n n n n nnn x x x x x x x x x x x x x x x x x x D从第二行开始依次减去第一行的),,2,1(n i x i =倍,得10001000112121 nn x x x x x x ---=上式从第二列开始依次乘),,2,1(n i x i =倍加到第1列上的,得1010000112112n nj jx x x x ∑=+=上式∑=+=n j j x 121 例15计算n 阶行列式nn n n n n n n D n n n n n n n n -------------=----2313131311244444463333332222222 . 解: 对原行列式加边,增加第1行全为1,第一列除11a 外全为0,构造新的行列式为:第29页 第30页nn n n n n D n n n n n n -------=---211106333302222201111将第1行乘以i 加到第),,3,2(n i i =行,第i 行提取因数),,3,2(n i i =,得:nn n n D n n n n n n 2121211333122211111!------=将第n 列逐列移到第2列,第1-n 逐列移到第3列,等等,即得范德蒙德行列式,故∏=---=nk n n k D 12)2)(1()!()1(.例16 计算n 阶行列式).0(,212121≠+++=x a x a a a a x a a a a x D nnn解:nn nn a x a a a a x a a a a x a a a D +++=212121210001 xx x a a a i i n100100111n ,2,3,121---+=行行减第第 xx x a a a xa i xi n nj j100000011n ,2,3,11211-++=∑=列上加到第列乘以第 ⎪⎪⎭⎫⎝⎛+=∑=n j jn x a x 11. 八、析因子法,若行列式D 中一些元素是x (或某个参变量)的多项式常用析因子法.第31页 第32页例17 计算行列式 229132513232213211x x D --=解 D 可以看作关于x 的多项式)(x f .观察D 的一次因式, 当1±=x 时,08132513232113211)1(==±f当2±=x 时,05132513232213211)2(=-=±f可见)(x f 有因子:2,2,1,1+-+-x x x x另外,从行列式定义可知,D 中含有x 的最高次数为4. 故)2)(2)(1)(1(+-+-=x x x x C D 令0=x ,直接计算得,12-=D 于是3-=C故)2)(2)(1)(1(3+-+--=x x x x D .例18 计算行列式 11111321321121121221nn n n a a a a x a a a a x a a a a x a a a a x D---=解 观察行列式的特点,当x 取n a a a ,,,21 时,行列式都有两行相同,且此时的行列式值为零.故可将行列式看作关于x 的多项式,且此多项式有因子n a x a x a x ---,,,21 .故可设)())((21n a x a x a x C D ---=D 中最高项为n x ,系数为1.故1=C即行列式为)())((21n a x a x a x D ---= .以上方法,前三种方法是最基本的,需要指出的是:行列式的计算方法往往不是唯一的,有时需要多种方法交叉使用.由于行列式的计算方法很多,但具体到一个题目用什么方法去解往往不是一件容易决定的事情,必须首先观察行列式的具体特征,根据行列式的具体特征选择方法.第33页 第34页§5 克莱姆(Cramer )法则本节作为行列式的应用,完满地解决了含n 个未知量n 个方程的线性方程组,在其系数行列式不为零时,其解的存在性、个数及求解(公式)问题;理论完整且重要,定理的证明可按消元法的思想运用行列式的依行依列展开公式为之.设给定一个含n 个未知量n 个方程的线性方程组:⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 其系数构成的行列式nnn n in i i n a a a a a a a a a D212111211=叫做方程组(1)的(系数)行列式.克莱姆(Cramer 法则)对线性方程组(1),当它的(系数)行列式0≠D 时有且仅有一个解:DD x D Dx D D x n n ===,,,2211 .其中j D 是把D 的第j 列的元素换以方程组的常数项n b b b ,,21 而得到的n 阶行列式.推论 含有n 个未知数n 个方程的齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a (2) 当它的(系数)行列式0≠D 时仅有零解. 例19求一个一元二次多项式f (x ),使满足,0)1(=f ,3)2(=f .28)3(=-f解:设所求多项式为c bx ax x f ++=2)(, 由条件,0)1(=f ,3)2(=f .28)3(=-f可知⎪⎩⎪⎨⎧=+-=++=++28393240c b a c b a c b a,401328123110,201391241111-=-=-=-=D A 20283932411,60128913410132-=-===D D由克莱姆法则,得,1,3-,2===c b a 知13-2)(2+=x x x f .。
(同济大学)线性代数第五版课后答案
成都大学诗叶子制作第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)ba c a cb cb a ;解 ba c a cb cb a =acb +bac +cba -bbb -aaa -ccc=3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2=(a -b )(b -c )(c -a ).成都大学诗叶子制作(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(-n n :3 2 (1个) 5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2, (2n)4, (2n)6,⋅⋅⋅, (2n)(2n-2) (n-1个)3.写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4.计算下列各行列式:成都大学诗叶子制作成都大学诗叶子制作(1)7110025*******214; 解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-26053212213041224--=====c c 041203212213041224--=====r r 0000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 efcf bf de cd bd aeac ab ---e c b e c b e c b adf ---=abcdef adfbce 4111111111=---=.成都大学诗叶子制作(4)dc b a 100110011001---. 解 d c b a 100110011001---dc b aab ar r 10011001101021---++===== d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++成都大学诗叶子制作bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得)成都大学诗叶子制作022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------= )()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).成都大学诗叶子制作(5)12211 000 00 1000 01a x a a a a x x x n n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有 11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-xx a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以成都大学诗叶子制作nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n Tn n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解成都大学诗叶子制作aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 00 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1.成都大学诗叶子制作(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有 nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解成都大学诗叶子制作nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ), 其中a ij =|i -j |;成都大学诗叶子制作解 a ij =|i -j |, 04321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 043211 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 111 1121成都大学诗叶子制作nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10001 000 100 0100 0100 0011332212132 11113121121110 00011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=n n n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 000100 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组: (1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为成都大学诗叶子制作14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==D D x , 222==D D x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D ,成都大学诗叶子制作70351100650000601000051001653==D , 39551000601000051000651010654-==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ成都大学诗叶子制作有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,成都大学诗叶子制作故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB成都大学诗叶子制作⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;成都大学诗叶子制作解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,成都大学诗叶子制作 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2.(3)(A +B )(A -B )=A 2-B 2吗?解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2. 6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取成都大学诗叶子制作 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A ,成都大学诗叶子制作 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以成都大学诗叶子制作 (B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,成都大学诗叶子制作 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:成都大学诗叶子制作 (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122.(3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .成都大学诗叶子制作 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,成都大学诗叶子制作 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.成都大学诗叶子制作 证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,成都大学诗叶子制作 )3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1, 所以(A *)-1=|A |-1A .又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得成都大学诗叶子制作A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而成都大学诗叶子制作⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A成都大学诗叶子制作11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ成都大学诗叶子制作⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,成都大学诗叶子制作所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,成都大学诗叶子制作1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C OC O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.成都大学诗叶子制作由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵: (1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则成都大学诗叶子制作⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )成都大学诗叶子制作~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.成都大学诗叶子制作(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. (4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132. 解 ⎪⎪⎪⎭⎫⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )成都大学诗叶子制作~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫⎝⎛--00000410003011020201. 2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.成都大学诗叶子制作3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023成都大学诗叶子制作~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为成都大学诗叶子制作⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r ,所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,成都大学诗叶子制作所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:成都大学诗叶子制作⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫⎝⎛-------815073*********;成都大学诗叶子制作解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫⎝⎛------023*********63071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )成都大学诗叶子制作~⎪⎪⎪⎭⎫⎝⎛-02301000001000071210 ~⎪⎪⎪⎭⎫⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2;成都大学诗叶子制作(3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有成都大学诗叶子制作A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x xx x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A =⎪⎪⎪⎭⎫⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为。
同济大学数学系《工程数学—线性代数》(第5版)【教材精讲+考研真题解析】讲义与视频课程-行列式【圣才
第1章行列式[视频讲解]1.1本章要点详解本章要点■二阶与三阶行列式■全排列及其逆序数■n阶行列式的定义■行列式的性质■行列式按行(列)展开■克拉默法则重难点导学一、二阶与三阶行列式1.二阶行列式将四个数11a,12a,21a,22a按一定位置,排成二行二列的数表则表达式就是数表的二阶行列式,并记作2.三阶行列式设有9个数排成3行3列的数表记该式称为数表所确定的三阶行列式.二、全排列和逆序数1.全排列把n个不同的元素排成一列,称为这n个元素的全排列.n个不同元素的所有排列的种数,通常用P n表示.2.逆序数(1)逆序数定义对于n个不同的元素,先规定各元素之间有一个标准次序(例如,n个不同的自然数,可规定由小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说构成1个逆序.一个排列中所有逆序的总数称为这个排列的逆序数.(2)分类逆序数是奇数的排列称为奇排列,逆序数是偶数的排列称为偶排列.(3)逆序数的计算设n个元素为1至n这n个自然数,并规定由小到大为标准次序.设为这n个自然数的一个排列,考虑元素,如果比p i大的且排在p i 前面的元素有t i个,则称p i这个元素的逆序数为t i.全体元素的逆序数的总和即是这个排列的逆序数.三、n阶行列式1.定义称为n阶行列式,简记作,其中数a ij为行列式D的第(i,j)元素.2.两类典型的n阶行列式(1)下三角形行列式(2)对角行列式四、对换1.定义对换是在排列中,将任意两个元素对调,其余元素不动.将相邻两个元素对换称为相邻对换.2.性质(1)排列中的任意两个元素对换,排列改变奇偶性.(2)奇排列对换成标准排列的对换次数为奇数,偶排列对换成标准排列的对换次数为偶数.五、行列式的性质1.行列式与它的转置行列式相等.2.对换行列式的两行(列),行列式变号.3.如果行列式有两行(列)元素成比例,则此行列式等于零.4.行列式的某一行(列)中所有的元素都乘同一数k,等于用数k乘此行列式.5.若行列式的某一行(列)的元素都是两数之和,则可以将该行列式拆分成两个行列式之和.6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.。
线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题
第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。
则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。
同济大学《工程数学—线性代数》笔记和课后习题(含真题)详解(矩阵的初等变换与线性方程组)
第3章矩阵的初等变换与线性方程组3.1 复习笔记一、矩阵的初等变换1.初等变换(1)定义下面三种变换称为矩阵的初等行变换:①对调两行(对调i,j两行,记作r i↔r j);②以数k≠0乘某一行中的所有元(第i行乘k,记为r i×k);③把某一行所有元素的k倍加到另一行对应的元上去(第j行的k倍加到第i行上,记作r i+kr j).把定义中的“行”换成“列”,即得矩阵的初等列变换的定义,矩阵的初等行变换与初等列变换,统称为初等变换.(2)矩阵等价①若矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价,记作;②若矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价,记作;③若矩阵A经有限次初等变换变成矩阵B,则称矩阵A与B等价,记作A~B.(3)矩阵之间的等价关系的性质①反身性A~A;②对称性若A~B,则B~A;③传递性若A~B,B~C,则A~C.(4)矩阵的类型①两个矩阵,矩阵B4和B5都称为行阶梯形矩阵.行阶梯形矩阵B5又称为行最简形矩阵,其特点是:非零行的第一个非零元为1,且非零元所在的列的其他元素都为0.结论:对于任何非零矩阵A m×n总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵.②标准形矩阵F称为矩阵B的标准形,其特点是:F的左上角是一个单位矩阵,其余元素全为0.对于m×n矩阵A,总可经过初等变换(行变换和列变换)把它化为标准形此标准形由m,n,r三个数完全确定,其中r就是行阶梯形矩阵中非零行的行数.所有与A等价的矩阵组成一个集合,标准形F是这个集合中形状最简单的矩阵.2.初等变换的性质(1)定理设A与B为m×n矩阵,则:①的充分必要条件是存在m阶可逆矩阵P,使PA=B;②的充分必要条件是存在n阶可逆矩阵Q,使AQ=B;③A~B的充分必要条件是存在m阶可逆矩阵P及n阶可逆矩阵Q,使PAQ=B.(2)初等矩阵由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵.(3)性质①设A是一个m×n矩阵,对A施行一次初等行变换,等价于在A的左边乘以相应的m阶初等矩阵;对A施行一次初等列变换,等价于在A的右边乘以相应的n阶初等矩阵.②方阵A可逆的充分必要条件是存在有限个初等矩阵P1,P2,…P l,使A=P1P2…P l.③方阵A可逆的充分必要条件是.二、矩阵的秩1.秩的定义(1)k阶子式在m×n矩阵A中,任取k行与k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式.注:m×n矩阵A的k阶子式共有个.(2)矩阵的秩设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,则D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A).注:零矩阵的秩等于0.(3)最高阶非零子式由行列式的性质可知,在A 中当所有r +1阶子式全等于0时,所有高于r +1阶的子式也全等于0,因此把r 阶非零子式称为最高阶非零子式,而A 的秩R (A )就是A 的非零子式的最高阶数.(4)满秩矩阵与降秩矩阵可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩小于矩阵的阶数.因此,可逆矩阵又称满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵.(5)等价矩阵的秩①若A ~B ,则()()R A R B =.②若可逆矩阵P ,Q 使PAQ =B ,则R (A )=R (B ). 2.秩的性质(1)0R ≤(){}min ,;m n A m n ⨯≤ (2)()()T R A R A =;(3)若A ~B,则()()R A R B =;(4)若P 、Q 可逆,则()()R PAQ R A =;(5)()(){}()()()max ,,,R A R B R A B R A R B ≤≤+特别地,当B =b 为非零列向量时,有()()(),1R A R A b R A ≤≤+;(6)()()()R A B R A R B +≤+; (7)()()(){}min ,R AB R A R B ≤; (8)若m n n l A B ⨯⨯=0,则()()R A R B n +≤. 3.满秩矩阵矩阵A 的秩等于它的列数,称这样的矩阵为列满秩矩阵.当A 为方阵时,列满秩矩阵就成为满秩矩阵.4.结论(1)设A 为n 阶矩阵,则()()R A E R A E n ++-≥. (2)若,m n n l A B C ⨯⨯=且()R A n =,则()()R B R C =. (3)设AB =0,若A 为列满秩矩阵,则B =0.三、线性方程组的解 1.解的定义设有n 个未知数m 个方程的线性方程组(3-1-1)该式可以写成以向量x 为未知元的向量方程:Ax =b ,其中,A 为系数矩阵,B =(A ,b )称为增广矩阵,线性方程组(3-1-1)如果有解,就称它是相容的,如果无解,就称它不相容.2.解的判断(1)n 元线性方程组Ax =b①无解的充分必要条件是()(),R A R A b <; ②有唯一解的充分必要条件是()(),R A R A b n ==; ③有无限多解的充分必要条件是()(),R A R A b n =<.(2)n 元齐次线性方程组Ax =0有非零解的充分必要条件是()R A n <. (3)线性方程组Ax =b 有解的充分必要条件是()(),R A R A b =.(4)矩阵方程Ax =B 有解的充分必要条件是()(),R A R A B =. (5)设AB =C,则()()(){}min ,R C R A R B ≤.3.2 课后习题详解1.用初等行变换把下列矩阵化为行最简形矩阵:解:(1)(2)(3)。
考研同济五版线性代数习题解读
考研同济五版《线性代数》习题解读(四)首先说一下,第四章的精华就在于勾勒出了向量组、矩阵和线性方程组之间的关系,它们共同形成一个线性代数的知识网络,习题四中的证明题基本上都是对思维的锻炼,做好这些证明题有助于加深对线代知识点相互关系的理解,要重点对待。
1、涉及一个重要的知识转换,即一个向量能否被另一个向量组线性表出的问题实际上就是一个线性方程组是否有解的问题,同时,一个向量组是否能被另一个向量组线性表出的问题实际上就是两个向量组的秩的比较问题,所以此题即转化为考察两个向量组的秩的大小。
因为我们知道一个重要的事实:一个向量组不可能由比它秩更小的向量组来线性表出,例如,三维空间里的向量(秩是3)永远不可能由平面上的向量(秩是2)来表出。
2、考察向量组的等价,搞清楚何为向量组等价,直接验证即可,基本题。
另外可以发散一下思维,向量组等价和矩阵等价有何不同?哪个命题的结论更强?实际上向量组等价则对应矩阵一定等价,反之未必。
3、与线性表出有关的命题,一般用反证法,这类题目可以有效的锻炼解题思路,如果不会要重点体会答案给出的方法和思路。
4、5题涉及线性相关和线性无关的判断,实际上还是转化为方程组有解无解的问题,基本题。
6题考察对两个向量线性相关的理解,实际上就是对应成比例,但实际上很多类似的题目不仅仅局限于两个向量,此题不是太有代表性,了解一下即可。
7、8涉及到一些相关和无关的命题判断,重点在于理解题干的意思,如8(1)的错误在于放大了线性相关的结论,因为线性相关只需要至少有一个向量可由其余向量表示,而不一定能确定到底是哪个向量能用其余向量表示,类似的去理解清楚其余几个说法要表达的意思,这是第一要务。
至于反例倒在其次,可以通过参考书的答案看看,了解下有这样的反例即可。
9、10题是证明线性相关线性无关的经典题,可先假设其线性组合为零,然后推证系数的情况,若系数可不全为零则线性相关,若系数必须全为零则线性无关,重点题型。
线性代数(同济大学第五版)矩阵讲义、例题
第二章 矩阵矩阵及其运算是线性代数的核心,是后续各章的基础,本章主要讨论矩阵的概念、矩阵运算、初等矩阵、逆矩阵与伴随矩阵以及矩阵方程.§1 矩阵的概念定义1 由n m ⨯个数),,2,1;,2,1(n j m i a ij ==排成的m 行n 列的数表:⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211称为m 行n 列矩阵,其中ij a 称为矩阵A 的第i 行第j 列元素.矩阵可用大写字母 ,,B A 来表示,简记为n m A ⨯或n m ij a A ⨯=)(. 当n m =时, ()n a a a A 11211 =,则称A 称为m 阶方阵或m 阶矩阵;当1=m 时, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=12111m a a a A ,则称A 称为行矩阵当1=n 时,A 称为列矩阵。
定义2 设n m A ⨯中每个元素都是零的矩阵称为零矩阵,记为:n m O ⨯ 或O . 定义3 矩阵n m ij a ⨯-)(称为矩阵n m ij a A ⨯=)(的负矩阵,记作A -. 定义4 如果n m ij a A ⨯=)(与m xn ij b B )(=,有ij ij b a =),,2,1;,2,1(n j m i ==,那么称这两矩阵相等,记为B A =.几个特殊矩阵(1) 设方阵n n ij a A ⨯=)(中, ),,2,1,,(0n j i j i a ij =≠=,则称它为对角矩阵,记为:),,,(2211nn a a a diag ;特别地,当12211====nn a a a 时,即⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001 A 时,称A 为n 阶单位矩阵,记作n E 或E .(2)设方阵nn ij a A ⨯=)(中,⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n a a a a a a A 022211211时,当j i >时0=ij a ,称为上三角阵.(4)设方阵nn ij a A ⨯=)(中,⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n a a a a a a A 21222111时,当j i <时0=ij a ,称为下三角阵.§2 矩阵的运算一、矩阵的加法定义 5 设两个同型矩阵n m ij n m ij b B a A ⨯⨯==)(,)(,可以相加,其和是同型矩阵n m ij c C ⨯=)(,其元素是B A ,对应元素之和,称为矩阵B A ,之和,记为B AC +=.即 n m ij ij n m ij b a c ⨯⨯+=)()(由于矩阵的加法归结为两个数表对应元素相加,因而与数的加法有相同运算性质;;A O A =+ A B B A +=+ .)()(C B A C B A ++=++例1 已知.212111320112B A B A +⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-=,求, 解 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+++++--+=+5322012312201111)1(2B A . 二、数与矩阵的乘法定义6:数k 与矩阵n m ij a A ⨯=)(相乘,即以数k 乘A 的每个元素,即n m j i ka kA ⨯=)(⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n ka ka ka ka ka ka ka ka ka 212222111211称为矩阵()nm ij a A ⨯=与数k 的数量乘积,记为kA .由此可知,若矩阵A 的所有元素有公因数,则公因数可提到矩阵A 外作为系数.矩阵=-⨯nm ij a )(⎪⎪⎪⎪⎪⎭⎫⎝⎛---------mn m m n n a a a a a a a a a 212222111211称为矩阵A 的负矩阵,记为A -显然有O A A =-+)( 数量乘积满足以下规律:A kl lA k )()(=;OA =0;AA =1;lAkA A l k +=+)(;kB kA B A k +=+)(三、矩阵的乘法定义7设矩阵s m ik a A ⨯=)(与矩阵n s kj b B ⨯=)(可以相乘,其积AB 是n m ⨯矩阵n m ij c C ⨯=)(,其元素ij c 是矩阵A 的第i 行元素与矩阵B 的第j 列元素对应乘积之和,即AB C =,其中∑==+++=SK kj ik sj is j i j i ij b a b a b a b a c 12211 ,),,2,1;,2,1(n j m i ==.单位矩阵E 与数k 相乘所得矩阵称为数量矩阵,简称数量阵.例2 设⎪⎪⎭⎫⎝⎛--=213012A , ⎪⎪⎪⎭⎫⎝⎛--=051231B ,则AB C =. 解:⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛--==81570051231213012AB C如果n m ij a A ⨯=)(是一线性方程组的系数矩阵,而⎪⎪⎪⎪⎪⎭⎫⎝⎛=n x x x X21 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m b b b B 21,分别是未知量和常数项所成的1⨯n 和1⨯m 矩阵,那么线性方程组可以写成矩阵形式,B AX =.矩阵乘法满足运算规律 (1)矩阵的乘法满足结合律,即)()(BC A C AB =(2)矩阵乘法和加法适合分配律,即BC AC C B A +=+)(,CB CA B A C +=+)((3)矩阵的乘法不适合交换律,即:一般AB ≠BA例3 ⎪⎪⎭⎫ ⎝⎛--=1111A ,⎪⎪⎭⎫⎝⎛--=1111B ,求.AB⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=000011111111AB .而 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛--=222211111111BA (4)数乘矩阵与所有的n n ⨯矩阵相乘是可交换的.)()(kE A A kE kA ==对于矩阵的乘法,请特别注意:(1) 乘积AB 只有当左矩阵A 的列数等于右矩阵的行数时才有意义.同理,仅当A 为方阵时,2A 才有意义.(2) 矩阵乘法一般不满足交换律.实际上,AB 有意义时,BA 未必有意义,即使AB 与BA 都有意义,二者也未必相等.当BA AB =时,称B A ,相乘是可交换的.特别地,当E AB =时,E BA =也成立.(3)矩阵乘法与数的乘法不同,有O AB =不能得出B A ,至少有一个为O 的结论,由此又得AY AX =及O A ≠不能得出Y X =的结论,这又使得在解矩阵方程时不能像解通常代数方程那样约去非零的因子.四、方阵的幂(1)设A 为n 阶方阵,定义A 的幂为,1A A =,,2 AA A = .1A A A k k -=对于正整数l k ,成立kl l K l k l k A A A A A ==+)(;对于0≠A 时,定义,0E A =,)(1k kA A --=则这两个运算公式可推广于任何整数l k ,.(2) 对任何正整数k ,求方阵的幂kA ,往往需要一定的技巧,常用的几种方法:① 用乘法算出,,32A A 以此观察或通过递推得出kA 的结构,写出一般表达式.必要时用数学归纳法证明.例4 设⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,(1)求);2(E A A -(2)求).2(21≥--n A A n n解 (1) =-)2(E A A ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛101000101101020101⎪⎪⎪⎭⎫ ⎝⎛=000000000(2) =--12n nAA =--)2(1E A A n O E A A An =--)2(2例5 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=010101001A ,证明E A A A n n -+=-22)3(≥n ,并由此计算100A.证明 利用数学归纳法,当3=n 时,由于,1010110010101010010101010012⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=A,0111020010101010011011110013⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=A可直接验证E A A A -+=23成立. 设k n =时,E A AA k k-+=-22成立,则对于1+=k n 时:A E A A A A A k k k )(221-+==-+AA A k -+=-31A E A A A k --++=-)(21E A A k -+=-21即对于1+=k n 等式也成立,故对于一切3≥n 成立.利用已经证明的等式计算100A,可得:E A A A -+=298100E A E A A -+-+=2296)()(2296E A A -+= )(3294E A A -+= =)(4922E A A -+=E A 49502-=故.105001500011000100014910101100150100⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛=A② 利用结合律,若方阵的各行对应成比例,则矩阵可写成T αβ的形式,由于αβT是一个数,所以将矩阵的幂归结为数的幂与矩阵之积.例6 设⎪⎪⎪⎭⎫ ⎝⎛=963321642A ,求nA .解 因为矩阵A 的各行对应成比例,设矩阵TA αβ=,⎪⎪⎪⎭⎫⎝⎛=312α(1,2,3)=Tβ(1,2,3)312(1,2,3)312(1,2,3)312(1,2,3)312963321642⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛= nn A)(1,2,3)312(1,2,3)312(1,2,3)312((1,2,3)312⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛= (1,2,3)313121-⎪⎪⎪⎭⎫ ⎝⎛=n (1,2,3)312311⎪⎪⎪⎭⎫ ⎝⎛=-n.311A n -=③ 若矩阵A 是数量矩阵与幂零矩阵之和,即B E A +=λ,且存在l,使0=l B ,则利用公式kn n k n n k n k n k B C B E C B E C E C B E ++++=+---11110)()()()(λλλλ例7设,000000⎪⎪⎪⎭⎫ ⎝⎛=b c a A 求).,3,2( =n A n解,000000000000000000002⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=ab b c a b c a A,0000000000000000000000023⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==b c a ab A A A于是,000000002⎪⎪⎪⎭⎫ ⎝⎛=ab A O A n =).3(≥n注 若存在正整数k 使O A k=,则称A 为幂零矩阵,本题中的A 是3阶幂零矩阵,一般主对角线及其下方元素全为0的n 阶矩阵是n 阶幂零矩阵,对一切n k ≥,O A k=.例8 设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A , 求).,3,2( =n A n 解 令,000100010⎪⎪⎪⎭⎫⎝⎛=B 则B E A +=λ,而B 是幂零矩阵.,0000001000001000100001000102⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=B O B k =).3(≥k于是n n B E A )(+=λkn n k n n k n k n B C B E C B E C E C ++++=---11110)()()(λλλB n n B n E n n n 212)1(---++=λλλ ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---nn nn n n n n n n λλλλλλ0002)1(121.④ 当矩阵Q P A Λ=,且E PQ =时,求矩阵A 的幂问题.例9设,110111121⎪⎪⎪⎭⎫⎝⎛-=P ,11121133031⎪⎪⎪⎭⎫ ⎝⎛---=Q ⎪⎪⎪⎭⎫⎝⎛=Λ066,Q P A Λ=求n A .解:E QP =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=10001000111011112111121133031QP Q QP P A n ΛΛΛ=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=-111211330310661*********n ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=--1112113303106611011112111n n .211121112622⎪⎪⎪⎭⎫ ⎝⎛--⋅=-n五、矩阵的转置定义8设矩阵n m A ⨯的第),2,1(m i i =行写成第i 列,也将第),,2,1(n j j =列写成第j 行当⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn m m n n a a a a a a a a a A 212222111211时⎪⎪⎪⎪⎪⎭⎫⎝⎛=nm n nm m T a a a a a a a a a A 212221212111. 注 n m ⨯矩阵转置所得到的矩阵是m n ⨯矩阵 满足条件A A T=的矩阵A 称为对称矩阵. 满足条件A A T -=的矩阵A 称为反对称矩阵. 矩阵的转置规律 (1) A A TT =)((2) TTTB A B A +=+)( (3)TTTA B AB =)((4) T T kA kA =)((k 为实数)证明(3):设s m ij a A ⨯=)( n s ij b B ⨯=)( 则AB 中),(j i 的元素为∑=sk kj ik b a 1所以TAB )(中),(j i 的元素为∑=Sk kijk b a1 (1)其次,TB 中),(k i 的元素为ki b TA 中),(j k 的元素为jk a 故TTA B 中),(j i 的元素即为:∑∑===sk ki jk sk jk kib a a b11(2)比较(1),(2)即得(3)例10设⎪⎪⎭⎫ ⎝⎛-=231102A ,⎪⎪⎪⎭⎫⎝⎛-=102324171B ,求T AB )(. ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=1013173140102324171231102AB⎪⎪⎪⎭⎫ ⎝⎛-=213012TA ⎪⎪⎪⎭⎫ ⎝⎛-=131027241T BT T T AB A B )(1031314170213012131027241=⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=六、方阵的行列式n 阶方阵A 的2n 个元素按原来的相对位置所成的n 阶行列式称为A 的行列式,记为A 或)det(A .特别需要注意,矩阵与行列式的区别(1) 矩阵A 是2n 个元素按某个规律排成的数表,而行列式A 则是这2n 个元素按某种规则运算所得的数.(2) 两个矩阵当且仅当它们同型且对应元素相等时才相等,而两个行列式相等是指它们经计算所得的值相等,并不要求对应元素相等,甚至阶数都可以不同.(3) 两个同型矩阵相加是对应元素相加,而两个行列式相加必须求得它们的值而后相加,一般不能归结为对应元素之间的运算.(4) 对于矩阵一般不满足A A T=,而行列式A AT=却成立.(5) 当n 阶矩阵A 的每个元素都乘以同一个数l 时,得到的是lA ,而组成行列式A 的每个元素都乘以同一个数l 时,得到的却是A l n .(6) 一般而言BA AB ≠,但却有A B B A AB ==. 例11 设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足E B BA 2+=,则求B .分析 化简方程乘积形式,两边再取行列式.解:由E B BA 2+=,得E E A B 2)(=-,两边取行列式,得42==-E E A B又,21111=-=-E A 因此2=B . §3 逆矩阵一、逆矩阵定义定义9 对于n 阶矩阵A ,若存在矩阵B ,使,E BA AB ==则称矩阵A 是可逆矩阵或者称A 为非奇异矩阵,矩阵B 为A 的逆矩阵,记为1-=A B .于是E AA A A ==--11.在矩阵运算中,可根据不同情况将单位矩阵E 写成A A 1-或1-AA 是常用的有效技巧.二、逆矩阵的性质① 对于可逆矩阵A ,逆矩阵1-A 是唯一的.证明:假设矩阵C B ,都是矩阵A 的逆矩阵,则有.,E AC E BA ==C EC BAC AC B BE B =====∴)(所以可逆矩阵A 的逆矩阵是唯一的.② 可逆矩阵乘以非零常数为可逆矩阵,可逆矩阵的乘积是可逆矩阵,但可逆矩阵之和未必是可逆矩阵.③ 逆矩阵的运算性质设矩阵B A ,都是可逆矩阵,k 为不为零的常数,则;)(11A A =--111)(---=A B AB ;111)(--=A kkA ;;)()(11T T A A --=.11AA =- 三、伴随矩阵定义10 设ij A 是矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n a a a a a a a a a A 212222111211中元素ij a 的代数余子式,则矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn nnn n A A A A A A A A A A212221212111*称为A 的伴随矩阵。
同济大学《工程数学—线性代数》笔记和课后习题(含真题)详解(向量组的线性相关性)
圣才电子书 十万种考研考证电子书、题库视频学习平台
则向量 b 必能由向量组 A 线性表示,且表示式是唯一的.
三、向量组的秩 1.定义 设有向量组 A,如果在 A 中能选出 r 个向量 a1,a2,…,ar,满足 (1)向量组 A0:a1,a2,…,ar 线性无关; (2)向量组 A 中仸意 r+1 个向量(如果 A 中有 r+1 个向量的话)都线性相关,则称 向量组 A0 是向量组 A 的一个最大线性无关向量组(简称最大无关组),最大无关组所含向 量个数 r 称为向量组 A 的秩,记为 RA. 只含零向量的向量组没有最大无关组,规定它的秩为 0. 2.最大无关组的等价定义 设向量组 A0:a1,a2,…,ar 是向量组 A 的一个部分组,且满足: (1)向量组 A0 线性无关; (2)向量组 A 的仸一向量都能由向量组 A0 线性表示, 则向量组 A0 便是向量组 A 的一个最大无关组. 3.矩阵的秩 矩阵的秩等亍它的列向量组的秩,也等亍它的行向量组的秩. 4.相关定理 (1)定理 1 向量组 b1,b2,…,bl 能由向量组 a1,a2,…,am 线性表示的充分必要条件是
b=λ1a1+λ2a2+…+λmam
则向量 b 是向量组 A 的线性组合,称向量 b 能由向量组 A 线性表示.
②结论
向量 b 能由向量组 A:a1,a2,…,am 线性表示等价亍:
a.方程组 x1a1+x2a2+…+xmam=b(或记作 Ax=b)有解.
b.矩阵 A=(a1,a2,…,am)的秩等亍矩阵 B=(a1,a2,…,am,b)的秩.
a 不 aT 分别称为列向量不行向量. (2)向量空间 n 维向量的全体所组成的集合
称为 n 维向量空间.n 维向量的集合 称为 n 维向量空间 Rn 中的 n-1 维超平面.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章矩阵的初等变换与线性方程组[视频讲解]
3.1本章要点详解
本章要点
■初等变换的概念与性质
■矩阵之间的等价关系
■初等变换与矩阵乘法的关系
■初等变换的应用
■矩阵的秩
■线性方程组的解
重难点导学
一、矩阵的初等变换
1.初等变换
下面三种变换称为矩阵的初等行变换:
(1)对调两行(对调i,j两行,记作r i↔r j);
(2)以数k≠0乘某一行中的所有元(第i行乘k,记为r i×k);
(3)把某一行所有元素的k倍加到另一行对应的元上去(第j行的k倍加到第i行上,记作r i+kr j).
把定义中的“行”换成“列”,即得矩阵的初等列变换的定义,矩阵的初等行变换与初等列变换,统称为初等变换.
2.矩阵等价
(1)定义
①若矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价,记作;
②若矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价,记作;
③若矩阵A经有限次初等变换变成矩阵B,则称矩阵A与B等价,记作A~B.
(2)矩阵之间的等价关系的性质
①反身性A~A;
②对称性若A~B,则B~A;
③传递性若A~B,B~C,则A~C.
(3)矩阵的类型
①两个矩阵
,
矩阵B4和B5都称为行阶梯形矩阵.
行阶梯形矩阵B5又称为行最简形矩阵,其特点是:非零行的第一个非零元为1,且非零元所在的列的其他元素都为0.
结论:对于任何非零矩阵A m×n总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵.
②标准形
矩阵F称为矩阵B的标准形,其特点是:F的左上角是一个单位矩阵,其余元素全为0.对于m×n矩阵A,总可经过初等变换(行变换和列变换)把它化为标准形
此标准形由m,n,r三个数完全确定,其中r就是行阶梯形矩阵中非零行的行数.所有
与A 等价的矩阵组成一个集合,标准形F 是这个集合中形状最简单的矩阵.
3.初等变换与矩阵乘法的关系
(1)定理
设A 与B 为m ×
n 矩阵,则:
①
的充分必要条件是存在m 阶可逆矩阵P ,使PA =B ;②的充分必要条件是存在n 阶可逆矩阵Q ,使AQ =B ;
③A ~B 的充分必要条件是存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使PAQ =B .
(2)初等矩阵
由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵.
(3)性质
①设A 是一个m ×n 矩阵,对A 施行一次初等行变换,等价于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,等价于在A 的右边乘以相应的n 阶初等矩阵.
②方阵A 可逆的充分必要条件是存在有限个初等矩阵P 1,P 2,…P l ,使A =P 1P 2…P l .
③方阵A 可逆的充分必要条件是
.
4.初等变换的应用
当||0A ≠时,由12l A PP P = ,有
11111l l P P P A E ----= 及111111l l P P P E A -----= 所以
()
()
()
1111111111111111|||l l l l l l P P P A E P P P A P P P E E A --
----
-------== 即对n ×2n 矩阵()|A E 施行初等行变换,当把A 变成E 时,原来的E 就变成A -
1.
二、矩阵的秩
1.秩的定义
(1)k阶子式
在m×n矩阵A中,任取k行与k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式.注:m×n矩阵A的k阶子式共有个.
(2)矩阵的秩
设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,则D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A).注:零矩阵的秩等于0.
(3)最高阶非零子式
由行列式的性质可知,在A中当所有r+1阶子式全等于0时,所有高于r+1阶的子式也全等于0,因此把r阶非零子式称为最高阶非零子式,而A的秩R(A)就是A的非零子式的最高阶数.
(4)满秩矩阵与降秩矩阵
可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩小于矩阵的阶数.因此,可逆矩阵又称满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵.
(5)等价矩阵的秩
①若A~B,则R(A)=R(B).
②若可逆矩阵P,Q使PAQ=B,则R(A)=R(B).
2.秩的性质
(1)0≤R(A m×n)≤min{m,n}
(2)R(A T)=R(A);
(3)若A~B,则R(A)=R(B);
(4)若P、Q可逆,则R(PAQ)=R(A);
(5)max{R(A),R(B)}≤R(A,B)≤R(A)+R(B)特别地,当B=b为非零列向量时,有R(A)≤R(A,b)≤R(A)+1;
(6)R(A+B)≤R(A)+R(B);
(7)R(AB)≤min{R(A),R(B)};
(8)若A m×n B n×l=0,则R(A)+R(B)≤n.
3.满秩矩阵
矩阵A的秩等于它的列数,称这样的矩阵为列满秩矩阵.当A为方阵时,列满秩矩阵就成为满秩矩阵.
4.结论
(1)设A为n阶矩阵,则R(A+E)+R(A-E)≥n.
(2)若A m×n B n×l=C,且R(A)=n,则R(B)=R(C).。