轴对称二垂直平分线共19页文档
线段垂直平分线的性质和判定讲课文档
B(A)
总结归纳
线段垂直平分线的性质定理: 线段垂直平分线上的点到线段两端的距离相等.
第八页,共22页。
典例精析
例1 如图,在△ABC中,AB=AC=20cm,DE垂直 平分AB,垂足为E,交AC于D,若△DBC的周长为 35cm,则BC的长为( ) C
A.5cm B.10cm C.15cm D.17.5cm
线段垂直平分线的性质和判定
第一页,共22页。
学习目标
1.理解线段垂直平分线的概念; 2.掌握线段垂直平分线的性质定理及逆定理;(重点) 3.能运用线段的垂直平分线的有关知识进行证明或计算. (难点)
第二页,共22页。
导入新课
问题引入
A
某区政府为了方便居民的生活,计划在三 个住宅小区A、B、C之间修建一个购物中 心,试问该购物中心应建于何处,才能使得 它到三个小区的距离相等?
(2)当点P在线段AB外时,如右图所示. 因为PA=PB, 所以△PAB是等腰三角形. 过顶点P作PC⊥AB,垂足为点C, 从而底边AB上的高PC也是底边AB上的中线. 即 PC⊥AB,且AC=BC. 因此直线PC是线段AB的垂直平分线, 此时点P也在线段AB的垂直平分线上.
第十三页,共22页。
总结归纳
P3
P1A __=__P1B P2A __=__ P2B
P2
P1
A
B
P3A __=__ P3B
l
第六页,共22页。
活动探究
作关于直线l 的轴反射(即沿直线l 对折),由于l 是 线段AB的垂直平分线,因此点A与点B重合. 从而线段PA 与线段PB重合,于是PA=PB.
P
(B) A
l
第七页,共22页。
八年级数学上册13.1.1轴对称(共21张PPT)
课前准备:
正方形纸片、剪刀.
一、引出新知
二、探究新知
【问题1】如图,把一张纸对折,剪出一个图案(折 痕处不要完全剪断),再打开这张对折的纸,就得到 了美丽的窗花.观察得到的窗花,你能发现它们有什 么共同的特点吗?
(一)轴对称图形
如果一个平面图形沿一条直线折叠,直线两旁的部分能 够互相重合,这个图形就叫做轴对称图形,这条直线就 是它的对称轴. 这时,我们也说这个图形关于这条直线 (成轴)对称.
B
B'
C
C'
N
(四)两个图形成轴对称的性质
思考:如果将其中的“三角形”改为“四边形”“五边形”…
其他条件不变,前面的结论还成立吗?
M
l
l
A
A'
P
B C
B' C'
N
性质:如果两个图形关于某条直线对称,那么对称轴是任何一 对对应点所连线段的垂直平分线.(即对称点所连线段被对称 轴垂直平分;对称轴垂直平分对称点所连线段.)
四边形ABCD是轴对称图形
B
3
30°
C
30°
A
3
D
∆ABC ∆ADC
AC垂直平分BD
轴对称图形
课堂小结
轴对称
重要内容 线段的垂直 平分线
概念 性质
两个图形 成轴对称
概念 性质
本节课知识点对应数学课本P58-60
课后作业
完成课本P64-65习题13.1第1、2、3、4、5题.
谢谢!
B
点C'是点C的对称点. 能成轴对称,
B′
那么它们是全
C
C′
等图形吗?
做一做
2.下列每副图形中两个图案是轴对称的吗?如果是,
2023-2024学年人教版数学八年级上册第十二章全等三角形微专题——动点问题1(含解析)
2023-2024学年人教版数学八年级上册第十二章全等三角形微专题——动点问题1一、单选题1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2B.3C.4D.52.如图,已知Rt△ABC,∠C=90°,点D在AC上,CD=3,BD平分∠ABC,点P是AB 上一个动点,则下列结论正确的是()A.PD>3B.PD≥3C.PD≤3D.PD=33.如图,在△ABC中,∠A=90°,BD平分∠ABC交AC于点D,AD=3,若P是BC上的动点,则线段DP的最小值是()A.3B.2.4C.4D.54.如图所示,在△ABC中,∠ABC=68°,BD平分∠ABC,P为线段BD上一动点,Q为边AB上一动点,当AP+PQ的值最小时,∠APB的度数是()A.118°B.125°C.136°D.124°5.如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC→CD→DA向终点A运动,设点P的运动时间为t秒,当以A、B、P为顶点的三角形和△DCE全等时,t的值为( )A.1B.7C.1或2D.1或76.如图,在△ABC中,∠ACB>90°,△ABC的面积为18,AB=9,BD平分∠ABC,E,F分别是BD,BC上的动点,则CE+EF的最小值为( )A.4B.6C.7D.97.如图,四边形ABCD中,∠A=90°,AD=5,连接BD,BD⊥CD,垂足是D且∠ADB=∠C,点P是边BC上的一动点,则DP的最小值是()A.2B.3C.4D.5二、填空题10.如图,在正方形ABCD中,∠A=∠B=∠C=∠D=90°,动点动点Q以3cm/s的速度从点B止移动.设移动的时间为t(与△PAB全等.12.如图,CA⊥AB,垂足为点B,一动点E从A点出发,以随着E点运动而运动,且始终保持三角形与点A、B、C组成的三角形全等.13.如图,OP平分∠AOB,PC⊥OA值为.14.如图,∠ACB=90°,AC=/秒的速度沿射线AC运动,点Q秒时,△ABC与以点P,Q,C为顶点的三角形全等.三、解答题15.在平面直角坐标系中,A(−5,0),B(0,5).点C为x轴正半轴上一动点,过点A作AD⊥BC交y轴于点E.(1)如图①,若C(4,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OC<5.其它条件不变,连接DO,求证:DO 平分∠ADC.16.已知:△ABC中,AC=CB,∠ACB=90°,D 为直线BC上一动点,连接AD,在直线AC右侧作AE⊥AD,且AE=AD.(1)如图,当点D在线段BC上时,过点E 作EH⊥AC于H,连接DE,求证:EH=AC;(2)如图,当点D在线段BC的延长线上时,连接BE交CA的延长线于点M.求证:BM=EM.17.如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ 全等时,求t的值.18.定理:三角形任意两边之和大于第三边.(1)如图1,线段AD,BC交于点E,连接AB,CD,判断AD+BC与AB+CD的大小关系,并说明理由;(2)如图2,OC平分∠AOB,P为OC上任意一点,在OA,OB上截取OE=OF,连接PE,PF.求证:PE=PF;(3)如图3,在△ABC中,AB>AC,P为角平分线AD上异于端点的一动点,求证:PB−PC>BD−CD.19.如图,在△ABC中,D为AB的中点,AB=AC=10cm,BC=8cm,动点P从点B出发,沿BC方向以每秒3cm的速度向点C运动;同时动点Q从点C出发,沿CA方向以每秒3 cm的速度向点A运动,运动时间是t秒.(1)在运动过程中,当点C位于线段PQ的垂直平分线上时,求出t的值;(2)在运动过程中,是否存在某一时刻t,使△BPD和△CQP全等,若存在,求出t的值.若不存在,请说明理由.20.在△ABC中,AC=BC,∠ACB=90°,D是射线BA上一动点,连接CD,以CD为边作∠DCE=45°,CE在CD右侧,CE与过点A且垂直于AB的直线交于点E,连接DE.(1)当CD,CE都在AC的左侧时,如图①,线段BD,AE,DE之间的数量关系是_________;(2)当CD,CE在AC的两侧时,如图②,线段BD,AE,DE之间有怎样的数量关系?写出你的猜想,并给予证明;(3)当CD,CE都在AC的右侧时,如图③,线段BD,AE,DE之间有怎样的数量关系?直接写出你的猜想,不必证明.参考答案:1.B【分析】根据垂线段最短得出当PQ⊥OM时,PQ的值最小,根据角平分线性质得出PQ=PA,求出即可.【详解】解:当PQ⊥OM时,PQ的值最小,∵OP平分∠MON,PA⊥ON,PA=3,∴PQ=PA=3,故选:B.【点睛】本题考查了角平分线性质,垂线段最短的应用,解题的关键是能得出使PQ最小时Q 的位置.2.B【分析】连接DP,根据角平分线的性质及垂线段最短解答即可.【详解】解:连接DP,如图所示:∵∠C=90°,BD平分∠ABC,∴当DP⊥AB时,DP=CD=3那么当DP不垂直AB时,DP>CD=3,∵垂线段最短,∴PD≥3,故选:B.【点睛】本题考查的是角平分线的性质及垂线段最短,熟知角的平分线上的点到角的两边的距离相等是解题的关键.3.A【分析】由垂线段最短可知当DP⊥BC时,DP最短,根据角平分线的性质即可得出结论.【详解】解:当DP⊥BC时,DP的值最小,∵BD平分∠ABC,∠A=90°,∵BD平分∠ABC,∠ABC=∠ABC ∴∠ABD=∠CBD=12∵BP=BP,∴△PBQ≌△PBE(SAS),∵∠AEB=90°,∠CBD=34°∴∠APB=∠AEB+∠CBD=∵BD平分∠ABC,PE⊥AB,EF⊥∴PE=EF,∴CP=CE+PE=CE+EF的最小值.即CE+EF的最小值为4,故选:A.【点睛】本题考查了轴对称-最短路线问题,关键是将CE+EF的最小值为转化为CP,题目具有一定的代表性,是一道比较好的题目.7.D【分析】根据等角的余角相等求出∠ABD=∠CBD,再根据垂线段最短可知DP⊥BC时DP最小,然后根据角平分线上的点到角的两边距离相等可得DP=AD.【详解】解:∵BD⊥CD,∠A=90°.∴∠ABD+∠ADB=90°,∠CBD+∠C=90°,∴∠ABD=∠CBD,由垂线段最短得,DP⊥BC时DP最小,此时,DP=AD=5.故选:D.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质并判断出DP最小时的位置是解题的关键.8.D【分析】当△EAP与△PBQ全等时,有两种情况:①当EA=PB,AP=BQ时,△APE≅△BQP②当AP=BP,AE=BQ时,△AEP≅△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.【详解】当△EAP与△PBQ全等时,有两种情况:①当EA=PB,AP=BQ时,△APE≅△BQP,∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,∴点P和点Q的运动时间为:4÷2=2s,∴v的值为:4÷2=2cm/s;②当AP=BP,AE=BQ时,△AEP≅△BQP,∵AB=10cm,AE=6cm,∵BD平分∠ABC,∴∠N′BM=∠NBM,在△MBN′与△MBN中,{BN′=BN∠N′BM=∠NBM,BM=BM×AB×CN′,此时S△ABC=12×4×CN′,可得6=12可得CN′=3,∴CM+MN的最小值为3,故答案为:3.∵AB=AD,∠ABP=∴BP=AQ,∵AQ=AB−BQ=8−3t,BP=t,∴8−3t=t,∴t=2s,当点Q在边AD时,不能构成△QAD,当点Q在边CD上时,如图2,AB+AD+DQ=3t,BP=t,∴DQ=3t−16.要使△PAB和△QAD全等,只能是△PAB≌△QAD,∴BP=DQ,∴t=3t−16,∴t=8s,故答案为:2s或8s.【点睛】此题主要考查了正方形的性质,全等三角形的性质解本题的关键是分类讨论,用方程的思想解决问题.11.5【分析】由平行线的性质可得∠EBF=∠A,由ASA证明△BEF≌△AED,得到AD=BF,最后由BF+CD=AD+CD=AC即可得到答案.【详解】解:∵BF∥AC,∴∠EBF=∠A,∵E为AB中点,∴BE=AE,在△BEF和△AED中,{∠EBF=∠ABE=AE∠BEF=∠AED,∴△BEF≌△AED(ASA),∴AD=BF,∴BF+CD=AD+CD=AC=5,故答案为:5.【点睛】本题主要考查了平行线的性质、三角形全等的判定与性质,熟练掌握平行线的性质、三角形全等的判定与性质是解题的关键.12.0或2或6或8【分析】首先分两种情况:当E在线段AB上和当E在BN上,然后再分成两种情况AC=BE和AB=EB,分别进行计算,即可得出结果.【详解】解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4cm,∴BE=4cm,∴AE=AB−BE=4cm,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,△ACB≌△BED,∵AC=4cm,∴BE=4cm,∴AE=AB+BE=12cm,∴点E的运动时间为12÷2=6(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,∵AB=8cm,∴BE=8cm,∴AE=AB+BE=16cm,∴点E的运动时间为16÷2=8(秒),综上所述,当点E经过0秒或2秒或6秒或8秒时,由点D、E、B组成的三角形与点A、B、C 组成的三角形全等,故答案为:0或2或6或8.【点睛】本题考查了全等三角形的性质,解题的关键是注意分类讨论思想的运用.13.3【分析】过P作PE⊥OB交OB于E,当D于E重合时,PD=PE最小,即可求解.【详解】解:如图,过P作PE⊥OB交OB于E,∴当D于E重合时,PD=PE最小,∵OP平分∠AOB,PC⊥OA,∴PE=PC=3,∴PD的最小值为3,故答案:3.【点睛】本题考查了角平分线的性质定理,垂线段定理,掌握定理是解题的关键.14.1或3或4【分析】设点P运动时间为t秒,根据已知条件分△ABC≌△PQC,△ABC≌△QPC,两种情况,根据AC=PC=4和BC=PC=2列方程求出t值即可.【详解】解:∵AC=2BC=4,∴BC=2,设点P运动时间为t秒,∵∠ACB=∠PCQ=90°,PQ=AB,∴当△ABC≌△PQC时,AC=PC=4,∴|4−2t|=4,解得:t=0(舍)或t=4;当△ABC≌△QPC时,BC=PC=2,∴|4−2t|=2,解得:t=1或t=3;综上:1秒或3秒或4秒时,△ABC与以点P,Q,C为顶点的三角形全等,故答案为:1或3或4.【点睛】本题考查直角三角形全等的判定,关键是找到所有符合题意的情况.15.(1)点E 的坐标为(0,4);(2)见解析【分析】(1)可证明△AOE≌△BOC(ASA),从而得出OE =OC ,进而求得;(2)过O 作OM ⊥DA 于M ,ON ⊥DC 于N ,根据△AOE≌△BOC ,得S ΔAOE =S ΔBOC ,从而得出OM =ON ,进而得证.【详解】(1)解:如图,∵AD ⊥BC ,AO ⊥BO ,∴∠AOE =∠BDE =∠BOC =90°,∴∠OAE +∠ACD =90°,∠OBC +∠ACD =90°,∴∠OAE =∠OBC ,∵A (−5,0),B (0,5),∴OA =OB =5.在△AOE 和△BOC 中,{∠OAE =∠OBC OA =OB ∠AOE =∠BOC,∴△AOE≌△BOC(ASA),∴OE =OC ,∴点C 坐标为(4,0),∴OE =OC =4,∴E (0,4);(2)证明:如图,过O作OM⊥DA于M,ON⊥DC于由(1)知,△AOE≌△BOC,∴SΔAOE=SΔBOC,AE=BC,∴1 2×AE×OM=12×BC×ON,∴OM=ON,{∠AHE =∠C ∠AEH =∠DAC AE =DA,∴△AEH≌△DAC(AAS),∴EH =AC .(2)如图,作EF ⊥CM 交CM 的延长线于点F ,∵∠F =90°,∠ACD =180°−∠ACB =90°,∠DAE =90°,∴∠F =∠ACD =∠MCB ,∵∠FAE +∠CAD =90°,∠CDA +∠CAD =90°,∴∠FAE =∠CDA ,在△FAE 和△CDA 中,{∠F =∠ACD ∠FAE =∠CDA AE =DA,∴△FAE≌△CDA(AAS),∴EF =AC ,∵AC =CB ,∴EF =AC =BC ,在△BMC 和△EMF 中,{∠MCB =∠F ∠BMC =∠EMF BC =EF,∴△BMC≌△EMF(AAS),∵BM =EM .【点睛】此题考查了同角的余角相等、全等三角形的判定与性质等知识,难度较大,正确地作出辅助线是解题的关键.17.(1)6∵∠BOD=∠ACD,∴∠AOP=∠ACF,∵AO=CF,∴当OP=CQ时,△AOP≌△FCQ∵∠BOD=∠ACD,∴∠AOP=∠FCQ,∵AO=CF,∴当OP=CQ时,△AOP≌∴t=4t−6,∵AD是∠BAC的角平分线,∴∠EAP=∠CAP,在△APE和△APC中,{AE=AC(3)过点C作CF⊥CE,交AB于点F,如图,先证明△CBF≌△CAE,得到BF=AE,CF=CE,然后证明△DCE≌△DCF解题即可;【详解】(1)过点C作CF⊥CE,交AB延长线于点F,如图.∴∠ECF=∠ACB=90°.∴∠FCB=∠ECA.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=135°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD+BF=DF,∴BD+AE=DE.故答案为:BD+AE=DE.(2)图②的猜想:BD−AE=DE.证明:过点C作CF⊥CE,交AB于点F,如图②.∴∠ECF=∠ACB=90°.∴∠CBF=∠CAE.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=45°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD−BF=DF,∴BD−AE=DE.(3)过点C作CF⊥CE,交AB于点F,如图∴∠ECF=∠ACB=90°.∴∠FCB=∠ECA.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=45°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD−BF=DF,∴BD−AE=DE.故答案为:BD−AE=DE.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定和性质是解题的关键.。
垂直平分线的性质讲课文档
M D
O
解:相等,连接OB.
∵ MN是线段AB的垂直平分线( 已知) ∴ OA=OB(线段中垂线的性质) C
A N
又∵ DE是线段BC的垂直平分线
B
E
(已知)
∴ OB=OC(线段中垂线的性质)
∴ OA=OC(等量c代ome换on),boys and gilrs
现在十三页,总共六十八页。
如图,已知:AOB,点M、N. 求作:一点P,使点P到AOB两边的距 离相等,并且满足PM=PN.
A
.N
. .M P 点P为所求
作的点
O
现在三十三页,总共六十八页。
B
课堂练习
练习4 如图,过点P 画∠AOB 两边的垂线,并和
同桌交流你的作图过程.
A
P
O
B
现在三十四页,总共六十八页。
国旗是国家的一个象征,观察下面的国旗, 哪些是轴对称图形?试找出它们的对称轴。
课堂练习P62
2 如图,AD⊥BC,BD =DC,点C 在AE 的垂直平分线上
,AB,AC,CE 的长度有什么关系?AB+BD与DE 有
什么关系?
A
解:∵ AD⊥BC,BD =DC
∴ AD 是BC 的垂直平分线
∴ AB =AC
B DC
E
∵ 点C 在AE 的垂直平分线上
∴ AC =CE. ∴ AB =AC =CE
线段的垂直平分线可以看作是到线段两上端点距离
相等的所有点的集合
come on,boys and gilrs
现在十九页,总共六十八页。
巩固练习 已知:如图 ABC中,边AB、BC的垂
A M
直平分线相交于点P.
七年级数学 第五章 生活中的轴对称 2 探究轴对称的性质同步
2.如图5-2-10,四边形ABCD中,点M,N分别(fēnbié)在AB,BC上,将△BMN沿MN翻
折,得△FMN,若MF∥AD,FN∥DC,则∠B =
°.
答案(dáàn) 95
图5-2-10
12/7/2021
第二十七页,共三十一页。
解析 ∵MF∥AD,∠DAM=100°,∴∠FMB=100°.
知1识2详/7解/2021 (3)成轴对称的两个图形全等,但全等的两个图形不一定成轴对称.
(4)作用:①如果两个图形关于某一条直线成轴对称,那么对应点所连线段的垂直平分线就是这两个图形的对称轴,我们可以利用这一性质画对称轴.②由于对应线段、对应
角相等,我们可以利用这一性质说明两条线段相等或两个角相等
第二十五页,共三十一页。
1.如图5-2-9,P是∠AOB内一点,分别作点P关 于直线(zhíxiàn)OA,OB的对称点P1,P2,连接OP1,OP2,则
下列结论正确的是 ( )
A.OP1⊥OP2
B.OP1=OP2 C.OP1⊥OP2且OP1=OP2 D.OP1≠OP2
图5-2-9
答案 B ∵点P关于(guānyú)直线OA,OB的对称点分别为P1,P2,∴OP1=OP2= OP,∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP+∠AOP1+ ∠BOP+∠BOP2=2(∠AOP+∠BOP)=2∠AOB,∵∠AOB的度数任意,∴OP1 ⊥O1P2/72不/20一21 定成立.故选B.
12/7/2021
图5-2-2
第五页,共三十一页。
解析 (1)所画图形(túxíng)如图5-2-3所示:
图5-2-3
2022秋七年级数学上册 第二章 轴对称2.3简单的轴对称图形1线段的垂直平分线及其性质课件 鲁教版
A.25° B.30°
C.35° D.40°
【点拨】因为DE垂直平分AC, 所以AD=CD,AE=EC,又因为DE=DE, 所以△ADE≌△CDE.所以∠A=∠ACD. 又因为CD平分∠ACB, 所以∠ACB=2∠ACD=100°. 所以∠B=180°-∠A-∠ACB=180°-50°- 100°=30°.故选B.
作图痕迹是( D )
5 如图,在△ABC中,∠B=32°,∠C=48°,AB和AC 的垂直平分线分别交BC于点D,E,且点D在点E的左侧, BC=6 cm,则△ADE的周长是( D ) A.3 cm B.12 cm C.9 cm D.6 cm
【点拨】因为AB,AC的垂直平分线分别交BC于点 D,E,所以BD=AD,AE=EC.所以△ADE的周长 为AD+DE+AE=BD+DE+EC=BC=6 cm.
解:因为AG垂直平分BC,点D在AG上, 所以DB=DC.
13 如图,在四边形ABCD中,AD∥BC,E为CD的中点, 连接AE并延长交BC的延长线于点F.
(1)试说明:CF=AD.
解:因为 AD∥BC,所以∠ECF=∠ADE. 因为 E 为 CD 的中点,所以 CE=DE.
∠FEC=∠AED, 在△FEC 和△AED 中,CE=DE,
2 【中考·枣庄】如图,在△ABC中,AB的垂直平分线交 AB于点D,交BC于点E,连接AE.若BC=6,AC=5, 则△ACE的周长为( B ) A.8 B.11 C.16 D.17
【点拨】因为DE垂直平分AB, 所以AE=BE. 所以△ACE的周长为AC+CE+AE=AC+CE+BE =AC+BC=5+6=11. 故选B.
6 【中考·十堰】如图,在△ABC中,DE是AC的垂直平分 线.若AE=3,△ABD的周长为13,则△ABC的周长为 ____1_9___.
2020中考数学专题复习:图形和变换(轴对称、轴对称图形)(共29张PPT)
3- 2
例题6.
A O
Q
F
B E
综合提优
①求证:DQ=AE;②推断:GF:AE的值;
D
G
C
综合提优
A
D BC:AB=k(k为常数).探究GF与AE之间的数量
关系,并说明理由;
MO
F
B
E
G P
C
A
5X
O2 10 F 3 10 x
4X 5X
拓展应用:在(2)的条件下,连接CP,当k= 2 D 时,若tan∠CGP= 3 ,GF=2 10 ,求CP的长.3
2. 下列图形中,为轴对称图形的是( D )
基础训练
3.(2017黑龙江哈尔滨)下列图形中,既是轴对称图形
又是中心对称图形的是 ( D )
基础训练
4.如图所示,在Rt△ABC中,
∠C= 90°,以顶点A为圆心,适当
长为半径画弧,分别交AC,AB
于点M、N,再分别以点M,N为
圆心,大于0.5MN的长为半径画
例题讲解
∵以△ADE、△AD′E,关于直线AE 成轴对称图形∴AD=AD′, ∵在△ABD和△ACD′中
∴△ABD≌△ACD′(sss)
(2)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′, ∴∠BAC=∠DAD′=120°, ∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形 △AD′E, ∴∠DAE=∠D′AE= ∠DAD′=60°,即∠DAE=60°
E是边CD上一点,连接AE.折叠该纸片,使点A落在AE
上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.
若DE=5,则GE的长为
.
例题讲解
12
由折叠及轴对称的性质可知, △ABF≌△GBF,BF垂直平分AG,
13.1.2线段垂直平分线性质课件(共34张PPT)
B的距离.你有什么发现?再取几个点试试.你能说明理由吗?
发现: P到A的距离与P到B的距离相等.
P
已知:如图.AC=BC. PC⊥AB,P是MN上任意一点.
求证:PA=PB.
证明:∵MN⊥AB, ∴ ∠PCA=∠PCB=90° 在△APC与△BPC中:
PC=PC(公共边) ∠PCA=∠PCB(已证) AC=BC(已知) ∴△PCA≌△PCB(SAS) ∴PA=PB(全等三角形的对应边相等)
五角星的对称轴有什么特点? 相交于一点.
练习
1.作出下列图形的一条对称轴.和同学比较一下.你们 作出的对称轴一样吗?
练习
2.如图,角是轴对称图形吗?如果是,它的对称轴是什 么?
练习
3.如图,与图形A 成轴对称的是哪个图形?画出它的 对称轴.
A
B
C
D
做一做
1.正方形ABCD边长为a,点E,F分别是对角线BD上的两点, 过点E,F分别作AD,AB的平行线,如图所示,则图中阴影 部分的面积之和等于 1 a 2 .
B A
5.求作一点P,使它和已△ABC的三个顶点 距离相等.
A
·P
B
C
试一试
N
已 知 : P为 M ON内 一 点 。 P与 A关 于 ON对 称 , A
P与 B关 于 OM 对 称 。 若 AB长 为 15cm
求 : PCD的 周 长 .
D P
解: P与A关于ON对称
ON为PA的中垂线(
? …)
F
∴PA=PB 同理:PB=PC
P E
∴PA=PB=PC
A
N
B
结论:三角形三边的垂直平分线交于一 点,并且这点到三个顶点的距离相等.
冀教版初中数学八年级上册教学课件 第十六章 轴对称和中心对称 线段的垂直平分线(第2课时)
3.如图所示,地面上有三个洞口A,B,C,老鼠可以从 任意一个洞口跑出,猫为能同时最省力地顾及到三 个洞口(到A,B,C三个点的距离相等),尽快抓到老鼠, 应该蹲守在 ( A ) A.ΔABC三边垂直平分线的交点上 B.线段AB上 C.ΔABC三条高所在直线的交点上 D. Δ ABC三条中线的交点
线段两个端点的距离相等进行证明.
那么反过来,到线段两个端点距离相等的点是否一定 都在线段的垂直平分线上呢?
活动一:线段垂直平分线性质定理 的逆定理
学习新知
. 与一条线段两个端点的距离相等的点是否一定在 这条线段的垂直平分线上呢?
已知:如图所示,P是线段AB外一点,
且PA=PB.
求证:点P在线段AB的垂直平分线上.
新课标 冀
数学
8年级/上
八年级数学·上 新课标 [冀教]
第十六章 轴对称和中心对称
学习新知
检测反馈
给你已知线段a,以a为底边的等腰三角形有几个? 如果用三角板和刻度尺,你能画出至少三个吗?
利用三角板、刻度尺作出线段的垂直平分线,在垂
直平分线上取点,连接可得满足条件的等腰三角形.
在这里,我们利用了线段的垂直平分线上的点与这条
O
证明:设线段AB的中点为O,连接PO并延长.
PA PB,
在ΔPOA和ΔPOB中, PO PO,
AO BO,
∴ΔPOA≌ΔPOB(SSS),∴∠POA=∠POB,
∵∠POA+∠POB=180°,∴2∠POA=180°,∠POA=90°. ∴直线PO是线段AB的垂直平分线,∴点P在线段AB的垂 直平分线上.
线段垂直平分线的判定方法:与一条线段两个端
线段垂直平分线的性质定理及逆定理标准版文档
(chuíxiàn)PC, 本节课你有哪些(nǎxiē)收获?
在Rt△PAC≌Rt△PBC中
PA=PB,
∴∠PCA=∠PCB=90° =
轴对称图形的概念是什么(shén me)? 在△APC与△BPC中
∴AC=BC(全等三角形对 应(duìyìng)角相等)
在Rt△PAC≌Rt△PBC中 PA=PB,
l
你有什么(shén me)发现?
猜想: 线段(xiànduàn)垂直平 分线上的点到这条线段(xiànduàn)两个端点距 离相等.
第四页,共10页。
M
已知:如图,AC=BC,MN⊥AB,P
P
是MN上任意一点(yī diǎn).
求证:PA=PB.
A
C
B 证明: ∵MN⊥AB, ∴ ∠PCA=∠PCB=90°
线段垂直平分线的性质(xìngzhì) 定理及逆定理
第一页,共10页。
概念(gàiniàn)复习
▪ 轴对称图形的概念是什么(shén me)?
▪ 两个图形轴对称的概念是什么(shén me)?
▪ 垂直平分线的概念是什么(shén me)?
▪ 图形轴对称的性质? 第二页,共10页。
学习(xuéxí)目标
▪ 掌握线段垂直平分线的性质定理 (dìnglǐ)及逆定理(dìnglǐ)
▪ 能运用两个定理(dìnglǐ)解决有关 的实际问题
第三页,共10页。
P1
▪ 如左图,木条L与木条
P2
AB钉在一起,L垂直平
P3
分AB,P1、P2、 P3……是l 上的点,分别
A
B 量一量点P1、P2、
P3……到A与B的距离,
求证:P点在AB的 ∴PA=PB(全等三角形的对应边相等).
线段垂直平分线的性质及判定定理课件
定理2 到一个角的两边的距离相等的 点,在这个角的平分线上。
逆定理 和一条线段两个端点距离相等
的点,在这条线段的垂直平分线上。
角的平分线是到角的两边距离相等 线段的垂直平分线可以看作是和线段两个端
的所有点的集合
点距离相等的所有点的集合
点的集合是一条射线
点的集合是一条直线
第十八页,共19页幻灯片
第十九页,共19页幻灯片
第十六页,共19页幻灯片
今天学习了线段的中垂线的性质、 及逆定理,你能由此联想到前面学过的 什么知识与此类似吗?
第十七页,共19页幻灯片
线段的垂直平分线
M
P
O
E
B
A
B
N
定理1 在角的平分线上的点到这个角的 定 理 线段垂直平分线上的点和这
两边的距离相等。
条线段两个端点的距离相等。
的垂直平分线上.
它是真命题吗?
P
′ 如果是.请你证明它.
已知:如图,PA=PB.
求证:点P在AB的垂直平分线上. A
B
分析:要证明点P在线段AB的垂直平分线上
,可以先作出过点P的AB的垂线(或AB的中
点,),然后证明另一个结论正确.
想一想:若作出∠P的角平分线,结论是否
也可以得证?
驶向胜利的 彼岸
第十一页,共19页幻灯片
∴AE+EC=BE+EC=8cm 有垂直平分线
(等式性质).
,就有等腰三
又∵ BC=6cm(已知)
角形的产生
∴ C△BEC=BE+EC+BC =8+6=14cm
第十页,共19页幻灯片
思考分析
进步的标志
你能写出定理 “线段垂直平分线上的
轴对称 垂直平分线的性质共31页
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
轴对称 垂直平分线的性质 4、守业的最好办பைடு நூலகம்就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。