02-02 四格表卡方检验理论频数
卡方检验含四格表x平方检验[优质内容]
10.8
高级培训
11
用基本公式计算卡方值:
2
(20
25.8)2
(24 18.2)2
(2115.2)2
(5
10.8)2
25.8
18.2
15.2
10.8
8.40
高级培训
12
四格表卡方检验的专用公式:
2
(ad bc)2n
1
(a b)(a c)(b d )(c d )
高级培训
13
3、查界值表,确定P值,做出推断结论 自由度=1,Χ20.05(1)=3.84, Χ2> Χ20.05(1), 所以 , P<0.05,在α=0.05的检验水准下,拒绝H0, 差异有统计 学意义,也就是试验组与对照组的总体有效率不等.
3.查χ2界值表,确定P值,做出推断结论
υ=2, χ20.05(2)=5.99, χ2 > χ20.05(2),则P<0.05,在α=0.05的水 准下,拒绝H0,可以认为三种治疗方案的有效率有差别。
高级培训
34
例8.6 某研究人员收集了亚洲、欧洲和北美洲人的A、B、 AB、O血型资料,结果见下表,其目的是研究不同地区 的人群血型分类构成比是否一样。
若H0成立,两种属性不一致的两个格子理论频数都应该是 (b+c)/2
高级培训
24
配对检验公式推导:
bc
(+,)和(,+)两个格子中的理论频数均为
2
b c 40 时
2
(AT)2
(b b c )2 2
(c b c)2 2
T
bc
bc
2
2
(b c)2
~ 2 分布
四格表卡方检验的基本要求
四格表卡方检验的基本要求
表卡方检验,简称卡方检验,是经典单样本检验的一种。
它通常应用于比较两组或多组分类数据之间的统计显著性。
四格表卡方检验,又称散点图方法,是表卡方检验的一种。
基本要求如下:
1、多组分类数据:四格表卡方检验用于比较多组分类数据之间的统计显著性,如两组或多组。
2、组内的联合分布:组内的分布要满足联合分布条件,说明数据分布没有异常值。
3、组间独立性:表卡方检验要求不同组间不能有交互作用。
组间要保持独立性。
4、组间频数:不同组间的频数要具有一致性,即不同组间的频数之和相等。
5、有限自由度:组间的自由度约束在一定的范围,不能超过该范围。
四格表卡方检验可以有效地评估多组分类数据之间的统计显著性,有助于我们更好地理解数据的整体特征,以便进行更有效的决策。
四格表卡方检验的基本要求可以保证检验结果的准确性,从而获得有效的决策结果。
四格表分析
方法原理
❖ 卡方分布
▪ 显然,卡方值的大小不仅与A、E之差有关,还 与单.1元2 格数(自由度)有关
.10
.08
概率
.06
.04
.02
0.00
.00
4.02
8.04 12.06 16.08 20.10 24.12 28.14 32.16 36.18
2.01
6.03 10.05 14.07 18.09 22.11 26.13 30.15 34.17 38.19
未患龋齿人数 130(123.33) 55(61.67)
185
调查人数 200 100 300
龋患率(%) 35.00 45.00 38.33
更一般地,可将上述表格记为表 6.3 的一般形式,称之为四格表(fourfold table)。因为表 中 a、b、c 和 d 四个格子的数据是基本的,其余数据均可从这四个数据派生出来。
▪ 若n > 40 ,此时有 1< T 5时,需计算Yates
连续性校正2值
▪ T <1,或n<40时,应改用Fisher确切概率法直
接计算概率
确切概率法
分析实例
▪ 注意:确切概率法不属于2检验的范畴,但常 作为2检验应用上的补充。
例 6.13 研究某新药治疗原发性高血压的疗效,并用常规治疗药物作为对照组,结果见
方法原理
❖ 理论频数
▪ 基于H0成立,两样本所在总体无差别的前提下
计算出各单元格的理论频数来
TRC
nR nC n
牙膏类型 含氟牙膏 一般牙膏 合计
患龋齿人数 70(76.67) 45(38.33) 115
未患龋齿人数 130(123.33) 55(61.67) 185
四格表卡方检验
Karl Pearson (1857~1936) 英国统计学家 1901年10月与 Weldon,Galton 一起创办 Biometvika
воскресенье,
例8-1 某医院收治376例胃脘痛患者,随机分 为两组,分别用新研制的中药胃金丹和西药治疗。 结果如表8-1,探讨两药疗效有无差别。
воскресенье,
(3) 2检验
从菜单选择 Analyze→Descriptive
Statistics→Crosstable(交叉表) 指定 Row(s):组别 Columns(s):效果 击Statistics按钮选择Chi-square。
воскресенье,
输出结果
воскресенье,
结果分析
由总频数n=37<40,使用Fisher Exact Test(Fisher精确检验)。
由Fisher精确检验双侧P= 0.001 <0.05 ,以α=0.05水准拒绝H0,差异有统计学 意义,可以认为红花散能够改善周围血 管闭塞性病变患者的皮肤微循环状况。
воскресенье,
结果分析:Pearson 2=56.77,双侧P=
0.000<0.05,以α=0.05水准拒绝H0,差 异有统计学意义,可认为两药疗效不同。
воскресенье,
三、四格表 2检验的应用条件
(1)当n≥40,且所有T≥5时,用Pearson 2 检验 (2)当n≥40,而有1≤T<5时,用校正2检验
表8-4 两组疗效比较
疗法
有效
无效
合计
通塞脉1号
26
7
33
活血温经汤
36
2
38
合计
62
制作卡方检验四格表
制作卡方检验四格表
卡方检验是一种用于分析两个或多个分类变量之间关联性的统计方法。
四格表是一种常见的用于卡方检验的数据表格形式,适用于两个分类变量的分析。
制作卡方检验四格表的步骤如下:
1. 收集数据:收集两个分类变量的观测数据,例如性别和吸烟习惯。
2. 创建四格表:将两个分类变量分别列为表格的行和列,并在交叉点处填入对应的频数。
表格的四个格子分别代表不同的组合情况,例如男性吸烟者、男性非吸烟者、女性吸烟者和女性非吸烟者。
3. 计算期望频数:根据总体比例和各个分类变量的边际频数,计算每个交叉点处的期望频数。
期望频数是在两个变量之间没有关联的情况下,每个交叉点的预期频数。
4. 计算卡方值:使用观测频数和期望频数计算卡方值。
卡方值衡量了观测频数和期望频数之间的差异,用于判断两个分类变量之间是否存在显著关联。
5. 进行假设检验:使用卡方值进行假设检验,判断观测频数和期望频数之间的差异是否显著。
根据卡方分布和自由度,计算得到卡方检验的p值。
如果p值小于设定的显著性水平,可以拒绝无关联的假设,认为两个分类变量之间存在显著关联。
以上就是制作卡方检验四格表的基本步骤。
在实际操作中,可以使用统计软件如SPSS、R等进行计算和分析。
四格表卡方检验结果解读
四格表卡方检验结果解读
卡方检验是一种统计方法,用于判断两个分类变量之间是否存在关联性。
四格表卡方检验是卡方检验的一种特殊形式,常用于比较两个变量的分布,特别是当变量有两个分类且分别为两个互斥的水平时。
四格表卡方检验的结果解读主要包括卡方值、自由度和显著性水平等。
卡方值是用于衡量观察到的频数与期望频数之间的偏离程度。
自由度是指用于计算卡方值的度量数量,计算方法为(行数-1)*(列数-1)。
显著性水平是指判断卡方值是否显著的阈值,通常使用0.05或0.01作为判断标准。
当卡方值显著小于显著性水平时,我们可以认为两个变量之间不存在关联性。
这意味着两个变量的分布在统计上没有差异,变量之间的关联是由于随机差异引起的。
反之,当卡方值显著大于等于显著性水平时,我们可以认为两个变量之间存在关联性。
这意味着两个变量的分布在统计上存在差异,变量之间的关联是非随机的。
需要注意的是,卡方检验只能表明两个变量之间是否存在关联性,不能确定关联性的方向和强度。
如果想要探究更深入的关系,可以使用其他统计方法,如相关分析或回归分析等。
四格表卡方检验是一种常用的统计方法,用于判断两个变量之间的关联性。
通过解读卡方值、自由度和显著性水平,可以得出两个变量之间是否存在关联性的结论。
然而,卡方检验只能表明是否存在关联性,不能确定其方向和强度。
如需深入了解两个变量的关系,可以考虑其他统计方法。
四格表卡方检验
发病率 (0/00) =④/② 1.61
1.93
死亡率 (0率 (%) =⑤/③ 2.60
5.51
55~
65~
36584
10343
214
95
125
87 479
15
23 61
20.11
8.93
5.85
9.18
3.42
8.41 2.39
0.41
2.22 0.30
7.94
英国统计学家
1901年10月与 Weldon,Galton 一起创办 Biometvika
2019年3月28日
例8-1 某医院收治376例胃脘痛患者,随机分 为两组,分别用新研制的中药胃金丹和西药治疗。 结果如表8-1,探讨两药疗效有无差别。
表8-1 疗法 胃金丹 西药 合 计 两药治疗胃脘痛的疗效四格表 有效 271(253.24) 74(91.76) 345 无效 5(22.76) 26(8.24) 31 合计 276 100 376 有效率 98.19% 74.00% 91.76%
2019年3月28日
理论数公式
nr nc Trc ,nr 表示第r行的合计数; n nc 表示第c列的合计数; n表示总合计。
271
5
253.24 22.76 91.76 8.24
74
26
2019年3月28日
衡量理论数与实际数的差别
检验统计量
R ,C
2 值:
2 2 ( A T ) ( A T ) 2 rc rc Trc T r ,c 1
第一节
常用相对数
医药统计中的资料类型
常用相对数指标
应用注意事项
四格表分析
2 P
k i1
( Ai
Ti )2 Ti
服从自由度为k-1的卡方分布。
即:P2 2,v,拒绝H0。
上述卡方检验由此派生了不同应用背景的各种问 题的检验,特别最常用的是两个样本率的检验等。
方法原理
牙膏类型 含氟牙膏 一般牙膏 合计
表 6.2 使用含氟牙膏与一般牙膏儿童的龋患率
患龋齿人数 70(76.67) 45(38.33) 115
此时,可以考虑边际卡方检验,见P130
注意事项
配对四格表卡方与成组设计卡方
由于配对设计的资料同一对观察结果间一般是非独 立的,而成组设计的资料一般可以认为是独立的, 所以配对四格表资料不能用成组设计的2或 Fisher检验的,而要用配对设计的2或配对设计 的直接计算概率法进行检验。
Poisson分布资料推断
注意事项
❖ McNemar检验(配对卡方检验)只会利用非主对角线 单元格上的信息,即它只关心两者不一致的评价 情况,用于比较两个评价者间存在怎样的倾向。 因此,对于一致性较好的大样本数据(a,d较大且 b,c较小时),McNemar检验可能会失去实用价值。 ▪ 例如对1万个案例进行一致性评价,9995个都是 完全一致的,在主对角线上,另有5个分布在左 下的三角区,显然,此时一致性相当的好。但 如果使用McNemar检验,此时反而会得出两种评 价有差异的结论来。
▪ H0:行分类变量与列分类变量无关联
▪ H1:行分类变量与列分类变量有关联
▪ =0.05
▪ 统计量
P2
k i1
( Ai
Ti )2 Ti
,其中Ai是样本资料的
计 数 , Ti 是 在 H0 为 真 的 情 况 下 的 理 论 数 ( 期 望
完全随机设计四格表资料的卡方检验,其校正公式
完全随机设计四格表资料的卡方检验,其校正公式在统计学中,卡方检验是用来检验观测频数与期望频数是否存在显著差异的一种常用方法。
在实际应用中,我们经常会遇到完全随机设计四格表资料的情况,而对这种情况进行卡方检验时,需要使用相应的校正公式,以确保检验结果的准确性和可靠性。
让我们来理解一下完全随机设计四格表资料的含义。
完全随机设计是实验设计中的一种常见形式,它要求实验对象被随机分配到各个处理组中,各处理之间相互独立,且每个处理组中的实验对象也是相互独立的。
四格表则是指实验结果按照两个因素分组,形成四个格子,每个格子中包含了不同处理的观测频数。
在这种情况下,我们需要进行卡方检验来判断两个因素之间是否存在相关性或独立性。
在进行卡方检验时,我们首先需要计算期望频数。
期望频数是指在假设两个因素之间不存在相关性或独立性的情况下,每个格子中的理论频数。
一般情况下,完全随机设计四格表资料的期望频数可以通过计算公式进行推导。
在这里,我们就需要使用校正公式来确保计算的准确性。
校正公式是针对完全随机设计四格表资料计算期望频数时可能出现的分母为0或者过小的情况而设计的。
当实际观测频数与期望频数之间存在很大差异时,校正公式能够有效地调整计算结果,提高卡方检验的准确性。
一般来说,校正公式的具体形式会根据不同的实验设计和数据特点而有所不同,需要根据具体情况进行选择和应用。
在进行卡方检验时,我们需要使用校正公式来计算期望频数,并将实际观测频数与校正后的期望频数进行比较,进而得出检验结果。
通过对实际情况进行充分的了解和分析,我们可以更好地理解和运用卡方检验,从而做出科学合理的决策。
回顾本文所涉及的内容,完全随机设计四格表资料的卡方检验及其校正公式是统计学中一个重要且常见的问题,它在实际应用中具有广泛的意义。
通过了解和掌握相关的知识和方法,我们可以更好地进行数据分析和推断,为科学研究和决策提供可靠的依据。
在个人观点和理解方面,我认为掌握卡方检验及其校正公式是统计学学习中的一项基本能力,它不仅可以帮助我们理解实验设计和数据分析的原理,还可以为科学研究和实践工作提供重要的支持。
卡方检验
2
3.03 ,
=1
2<3.84=2
按 =0.05 水 准 , 不 拒 绝 H0, …
配对四格表资料的 检验
2
也称McNemar检验(McNemar's test)
例 6-8 表 6-9
甲 法
两种血清学检验结果比较
乙 法 + - 10 (b) 11 (d) 21 90 42 132 合计
n2 n2 n
一般地,
理论频数
n n (行合计)(列合计) = R C 总计 n
例题:计算以下四格表的各理论频数: (1) (2) 35 27 25 8 16 33 15 22
2 检验的基本思想可通过其基本公式来解释:
2
观察值 理论值
理论值
2
A T 2
2
1
2
( / 21)
e
2 / 2
Ý ß ×·
×Ó ¶ £ 1 Ô É È ½
0.2 0.1 0.0 0 3
3.84
×Ó ¶ £ 2 Ô É È ½ ×Ó ¶ £ 3 Ô É È ½ ×Ó ¶ £ 6 Ô É È ½
P=0.05的临界值
7.81 12.59
6
9 12 ¿ ·Ö ¨½ µ
* 图形:单峰,正偏峰; 自由度 很大时, 近似地服从正态分布.有 2 ( ) 2 Z , ( )服从均数为 ,方差为2 的正态分布 2
2 ( )
χ2分布(chi-square distribution)
0.5 0.4 0.3
f ( ) 2( / 2) 2
2
2 =2.734<3.84,P>0.05,不拒绝无效假设H0
四格表卡方检验
实际频数:指在实验或调查中得到的计数资 料。
理论次数:指根据概率原理、某种理论、某 种理论次数分布或经验次数分布计算出来的 次数。
一、卡方检验的假设
分类相互排斥、互不包容; 观测值相互独立; 每一个单元格中的期望次数至少为5。
二、卡方检验的类别
配合度检验
主要用来检验一个因素多项分类的实际观察数与某 理论次数是否接近。
独立性检验
用来检验两个或两个以上因素各种分类之间是否有 关联或是否具有独立性的问题。
同质性检验
主要目的在于检定不同人群母总体在某一个变量的 反应是否具有显著差异。
三、卡方检验的基本公式
2 ( f0 fe)2
fe
f0为实际观察次数 fe为理论次数
四、期望次数的计算
在配合度检验时,期望值为总体的实际 数值,或是某一理论存在的数值。
例题:p.338
六、卡方的连续性校正
当某一期望次数小于5时,应该利用校正
公式计算卡方值。 公式(p.340) 2
(
f0
fe
1/ 2)2
例题:p.341
fe
如果三项分类或更多时,出现某一单元 格内的理论次数小于5的情况,则不需要 进行校正也能得到较为准确的结果。
主要内容
第一节 卡方检验的原理 第二节 配合度检验 第三节 独立性检验 第四节 同质性检验
四格表的Fisher精确概率检验方法
在理论次数小于5时,也可用费舍精确概率检验法, 代替卡方检验法。
公式和例题(p.350)
三、R*C表独立性检验
基本方法与四格表的独立性检验相同。
四、多重列联表分析
如果有三个自变量,可以将其中一个人 口学变量看作控制变量,对于控制变量 的不同水平进行单个列联表分析。
卡方检验(计数资料)
卡方检验(计数资料)四格表资料的卡方检验四格表资料的卡方检验用于进行两个率或两个构成比的比较。
1. 专用公式:若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=(ad-bc)2*n/(a+b)(c+d)(a+c)(b+d),自由度v=(行数-1)(列数-1)2. 应用条件:要求样本含量应大于40且每个格子中的理论频数不应小于5。
当样本含量大于40但理论频数有小于5的情况时卡方值需要校正,当样本含量小于40时只能用确切概率法计算概率。
行X列表资料的卡方检验行X列表资料的卡方检验用于多个率或多个构成比的比较。
1. 专用公式:r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1]2. 应用条件:要求每个格子中的理论频数T均大于5或1<t<1或1<t<5的格子较多时,可采用并行并列、删行删列、增大样本含量的办法使其符合行x列表资料卡方检验的应用条件。
而多个率的两两比较可采用行x 列表分割的办法。
列联表资料的卡方检验:同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。
1. R*C 列联表的卡方检验:R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行X列表资料的卡方检验相同。
2. 2*2列联表的卡方检验:2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。
当用一般四格表的卡方检验计算时,卡方值=(ad-bc)2n/(a+b)(c+d)(a+c)(b+d),此时用于进行配对四格表的相关分析,如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。
列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。
四格表卡方检验
目的和意义
目的
通过四格表卡方检验,可以了解两个 分类变量之间的关系,判断它们是否 独立或者存在某种关联性。
意义
四格表卡方检验在医学、生物学、社 会学等领域有广泛的应用,可以帮助 研究者了解不同类别数据之间的关系 ,为进一步的研究提供依据。
02 卡方检验基础知识
卡方检验的定义
总结词
卡方检验是一种统计方法,用于比较实际观测频数与预期频 数之间的差异。
详细描述
卡方检验适用于分析两个分类变量之间的关系,特别是当样本量较小或理论频数较低时。 它可以用于检验两个分类变量之间是否存在关联性,以及这种关联性是否具有统计学显 著性。此外,卡方检验还可以用于评估分类变量的一致性,例如诊断准确率、调查问卷
的一致性等。
卡方检验的基本步骤
• 总结词:卡方检验的基本步骤包括选择适当的卡方检验类型、构建期望 频数、计算卡方统计量、选择合适的显著性水平以及解释结果。
社会学研究
在社会学研究中,四格表卡方检验用于分析两个分类变量之间的关系, 例如调查不同人群的婚姻状况与性别比例的关系。
生物学研究
在生物学研究中,四格表卡方检验用于分析物种分布、生态位和种群 遗传结构等。
心理学研究
在心理学研究中,四格表卡方检验用于分析不同心理特征或行为模式 在不同人群或条件下的分布情况。
样本量大小的要求
足够大的样本量
四格表卡方检验需要足够的样本量才能获得 可靠的统计结果。通常来说,样本量越大, 结果的稳定性越高。
考虑最小样本量
在选择样本量时,需要考虑最小样本量的要 求。根据研究目的和预期效应大小,确定合 适的样本量。
卡方检验的局限性
1 2 3
适用范围有限
四格表卡方检验主要用于比较两组分类变量之间 的关联程度,对于连续变量或等级变量则不太适 用。
卡方检验
SPSS操作
四格表卡方检验
例1 某种药物加化疗与单用某种药物治疗的两种处理
方法,观察对某种癌症的疗效,结果见下表。(数据
见cancer.sav)
两种治疗方法的疗效比较
疗效 处理 药物加化疗 单用药物 有效 42 48 无效 13 3 合计 55 51
合计
90
16
106
四格表卡方检验
首先建立数据文件,如下。
合计
1281 387 1668
④ 计算检验统计量 2 值
386 346.4
2
2
346.4
895 934.6
934.6
2
65 104.6
104.6
2
32 4.527 1.678 14.992 5.553 26.750
如果个别单元格的T小于5,但大于1,处理方法有以下四种:
1、单元格合并法 2、增加样本数 3、去除样本法 4、使用校正公式
注:当n<40,T<1时,用四格表确切概率法。
完全随机设计两样本率比较的四格表
处理 1 2 合计 阳性 A11(T11) A21(T21) m1 属性 阴性 A12(T12) A22(T22) m2 合计 n1(固定值) n2(固定值) n
儿童组 成人组 合计
50 105 155
48 10 58
18 7 25
72 23 95
188 145 333
R×C表卡方检验
对频数加权
R×C表卡方检验
R×C表卡方检验
R×C表卡方检验
结果
四格表
行×列卡方
合并后可能成为 四格表资料
T<5格 >20%