勾股定理经典易错题及知识点类题总结

合集下载

完整版勾股定理知识点及典型例题

完整版勾股定理知识点及典型例题

(2)在直角三角形中,如果一个锐角等于 30° ,那么它所对的直角边等于斜边的一半。

(3 )在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角 等于30°。

5.勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3) 用于证明线段平方关系的问题。

(4) 利用勾股定理,作出长为j n 的线段6、2、勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法八下第18章《勾股定理》勾股定理知识点导航一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a 2+ b 2= C 2.即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+ b 2= c 2,那么这个三角形是直角三角形。

2.勾股数:满足 a 2+ b 2= C 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么 ka ,kb ,kc 同样也是勾股数组。

)* 附:常见勾股数:3,4,5 ; 6,8,10 ; 9,12,15 ; 5,12,13 如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为 C ); (2)若c 2= 3 +孑,则^ ABC 是以/ C 为直角的三角形;若a 2+ b 2< C 2,则此三角形为钝角三角形(其中若a 2+ b 2> C 2,则此三角形为锐角三角形(其中4. 注意:(1)直角三角形斜边上的中线等于斜边的一半a ,b ,斜边长为C ,那么3.判断直角三角形: 其他方法:(1) 有一个角为90°的三角形是直角三角形。

勾股定理十大易错题(带答案)

勾股定理十大易错题(带答案)

勾股定理十大经典易错题1. 如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,问这棵树有多高?露在杯子外边的长度为cm h ,则h 的取值范围为 .3. 如图,在 △ABC 中,∠C =90∘,AC =2,点 D 在 BC 上,∠ADC =2∠B ,AD =√,则 BC 的长为 .A . √3−1B . √3+1C . √5−1D . √5+1【答案】D4. 如图为一个棱长为1的正方体的展开图,A 、B 、C 是展开后小正方形的顶点,则∠ABC 的度数为( )5. ABC 的面积为 .6. 在Rt ABC ∆中,90C ∠=︒,若54a b c +==,,则ABC S ∆= .7. 如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )A .x y =B .x y >C .x y < D8.如图网格中的△ABC ,若小方格边长为1,请你根据所学的知识(1)求△ABC 的面积;(2)判断△ABC 是什么形状?并说明理由.9. 如图,在长方形纸片 ABCD 中,已知 AD =8,折叠纸片使点 B 落在对角线 AC 上的点 F 处,折痕为 AE ,且 EF =3,求 AB 的长.10. 如图,有一个长、宽、高分别为3cm 、4cm 、5cm 的长方体,有一只蚂蚁想沿着外侧壁从A 点爬到C 1处,请你帮助小蚂蚁计算出最短路线.C A2. 【答案】1112h ≤≤3. 【答案】D4. 【答案】B5. 【解析】借助网格计算面积【答案】3.5 6. 【解析】 在Rt ABC ∆中,由勾股定理得,222a b c +=.又有()2222a b ab ab +=++,∴ ()222a b c ab +-= ∴1924ABC S ab ∆==. 【答案】94ABC S ∆=7. 化简得()2220a x y x y -=+>,x y >.【答案】B8. 解:(1)△ABC 的面积=4×4-1×2÷2-4×3÷2-2×4÷2=16-1-6-4=5.故△ABC 的面积为5;(2)∵小方格边长为1,∴AB2=12+22=5,AC 2=22+42=20,BC 2=32+42=25,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形.9. 【答案】610.【解析】我们将六个面标上:正、背、左、右、上、下,蚂蚁从A 到C 至少要走两个面,①正-右②正-上③左-上④左-背⑤下-背⑥下-右, 其中④⑤⑥和前面三种是重复的,比如①④,将拉伸长方体得棱AA 1和CC 1得到长方形AA 1C 1C ,两种路径是一样的,下面分情况讨论:①正-右:7457222121=+=+=CC AC AC ;②正-上:10393222121=+=+=BC AB AC ;③左-上:54482221121=+=+=C B AB AC【答案】cm 74。

八年级数学勾股定理易错点与重难点复习(一)

八年级数学勾股定理易错点与重难点复习(一)

勾股定理易错点与重难点复习(一)1、已知实数a 满足100822018a a a -+-=,那么221008a -= 。

20182、已知571x x +--=,则57x x ++-= 。

12 3、已知a +b =4,ab =1,则a bb a+= 。

4 4、已知2510x x -+= (1)求1x x +的值; (2)求221xx +的值; (3)求441x x +的值; (4)直接写出551x x +=_________,661x x +=_________。

解:1x x +=5 221x x +=3 331x x +=25 441x x +=7 551x x +=55 661x x +=18知识点 勾股定理及其逆定理 【知识梳理】1、勾股定理的基础概念(1)勾股定理的有关概念:如图所示,我们用勾(a )和股(b )分别表示直角三角形的两条直角边,用弦(c )来表示斜边。

(2)勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方。

即:2勾+2股=2弦。

(3)勾股定理的表示方法:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则2a +2b =2c 。

(1)勾股定理的前提是,对于非直角三角形的三边之间则不存在此种关系。

(2)利用勾股定理时,必须分清谁是直角边,谁是斜边。

尤其在记忆2a+2b=2c时,此关系式只有当c是斜边时才成立。

若b是斜边,则关系式是2a+2c=2b;若a是斜边,则关系式是2b+2c=2a。

(3)勾股定理有许多变形,如c是斜边时,由2a+2b=2c,得2a=,2b=等。

熟练掌握这些变形对我们解决问题有很大的帮助。

2、勾股定理的验证方法1:用四个相同的直角三角形(直角边为a,b,斜边为c)构成如图所示的正方形。

方法2:用四个相同的直角三角形(直角边为a,b,斜边为c)构成如图所示的正方形(赵爽弦图)。

方法3:用两个完全相同的直角三角形(直角边为a,b,斜边为c)构成如图所示的梯形。

勾股定理(10个考点梳理+题型解读+提升训练)(原卷版)24-25学年八年级数学上学期期中考点

勾股定理(10个考点梳理+题型解读+提升训练)(原卷版)24-25学年八年级数学上学期期中考点

勾股定理(10个考点梳理+题型解读+提升训练)【清单01】勾股定理直角三角形两直角边的平方和等于斜边的平方如图:直角三角形ABC 的两直角边长分别为,斜边长为,那么.注意:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:a b ,c 222a b c +=,, .运用:1.已知直角三角形的任意两条边长,求第三边;2.用于解决带有平方关系的证明问题;3.利用勾股定理,作出长为的线段【清单02】勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.【清单03】勾股定理逆定理 222a c b =-222b c a =-()222c a b ab =+-1.定义:如果三角形的三条边长,满足,那么这个三角形是直角三角形.注意:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.2.如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.注意:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.【清单04】勾股数像 15,8,17 这样,能够成为直角三角形三条边长的三个正整数,称为勾股数 。

勾股数满足两个条件:①满足勾股定理 ②三个正整数【清单05】勾股定理应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 本专题分类进行巩固解决以下生活实际问题【考点题型一】一直直角三角形的两边,求第三边长【典例1】已知一直角三角形两直角边的长分别为9,12,则它的斜边长为( )A .15B .16C .17D .25【变式1-1】如图,在△ABC 中,∠C =90°,AC =8,AB =10,则BC 的长为( )a b c ,,222a b c +=c 2c 22a b +222c a b =+222c a b ¹+222a b c +<222a b c +>cA.6B C.24D.2【变式1-2】如图,一个零件的形状如图所示,已知∠CAB=∠CBD=90°,AC=3cm,AB=4cm,BD=12cm,则CD长为()cm.D.15A.5B.13C.1445【变式1-3】如图,∠C=∠ABD=90∘,AC=4,BC=3,BD=12,则AD的长等于.【考点题型二】等面积法斜边上的高【典例2】如图,在Rt△ABC中,∠ACB=90°,若AC=6,CB=8.(1)求AB的长;(2)求AB边上的高CD是多少?【变式2-1】已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的高长为()A.52B.6C.132D.6013【变式2-2】如图,在△ABC中,∠ACB=90°,CD是高,AB=4,AC=2,则CD的长为.【变式2-3】在△ABC中,∠ACB=90°,AC=12,BC=5,则高CD=.【考点题型三】作无理数的线段【典例3】如图,在数轴上点A表示的数为a,则a的值为()A B.―1C.―1+D.―1―【变式3-1】如图,点B,D在数轴上,OB=3,OD=BC=1,∠OBC=90°,DC长为半径作弧,与数轴正半轴交于点A,则点A表示的是()A B+1C1D【变式3-2】如图,OC=2,BC=1,BC⊥OC于点C,连接OB,以点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为()A B.C―2D.2―【变式3-3】如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A3B.3―C3D.3―【考点题型四】勾股定理的证明【典例4】用图1所示的四个全等的直角三角形可以拼成图2的大正方形.请根据信息解答下列问题:(1)请用含a,b,c的代数式表示大正方形的面积.方法1:______.方法2:______.(2)根据图2,求出a,b,c之间的数量关系.(3)如果大正方形的边长为10,且a+b=14,求小正方形的边长.【变式4-1】下面四幅图中,能证明勾股定理的有()A.一幅B.两幅C.三幅D.四幅【变式4-2】勾股定理在数学和许多其他领域中都有广泛的应用,勾股定理是一个非常重要的数学定理,它在几何学、三角学、物理学、工程学等多个领域都有重要的应用.关于勾股定理的证明方法到现在为止有500多种,勾股定理常见的一些证明方法是:几何证明、代数证明、向量证明、复数证明、面积证明等.当两个全等的直角三角形按图1或图2摆放时,都可以用“面积法”来证明,以下是利用图1证明勾股定理的完整过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接BD ,过点D 作DF ⊥BC 交BC 延长线于点F ,则DF =EC =b ―a∵S 四边形ADCB =S △ACD +S △ABC =12b 2+12ab 又∵S 四边形ADCB =S △ADB +S △DCB =12c 2+12a (b ―a )∴∴12b 2+12ab =12c 2+12a (b ―a )∴a 2+b 2=c 2请参照上述证明方法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB =90°,求证:a 2+b 2=c 2.【变式4-3】我国是最早了解勾股定理的国家之一,汉代数学家赵爽为了证明勾股定理,创制了一幅如图1所示“赵爽弦图”(边长为c 的大正方形中放四个全等的直角三角形,两直角边长分别为a ,b ,斜边长为c ).(1)如图1,请用两种不同方法表示图中空白部分面积.方法1:S 阴影=______;方法2:S 阴影=______;根据以上信息,可以得到等式:______;(2)小亮将“弦图”中的4个三角形进行了运动变换,得到图2,请利用图2证明勾股定理;(3)如图3,将图2的2个三角形进行了运动变换,若a=6,b=3,求阴影部分的面积.【考点题型五】直角三角形的判定【典例5】下列长度的三条线段,能构成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.8,12,13【变式5-1】以下列各组数据为三角形三边,能构成直角三角形的是()A.4,8,7B.5,12,14C.2,2,4D.7,24,25【变式5-2】下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A B.1,C.6,7,8D.2,3,4【变式5-3】下列几组数中,不能构成直角三角形的是()A.9,12,15B.15,36,39C.10,24,26D.12,35,36【考点题型六】勾股定理的逆定理的运用【典例6】如图,一块四边形的空地,∠B=90°,AB的长为9m,BC的长为12m,CD的长为8m,AD的长为17m.为了绿化环境,计划在此空地上铺植草坪,若每铺植1m2草坪需要花费50元,则此块空地全部铺植草坪共需花费多少元?【变式6-1】绿都农场有一块菜地如图所示,现测得AB=12m,BC=13m,CD=4m,AD=3m,∠D=90°,求这块菜地的面积.【变式6-2】定义:顶点都在网格点上的多边形叫格点多边形.如图,在正方形网格中,每个小正方形的边长为1,四边形ABCD的每一个顶点都在格点上,(1)求∠ABC的度数;(2)求格点四边形ABCD的面积.【变式6-3】如图,已知一块四边形的草地ABCD,其中∠B=90°,AB=20m,BC=15m,CD=7m,DA=24m,求这块草地的面积.【考点题型七】勾股数的应用【典例7】勾股数,又名毕氏三元数,则下列各组数构成勾股数的是( )A .13,14,512B .1.5,2,2.5C .5,15,20D .9,40,41【变式7-1】下列各组数中,是勾股数的是( )A .13,14,15B .3,4,7C .6,8,10D .12【变式7-2】下列数组是勾股数的是( )A .2,3,4B .0.3,0.4,0.5C .5,12,13D .8,12,15【变式7-3】下列各组数中是勾股数的是( )A .4,5, 6B .1.5,2, 2.5C .11,60, 61D .12【考点题型八】构造直角三角形解决实际问题【典例8-1】如图,一架2.5m 长的梯子斜靠在墙上,此时梯足B 距底端O 为0.7m .(1)求OA 的长度.(2)如果梯子下滑0.4m ,则梯子滑出的距离是否等于0.4m ?请通过计算来说明理由.【典例8-2】小强和小伟都喜欢放风筝.一天放学后他们互相配合又放起了风筝(如图所示),小伟想测量风筝的铅直高度CE ,于是他进行了如下测量:①测得小强牵线的手到风筝的水平距离BD 为15m ;②根据小强手中剩余线的长度计算出风筝线BC (假设BC 是直的线)的长为39m ;③小强牵线的手离地面的距离DE 为1.5m .(1)求此时风筝的铅直高度CE.(2)若小强想使风筝沿CD方向下降16m(不考虑其他因素),则他应该收线多少米?【典例8-3】台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风中心的移动速度为25千米/时,则台风影响该海港持续的时间有多长?【变式8-1】一支铅笔斜放在圆柱体的笔筒中,如图所示,笔筒的内部底面直径是6cm,内壁高8cm.若这支铅笔在笔筒外面部分长度是5cm,则这支铅笔的长度是()cm.A.10B.15C.20D.25【变式8-2】如图是台阶的示意图,若每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB的长度是()A.185cm B.195cm C.205cm D.215cm【变式8-3】如图,庭院中有两棵树,小鸟要从一棵高10m的树顶飞到一棵高4m的树顶上,两棵树相距8m,则小鸟至少要飞米.【变式8-4】如图,大风把一棵树刮断,量得AC=4m,BC=3m,则树刮断前的高度为m.【变式8-5】我图古代数学著作《九章算术》中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈=10尺)意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的岸边,它的顶端恰好碰到池边的水面.则这根芦苇的长度是尺【变式8-6】如图,开州大道上A,B两点相距14km,C,D为两商场,DA⊥AB于A,CB⊥AB于B.已知DA=8km,CB=6km.现在要在公路AB上建一个土特产产品收购站E,使得C,D两商场到E站的距离相等,(1)求E站应建在离A点多少km处?(2)若某人从商场D以5km/h的速度匀速步行到收购站E,需要多少小时?【变式8-7】某市夏季经常受台风天气影响,台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,当AC⊥BC时,A点到B,C两点的距离分别为500km和300km,以台风中心为圆心周围250km以内为受影响区域.(1)求BC;(2)海港C受台风影响吗?为什么?【典例9】如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD 折叠,使点C落在边AB的C′点.(1)求DC′的长度;(2)求△ABD的面积.【变式9-1】如图,长方形ABCD中,AB=9,BC=6,将长方形折叠,使A点与BC的中点F重合,折痕为EH ,则线段BE 的长为( )A .53B .4C .52D .5【变式9-2】如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,则EC 的长为( )A .3cmB .4cmC .3.5cmD .5cm【变式9-3】如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处,若AB =3,AD =5,求EC 的长.【考点题型十】面展开图-最短路径问题【典例10-1】如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 .【典例10-2】如图,圆柱形杯子容器高为18cm,底面周长为24cm,在杯子内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子外壁,离杯子上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.【变式10-1】临汾是帝尧之都,有着尧都之称.尧都华表柱身祥云腾龙,顶蹲冲天吼,底座浮雕长城和黄河壶口瀑布,是中华民族历史悠久、文化灿烂的标志.如图,在底面周长约为6米且带有层层回环不断的云朵石柱上,有一条雕龙从柱底沿立柱表面均匀地盘绕2圈到达柱顶正上方(从点A到点C,B为AC 的中点),每根华表刻有雕龙的部分的柱身高约16米,则雕刻在石柱上的巨龙至少为()A.20米B.25米C.30米D.15米【变式10-24cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A.9B.+6C.D.12【变式10-3】如图是放在地面上的一个长方体盒子,其中AB=9cm,BC=6cm,BF=5cm,点M在棱AB上,且AM=3cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为cm.【变式10-4】如图,圆柱的底面周长是10cm,圆柱高为12cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为.【变式10-5】如图,是一个三级台阶,它的每一级的长、宽,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,则蚂蚁沿着台阶面爬到B点的最短路程是.【变式10-6】如图,学校有一块长方形花圃,有少数人为了走“捷径”,在花圃内走出一条不文明的“路”,其实他们仅仅少走了m,却踩伤了花草.【变式10-7】如图,在一个边长为6cm的正方形纸片ABCD上,放着一根长方体木块,已知该木块的较长边与AD平行,横截面是边长为的正方形,一只蚂蚁从点A爬过木块到达蜂蜜C处需爬行的最短路程是cm.。

人教版初中数学勾股定理易错知识点总结

人教版初中数学勾股定理易错知识点总结

(每日一练)人教版初中数学勾股定理易错知识点总结单选题1、已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形答案:B解析:依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.小提示:本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2、在Rt△ABC中,两条直角边的长分别为5和12,则斜边的长为()A.6B.7C.10D.13答案:D解析:根据勾股定理a2+b2=c2,计算出斜边长为13.解:由勾股定理得,斜边长=√52+122=13,故选:D.小提示:本题考查了勾股定理的应用,直接代公式就可以求出斜边的长.3、如图,△ABC和△ECD都是等腰直角三角形,△ABC的顶点A在△ECD的斜边DE上.下列结论:其中正确的有()①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=AD;④AE2+AD2=2AC2A.1个B.2个C.3个D.4个答案:C解析:由等腰直角三角形的性质和三角形的外角性质得出②正确;由SAS证出△ACE≌△BCD,①正确;证出△ADB是直角三角形,由勾股定理得出④正确;由全等三角形的性质和等边三角形性质得出③不正确;即可得出答案.解:∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,CE=CD,∠ACB=∠ECD=90°,∠E=∠CDE=45°,∠CAB=∠CBA=45°,∵∠DAB+∠CAB=∠ACE+∠E,∴∠DAB=∠ACE,故②正确;∴∠ACE+∠ACD=∠ACD+∠DCB=90°,∴∠ACE=∠DCB,在△ACE和△BCD中,{CA=CB∠ECA=∠DCBCE=CD,∴△ACE≌△BCD(SAS),故①正确;∴AE=BD,∠CEA=∠CDB=45°,∴∠ADB=∠CDB+∠EDC=90°,∴△ADB是直角三角形,∴AD2+BD2=AB2,∴AD2+AE2=AB2,∵△ABC是等腰直角三角形,∴AB=√2AC,∴AE2+AD2=2AC2,故④正确;在AD上截取DF=AE,连接CF,如图所示:在△ACE和△FCD中,{AE=FD∠E=∠CDF=45°CE=CD,∴△ACE≌△FCD(SAS),∴AC=FC,当∠CAF=60°时,△ACF是等边三角形,则AC=AF,此时AE+AC=DF+AF=AD,故③不正确;故选:C.小提示:本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,直角三角形的判定与性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键.4、如图,在Rt△ABC中,∠B=90°,分别以A,C为圆心,大于AC长为半径作弧,两弧相交于点M,N,作直线MN,与AC,BC分别交于D,E,连结AE,若AB=6,AC=10,则△ABE的周长为()A.13B.14C.15D.16答案:B解析:利用基本作图得到ED垂直平分AC,则EA=EC,再利用勾股定理计算出BC=8,然后利用等线段代换得到△ABE 的周长=AB+BC.解:由作法得ED垂直平分AC,∴EA=EC,在Rt△ABC中,BC=√AC2−AB2=√102−62=8,∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=6+8=14.故选:B.小提示:本题考查了作图-基本作图:熟练掌握5种基本作图是解决此类问题的关键.也考查了线段垂直平分线的性质以及勾股定理.5、下列各组数:①3、4、5 ②4、5、6 ③2.5、6、6.5 ④8、15、17,其中是勾股数的有( )A.4组B.3组C.2组D.1组答案:C解析:∵32+42=52,①符合勾股数的定义;∵42+52≠62,②不符合勾股数的定义;∵2.5和6.5不是正整数,③不符合勾股数的定义;∵82+152=172,④符合勾股数的定义,是勾股数的有:①④,共2组,故选:C.6、已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形答案:A解析:已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.解:a2+b2-c2+338=10a+24b+26c,a2-10a+25+b2-24b+144-c2-26c+169=0,原式可化为(a-5)2+(b-12)2-(c-13)2=0,即a=5,b=12,c=13(a,b,c都是正的),而52+122=132符合勾股定理的逆定理,故该三角形是直角三角形.故选A.小提示:本题考查因式分解的应用,解题关键是勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.7、△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或33答案:C解析:存在2种情况,△ABC是锐角三角形和钝角三角形时,高AD分别在△ABC的内部和外部情况一:如下图,△ABC是锐角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周长为:15+12+9+5=42情况二:如下图,△ABC是钝角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5 在Rt△ABD中,AD=12,AB=15,∴DB=9 ∴BC=4∴△ABC的周长为:15+13+4=32故选:C小提示:本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.8、如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H 的位置,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2答案:A解析:根据折叠的条件可得:BE=DE,在Rt△BAE中,利用勾股定理就可以求解.∵将此长方形折叠,使点B与点D重合,AD=9cm,∴BE=9−AE,根据勾股定理得:AE2+9=(9−AE)2,解得:AE=4(cm).×4×3=6(cm2).∴S△ABE=12故选:A.小提示:本题考查了利用勾股定理解直角三角形,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.填空题9、如图所示,等腰三角形ABC的底边为8cm,腰长为5cm ,一动点P(与B、C不重合)在底边上从B向C以1cm/s的速度移动,当P运动____________秒时,△ACP是直角三角形答案:1.75或4解析:先利用等腰三角形“三线合一”求出BD、CD以及BC边上的高AD,再分别讨论∠PAC和∠APC为直角的情况,利用勾股定理分别求出两种情况下PB的长,即可求出所需时间.解:如图,作AD⊥BC,∵AB=AC=5cm,BC=8cm,∴BD=CD=4cm,AD=√AC2−CD2=√52−42=3当点P运动到与点D重合时,ΔACP是直角三角形,此时BP=4,∴运动时间为4÷1=4(秒);当∠PAC=90°时,设PD=x∴PA2=PD2+AD2=x2+32=x2+9,又∵PA2=PC2−AC2=(x+4)2−52=x2+8x−9,∴x2+9=x2+8x−9,∴x=2.25,∴BP=4-2.25=1.75,所以运动时间为1.75÷1=1.75(秒);综上可得:当P运动4秒或1.75秒时,ΔACP是直角三角形;所以答案是:1.75或4.小提示:本题综合考查了等腰三角形的性质、勾股定理等内容,要求学生能通过做辅助线构造直角三角形,列出关系式,求出对应线段的长,本题蕴含了分类讨论的思想方法.10、如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD的内部.将AF延长交边BC于点G,若CGBG =14,则ADAB=_____________.答案:√52解析:连接EG,根据中点和折叠的性质可证Rt△ECG≌Rt△EFG,然后可得CG=FG,设CG=a,从而可得GB=4a,从而可得BC,再根据矩形的性质结合勾股定理即可求出AB,从而可得答案.连接EG.∵点E是边CD的中点,∴DE=CE.∴将△ADE沿AE折叠后得到△AFE,∴DE=EF,AF=AD,∴CE=DE=EF.在Rt△ECG和Rt△EFG中,{EG=EGCE=EF,∴Rt△ECG≌Rt△EFG(HL),∴CG=FG.设CG=a.∵CGBG =14,∴GB=4a,∴BC=CG+BG=a+4a=5a.在矩形ABCD中,AD=BC=5a,∴AF=5a,AG=AP+FG=5a+a=6a.在Rt△ABG中,AB=√AG2−BG2=√(6a)2−(4a)2=2√5a,∴ADAB =2√5a=√52.所以答案是:√52.小提示:本题是一道综合题,考查的是全等三角形的判定,矩形的性质和勾股定理,能够充分调动所学知识是解答本题的关键.11、如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木板加固,则木板的长为________.答案:2.5m解析:设木棒的长为xm,根据勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的长为2.5m.故答案为2.5m.12、如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4=_____.答案:2.5解析:DE分别交BF、CF于点G、点H;设AB=BD=a,AC=CE=b,BC=CF=c,S△ABG=m,S△ACH=n,由a2+b2=c2,可得S△ABD+S△ACE=S△BCF,由此构建关系式,通过计算即可得到答案.如图,DE分别交BF、CF于点G、点H∵△ABD、△ACE、△BCF均是等腰直角三角形∴AB=BD,AC=CE,BC=CF,设AB=BD=a,AC=CE=b,BC=CF=c,S△ABG=m,S△ACH=n∵a2+b2=c2∴S△ABD+S△ACE=S△BCF∵S△ABD=S1+m,S△ACE=n+S4,S△BCF=S2+S3+m+n∴S1+m+n+S4=S2+S3+m+n∴S4=S2+S3−S1=3.5+5.5−6.5=2.5所以答案是:2.5.小提示:本题考查了等腰三角形、直角三角形的知识;解题的关键是熟练掌握等腰三角形、勾股定理的性质,从而完成求解.13、如图,一个高16m,底面周长8m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少为___________长.答案:20m.解析:试题分析:要求登梯的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.将圆柱表面按一周半开展开呈长方形,∵圆柱高16m,底面周长8m,设螺旋形登梯长为xm,∴x2=(1×8+4)2+162=400,∴登梯至少√400=20m所以答案是:20m小提示:本题考查圆柱形侧面展开图新问题,涉及勾股定理,掌握按要求将圆柱侧面展开图形的方法,会利用圆周,高与对角线组成直角三角形,用勾股定理解决问题是关键.解答题14、如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.答案:(1)见解析;(2)见解析.解析:试题分析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.试题解析:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.考点:矩形的性质;平行四边形的判定与性质;菱形的判定;探究型.15、如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE;(2)连结AE,当BC=5,AC=12时,求AE的长.答案:(1)见解析;(2)13解析:根据题意可知,本题考查平行的性质,全等三角形的判定和勾股定理,根据判定定理,运用两直线平行内错角相等再通过AAS以及勾股定理进行求解.解:(1)∵AB//DE∴∠BAC=∠CDE在△ABC和△DCE中{∠B=∠DCE∠BAC=∠CDEAC=DE∴△ABC≌△DCE(2)由(1)可得BC=CE=5在直角三角形ACE中AE=√AC2+CE2=√122+52=13小提示:本题考查平行的性质,全等三角形的判定和勾股定理,熟练掌握判定定理运用以及平行的性质是解决此类问题的关键.。

勾股定理中考章节复习(知识点+经典题型分析总结)

勾股定理中考章节复习(知识点+经典题型分析总结)

勾股定理中考章节复习(知识点+经典题型分析总结)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。

2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。

3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

⑵ 命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

⑷ 定理:用推理的方法判断为正确的命题叫做定理。

⑸ 证明:判断一个命题的正确性的推理过程叫做证明。

⑹ 证明的一般步骤① 根据题意,画出图形。

② 根据题设、结论、结合图形,写出已知、求证。

③ 经过分析,找出由已知推出求证的途径,写出证明过程。

AB C a b c 弦股勾A BD 5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

勾股定理经典易错题及知识点类题总结汇编

勾股定理经典易错题及知识点类题总结汇编

B人教版八年级下册勾股定理全章类题总结类型一:等面积法求高【例题】如图,△ABC 中,∠ACB=90,AC=7,BC=24,C D ⊥AB 于D 。

(1)求AB 的长; (2)求CD 的长。

类型二:面积问题【例题】如下左图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

【练习1】如上右图,每个小方格都是边长为1的正方形, (1)求图中格点四边形ABCD 的面积和周长。

(2)求∠ADC 的度数。

【练习2】如图,四边形ABCD 是正方形,AE ⊥BE ,且AE =3,BE =4,阴影部分的面积是______. 【练习3】如图字母B 所代表的正方形的面积是( )A. 12B. 13C. 144D. 194类型三:距离最短问题【例题】 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?【练习1】如图,一圆柱体的底面周长为20cm ,高AB为4cm ,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.【练习2】如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?ABCD7cmBDE 25A BCDL小河 A北 牧童类型四:判断三角形的形状【例题】如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。

【练习1】已知△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形.【练习2】若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状.【练习3】.已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()三角形A.直角B.等腰C.等腰直角D.等腰或直角【练习4】三角形的三边长为abcba2)(22+=+,则这个三角形是( ) 三角形(A)等边(B)钝角(C)直角(D)锐角类型五:直接考查勾股定理【例题】在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b;(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.。

勾股定理常考题型整理

勾股定理常考题型整理

勾股定理易错题型整理:易错点1:错误理解勾股数例1:下列条件中,不能判断△ABC为直角三角形的是()A、a2:b2:c2=1:2:3B、a:b:c=3:4:5C、∠A+∠B=∠CD、∠A:∠B:∠C=3:4:5易错点2:求最短距离时展开图数据错误或展开错误例1:在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,求一只蚂蚁从点A处,到达C处需要走的最短路.例2:如图①是一个长方体盒子,长AB=4,宽BC=2,高CG=1.(1)一只蚂蚁从盒子下底面的点A沿盒子表面爬到点G,那么它所行走的最短路线的长是______.(2)这个长方体盒子内能容下的最长木棒的长度为______.例3:如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.14cm C.10cm D.无法确定易错点3:忽略分类讨论或多解例1:直角三角形两边长分别是3和4,则第三边长为______.例2:直角三角形两直角边长分别是3和4,则第三边长为______.例3:直角三角形两边长分别是3和4,则最长边为______.易错题型3:作图错误例1:如图所示,铁路上A,B两站(视为直线上两点)相距14km,C,D为两村庄(可看为两个点),DA⊥AB于A,CB⊥AB于B,已知DA=8km,CB=6km,现要在铁路上建一个土特产品收购站E,使C,D两村到E站的距离相等,则E站应建在距A站多少km处?例2:如图,牧童在A处放牛,其家在C处,A、C到河岸l的距离分别为AB=2km,BD=8km,且CD=4km。

(1)牧童从A处将牛牵到河边P处饮水后再回到家C,试确定P在何处,所走路程最短?请在图中画出饮水的位置(保留作图痕迹),不必说明理由。

(2)求出(1)中的最短路程。

(6分)必考知识点1:最短距离问题例1:如图3,在Rt△ABC中,∠ACB=90°,CD是高,AC=5,BC=12,求CD的长度。

八上数学 第一章勾股定理知识点归纳+易错题精选(含答案)

八上数学 第一章勾股定理知识点归纳+易错题精选(含答案)

八年级数学上册 第一章 勾股定理知识点+易错题精选1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

勾股定理 易错题精选一.选择题1.以下列各组线段为边作三角形,能构成直角三角形的是( )A .2,3,4B .6,8,10C .5,8,13D .12,13,142.用四个边长均为a 、b 、c 的直角三角板,拼成如图中所示的图形,则下列结论中正确的是( )A .c 2=a 2+b 2B .c 2=a 2+2ab+b 2C .c 2=a 2﹣2ab+b 2D .c 2=(a+b )2.3.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D ,E ,F ,G ,H ,I 都是矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A.360 B.400 C.440 D.4844.如图,甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1=A1A2=A2A3=…=A7A8=1,如果把图乙中的直角三角形继续作下去,那么OA1,OA2,…OA25这些线段中有多少条线段的长度为正整数()A.3 B.4 C.5 D.65.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c26.如图,在正方形网格中,每个小正方形的方格的边长均为1,则点A到边BC的距离为()A. B.C. D.37.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2 B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:158.某中学旁边有一块三角形空地,为了保持水土,美化环境,全校师生一齐动手,在空地的三条边上栽上了树苗(如图).已知三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,那么这块空地的形状为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.长方形门框ABCD中,AB=2m,AD=1.5m.现有四块长方形薄木板,尺寸分别是:①长1.4m,宽1.2m;②长2.1m,宽1.7m;③长2.7m,宽2.1m;④长3m,宽2.6m.其中不能从门框内通过的木板有()A.0块 B.1块 C.2块 D.3块10.如图铁路上A,B两点相距40千米,C,D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A 和B,DA=24千米,CB=16千米.现在要在铁路旁修建一个煤栈E,使得C,D两村到煤栈的距离相等,那么煤栈E应距A点()A.20千米B.16千米C.12千米D.无法确定二.填空题11.已知直角三角形的三边分别为6、8、x,则x= .12.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.13.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a= ,b= ,c= .15.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形的形状是三角形.16.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角的大小为度.17.如图,在四边形ABCD中,∠C=90°,AB=12cm,BC=3cm,CD=4cm,AD=13cm.求四边形ABCD的面积= cm2.18.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为米(精确到0.1m).19.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B 处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.20.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.二.解答题21.如图,你能用它验证勾股定理吗?(提示:以斜边为边长的正方形的面积+四个三角形的面积=外正方形的面积)22.如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.试判断△ACD的形状,并说明理由.23.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.(1)在图1中,小颖所画的△ABC的三边长分别是AB= ,BC= ,AC= ;△ABC的面积为.解决问题:(2)已知△ABC中,AB=,BC=2,AC=5,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC的面积.24.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.25.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O 的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?26.如图,圆柱形容器高12cm,底面周长24cm,在杯口点B处有一滴蜂蜜,此时蚂蚁在杯外壁底部与蜂蜜相对的A处,(1)求蚂蚁从A到B处吃到蜂蜜最短距离;(2)若蚂蚁刚出发时发现B处的蜂蜜正以每秒钟1cm沿杯内壁下滑,4秒钟后蚂蚁吃到了蜂蜜,求蚂蚁的平均速度至少是多少?参考答案一.选择题1.【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.【解答】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、62+82=100=102,能构成直角三角形,故本选项正确;C、52+82=89≠132,不能构成直角三角形,故本选项错误;D、122+132=313≠142,不能构成直角三角形,故本选项错误;故选:B.2.【分析】四个一样的直角三角板围成的四边形为正方形,其中小四边形也为正方形,大正方形的面积可以由边长的平方求出,也可以由四个直角三角形的面积与小正方形面积之和来求,两种方法得出的面积相等,利用完全平方公式展开,合并后即可得到正确的等式.【解答】解:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,里边的小四边形也为正方形,边长为b﹣a,则有c2=ab×4+(b﹣a)2,整理得:c2=a2+b2.故选:A.3.【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=6+8=14,所以,KL=6+14=20,LM=8+14=22,因此,矩形KLMJ的面积为20×22=440.故选:C.4.【分析】OA1=1,OA2==,OA3==,找到OA n=的规律即可计算OA1到OA25中长度为正整数的个数.【解答】解:找到OA n=的规律,所以OA1到OA25的值分别为,,……,故正整数为=1, =2, =3, =4, =5.故选:C.5.【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.6.【分析】首先利用勾股定理求出三角形的边长,然后得到三角形是等腰三角形,进而利用勾股定理求出AD的长即可.【解答】解:根据勾股定理可知:AB==,AC==,BC==,则△ABC是等腰三角形,过点A作AD⊥BC,垂足为D,即BD=CD=BC=,AD===,即点A到BC的距离为.故选:C.7.【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.8.【分析】根据三边上的树苗的数分别求得三边的长为13、47、49,根据三边的长判断三角形的形状即可.【解答】解:∵三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,∴三边的长分别为13米、47米、49米,假设为直角三角形且直角三角形的最长边为x,则:x2=132+472=2378,∵492=2401>2378,∴该三角形为钝角三角形.故选:B.9.【分析】求出长方形门框的对角线长,宽小于或等于长方形门框的对角线的长的木板就可通过.【解答】解:门框的对角线长是: =2.5m.宽小于或等于2.5m的有:①②③.故选:B.10.【分析】根据题意利用勾股定理得出AD2+AE2=BE2+BC2,进而求出即可.【解答】解:设AE=xkm,则BE=(40﹣x)km,∵DA⊥AB,CB⊥AB,C,D两村到煤栈的距离相等,∴AD2+AE2=BE2+BC2,故242+x2=(40﹣x)2+162,解得:x=16,则煤栈E应距A点16km.故选:B.二.填空题11.【分析】根据勾股定理的内容,两直角边的平方和等于斜边的平方,分两种情况进行解答.【解答】解:分两种情况进行讨论:①两直角边分别为6,8,由勾股定理得x==10,②一直角边为6,一斜边为8,由勾股定理得x==2;故答案为:10或2.12.【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB﹣BF.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.13.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.故答案为: +1.14.【分析】由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.【解答】解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…∴勾股数a=2n,b=n2﹣1,c=n2+1.故答案为:2n,n2﹣1,n2+1.15.【分析】根据题目中的式子和勾股定理的逆定理可以解答本题.【解答】解:∵2ab=(a+b)2﹣c2,∴2ab=a2+2ab+b2﹣c2,∴a2+b2=c2,∵三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,∴此三角形是直角三角形,故答案为:直角.16.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形,进而可得答案.【解答】解:∵()2+()2=()2,∴三角形为直角三角形,∴这个三角形的最大内角度数为90°,故答案为:9017.【分析】连接BD,根据勾股定理求出BD,根据勾股定理的逆定理求出△CBD是直角三角形,分别求出△ABD和△CBD的面积,即可得出答案.【解答】解:连结BD,在△ABD中,∵∠A=90°,BC=3cm,DC=4cm,∴BD==5(cm),S△BCD=BC•DC=×3×4=6(cm2),在△ABD中,∵AD=13cm,AB=12cm,BD=5cm∴BD2+AB2=AD2,∴△ABD是直角三角形,∴S△ABD=AB•BD=×12×5=30(cm2),∴四边形ABCD的面积=S△ABD+S△BCD=6+30=36(cm2).故答案为:36.18.【分析】根据已知条件得到∠BAC=90°,AB=150米,AC=120米,由勾股定理即可得到结论.【解答】解:根据题意得:∠BAC=90°,AB=150米,AC=120米,在Rt△ABC中,BC=≈192.2米,故答案为:192.219.【分析】根据方位角可知船与海岛、灯塔的方向正好构成了直角.然后根据路程=速度×时间,再根据勾股定理,即可求得海岛B与灯塔C之间的距离.【解答】解:因为∠BAC=60°,点C在点B的正西方向,所以△ABC是直角三角形,∵AB=15×2=30海里,∠BAC=60°,∴AC=60海里,∴BC==30(海里)故答案为:3020.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2三.解答题(共6小题)21.【分析】根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【解答】解:根据题意,中间小正方形的面积;化简得a2+b2=c2,即在直角三角形中斜边的平方等于两直角边的平方和.22.【分析】先根据勾股定理求出AC的长,在△ACD中,再由勾股定理的逆定理,判断三角形的形状.【解答】解:△ACD是直角三角形.理由是:∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5,又∵AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.23.【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【解答】解:(1)AB==5,BC==,AC==,△ABC的面积为:4×4﹣×3×4﹣×1×4﹣×3×1=,故答案为:5;;;;(2)△ABC的面积:7×2﹣×3×1﹣×4×2﹣×7×1=5.24.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB 的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.25.【分析】(1)在Rt△AOB中利用勾股定理求得AO的长即可;(2)在梯子长度不变的情况下,求出DO的长后减去BO的长求得BD即可作出判断;(3)由直角三角形斜边上的中线的性质回答问题.【解答】解:(1)∵AO⊥DO,∴AO=,=,=12m,∴梯子顶端距地面12m高;(2)滑动不等于4m,∵AC=4m,∴OC=AO﹣AC=8m,∴OD=,=,∴BD=OD﹣OB=,∴滑动不等于4m.(3)AB上的中点到墙角O的距离总是定值,因为直角三角形斜边上的中线等于斜边的一半.26.【分析】(1)先将圆柱的侧面展开,再根据勾股定理求解即可;(2)根据勾股定理得到蚂蚁所走的路程,于是得到结论.【解答】解:(1)如图所示,∵圆柱形玻璃容器,高12cm,底面周长为24cm,∴AD=12cm,∴AB===12(cm).答:蚂蚁要吃到食物所走的最短路线长度是12cm;(2)∵AD=12cm,∴蚂蚁所走的路程==20,∴蚂蚁的平均速度=20÷4=5(cm/s).。

8下勾股定理知识点总结、经典例题

8下勾股定理知识点总结、经典例题

勾股定理知识点及例题知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。

(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。

(3)理解勾股定理的一些变式:c2=a2+b2, a2=c2-b2, b2=c2-a2, c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。

图(1)中,所以。

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。

图(2)中,所以。

方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。

知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。

知识点四:数学思想方法(一)转化的思想方法我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决.如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。

思路点拨:现已知BE、CF,要求EF,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接AD.解:连接AD.因为∠BAC=90°,AB=AC.又因为AD为△ABC的中线,所以AD=DC=DB.AD⊥BC.且∠BAD=∠C=45°.因为∠EDA+∠ADF=90°.又因为∠CDF+∠ADF=90°.所以∠EDA=∠CDF.所以△AED≌△CFD(ASA).所以AE=FC=5.同理:AF=BE=12.在Rt△AEF中,根据勾股定理得:,所以EF=13。

勾股定理复习易错题四套题由简到难附带答案

勾股定理复习易错题四套题由简到难附带答案

勾股定理练习卷姓名一、填空题1.三角形的三边满足a2=b2+c2,这个三角形是三角形,它的最大边是.2.在直角三角形中,∠C=90°,=24,=7,=.3.在△中,假设其三条边的长度分别为9、12、15,那么以两个这样的三角形所拼成的四边形的面积是.4.如图1所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7,正方形A,B,C的面积分别是82,102,142,那么正方形D的面积是2.5.如图2,在△中,∠C=90°,=60,=80,一只蜗牛从C点出发,以每分钟20的速度沿→→的路径再回到C点,需要分钟的时间.6.x、y为正数,且|x2-4|+(y2-16)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为.7.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上〔设梯子上端要到达或超过挂拉花的高度才能挂上〕,小虎应把梯子的底端放在距离墙米处.8.如图3是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,假设图中大小正方形的面积分别为52与4,那么直角三角形的两直角边分别为与.〔注:两直角边长均为整数〕二、选择题1.以下各组数为勾股数的是〔〕A.6,12,13 B.3,4,7 C.4,7.5,8.5 D.8,15,16 2.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,那么梯子的长度为〔〕A.12m B.13m C.14m D.15m3.直角三角形两直角边边长分别为6与8,那么连接这两条直角边中点的线段长为〔〕A.10 B.3 C.4 D.54.假设将直角三角形的两直角边同时扩大2倍,那么斜边扩大为原来的〔〕A.2倍B.3倍C.4倍D.5倍5.以下说法中,不正确的选项是〔〕A.三个角的度数之比为1∶3∶4的三角形是直角三角形B.三个角的度数之比为3∶4∶5的三角形是直角三角形C.三边长度之比为3∶4∶5的三角形是直角三角形D.三边长度之比为9∶40∶41的三角形是直角三角形6.三角形的三边长满足关系:()22+2,那么这个三角形是〔〕A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形7.某直角三角形的周长为30,且一条直角边为5,那么另一直角边为〔〕A.3 B.4 C.12 D.138.如果正方形的面积为29,那么对角线的长度为〔〕A .23B .49C .3 D .29三、简答题1.〔10分〕如图4,你能计算出各直角三角形中未知边的长吗?2.〔10分〕如图5所示,有一条小路穿过长方形的草地,假设=60m ,=84m ,=100m ,那么这条小路的面积是多少3.〔10分〕如图6,在△中,∠=120°,∠B =30°,⊥,垂足为A ,=1,求的长.4.〔10分〕小芳家门前有一个花圃,呈三角形状,小芳想知道该三角形是不是一个直角三角形,请问她可以用什么方法来作出判断?你能帮她设计一种方案吗?5.〔10分〕如图7,在△中,==25,点D 在上,=24,=7,试问平分∠吗?为什么?6.〔10分〕如图8所示,四边形中,1,2,2,3,且⊥. 求证:⊥. 参考答案: 一、1.直角,a 2.253.1084.175.126.207.0.78.4,6二、1~4. 5~8.三、1.〔1〕5x =;〔2〕24x = 2.2240m 34.略5.所以AD平分BAC∠,理由略6.证明略四、〔1〕84,85.〔2〕任意一个大于1的奇数的平方可以拆成两个连续整数的与,并且这两个连续整数及原来的奇数构成一组勾股数.〔3〕略.八年级下册第十八勾股定理水平测试一、填空题〔每题3分,共24分〕1.一个三角形的三个内角之比为1∶2∶3,那么三角形是三角形;假设这三个内角所对的三边分别为a、b、c〔设最长边为c〕,那么此三角形的三边的关系是.2.等腰直角三角形的斜边长为2,那么直角边长为,假设直角边长为2,那么斜边长为.3.在△中,∠C=90°,①假设=41,=9,那么=;②假设=1.5,=2,那么=.4.两条线段的长分别为11与60,当第三条线段的长为时,这3条线段能组成一个直角三角形.5.如图1,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,那么筷子露在杯子外面的长度至少为厘米.6.如图2,⊥,==13,=5,=7,那么=.7.等腰直角三角形有一边长为8,那么底边上的高是,面积是.8.如图3,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A与点B的直线距离是.二、选择题〔每题3分,共24分〕1.如图4,两个较大正方形的面积分别为225,289,那么字母A所代表的正方形的面积为〔〕A.4 B.8 C.16 D.642.小丽与小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿钱再去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个〔设公园到小芳家及小芳家到图书馆都是直线〕〔〕A.锐角B.直角C.钝角D.不能确定3.一直角三角形的一条直角边长是7,另一条直角边及斜边长的与是49,那么斜边的长〔〕A.18 B.20 C.24 D.254.如图5,四边形是正方形,垂直于,且3,4,那么阴影局部的面积是〔〕A.16 B.18 C.19 D.215.在直角三角形中,斜边及较小直角边的与、差分别为18、8,那么较长直角边的长为〔〕A.20 B.16 C.12 D.86.在△中,假设=15,=13,高=12,那么△的周长是〔〕A.42 B.32 C.42或32 D.37或337.如图6,在单位正方形组成的网格图中标有、、、四条线段,其中能构成一个直角三角形三边的线段是〔〕A.、、B.、、C.、、D.、、8.如图7,在△中,∠C=90°,D为边的中点,⊥于E,那么22等于〔〕A.2 B.2C.2 D.2三、简答题〔共58分〕1.一个三角形三条边的比为5∶12∶13,且周长为60,求它的面积.2的点.3.如图8,是一个四边形的边角料,东东通过测量,获得了如下数据:=3,=12,=13,=4,东东由此认为这个四边形中∠A恰好是直角,你认为东东的判断正确吗?如果你认为他正确,请说明其中的理由;如果你认为他不正确,那你认为需要什么条件,才可以判断∠A是直角?4.如图9,一游泳池长48米,小方与小朱进展游泳比赛,小方平均速度为3米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点5.如图10〔1〕所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图10〔2〕所示.展开图中每个正方形的边长为1.求在该展开图中可画出最长线段的长度?这样的线段可画几条?四、拓广探索〔此题14分〕:在△中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,设△的面积为S,周长为l.〔1〕填表:〔2〕如果a +b -c =m ,观察上表猜测:l= (用含有m 的代数式表示).〔3〕证明〔2〕中的结论. 参考答案:一、1.直角,222a b c += 2.1,23.40,2.5 4.615.146.127.4或,16或328.10二、1~4. 5~8. 三、1.2120cm 2.图略3.不正确,可添加DB BC ⊥或5cm DB = 4.小方先到达终点54条 四、解:〔1〕从上往下依次填12,1,32;〔2〕4Sml=; 〔3〕证明略. 1点击勾股定理之特色题本文将在各地课改实验区的中考试题中,涉及勾股定理知识内容的特色创新题采撷几例,供读者学习鉴赏.一.清新扮靓的规律探究题例1〔成都市〕如图,如果以正方形的对角线为边作第二个正方形, 再以对角线为边作第三个正方形,如此下去,…,正方形的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n 〔n 为正整数〕,那么第8个正方形的面积8S =.【解析】:求解这类题目的常见策略是:“从特殊到一般〞.即是先通过观察几个特殊的数式中的变数及不变数,得出一 般规律,然后再利用其一般规律求解所要解决的问题.对于此题,由勾股定理、正方形的面积计算公式易求得:照此规律可知:25416S ==,新 课 标第 一网观察数1、2、4、8、16易知:0123412,22,42,82,162=====,于是可知12n n S -=因此,817822128S -===二.考察阅读理解能力的材料分析题例2〔临安〕阅读以下题目的解题过程: a 、b 、c 为的三边,且满足,试判断的形状.解:问:〔1〕上述解题过程,从哪一步开场出现错误?请写出该步的代号: ;〔2〕错误的原因为: 〔3〕此题正确的结论为: .ABC DEF GH IJ【解析】:材料阅读题是近年中考的热点命题,其类型多种多样,此题属于“判断纠错型〞题目.集中考察了因式分解、勾股定理等知识.在由得到等式2222222-=+-没有错,错在将这个等式c a b a b a b()()()两边同除了一个可能为零的式子22-=,那么有()()0a b-.假设220a b+-=,a b a b从而得a b=,这时,ABC为等腰三角形.因此:(1)选C.(2)没有考虑220-=a b(3) ABC∆是直角三角形或等腰三角形三.渗透新课程理念的图形拼接题例3〔长春〕如图,在△中,∠C = 90°,= 4,= 3.在△的外部拼接一个适宜的直角三角形,使得拼成的图形是一个等腰三角形,如下图.出正确的图形〕例如图备用图【解析】:要在△的外部拼接一个适宜的直角三角形,使得拼成的图形是一个等腰三角形,关键是腰及底边确实定;要求在图中标明拼接的直角三角形的三边长,这需要用到勾股定理知识.下面四种拼接方法可供参考.四.极具“热点〞的动态探究题例4〔泉州〕:如图1,一架长4米的梯子斜靠在及地面垂直的墙壁上,梯子及地面的倾斜角α为 60.⑴求及的长;⑵假设梯子顶端A沿下滑,同时底端B沿向右滑行. 如图2,设A点下滑到C点,B点向右滑行到D点,并且2:3,试计算梯子顶端A沿下滑多少米X k b1 o m 【解析】:对于没有学习解直角三角形知识的同学而言,求解此题有一定的难度.但假设是利用等边三角形就可以推出的一个性质:“在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半〞,结合勾股定理求解,还是容易解答的.⑴AOB Rt ∆中,∠90,∠α= 60 ∴,∠ 30,又AB=4米, ∴122OB AB ==米.由勾股定理得:22OA AB OB -22421223=-=. ⑵设2,3,AC x BD x ==在COD Rt ∆中, 根据勾股定理:222OC OD CD +=∴8312x -=所以, 16324-即梯子顶端A 16324-.勾股定理中的常见题型例析勾股定理是几何计算中运用最多的一个知识点.考察的主要方式是将其综合到几何应用的解答题中,常见的题型有以下几种:一、探究开放题例1如图1,设四边形是边长为1的正方形,以正方形的对角线为边作第二个正方形,再以第二个正方形的对角线为边作第三个正方形,如此下去…….〔1〕记正方形的边长为1a =1,依上述方法所作的正方形的边长依次为2a ,3a ,4a ,…,n a ,求出2a ,3a ,4a 的值.〔2〕根据以上规律写出第n 个正方形的边长n a 的表达式.分析:依次运用勾股定理求出a 2,a 3,a 4,再观察、归纳出一般规律.解:(1)∵四边形为正方形,∴1. 222AB BC +=同理,2, 22 a 2= 2,a 3=2,a 4= 22.(2) ∵011(2)a ==, 122(2)a ==, 232(2)a ==, 3422(2)a ==, 点拨:探究开放题形式新颖、思考方向不确定,因此综合性与逻辑性较强,它着力于考察观察、分析、比拟、归纳、推理等方面的能力,对提高同学们的思维品质与解决问题的能力具有十分重要的作用.二、动手操作题例2如图2,图〔1〕是用硬纸板做成的两个全等的直角三角形,两条直角边长分别为a 与b ,斜边长为c .图〔2〕是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.〔1〕画出拼成的这个图形的示意图,写出它是什么图形;〔2〕用这个图形证明勾股定理;〔3〕假设图〔1〕中的直角三角形有苦干个,你能运用图〔1〕所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图〔无需证明〕.解:〔1〕所拼图形图3所示,它是一个直角梯形.〔2〕由于这个梯形的两底分别为a 、b ,腰为〔〕,所以梯形的面积为211()()()22a b a b a b ++=+.又因为这个梯形的面积等于三个直角三角形的面积与,所以梯形的面积又可表示为:2111222ab ab c ++. b1〔3〕所拼图形如图4.点拨:动手操作题内容丰富,解法灵活,有利于考察解题者的动手能力与创新设计的才能。

(带解析)人教版初中数学勾股定理易错知识点总结

(带解析)人教版初中数学勾股定理易错知识点总结

(每日一练)(带解析)人教版初中数学勾股定理易错知识点总结单选题1、以下列各组数为三角形的边长,能构成直角三角形的是()A.2、3、4B.5、5、6C.2、√3、√5D.√2、√3、√52、如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a⋅b C.√a2+b22D.√a2−b223、如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A.86B.64C.54D.484、若一个直角三角形的两边长为4和5,则第三边长为()A .3B .√41C .8D .3或√415、如图,在△ABC 中,∠ACB =90°,分别以点A 和点B 为圆心,以相同的长(大于 12 AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E .若AC =3,AB =5,则DE 等于( )A .2B .103C .158D .152 6、在下列四组数中,不是勾股数的一组数是( )A .a=15,b=8,c=17B .a=9,b=12,c=15C .a=7,b=24,c=25D .a=3,b=5,c=77、如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为S 4、S 5、S 6.其中S 1=16,S 2=45,S 5=11,S 6=14,则S 3+S 4=( )A .86B .64C .54D .488、已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形填空题9、如图,Rt △ABC 中,∠BAC =90°,分别以△ABC 的三条边为直角边作三个等腰直角三角形:△ABD 、△ACE 、△BCF ,若图中阴影部分的面积S 1=6.5,S 2=3.5,S 3=5.5,则S 4=_____.10、如图,在高为6米,坡面长度AB为10米的楼梯表面铺上地毯,则至少需要地毯______米.11、如图所示的网格是正方形网格,则∠PAB+∠PBA=_____°(点A,B,P是网格线交点).12、如图的平面直角坐标系中,已知点A(-3,0)、B(0,4),将△OAB沿x轴作连续无滑动的翻滚,依次得到三角形①,②,③,④.则第⑯个三角形的直角顶点的坐标是___________.13、如图.在RtΔABC中,∠BAC=90°,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过点D作DE⊥AC于点E,若DE=a,则ΔABC的周长用含a的代数式表示为_______________.解答题14、中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°.AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.15、勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD⊥CD,AE⊥BD于点E,且△ABE≌△BCD.求证:AB2=BE2+AE2.(带解析)人教版初中数学勾股定理_012参考答案1、答案:D解析:根据勾股定理的逆定理得出选项A、B、C不能构成直角三角形,D选项能构成直角三角形,即可得出结论.解:A、22+32≠42,不符合勾股定理的逆定理,故不正确;B、52+52≠62,不符合勾股定理的逆定理,故不正确;C、22+(√3)2≠(√5)2,不符合勾股定理的逆定理,故不正确;D、(√2)2+(√3)2=(√5)2,符合勾股定理的逆定理,能构成直角三角形,故正确.故选D.小提示:本题考查了勾股定理的逆定理;在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、答案:C解析:根据全等三角形的性质,设CD=AH=x,DE=AG=BC=y,由CE=a,HG=b建立方程组,求解即可得出CD=x=a−b 2,BC=y=a+b2,然后借助勾股定理即可表示BD.解:根据图象是由四个全等的直角三角形拼成,设CD=AH=x,DE=AG=BC=y,∵CE=a,HG=b,∴{x+y=ay−x=b解得:{x =a−b 2y =a+b 2, 故CD =a−b 2,BC =a+b 2在RtΔBCD 中,根据勾股定理得:BD 2=BC 2+CD 2=(a+b 2)2+(a−b 2)2=a 2+b 22,∴BD =√a 2+b 22.故选:C.小提示:本题考查勾股定理,全等三角形的性质,能借助方程思想用含a ,b 的代数式表示CD 和BC 是解决此题的关键.3、答案:C解析:分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果.解:如图1,过点E 作AB 的垂线,垂足为D ,∵△ABE 是等边三角形,∴∠AED=∠BED=30°,设AB=x ,∴AD=BD=12AB=12x ,∴DE=√AE 2−AD 2=√32x ,∴S 2=12×x ×√32x =√34AB 2, 同理:S 1=√34AC 2,S 3=√34BC 2,∵BC2=AB2-AC2,∴S3=S2-S1,如图2,S4=12×(12AB)2π=π8AB2,同理S5=π8AC2,S6=π8BC2,则S4=S5+S6,∴S3+S4=45-16+11+14=54.小提示:本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.4、答案:D解析:由于直角三角形的斜边不能确定,故应分5是直角边或5是斜边两种情况进行讨论.当5是直角边时,则第三边=√42+52=√41;当5是斜边时,则第三边=√52−42=3.综上所述,第三边的长是√41或3.故选D .小提示:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、答案:C解析:根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:BC=√52−32=4,连接AE ,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得:AC2+CE 2=AE 2, 即32+(4-AE )2=AE 2, 解得:AE=258,在Rt △ADE 中,AD=12AB=52,由勾股定理得:DE2+(52)2=(258)2,解得:DE=158.故选C.“点睛”:本题考查了线段垂直平分线性质,勾股定理的应用,能灵活运用勾股定理得出方程是解此题的关键.6、答案:D解析:解:A .152+82=172,是勾股数;B .92+122=152,是勾股数;C .72+242=252,是勾股数;D .32+52≠72,不是勾股数.故选D .7、答案:C解析:分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果.解:如图1,过点E 作AB 的垂线,垂足为D ,∵△ABE 是等边三角形,∴∠AED=∠BED=30°,设AB=x ,∴AD=BD=12AB=12x , ∴DE=√AE 2−AD 2=√32x ,∴S 2=12×x ×√32x =√34AB 2,同理:S1=√34AC2,S3=√34BC2,∵BC2=AB2-AC2,∴S3=S2-S1,如图2,S4=12×(12AB)2π=π8AB2,同理S5=π8AC2,S6=π8BC2,则S4=S5+S6,∴S3+S4=45-16+11+14=54.小提示:本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.8、答案:B解析:依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.小提示:本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.9、答案:2.5解析:DE分别交BF、CF于点G、点H;设AB=BD=a,AC=CE=b,BC=CF=c,S△ABG=m,S△ACH=n,由a2+b2=c2,可得S△ABD+S△ACE=S△BCF,由此构建关系式,通过计算即可得到答案.如图,DE分别交BF、CF于点G、点H∵△ABD、△ACE、△BCF均是等腰直角三角形∴AB=BD,AC=CE,BC=CF,设AB=BD=a,AC=CE=b,BC=CF=c,S△ABG=m,S△ACH=n∵a2+b2=c2∴S△ABD+S△ACE=S△BCF∵S△ABD=S1+m,S△ACE=n+S4,S△BCF=S2+S3+m+n∴S1+m+n+S4=S2+S3+m+n∴S4=S2+S3−S1=3.5+5.5−6.5=2.5所以答案是:2.5.小提示:本题考查了等腰三角形、直角三角形的知识;解题的关键是熟练掌握等腰三角形、勾股定理的性质,从而完成求解.10、答案:14解析:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,已知斜边和一条直角边,根据勾股定理即可求另一条直角边,计算两直角边之和即可解题.解:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,由题意得:∠ACB=90°,AB=10米,AC=6米,由勾股定理得BC=√AB2−AC2=√102−62=8(米),则AC+BC=14(米),所以答案是:14.小提示:本题考查了勾股定理的应用,本题中把求地毯长转化为求两直角边的长是解题的关键.11、答案:45解析:延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,即△PBD为等腰直角三角形,∴∠DPB=∠PAB+∠PBA=45°,所以答案是:45.小提示:本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.12、答案:(60,0)解析:先利用勾股定理计算出AB,从而得到△ABO的周长为12,根据旋转变换可得△OAB的旋转变换为每3次一个循环,由于16=3×5+1,于是可判断第⑯个三角形与第①个三角形的状态一样,然后计算即可得到第⑯个三角形的直角顶点的坐标.∵A(-3,0),B(0,4),∴OA=3,OB=4,∴AB=√32+42=5,∴△ABO的周长=3+4+5=12,由题意知,△OAB每连续3次后与原来的状态一样,∵16=3×5+1,∴第⑯个三角形与三角形①的状态一样,∴第⑯个三角形的直角顶点的横坐标=5×12=60,∴第⑯个三角形的直角顶点坐标为(60,0).故答案为(60,0).小提示:本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标,解决本题的关键是确定循环的次数.13、答案:(6+2√3)a解析:根据“∠BAC=90°,∠C=30°”可知∠B=60°,根据“以直角顶点A为圆心,AB长为半径画弧交BC于点D”可知△ABD是等边三角形,∠BAD=60°,继而可知∠DAE=30°,利用直角三角中30°所对的边是斜边的一半,即可知AB和BC的长,再利用勾股定理即可求出AC的长,从而可得周长.∵RtΔABC中,∠BAC=90°,∠C=30°∴∠B=60°,BC=2AB∵以直角顶点A为圆心,AB长为半径画弧交BC于点D,∴AB=AD∵∠B=60°∴△ABD是等边三角形∴∠BAD=60°,∴∠DAE=30°,又∵DE⊥AC∴△ADE是直角三角形∴AD=2DE=2a∴AB=2a,BC=4a根据勾股定理有AB2+AC2=BC2∴AC=√BC2−AB2=√16a2−4a2=2a√3∴△ABC的周长=AB+AC+BC=2a+2a√3+4a=(6+2√3)a故答案为(6+2√3)a.小提示:本题考查的是含有30°角的直角三角形和勾股定理,能够根据含有30°角的直角三角形相关性质和勾股定理求出三边的长是解题的关键.14、答案:(1)证明见解析;(2)23解析:(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.ab,小正方形面积为(b﹣a)2,解:(1)∵大正方形面积为c2,直角三角形面积为12∴c2=4×1ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2;2(2)由图可知:ab=13﹣3=10,(b﹣a)2=3,4×12∴2ab=10,∴(a+b)2=(b﹣a)2+4ab=3+2×10=23.小提示:本题考查了对勾股定理的证明和以及非负数的性质,掌握三角形和正方形面积计算公式是解决问题的关键.15、答案:证明见解析解析:连接AC,根据四边形ABCD面积的两种不同表示形式,结合全等三角形的性质即可求解.解:连接AC,∵△ABE≌△BCD,∴AB=BC,AE=BD,BE=CD,∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴S四边形ABCD=SΔABD+SΔBDC=12BD⋅AE+12BD⋅CD=12AE⋅AE+12BD⋅BE=12AE2+12BD⋅BE,又∵S四边形ABCD=SΔABC+SΔADC=12AB⋅BC+12CD⋅DE=12AB⋅AB+12BE⋅DE=12AB2+12BE⋅DE,∵12AE2+12BD⋅BE=12AB2+12BE⋅DE,∴AB2=AE2+BD•BE-BE•DE,∴AB2=AE2+(BD-DE)•BE,即AB2=BE2+AE2.小提示:本题考查了勾股定理的证明,解题时,利用了全等三角形的对应边相等,对应角相等的性质.。

九年级数学勾股定理易错题总结(含答案)

九年级数学勾股定理易错题总结(含答案)

九年级数学勾股定理易错题总结(含答案)一、选择题(本大题共5小题,共15.0分)1.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为()A. 2B. √7C. 1+3√2D. 1+√7【答案】D【解析】【分析】本题考查圆周角定理、勾股定理、点与圆的位置关系等知识,如图,连接OQ,作CH⊥AB 于H.首先证明点Q的运动轨迹为以AO为直径的⊙K,连接CK,当点Q在CK的延长线上时,CQ的值最大,利用勾股定理求出CK即可解决问题;【解答】解:如图,连接OQ,作CH⊥AB于H.∵AQ=QP,∴OQ⊥PA,∴∠AQO=90°,∴点Q的运动轨迹为以AO为直径的⊙K,连接CK,当点Q在CK的延长线上时,CQ的值最大(也可以通过CQ≤QK+CK求解)在Rt△OCH中,∵∠COH=60°,OC=2,∴∠OCH=30°,∴OH=1OC=1,CH=√3,2在Rt△CKH中,CK=√(√3)2+22=√7,∴CQ的最大值为1+√7.故选D.2.如图,AB是⊙O的直径,AB=4,C为弧AB的三等分点(更靠近A点),点P是⊙O上一个动点,取弦AP的中点D,则线段CD的最大值为()A. 2B. √7C. 2√3D. √3+1【答案】D【解析】【分析】本题考查圆周角定理、轨迹、勾股定理、直角三角斜边的中线,圆心角,弧,弦的关系有关知识,如图,首先证明点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D 在CK的延长线上时,CD的值最大,利用勾股定理求出CK即可解决问题.【解答】解:如图,连接OD,∵AD=DP,∴OD⊥PA,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为AB⏜的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK=√OC2−OK2=√3,∵DK=1OA=1,2∴CD=√3+1,∴CD的最大值为√3+1,故选D.3.如图所示,四边形ABCD内接于⊙O,连结AC,BD,点E在AD的延长线上,下列说法正确的是()A. 若DC平分∠BDE,则AB=BCB. 若AC平分∠BCD,则AB2=AM⋅MCC. 若AC⊥BD,BD为直径,则BC2+AD2=AC2D. 若AC⊥BD,AC为直径,则sin∠BAD=BDAC【答案】D【解析】【分析】本题考查的是圆内接四边形的性质、圆周角定理的应用,勾股定理,锐角三角函数的定义,相似三角形的判定与性质等有关知识,根据圆内接四边形的性质和圆周角定理,勾股定理,锐角三角函数的定义,相似三角形的判定与性质对各个选项进行分析即可得出结论.【解答】解:对于A,∵四边形ABCD内接于⊙O,∴∠CDE=∠ABC,∵DC平分∠BDE,∴∠BDC=∠CDE,由圆周角定理得,∠BDC=∠BAC,∴∠BAC=∠ABC,∴AC=BC,故A错误;对于B,∵AC平分∠BCD,∴∠ACB=∠ACD,∵∠ACD=∠ABM,∴∠ABM=∠ACB,∵∠BAM=∠CAB,∴△ABM∽△ACB,∴ABAC =AMAB,∴AB2=AM·AC,故B错误;对于C,如图:∵AC⊥BD,BD为直径,∴BD垂直平分AC,∠BAD=90°,∴AB=BC,AB2+AD2=BD2,∴BC2+AD2=BD2,故C错误;对于D,连接BO并延长交圆O于点F.∵BF是直径,∴∠BDF=90°,∵AC为直径,∴BF=AC,又∠BAD=∠BFD,在Rt△BDF中,sin∠BAD=BDBF =BDAC,故D正确.故选D.4.已知:平面直角坐标系中,点A,B的坐标分别为A(0,4),B(0,−6),点C是x轴正半轴上的一点,且满足∠ACB=45°,则()A. △ABC的外接圆的圆心在OC上B. ∠ABC=60°C. △ABC的外接圆的半径等于5D. OC=12【答案】D【解析】【分析】本题主要考查了坐标与图形性质、圆周角定理、勾股定理等知识的综合应用,解决问题的关键是作辅助线构造圆周角以及直角三角形,由45°的圆周角联想到90°的圆心角是解题的突破口.构造含有90°圆心角的⊙P,则⊙P与x轴的交点即为所求的点C.根据△PBA 为等腰直角三角形,可得OF=PE=5,根据勾股定理得:CF=7,进而得出OC.【解答】解:设线段BA的中点为E,∵点A(0,4),B(0,−6),∴AB=10,E(0,−1).AB=5,如图所示,过点E在第四象限作EP⊥BA,且EP=12则易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=5√2,以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C,∵∠BCA为⊙P的圆周角,∠BPA=45°,即则点C即为所求.∴∠BCA=12过点P作PF⊥x轴于点F,则OF=PE=5,PF=OE=1,在Rt△PFC中,PF=1,PC=5√2,由勾股定理得:CF=√PC2−PF2=7∴OC=OF+CF=5+7=12,故选D.5.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD可以进行如下操作:①把△ABF翻折,点B落在CD边上的点E处,折痕为AF,点F在BC边上;②把△ADH翻折,点D落在AE边上的点G处,折痕为=()AH,点H在CD边上.若AD=6,AB=10,则EHEFA. 32B. 53C. 43D. 54【答案】A【解析】【分析】本题考查矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.利用翻折不变性可得AE=AB=10,推出DE=8,EC=2,设BF=EF=x,在Rt△EFC,设DH=GH=y,在Rt△EGH中,y2+42=(8−中,x2=22+(6−x)2,可得x=103y)2,可得y=3,由此即可解决问题.【解答】解:∵四边形ABCD是矩形,∴∠C=∠D=90°,AB=CD=10,AD=BC=6,由翻折不变性可知:AB=AE=10,AD=AG=6,BF=EF,DH=HG,∴EG=4,在中,DE=√AE2−AD2=√102−62=8,∴EC=10−8=2,设BF=EF=x,在中有:x2=22+(6−x)2,∴x=103,设DH=GH=y,在中,y2+42=(8−y)2,∴y=3,∴EH=5,∴EHEF =5103=32,故选:A.二、填空题(本大题共18小题,共54.0分)6.如图,在△ABC中,∠ACB=90°,AC=BC=2,D是边AC的中点,CE⊥BD于E.若F是边AB上的点,且使△AEF为等腰三角形,则AF的长为____.【答案】2√105或8√25或√22【解析】解:∵∠ACB=90°,AC=BC=2,∴AB=2√2,∵∠DCB=90°,CE⊥BD,∴△CDE∽△BDC,∴CD2=DE⋅DB,∵AD=CD,∴AD2=DE⋅DB,BD=√CD2+BC2=√5,∴ADDE =DBAD,DE=AD2BD=√55,∵∠ADE=∠ADB,△DAE∽△DBA;∴AEAB =ADBD=√55,∴AE=2√105,∵DE=√55,BD=√5,∴BE=4√55,如图1中,若AE=AF时,∴AF=2√105,如图2中,若FE=AE时,过点E作EJ⊥AB于J,∵JE2=AE2−AJ2=EB2−BJ2,∴4025−AJ2=8025−(2√2−AJ)2,∴AJ=4√25,∵AE=EF,EJ⊥AF,∴AF=2AJ=8√25,如图3中,若EF=AF时,过点E作EJ⊥AB于J,∵EJ2=AE2−AJ2=EF2−FJ2,∴4025−3225=AF2−(4√25−AF)2,∴AF=√22,综上所述:AD的长为2√105或8√25或√22.故答案为2√105或8√25或√22.由相似三角形的判定与性质可求AE的长,BE的长,再分三种情况讨论,由等腰三角形的性质和勾股定理可求解.本题考查等腰直角三角形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.7.在△ABC中,已知AB=AC=4cm,BC=6cm,P是BC的中点,以点P为圆心,3cm为半径画⊙P,则点A与⊙P的位置关系是______.【答案】A在⊙P内【解析】【分析】本题考查了等腰三角形的性质,勾股定理,点和圆的位置关系的应用,关键是求出AP 的长.连接AP,求出AP⊥BC,求出BP,根据勾股定理求出AP,和半径比较即可.【解答】解:如图,连接AP,∵AB=AC=4cm,BC=6cm,P是BC的中点,∴BP=CP=3cm,AP⊥BC,∴∠APB=90°,∴在Rt△APB中,由勾股定理得:AP=√AB2−BP2=√42−32=√7(cm),∵√7<3,∴点A在⊙P内.故答案为A在⊙P内.8.如图,⊙O经过矩形ABCD的顶点C,且与AD,BC相交于点E,F,H,AD,BC在圆心O同侧.已知AE=EF=4,BH=3.(1)CH的长为.(2)若⊙O的半径长为√10,则AB=.【答案】(1)6;(2)√6−1.【解析】略9.如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60°,AB=a,CF=EF,则△ABC的面积为______(用含a的代数式表示).【答案】√3a25【解析】【试题解析】【分析】本题考查相似三角形的判定和性质,勾股定理、直角三角形30度角性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数表示线段的长,从而解决问题,属于中考常考题型.设BE=2x,根据30度的直角三角形的性质表示BC=4x,CE=2√3x,得EF=√3x,证明AEEF =CEBE,即AE√3x=2√3x2x,得AE=3x,最后根据三角形面积可得结论.【解答】解:设BE=2x,∵CE⊥AB,∴∠AEC=∠CEB=90°,∵∠ABC=60°,∴∠BCE=30°,∴BC=4x,CE=2√3x,∵EF=CF,∴EF=√3x,∵BD是△ABC的高,∴∠CDF=∠BEF=90°,∵∠DFC=∠BFE,∴∠ACE=∠EBF,∵∠AEC=∠BEF,∴△ACE∽△FBE,∴AEEF =CEBE,即√3x=2√3x2x,∴AE=3x,∵AB=a=2x+3x,∴x=15a,∴S▵ABC=12AB⋅CE=12a⋅2√3x=√3a25,故答案为:√3a25.10.如图在RtΔABC中,∠ACB=90∘,AC=3,BC=4,点E、F分别在边AB、AC上,将ΔAEF沿直线EF折叠,使点A的对应点D恰好落在边BC上.若ΔBDE是直角三角形,则CF的长为________.【答案】7249或98【解析】【分析】本题考查的是折叠的性质,勾股定理,三角函数定义,分类讨论有关知识,分两种情况:①∠BED =90°,过点F 作FM ⊥AE ,根据折叠性质可知∠AEF =∠DEF =45°,设FC =a ,则AF =3−a ,在Rt △AMF 中用a 表示出AE ,从而得到BE =5−AE ,在Rt △BED 中,根据三角函数用a 表示BE ,则构造出关于a 的方程;②∠BDE =90°,证明∠A =∠DFC ,根据三角函数找到FC 和DF 关系即可.【解答】解:①当∠BED =90°时,过点F 作FM ⊥AE ,根据折叠性质可知∠AEF =∠DEF =45°,设FC =a ,则AF =3−a ,在Rt △AMF 中,sinA =MF AF =45,∴MF =45(3−a)=ME . cosA =AMAF =35,∴AM =35(3−a). ∴AE =AM +MF =75(3−a)=DE .则BE =AB −AE =5−75(3−a).在Rt △BED 中,tanB =DE BE =34,∴BE =2815(3−a).∴5−75(3−a)=2815(3−a),解得a =7249;②当∠EDB =90°时,如图,根据折叠性质可知AF =FD ,∠A =∠EDF ,∵ED//AC ,∴∠EDF =∠DFC .∴∠A =∠DFC .∴cosA =cos∠DFC =35,设FC =x ,则AF =3−x =DF , ∴x 3−x =35,解得x =98. 综上所述CF 长为7249或98.故答案为7249或98.11. 如图所示,正六边形ABCDEF 内接于⊙O ,点M 是边CD 的中点,连结AM ,若⊙O 的半径为2,则AM =____.【答案】√13【解析】【分析】本题考查正多边形与圆,勾股定理,垂径定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.连接AC ,OB 交于点H.证明∠ACM =90°,求出AC ,CM 即可解决问题.【解析】解:如图所连结AC ,OB 交于点H .∵正六边形ABCDEF内接于⊙O,OB=2,∴AB=BC=CD=2,∠ABC=∠BCD=120°,.∴OB⊥AC.∴AH=HC,∠ABH=∠CBH=60°,∴AH=AB·sin60°=√3,∴AC=2AH=2√3,∵∠ACB=∠BAC=30°,∠BCD=120°,∴∠ACM=90°,∵CM=MD=1,AC=2√3,.故答案为:√13.12.如图,在等腰三角形ABC中,AB=AC,AD是中线,E是边AC的中点,过B,D,E三点的⊙O交AC于另一点F,交AD于点G,连接BF.若BC=4,AD=4√3,则BF=________⊙O的直径为________.【答案】4,√912【解析】【分析】本题考查的是等腰三角形的性质,勾股定理,圆周角定理,连接DE.由AB=AC,AD是AC=AE=CE,DE//AB,所中线,得到AD⊥BC,又E为边AC的中点,于是DE=12以∠C=∠EDC,因为∠DEC=∠FBC,所以∠BFC=∠EDC,因此∠BFC=∠C,BF=BC,设AD交⊙O于点M,连接FM.由BM为直径,∠BFM=90°,所以∠AFM+∠BFC=90°,于是∠DAC+∠C=90°,∠C=BFC,∠AFM=∠DAC,得到MA=MF,设MA=MF=x,则DM=4√3−x,由勾股定理DM2+BD2=BF2+MF2=BM2即可求出.【解答】解:如图1,连接DE,如图,∵在等腰△ABC中,AB=AC,AD是中线,∴AD⊥BC,∵E为边AC的中点,AC=AE=CE,DE//AB,∴DE=12∴∠C=∠EDC,∵∠DEC与∠FBC所对的弧均为DF⏜,∴∠DEC=∠FBC,在△BCF与△ECD中,∠DEC=∠FBC,∠BCF=∠ECD,∴∠BFC=∠EDC,∵∠C=∠EDC∴∠BFC =∠C ,∴BF =BC =4.如图2,设AD 交⊙O 于点M ,连接FM ,∵∠ADB =90°,即BM 为直径,∴∠BFM =90°,∴∠AFM +∠BFC =90°,∵∠DAC +∠C =90°,∠C =BFC ,∴∠AFM =∠DAC ,∴MA =MF ,设MA =MF =x ,则DM =4√3−x ,∵DM 2+BD 2=BF 2+MF 2=BM 2,∴DM 2+BD 2=BF 2+MF 2即(4√3−x)2+22=42+x 2,解得x =3√32, ∴BM =√42+(3√32)2=√912. 故答案为4,√912.13. 如图,在矩形纸片ABCD 中,将AB 沿BM 翻折,使点A 落在BC 上的点N 处,BM为折痕,连接MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,若AD =8,AB =5,则线段PE 的长等于_____.【答案】203【解析】【分析】考查折叠轴对称的性质,矩形、正方形的性质,直角三角形的性质等知识,知识的综合性较强,是有一定难度的题目.根据折叠可得ABNM是正方形,CD=CF=5,∠D=∠CFE=90°,ED=EF,可求出三角形FNC的三边为3,4,5,在Rt△MEF中,由勾股定理可以求出三边的长,通过作辅助线,可证△FNC∽△PGF,三边占比为3:4:5,设未知数,通过PG=HN,列方程求出待定系数,进而求出PF的长,然后求PE的长.【解答】解:过点P作PG⊥FN,PH⊥BN,垂足为G、H,由折叠得:ABNM是正方形,AB=BN=NM=MA=5,CD=CF=5,∠D=∠CFE=90°,ED=EF,∴NC=MD=8−5=3,在Rt△FNC中,FN=√52−32=4,∴MF=5−4=1,在Rt△MEF中,设EF=x,则ME=3−x,由勾股定理得,12+(3−x)2=x2,解得:x=5,3∵∠CFN+∠PFG=90°,∠PFG+∠FPG=90°,∴∠CFN=∠FPG,又∵∠FGP=∠CNF=90°∴△FNC∽△PGF,∴FG:PG:PF=NC:FN:FC=3:4:5,设FG=3m,则PG=4m,PF=5m,∴GN=PH=BH=4−3m,HN=5−(4−3m)=1+3m=PG=4m,解得:m=1,∴PF=5m=5,∴PE=PF+FE=5+53=203,故答案为203.14.剪掉边长为2的正方形纸片4个直角,得到一个正八边形,则这个正八边形的边长为.【答案】2√2−2【解析】【分析】本题主要考查了正多边形的性质,得出BD=BC是解题关键.利用正八边形的性质得出BD=BC,进而求出边长.【解答】解:如图所示:设AB=AC=DE=x,则BC=√2x2=√2x,BD=2−x−x=2−2x,依题意有√2x=2−2x,解得:x=2−√2,则这个正八边形的边长为:2−2(2−√2)=2√2−2.故答案为2√2−2.15.如图,在四边形ABCD中,∠ABC=90°,对角线AC、BD交于点O,AO=CO,CD⊥BD,如果CD=3,BC=5,那么AB=.【答案】154【解析】略16. 如图,正六边形ABCDEF 内接于⊙O ,点M 是边CD 的中点,连结AM ,若⊙O 的半径为2,则AM = .【答案】√13【解析】【分析】 本题考查正多边形与圆,勾股定理,垂径定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.连接AC ,OB 交于点H.证明∠ACM =90°,求出AC ,CM 即可解决问题.【解答】解:连接AC ,OB 交于点H .∵正六边形ABCDEF 内接于⊙O ,OB =2,∴AB =BC =CD =2,∠ABC =∠BCD =120°,∴AB ⌒=BC ⌒,∴OB ⊥AC ,∴AH=HC,∠ABH=∠CBH=60°,∴AH=√3AB=√3,2∴AC=2AH=2√3,∵∠ACB=∠BAC=30°,∠BCD=120°,∴∠ACM=90°,∵CM=MD=1,AC=2√3,∴AM=√AC2+CM2=√(2√3)2+12=√13,故答案为√13.17.在△ABC中,已知AB=AC=4cm,BC=6cm,P是BC的中点,以点P为圆心,3 cm为半径画⊙P,则点A与⊙P的位置关系是____.【答案】点A在⊙P内【解析】【试题解析】【分析】本题考查了等腰三角形的性质,勾股定理,点和圆的位置关系的应用,关键是求出AP 的长.连接AP,求出AP⊥BC,求出BP,根据勾股定理求出AP,和半径比较即可.【解答】解:如图,连接AP,∵AB=AC=4cm,BC=6cm,P是BC的中点,∴BP=CP=3cm,AP⊥BC,∴∠APB=90∘,∴在Rt△APB中,由勾股定理得:AP=√AB2−BP2=√42−32=√7(cm),∵√7<3,∴点A在⊙P内.故答案为:点A在⊙P内.18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为_____.【答案】125【解析】略19.已知△ABC内接于半径为2的⊙O.若BC=2√3,则∠A=________.【答案】60∘或120∘【解析】【分析】本题考查的了含30°角直角三角形的性质,圆周角定理等内容,掌握圆周角定理是解题的关键.作直径BD,连接CD,根据圆周角定理得到∠BCD=90°,根据勾股定理求出CD的长,进而求得∠D,根据圆周角定理解答.【解答】解:作直径BD,连接CD,则∠BCD=90∘,∵半径为2,∴BD=4,在Rt△BCD中,CD=√BD2−BC2=2,CD=1BD,2∴∠DBC=30°,∴∠D=60∘,由圆周角定理得,∠A=∠D=60∘,当点A在劣弧BC⏜上时,∠A=180∘−∠D=120∘,故答案为60∘或120∘.20.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则AD的长为________,DF的长为________.【答案】95,5485【解析】略21.以下图形为杭州国际会议中心,是全国最大的球形建筑,如图是球体的轴截面,已知这个球体的高度为86米,球的半径为50米,则这个国际会议中心建筑的占地面积为______.(结果保留π)【答案】1204π平方米【解析】【分析】本题考查勾股定理以及圆的面积公式的实际应用,关键是根据勾股定理求出AD的值.首先根据勾股定理求出AD的值,然后根据圆的面积公式求出这个国际会议中心建筑的占地面积.【解答】解:连接OA,∵OA2=AD2+OD2∴AD2=OA2−OD2=502−(86−50)2=1204米,∴S=πAD2=1204π平方米.答:这个国际会议中心建筑的面积为1204π平方米.故答案为1204π平方米22.如图,AB是半圆O的直径,D是半圆O上一点,C是BD⏜的中点,连结AC交BD于点E,连结AD,若BE=4DE,CE=6,则AB的长为______.【答案】4√10【解析】【分析】本题考查相似三角形的判定和性质,垂径定理,圆周角定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.如图,连接OC交BD于K.设DE=k,BE=4k,则DK=BK=2.5k,EK=1.5k,由AD//CK,推出AE:EC=DE:EK,可得AE=4,由△ECK∽△EBC,推出EC2=EK⋅EB,求出k即可解决问题.【解答】解:如图,连接OC交BD于K,连结BC.∵CD⏜=BC⏜,∴OC⊥BD,∵BE=4DE,∴可以假设DE=k,BE=4k,k>0,则DK=BK=2.5k,EK=1.5k,∵AB是直径,∴∠ADK=∠DKC=∠ACB=90∘,∴AD//CK,∴AE:EC=DE:EK,∴AE:6=k:1.5k,∴AE=4,∵△ECK∽△EBC,∴EC2=EK⋅EB,∴36=1.5k×4k,∵k>0,∴k=√6,∴BC=√BE2−EC2=√96−36=2√15,∴AB=√AC2+BC2=√102+(2√15)2=4√10.故答案为4√10.23.在ΔABC中,已知AB=AC=4cm,BC=6cm,P是BC的中点,以点P为圆心,3cm为半径画⊙P,则点A与⊙P的位置关系是.【答案】A在⊙P内【解析】【分析】本题主要考查点与圆的位置关系,熟练掌握判断点与圆的位置关系的方法是解决问题的关键.连接AP,根据等腰三角形的性质推出AP⊥BC,然后用勾股定理求出AP的长,最后根据点A到圆心P的距离与半径的关系即可做出判断.【解答】解:连接AP,∵AB=AC=4cm,BC=6cm,P是BC的中点,BC=3cm,AP⊥BC,∴BP=12在Rt△ABP中,由勾股定理得:AP=√AB2−BP2=√42−32=√7cm,∵⊙P的半径为3cm,√7<3,∴点A与⊙P的位置关系是A在⊙P内.故答案为A在⊙P内.三、解答题(本大题共21小题,共168.0分)24.如图,在正方形ABCD中,AC,BD相交于点O,∠EAF=45°,交BC,CD于点E,F,交BD于点H,G.(1)求证:AG为BG,HG的比例中项.(2)求AD+FDDH的值.【答案】证明:(1)∵四边形ABCD是正方形,∴∠ABG=45°,∵∠EAF=45°,∴∠ABG=∠EAF,∵∠AGB=∠AGH,∴ΔABG∽ΔHAG,∴AGHG =BGAG,∴AG2=HG·BG,∴AG为BG,HG的比例中项.,,,,,∽,∴FDHO =ADAO,在Rt△AOD中,cos∠OAD=cos45°=AOAD =√22,∴ADAO=√2,∵AD=√AO2+OD2=√2OD,即FD=√2HO,∴AD+FDDH =√2OD+√2OHDH=√2(OD+OH)DH=√2.【解析】本题考查的是正方形的性质,相似三角形的判定与性质,锐角三角函数的定义,勾股定理有关知识.(1)利用正方形的性质得出∠ABG=45°,再根据∠EAF=45°得出∠ABG=∠EAF,然后结合∠AGB=∠AGH得出三角形相似,然后利用相似三角形的性质得出结论;(2)根据题意得出∽得出FDHO =ADAO,然后再利用锐角三角函数的定义求出ADAO=√2,再利用勾股定理得出AD,最后再进行解答即可.25.如图,已知AB,CD为⊙O的直径,过点A作弦AE垂直于直径CD于F,点B恰好为DE⌢的中点,连接BC,BE.(1)AE=BC.(2)若AE=2√3,求⊙O的半径.(3)在(2)的条件下,求BE⌢的长,并求出图中阴影部分的面积.【答案】(1)证明:连接BD,∵AB,CD为⊙O的直径,∴∠CBD=∠AEB=90°,∵点B恰好为DE⏜的中点,∴BD⏜=EB⏜,∴∠A=∠C,∵∠ABE=90°−∠A,∠CDB=90°−∠C,∴∠ABE=∠CDB,∴AE⏜=BC ⏜, ∴AE =BC ;(2)解:∵过点A 作弦AE 垂直于直径CD 于F ,∴AC⏜=EC ⏜, ∵AE⏜=BC ⏜, ∴AC ⏜=BE ⏜=12AE ⏜, ∴∠A =12∠ABE , ∴∠A =30°,在Rt △ABE 中,cos∠A =AE AB ,∴AB =AE cos30∘=2√3√32=4,∴⊙O 的半径为2.(3)连接OE ,∵∠A =30°,∴∠EOB =60°,BE ⌢的长=2π3,∴△EOB 是等边三角形,∵OB =OE =2,∴S △EOB =12×2×2×√32=√3,∴S 阴=S 扇形−S △EOB =60π×22360−√3=2π3−√3.【解析】略26. △ABC 内接于⊙O ,AB 是直径,∠ABC =30°,点D 在⊙O 上.(1)如图,若弦CD 交直径AB 于点E ,连接DB ,线段CF 是点C 到BD 的垂线段. ①问∠CDF 的度数和点D 的位置有关吗?请说明理由.②若△DFC的面积是△ACB的面积的910倍,求∠CBF的正弦值.(2)若⊙O的半径长为2,CD=2√2,直接写出BD的长度.【答案】解:(1)①∠CDF的度数和点D的位置无关,∠CDF=60°,理由如下:当点D在弦BC上方的圆弧上时,如下图:∵AB为直径,∴∠ACB=90°,∵∠ABC=30°,∴∠CAB=60°,∴∠CDF=∠CAB=60°;当点D在弦BC下方的圆弧上时,如下图:∵∠CAB=60°,∴∠CDB=180°−∠CAB=120°,∴∠CDF=60°;②∵CF⊥BD,AB为直径,∴∠ACB=∠CFD=90°,由①得:∠CDF=∠CAB=60°,∴AC=BCtan60∘=√3BC3;DF=CFtan60∘=√3CF3;∵S△ABC=12AC⋅BC=√3BC26;S△CDF=12CF⋅DF=√3CF26;∴S△CDFS△ABC =CF2BC2=910,∴sin∠CBF=CFBC =3√1010(负值舍去);(2)∵⊙O的半径长为2,CD=2√2,连接OC、OD,则△COD是等腰直角三角形,∴弧CD所对的圆心角∠COD=90°,①当点D在直径AB下方的圆弧上时:如图,连接OD,过D作DG⊥AB于G,由题意知∠ABC=30°,∠CAB=60°,∴∠AOC=60°,∠BOD=180°−60°−90°=30°,∵OD=2,∴DG=1,OG=√3,BG=2−√3;∴BD=√BG2+DG2=√12+(2−√3)2=√8−4√3=√6−√2;②当点D在直径AB上方的圆弧上时.如图,连接OD,过点D作DH⊥AB于H,此时∠DOA=90°−60°=30°,∴DH=1,OH=√3,BH=2+√3,∴BD=√BH2+DH2=√12+(2+√3)2=√8+4√3=√6+√2;综上所述,BD的长为√6−√2或√6+√2.【解析】本题考查了圆中的相关计算,圆周角定理、锐角三角函数、勾股定理等知识点,牢固掌握相关性质定理并正确计算,是解题的关键.(1)①根据同弧所对的圆周角相等和圆内接四边形的性质解答即可;②利用锐角三角函数的定义求出AC与BC、DF与CF的关系,利用三角形的面积公式得出S△CDFS△ABC =CF2BC2=910,然后根据正弦的定义可求出∠CBF的正弦值;(2)分两种情况求解:①当点D在直径AB下方的圆弧上时;②当点D在直径AB上方的圆弧上时,利用勾股定理,分别求解.27.如图,已知点A,B,C,M在一条直线上,P为直线AB外一点,连结PA,PB,PC,PM.若PA2:PC2=AB:BC,则称PB为AC边上的“平方比线”.(1)当AB=6,AC=8,PA=2√15,PC=2√5时,试说明PB为AC边上的“平方比线”;(2)当AB=6,AC=8,CM=4,PM=4√3时,①若∠A=25°,求∠CPM的度数;②求证:PB为AC边上的“平方比线”.【答案】解:(1)∵PA=2√15,PC=2√5,∴PA2=(2√15)2=4×15=60,PC2=(2√5)2=4×5=20,∴PA2PC2=6020=3,∵AB=6,AC=8,∴BC=AC−AB=2,∴ABBC =62=3,∴PA2PC2=ABBC,∴PB为AC边上的“平方比线”;(2)①∵AC=8,CM=4,∴AM=AC+CM=12,∴AM×CM=12×4=48,∵PM=4√3,∴PM2=(4√3)2=48,∴PM2=CM×AM,即PMCM =AMPM,∵∠M=∠M,∴△PMC∽△AMP,∴∠MPC=∠MAP=25°,②如图,过点P作PG⊥AM,交AM的延长线于G,设MG=a,在Rt△PMG中,PM=4√3,∴PG2=PM2−MG2=48−a2,在Rt△PCG中,CG=CM+MG=a+4,根据勾股定理得,PC2=CG2+PG2=(a+4)2+48−a2=64+8a=8(a+8),在Rt△PAG中,AG=AC+CM+MG=8+4+a=a+12,根据勾股定理得,PA2=AG2+PG2=(a+12)2+48−a2=192+24a=24(a+8),∴PA2PC2=24(a+8)8(a+8)=3,∵AB=6,BC=AC−AB=2,∴ABBC =62=3,∴PA2PC2=ABBC,∴PB为AC边上的“平方比线”.【解析】此题是三角形综合题,主要考查了勾股定理,相似三角形的判定和性质,新定义的理解,解(2)①的关键是判断出△PMC∽△AMP,解(2)②的关键是求出PA2PC2=3.(1)利用“平方比线”的定义直接得出结论;(2)①先判断出PM2=CM×AM,进而得出△PMC∽△AMP,即可得出∠MPC=∠MAP=25°;②设出MG=a,进而利用勾股定理得出PG2=PM2−MG2=48−a2,PC2=8(a+8),PA2=AG2+PG2=24(a+8),即可得出PA2PC2=ABBC,结论得证.28.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求PEEF;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.【答案】(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP+∠APB=90°∵BP=BE,∴∠APB=∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD//BC,AD=BC=8,∴BD=√AB2+AD2=√62+82=10,∵AD//BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DE=DA=8,∴BE=BP=BD−DE=10−8=2,∴PA=√AB2+BP2=√62+22=2√10,∵MN垂直平分线段AP,∴AF=PF=√10,∵PB//AD,∴PEAE =PBAD=28=14,∴PE=15PA=2√105,∴EF=PF−PE=√10−2√105=3√105,∴PEEF =2√1053√105=23.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形ABCD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6−x)2=62+x2,∴x=163,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CPM=CMCP =1636=89.【解析】(1)利用等角的余角相等证明即可.(2)利用勾股定理求出BD,证明AD=DE=8,推出BP=BE=2,再利用平行线分线段成比例定理即可解决问题.(3)如图3中,连接AM,MP.设CM=x.利用勾股定理求出x,再证明P,F,M,C四点共圆,推出∠CFM=∠CPM,推出tan∠CFM=tan∠CPM=CMCP即可解决问题.本题属于四边形综合题,考查了矩形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是证明AD=ED,学会利用参数构建方程解决问题,学会用转化的思想思考问题,属于中考压轴题.29.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作AB的垂线交AC的延长线于点F.(1)求证:BE⏜=DE⏜;(2)过点C作CG⊥BF于G,若AB=5,BC=2√5,求CG,FG的长.【答案】(1)证明:连接AE,∵AB 是直径, ∴∠AEB =90°, ∴AE ⊥BC , ∵AB =AC , ∴∠EAB =∠EAC , ∴BE⏜=DE ⏜; (2)解:∵BF ⊥AB ,CG ⊥BF ,AE ⊥BC , ∴∠CGB =∠AEB =∠ABF =90°,CG//AB ∵∠CBG +∠ABC =90°,∠ABC +∠BAE =90°, ∴∠CBG =∠BAE , ∴△BCG∽△ABE , ∴CGBE =BCAB , ∴√5=2√55, ∴CG =2, ∵CG//AB , ∴CFAF =CGAB , ∴CFCF+5=25, ∴CF =103,∴FG =√CF 2−CG 2=√(103)2−22=83.【解析】本题属于相似形综合题,考查了圆周角定理,等腰三角形的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.(1)连接AE ,利用等腰三角形的三线合一的性质证明∠EAB =∠EAC 即可解决问题. (2)证明△BCG∽△ABE ,可得CGBE =BCAB ,由此求出CG ,再利用平行线分线段成比例定理求出CF ,利用勾股定理即可求出FG .30.如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=6.(1)求OD的长;(2)计算阴影部分的面积.【答案】解:(1)连接OB,∵AB⊥OD,AB=6,∴∠OCB=90°,AC=BC=12AB=3,∵点C为OD的中点,∴OC=12OD=12OB,在Rt△OCB中,∵OC2+BC2=OB2,∴OC2+9=4OC2,∴OC=√3(负值舍去),∴OD=OB=2√3;(2)∵∠OCB=90°,OC=12OB,∴∠OBC=30°,∴∠BOC=60°,∴阴影部分的面积=S扇形BOD−S△COB=60×π×(2√3)2360−12×√3×3=2π−3√32.【解析】本题考查了扇形面积的计算公式,垂径定理,勾股定理,三角形的面积有关知识.AB=3,再利用勾股定理求出OC的长,即可得到(1)根据垂径定理得到AC=BC=12OD的长;(2)根据扇形的面积公式,利用阴影部分的面积=S扇形BOD−S△COB进行计算.31.如图,⊙O的直径AB=5,弦AC=4,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与点B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.【答案】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC=√AB2−AC2=√52−42=3,∵BC=CD,∴BC⏜=CD⏜,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2−EC2=OB2−OE2,∴32−(52−x)2=(52)2−x2,解得x=710,∵BE=DE,BO=OA,∴AD=2OE=75,∴四边形ABCD的周长=3+3+5+75=625.【解析】本题考查作图−复杂作图,圆周角定理,垂径定理,勾股定理等知识,解题的关键是学会利用参数,构建方程解决问题.(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.32.如图,⊙O的直径AB为20cm,弦AC为12cm.(1)如图1,∠ACB的平分线交AB于E,交⊙O于D,弦长AD长度为___________;(2)如图2,若AF平分∠CAB,且AF交⊙O于点F,AF的长是____________;(3)如图3,点P为弧BĈ上动点,连接AP,作CH⊥AP,垂足为H,线段BH的最小值是_____________.【答案】解:(1)10√2cm;(2)8√5cm;(3)2√73−6cm.【解析】【分析】本题考查圆周角定理,勾股定理、点与圆的位置关系等知识,解题的关键是确定点H的运动轨迹是以AC为直径的圆上运动,属于中考填空题中的压轴题.(1)如图1,连接BD,根据圆周角定理得到∠ACB=∠ADB=90°,由CD平分∠ACB,推出AD⏜=BD⏜,得到AD=BD,解直角三角形即可得到结论;(2)如图2,连接OF,过F作FE⊥AB于E,根据勾股定理得到BC=√AB2−AC2=16cm,,根据角平分线的定义得到∠CAB=2∠FAB,由圆周角定理得到∠FOB=2∠FAB,等量代换得到∠CAB=∠FOE,根据相似三角形的性质得到OE=6,EF=8,根据勾股定理即可得到结论;(3)以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点H在以AC为直径的圆上运动,当O′、H、B共线时,BH的值最小,最小值为O′B−O′H,利用勾股定理求出BO′即可解决问题.【解答】解:(1)如图1,连接BD,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵CD平分∠ACB,∴AD⏜=BD⏜,∴AD=BD,∵AB为20cm,AB=10√2cm;∴AD=√22(2)如图2,连接OF,过F作FE⊥AB于E,∵∠C=90°,AB=20,AC=12,∴BC=√AB2−AC2=16cm,∵AF平分∠CAB,∴∠CAB=2∠FAB,∵∠FOB=2∠FAB,∴∠CAB=∠FOE,∵∠C=∠OEF=90°,∴△ABC∽△EFO,∴OEAC =EFBC=OFAB=12,∴OE=6,EF=8,∴AE=AO+OE=16,∴AF=√AE2+EF2=8√5cm;(3)如图3,以AC为直径作圆O′,连接BO′.∵CH⊥AP,∴∠AHC=90°,∴在点P移动的过程中,点H在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=20cm,BC=16cm,AC=12cm.在Rt△BCO′中,BO′=√BC2+O′C2=√162+62=2√73,∵O′H+BH≥O′B,∴当O′、H、B共线时,BH的值最小,最小值为O′B−O′H=2√73−6cm.故答案为(1)10√2cm;(2)8√5cm;(3)2√73−6cm.33.如图所示,△ABD内接于半径为5的⊙O,连结AO并延长交BD于点M,交⊙O于点C,过点A作AE//BD,交CD的延长线于点E,AB=AM.(1)求证:△ABM∽△ECA.(2)当CM=4OM时,求BM的长.(3)当CM=k⋅OM时,设△ADE的面积为S1,△MCD的面积为S2,求S1的值.(用含S2 k的代数式表示)【答案】证明:(1)∵AE//BD,∴∠AMB=∠CAE,又∵∠ABD=∠ACD,∴△ABM∽△ECA;(2)解:∵AB=AM,△ABM∽△ECA,∴AE=CE,∵CM=4OM,∴可以假设OM=k,CM=4k,∴OA=OC=5k=5,∴k=1,∴AM=6,CM=4,∵DM//AE,∴DM:AE=CM:CA=4:10,设DM=4m,则EA=EC=10m,∵AB=AM,∴∠ABM=∠AMB,∵∠AMB=∠DMC,∠B=∠C,∴△AMB∽△DMC,且∠DMC=∠C,∴DM=DC=4m,∴DE=EC−DC=6m,∵AC是直径,∴∠ADE=∠ADC=90°,∴AD=√AE2−DE2=√(10m)2−(6m)2=8m,∵AD2+CD2=AC2,∴(8m)2+(4m)2=102∵m>0,∴m=√52,∵△AMB∽△DMC,∴BMCM =AMDM,∴BM4=4×√52,∴BM=12√55.(3)设△CDM的面积为x.∵CM=kOM,∴OM=51+k ,CM=5k1+k,AM=5+51+k=10+5k1+k,∴AC:CM=(2+2k):k,∴△ACD的面积=2+2kk⋅x,∵DM//AE,∴CD:DE=CM:AM=k:(2+k),∴△ADE的面积=2+kk ⋅2+2kk⋅x,∴S1S2=2k2+6k+4k2.【解析】(1)根据两角对应相等的两个三角形相似即可判断.(2)首先证明EA=EC,DM=DC,利用勾股定理和相似三角形的性质求解即可.(3)设△CDM的面积为x.利用等高模型以及平行线分线段成比例定理,求出△ADE的面积(用x表示)即可.本题属于圆的综合题,考查了平行线分线段成比例定理,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.34.如图,△ABD内接于半径为5的⊙O,连结AO并延长交BD于点M,交⊙O于点C,过点A作AE//BD,交CD的延长线于点E,AB=AM.(1)求证:△ABM∽△ECA.(2)当CM=4OM时,求BM的长;(3)当CM=k⋅OM时,设△ADE的面积为S1,△MCD的面积为S2,求S1S2的值.(用含k的代数式表示).【答案】解:(1)∵AE//BD,∴∠EAC=∠AMB,∵∠B和∠C都是AD⏜所对的圆周角∴∠B=∠C,∴△ABM∽△ECA;(2)∵r=5,CM=4OM,∴OM=1,CM=4,∴AB=AM=6,连结BC,由勾股定理得BC=√AC2−AB2=√102−62=8,过B作BF⊥AC,则BF=4.8,AF=√AB2−BF2=√62−4.82=3.6,∴FM=6−3.6=2.4,∴BM=√4.82+2.42=125√5;(3)∵CM=k·OM,∴OC=OA=(k+1)OM,AM=(k+2)OM,∵AE//BD,∴△ACE∽△MCD,∴AMMC =EDDC=k+2k,∵S 1S△ADC=ED DC =k+2k,∴S 1=k+2kS △ADC , ∵S 2S△ADC=MC AC=k2k+2,∴S 2=k2k +2S△ADC,∴S 1S 2=k+2k:k 2k+2=2(k+1)(k+2)k 2.【解析】本题考查圆周角定理,平行线的性质,相似三角形的判定,勾股定理,平行线分线段成比例,三角形的面积.关键是掌握圆周角定理,平行线分线段成比例和三角形面积.难度一般.(1)根据平行线的性质和圆周角定理得∠EAC =∠AMB 和∠B =∠C 即可解答;(2)连结BC ,过B 作BF ⊥AC ,先求得OM ,CM ,BC ,AM 的长,再利用勾股定理即可解答;(3)先利用平行线分线段成比例得AMMC =EDDC =k+2k,再根据同高的三角形面积的比等于底的比得S 1=k+2kS △ADC,S 2=k2k+2S △ADC即可解答 .35. 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交BC ,AC 于点D ,E ,连接EB ,交OD 于点F .(1)求证:OD ⊥BE .(2)若DE =√5,AB =8,求AE 的长. (3)若△CDE 的面积是△OBF 面积的34,求BCAC 的值.【答案】解:(1)连接AD,∵AB是⊙O直径,∴∠AEB=∠ADB=90°,∵AB=AC,∴BD⏜=ED⏜,∴OD⊥BE;(2)∵∠AEB=90°,∴∠BEC=90°,∵BD=CD,∴BC=2DE=2√5,∵四边形ABDE内接于⊙O,∴∠BAC+∠BDE=180°,∵∠CDE+∠BDE=180°,∴∠CDE=∠BAC,∵∠C=∠C,∴△CDE∽△CAB,∴CECB =DEAB,即CE2√5=√58,∴CE=54∴AE=AC−CE=AB−CE=8−54=274;,∴设S△CDE=3k,S△OBF=4k,∵BD=CD,∴S△CDE=S△BDE=3k,∵BD=CD,AO=BO,∴OD//AC,∵△OBF∽△ABE , ∴S △OBF S △ABE=(OB AB)2=14, ∴S △ABE =4S △OBF , ∴S △ABE =4S △OBF =16k ,∴S △CAB =S △CDE +S △BDE +S △ABE =22k , ∵△CDE∽△CAB ,,∴CD CA=√3√22=√6622, ∵BC =2CD , ∴BC AC=√6611. 【解析】略36. 如图,AB 是⊙O 的直径,点C 为BD⏜的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:△BFG≌△CDG ; (2)若AD =BE =2,求BF 的长. 【答案】证明:(1)∵C 是BD ⏜的中点, ∴CD⏜=BC ⏜, ∵AB 是⊙O 的直径,且CF ⊥AB , ∴BC⏜=BF ⏜, ∴CD⏜=BF ⏜, ∴CD =BF ,在△BFG 和△CDG 中,∵{∠FGB =∠DGC ∠F =∠CDG BF =CD, ∴△BFG≌△CDG(AAS);(2)如图,连接OC,交BD于H,∵点C是BD⏜的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=1AD=1,2∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴OB=OE+BE=3,∴CE=EF=√32−12=2√2,∴BF=√BE2+EF2=2√3.【解析】此题考查了勾股定理,圆周角定理、垂径定理、三角形中位线定理,三角形全等的性质和判定.第二问有难度,注意掌握辅助线的作法.(1)先证CD=BF,然后根据AAS证明△BFG≌△CDG;(2)连接OC,交BD于H,根据垂径定理和三角形的中位线定理可得OH=1,证明△COE≌△BOH,得到OH=OE=1,则OB=3,再利用勾股定理求得CE=EF=√32−12=2√2,进而可得结论.37.如图,⊙O的直径AB=26,P是AB上(不与点A,B重合)的任一点,点C,D为⊙O上的两点.若∠APD=∠BPC,则称∠DPC为直径AB的“回旋角”.。

期末复习 《勾股定理》常考题与易错题精选(35题)(解析版)

期末复习 《勾股定理》常考题与易错题精选(35题)(解析版)

期末复习- 《勾股定理》常考题与易错题精选(35题)一.勾股定理(共11小题)1.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是3、5、2、3,则最大正方形E的面积是( )A.10B.13C.15D.26【分析】分别设中间两个正方形和最大正方形的边长为x,y,z,由勾股定理得出x2=8,y2=5,z2=x2+y2,即最大正方形的面积为z2.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=3+5=8,y2=2+3=5,z2=x2+y2=13,即最大正方形E的面积为:z2=13.故选:B.【点评】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2.如图,长方形ABCD的顶点A,B在数轴上,点A表示﹣1,AB=3,AD=1.若以点A为圆心,对角线AC长为半径作弧,交数轴正半轴于点M,则点M所表示的数为( )A.B.C.D.【分析】先利用勾股定理求出AC,根据AC=AM,求出OM,由此即可解决问题.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=3,AD=BC=1,∴,∴AN=AC=,∵点A表示﹣1,∴OA=1,∴OM=AM﹣OA=﹣1,∴点M表示点数为﹣1.故选:A.【点评】本题考查实数与数轴、勾股定理等知识,解题的关键是灵活应用勾股定理求出AC,AM的长.3.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=5,BC=12,则S△ACD :S△ABD为( )A.12:5B.12:13C.5:1 3D.13:5【分析】过D作DF⊥AB于F,根据角平分线的性质得出DF=DC,再根据三角形的面积公式求出△ABD 和△ACD的面积,最后求出答案即可.【解答】解:过D作DF⊥AB于F,∵AD平分∠CAB,∠C=90°(即AC⊥BC),∴DF=CD,设DF=CD=R,在Rt△ABC中,∠C=90°,AC=5,BC=12,由勾股定理得:AB==13,∴S△ABD ===R,S△ACD===R,∴S△ACD :S△ABD=(R):(R)=5:13,故选:C.【点评】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质求出DF=CD是解此题的关键.4.图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=2,且∠AOB=30°,则OC的长度为( )A.B.C.4D.【分析】先根据含30°角的直角三角形的性质得出OB的长,再根据勾股定理求出OC的长即可.【解答】解:在Rt△ABO中,∠AOB=30°,∴OB=2AB=4,在Rt△BOC中,由勾股定理得,OC===2,故选:D.【点评】本题考查了勾股定理,含30°角的直角三角形的性质,熟练掌握勾股定理,含30°角的直角三角形的性质是解题的关键.5.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为( )A.5B.7C.5或7D.【分析】在Rt△ADB中,根据∠ABC=60°,,求得BD=6,然后分情况讨论即可求得BC的长.【解答】解:在Rt△ADB中,∠ABC=60°,,∴,如图,当点C在点D右边时,BC=BD+DC=6+1=7;如图,当点C在点D左边时,BC=BD﹣CD=6﹣1=5,故BC的长为:5或7.故选:C.【点评】本题考查解直角三角形以及分类讨论,解题关键是正确画出分类讨论的三角形图形求解.6.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,则点C到直线AB的距离是( )A.B.3C.D.2【分析】作CD⊥AB于点D,根据勾股定理可以求得AB的长,然后根据面积法,可以求得CD的长.【解答】解:作CD⊥AB于点D,如右图所示,∵∠C=90°,AC=3,BC=4,∴AB===5,∵,∴,解得CD=2.4,故选:C.【点评】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,画出相应的图形,利用勾股定理和面积法解答.7.已知△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)如果a=7,b=24,求c;(2)如果a=12,c=13,求b.【分析】(1)利用勾股定理计算c=;(2)利用勾股定理计算b=.【解答】解:(1)在Rt△ABC中,∠C=90°,由勾股定理得:c===25;(2)在Rt△ABC中,由勾股定理得:b===5.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.注意勾股定理应用的前提条件是在直角三角形中.8.如图,Rt△ABC中,∠C=90°(1)若AB=,AC=,求BC2(2)若AB=4,AC=1,求AB边上高.【分析】(1)根据勾股定理可求BC 2;(2)由勾股定理求出BC ,根据三角形面积公式即可得出结果.【解答】解:(1)Rt △ABC 中,∠C =90°,AB =,AC =,则BC 2=AB 2﹣AC 2=(+1)2﹣(﹣1)2=4;(2)BC ==,AB 边上高=×1÷2×2÷4=.【点评】本题考查了勾股定理、三角形面积的计算;熟练掌握勾股定理是解决问题的关键.9.如图,在四边形ABCD 中,∠B =90°,∠BCA =60°,AC =2,DA =1,CD =3.求四边形ABCD的面积.【分析】先根据勾股定理求出AB 的长,再根据勾股定理逆定理判断△ACD 是直角三角形,然后把四边形ABCD 的面积分割成两个直角三角形的面积和即可求解.【解答】解:∵∠B =90°,∠BCA =60°,AC =2,∴BC =,∴AB ===,又∵DA =1,CD =3,AC =2,∴DA 2+AC 2=12+(2)2=1+8=9=CD 2,∴△ACD 是直角三角形,∴四边形ABCD 的面积=S △ACD +S △ABC =AD •AC +AB •BC =×1×2+××=+.【点评】本题考查勾股定理,关键是对勾股定里的掌握和运用.10.如图,每个小正方形的边长都为1.求出四边形ABCD 的周长和面积.【分析】利用勾股定理求出AB、BC、CD和DA的长,即可求出四边形ABCD的周长;利用割补法即可求出四边形的面积.【解答】解:根据勾股定理得AB==2,BC==3,CD==,AD==2,故四边形ABCD的周长为;2+3++2=5++2;四边形ABCD的面积为6×8﹣×2×4﹣×6×3﹣1﹣×3×2﹣×2×6=26.【点评】本题主要考查了勾股定理以及三角形的面积公式,掌握勾股定理是解决问题的关键.11.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.【分析】(1)根据三角形的面积公式计算,求出AB;(2)根据勾股定理的逆定理求出∠C=90°,根据三角形的面积公式计算即可.【解答】解:(1)∵△ABE的面积为35,DE=7,∴AB×7=35,解得:AB=10;(2)在△ABC中,AB2=102=100,AC2+BC2=62+82=100,则AB2=AC2+BC2,∴∠C=90°,=AC•BC=×6×8=24,∴S△ABC答:△ACB的面积24.【点评】本题考查的是勾股定理、三角形的面积计算,根据勾股定理的逆定理求出∠C=90°是解题的关键.二.勾股定理的证明(共3小题)12.如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点E.(1)求证:∠DAC=∠BCE;(2)如果AC=BC.①求证:CD=BE;②若设△ADC的三边分别为a、b、c,试用此图证明勾股定理.【分析】(1)根据直角三角形的定义和垂直的定义,可以证明结论成立;(2)①根据AAS可以证明结论成立;②根据S梯形ADEB=S△ADC+S△ACB+S△CEB,代入字母计算即可证明结论成立.【解答】证明:(1)∵∠ACB=90°,AD⊥DE于点D,∴∠DAC+∠ACD=90°,∠ADC+∠BCE=90°,∴∠DAC=∠BCE;(2)①∵AD⊥DE于点D,BE⊥DE于点E,∴∠ADC=∠CEB=90°,由(1)知:∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE;②由图可知:S梯形ADEB =S△ADC+S△ACB+S△CEB,∴=,化简,得:a2+b2=c2.【点评】本题考查勾股定理的证明,解答本题的关键是明确题意,利用数形结合的思想解答.13.【阅读理解】我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a、b,斜边长为c.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×ab,即(a+b)2=c2+4×ab,所以a2+b2=c2.【尝试探究】美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE,其中△BCA≌△ADE,∠C=∠D=90°,根据拼图证明勾股定理.【定理应用】在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边长分别为a、b、c.求证:a2c2+a2b2=c4﹣b4.【分析】【尝试探究】根据阅读内容,图中梯形的面积分别可以表示为ab+(a2+b2)=ab+c2,即可证得a2+b2=c2;【定理应用】分解因式,根据勾股定理即可得到结论.【解答】证明:【尝试探究】梯形的面积为S =(a +b )(b +a )=ab +(a 2+b 2),利用分割法,梯形的面积为S =S △ABC +S △ABE +S ADE =ab +c 2+ab =ab +c 2,∴ab +(a 2+b 2)=ab +c 2,∴a 2+b 2=c 2;【定理应用】∵a 2c 2+a 2b 2=a 2(c 2+b 2),c 4﹣b 4=(c 2+b 2)(c 2﹣b 2)=(c 2+b 2)a 2,∴a 2c 2+a 2b 2=c 4﹣b 4.【点评】本题主要考查勾股定理的验证,解题关键是利用面积相等建立等量关系,判定勾股定理成立.14.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明勾股定理,请完成证明过程.(提示:BD 和AC 都可以分割四边形ABCD )【分析】连接DB ,过点D 作BC 边上的高DF ,根据S 四边形ADCB =S △ACD +S △ABC =S △ADB +S △DCB 即可求解.【解答】证明:连接DB ,过点D 作BC 边上的高DF ,则DF =EC =b ﹣a .∵S 四边形ADCB =S △ACD +S △ABC =b 2+ab .又∵S 四边形ADCB =S △ADB +S △DCB =c 2+a (b ﹣a )∴b 2+ab =c 2+a (b ﹣a )∴a 2+b 2=c 2.【点评】本题考查了用数形结合来证明勾股定理,证明勾股定理常用的方法是利用面积证明,本题锻炼了同学们数形结合的思想方法.三.勾股定理的逆定理(共8小题)15.下列各组中的三条线段,能构成直角三角形的是( )A.7,20,24B.,,C.3,4,5D.4,5,6【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【解答】解:A、72+202≠242,故不是直角三角形,不符合题意;B、()2+()2≠()2,故不是直角三角形,不符合题意;C、32+42=52,故是直角三角形,符合题意;D、42+52≠62,故不是直角三角形,不符合题意;故选:C.【点评】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.16.三角形的三边长分别为a、b、c,则下面四种情况中,不能判断此三角形为直角三角形的是( )A.a=3,b=4,c=5B.a=8,b=15,c=17C.a=5,b=12,c=13D.a=12,b=15,c=18【分析】根据勾股定理的逆定理解决此题.【解答】解:A.根据勾股定理的逆定理,由32+42=52,即a2+b2=c2,那么这个三角形是直角三角形,故A不符合题意.B.根据勾股定理的逆定理,由82+152=172,即a2+b2=c2,那么这个三角形是直角三角形,故B不符合题意.C.根据勾股定理的逆定理,由52+122=132,即a2+b2=c2,那么这个三角形是直角三角形,故C不符合题意.D.根据勾股定理的逆定理,由122+152≠182,即a2+b2≠c2,那么这个三角形不是直角三角形,故D符合题意.故选:D.【点评】本题主要考查勾股定理,熟练掌握勾股定理的逆定理是解决本题的关键.17.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.【分析】(1)连接AC ,根据勾股定理可知AC 2=BA 2+BC 2,再根据AC 2=DA 2+DC 2即可得出结论;(2)根据S 四边形ABCD =S △ABC +S △ADC 即可得出结论.【解答】(1)解:∠D 是直角.理由:连接AC ,∵∠B =90°,∴AC 2=BA 2+BC 2=400+225=625,∵DA 2+CD 2=242+72=625,∴AC 2=DA 2+DC 2,∴△ADC 是直角三角形,即∠D 是直角;(2)解:∵S 四边形ABCD =S △ABC +S △ADC ,∴S 四边形ABCD =AB •BC +AD •CD ,=,=234.【点评】本题考查的是勾股定理的逆定理,解题的关键是掌握熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.18.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB =3m ,AD =4m ,CD =12m ,BC =13m ,又已知∠A =90°.求这块土地的面积.【分析】先把解四边形的问题转化成解三角形的问题,再用勾股定理解答.【解答】解:连接BD,∵∠A=90°,∴BD2=AD2+AB2=25,则BD2+CD2=132=BC2,因此∠CDB=90°,S四边形ABCD =S△ADB+S△CBD=36(平方米),答:这块土地的面积为36平方米.【点评】本题考查勾股定理,掌握勾股定理是解答此题的关键.19.如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,DA=1.(1)求∠DAB的度数;(2)求四边形ABCD的面积.【分析】(1)连接AC,在Rt△ABC中,利用勾股定理求出AC的长,∠BAC=∠ACB=45°,然后利用勾股定理的逆定理证明△ADC是直角三角形,从而可得∠DAC=90°,最后进行计算即可解答;(2)根据四边形ABCD的面积=△ABC的面积+△ADC的面积,进行计算即可解答.【解答】解:(1)连接AC,∵∠B=90°,AB=BC=2,∴AC===2,∠BAC=∠ACB=45°,∵CD=3,DA=1,∴AD2+AC2=12+(2)2=9,CD2=32=9,∴AD2+AC2=CD2,∴△ADC是直角三角形,∴∠DAC=90°,∴∠DAB=∠BAC+∠DAC=135°,∴∠DAB的度数为135°;(2)由题意得:四边形ABCD的面积=△ABC的面积+△ADC的面积=AB•BC+AD•AC=×2×2+×1×2=2+,∴四边形ABCD的面积为2+.【点评】本题考查了勾股定理,勾股定理的逆定理,熟练掌握勾股定理,以及勾股定理的逆定理是解题的关键.20.如图,在△ABC中,AD、BE分别为边BC、AC的中线,分别交BC、AC于点D、E.(1)若CD=4,CE=3,AB=10,求证:∠C=90°;(2)若∠C=90°,AD=6,BE=8,求AB的长.【分析】(1)根据中点的定义和勾股定理的逆定理即可求解;(2)根据中点的定义和勾股定理即可求解.【解答】(1)证明:∵AD、BE分别为边BC、AC的中线,CD=4,CE=3,∴AC=6,BC=8,∵AB=10,∴AB2=AC2+BC2,∴△ABC是直角三角形,∴∠C=90°;(2)解:∵∠C=90°,AD=6,BE=8,∴AC2+CD2=AD2,BC2+CE2=BE2,∵AD、BE分别为边BC、AC的中线,∴CD=BC,CE=AC,∴AC2+(BC)2=36,BC2+(AC)2=64,∴AC2+BC2=100,∴AC2+BC2=80,∴AB==4.【点评】此题考查了勾股定理,熟练掌握勾股定理和勾股定理的逆定理是解本题的关键.21.如图,在△ABC中,AD为BC边上的高,若BD=4,DC=5,AD=2,判断△ABC的形状,并说明理由.【分析】依据AD为BC边上的高,依据勾股定理即可得到Rt△ABD中,AB2=AD2+BD2=36,Rt△ACD 中,AC2=AD2+CD2=45,再根据AB2+AC2=BC2,即可得到△ABC是直角三角形.【解答】解:△ABC是直角三角形.理由:∵AD为BC边上的高,∴∠ADB=∠ADC=90°,Rt△ABD中,AB2=AD2+BD2=20+16=36,Rt△ACD中,AC2=AD2+CD2=20+25=45,又∵BC2=81,∴AB2+AC2=BC2,∴△ABC是直角三角形.【点评】本题主要考查了勾股定理以及勾股定理的逆定理的运用,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.22.如图,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求∠ACB的度数.【分析】(1)运用勾股定理求得AB,BC及AC的长,即可求出△ABC的周长.(2)运用勾股定理的逆定理求得AC2=AB2+BC2,得出∠ABC=90°.【解答】解:(1)AB==5,BC==2,AC==,∴△ABC的周长=2++5=3+5;(2)∵AC2=()2=5,AB2=52=25,BC2=(2)2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形,AB是斜边,∴∠ACB=90°.【点评】本题主要考查了勾股定理及勾股定理的逆定理,熟记勾股定理是解题的关键.四.勾股数(共3小题)23.下列四组数中不是勾股数的是( )A.3,4,5B.2,3,4C.5,12,13D.8,15,17【分析】求是否为勾股数,这里给出三个数,利用勾股定理,只要验证两小数的平方和等于最大数的平方即可.【解答】解:A、32+42=52,是勾股数的一组;B、22+32≠42,不是勾股数的一组;C、52+122=132,是勾股数的一组;D、82+152=172,是勾股数的一组.故选:B.【点评】考查了勾股数,理解勾股数的定义,并能够熟练运用.24.下列各组数中,是勾股数的为( )A.,2,B.8,15,17C.,D.32,42,52【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、不满足三个数都是正整数,故A选项不符合题意;B、三个数都是正整数且82+152=172,故B选项符合题意;C、不满足三个数都是正整数,故C选项不符合题意;D、三个数都是正整数但(32)2+(42)2≠(52)2,故D选项不符合题意.故选:B.【点评】本题考查了勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数.一组勾股数必须同时满足两个条件:①三个数都是正整数,②两个较小正整数的平方和等于最大的正整数的平方,这两个条件同时成立,缺一不可.25.观察下列各组勾股数有哪些规律:3,4,5;9,40,41;5,12,13;……;7,24,25;a,b,c.请解答:(1)当a=11时,求b,c的值;(2)判断21,220,221是否为一组勾股数?若是,请说明理由.【分析】(1)由a=11,b+1=c,c2﹣b2=a2,得(b+1)2﹣b2=(b+1+b)(b+1﹣b)=121,然后求得b和c的值即可;(2)利用勾股数的定义进行判定即可.【解答】解:(1)由a=11,b+1=c,c2﹣b2=a2,得(b+1)2﹣b2=(b+1+b)(b+1﹣b)=121.解得b=60,c=b+1=6;(2)是勾股数,理由如下:2212﹣2202=(221+220)(221﹣220)=441,212=441,∴2212﹣2202=212,∴21,220,221是勾股数.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.五.勾股定理的应用(共10小题)26.我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠B=90°,AB=6m,BC=8m,CD=24m,AD=26m.(1)求出空地ABCD的面积;(2)若每种植1平方米草皮需要350元,问总共需投入多少元?【分析】(1)直接利用勾股定理AC,再用勾股定理的逆定理得出∠ACD=90°,进而得出答案;(2)利用(1)中所求得出所需费用.【解答】解:(1)连接AC∵∠B=90°,AB=6m,BC=8m,∴,∵CD=24m,AD=26m,∴AC2+CD2=AD2,∴∠ACD=90°,∴S 四边形ABCD =S △ABC +S △ACD ===144(m 2);即空地ABCD 的面积为144m 2.(2)144×350=50400元,即总共需投入50400元.【点评】此题主要考查了勾股定理及其逆定理的应用,将四边形化为三角形后,正确用勾股定理及其逆定理是解题关键.27.由四条线段AB 、BC 、CD 、DA 所构成的图形,是某公园的一块空地,经测量∠ADC =90°,CD =3m 、AD =4m 、BC =12m 、AB =13m .现计划在该空地上种植草皮,若每平方米草皮需200元,则在该空地上种植草皮共需多少元?【分析】如图,连接AC ,运用勾股定理求出AC ,在△ABC 中利用勾股定理逆定理证明得∠ACB =90°,最后根据S ABCD =S △ABC ﹣S △ACD 求出草坪面积从而求出费用.【解答】解:如图,连接AC ,∵∠ADC =90°,∴,在△ABC 中,∵AC 2+BC 2=52+122=169,AB 2=132=169,∴AC 2+BC 2=AB 2,∴∠ACB =90°,∴,200×24=4800(元).答:若每平方米草皮需200元,则在该空地上种植草皮共需4800元.【点评】本题考查了勾股定理及勾股定理逆定理的实际应用;掌握勾股定理求边长和逆定理证垂直是解题的关键.28.如图,某校攀岩墙AB的顶部A处安装了一根安全绳AC,让它垂到地面时比墙高多出了2米,教练把绳子的下端C拉开8米后,发现其下端刚好接触地面(即BC=8米),AB⊥BC,求攀岩墙AB的高度.【分析】根据题意设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,再利用勾股定理即可求得AB 的长即可.【解答】解:设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,在Rt△ABC中,BC=8米,AB2+BC2=AC2,∴x2+82=(x+2)2,解得x=15,∴攀岩墙AB的高为15米.【点评】此题考查了勾股定理的应用,解题的关键是从实际问题中整理出直角三角形.29.如图,甲、乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东42°方向航行,乙船向南偏东48°方向航行,0.5小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距17海里,问乙船的航速是多少?【分析】先根据方位角求出∠BAC=180°﹣42°﹣48°=90°,然后根据勾股定理求出,最后根据速度公式算出速度即可.【解答】解:根据题意可知:∠BAC=180°﹣42°﹣48°=90°,AC=16×0.5=8(海里),在Rt△ABC中(海里),乙船的航速是:(海里/时),答:乙船的航速是30海里/时.【点评】本题主要考查了方位角,勾股定理,解题的关键是根据勾股定理求出AB的长度.30.“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节.某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE(如图),他们进行了如下操作:①测得水平距离BD的长为8米;②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的小明的身高为1.5米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降9米,则他应该往回收线多少米?【分析】(1)利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度;(2)根据勾股定理即可得到结论.【解答】解:(1)在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=172﹣82=225,所以,CD=15(负值舍去),所以,CE=CD+DE=15+1.5=16.5(米),答:风筝的高度CE为16.5米;(2)由题意得,CM=9,∴DM=6,∴BM===10(米),∴BC﹣BM=17﹣10=7(米),∴他应该往回收线7米.【点评】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.31.森林火灾是一种常见的自然灾害,危害很大,随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,有一台救火飞机沿东西方向AB,由点A飞向点B,已知点C为其中一个着火点,且点C与直线AB上两点A,B的距离分别为600m和800m,又AB=1000m,飞机中心周围500m以内可以受到洒水影响.(1)着火点C受洒水影响吗?为什么?(2)若飞机的速度为10m/s,要想扑灭着火点C估计需要13秒,请你通过计算判断着火点C能否被扑灭?【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出飞机影响C持续的时间,即可做出判断.【解答】解:(1)着火点C受洒水影响.理由:如图,过点C作CD⊥AB于D,由题意知AC=600m,BC=800m,AB=1000m,∵AC2+BC2=6002+8002=10002,AB2=10002,∴AC2+BC2=AB2,∴△ABC是直角三角形,=AC•BC=CD•AB,∴S△ABC∴600×800=1000CD,∴CD=480,∵飞机中心周围500m以内可以受到洒水影响,∴着火点C受洒水影响;(2)当EC=FC=500m时,飞机正好喷到着火点C,在Rt△CDE中,ED===140(m),∴EF=280m,∵飞机的速度为10m/s,∴280÷10=28(秒),∵28秒>13秒,∴着火点C能被扑灭,答:着火点C能被扑灭.【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.32.一架云梯长25m,如图所示斜靠在一面墙上,梯子底端C离墙7m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了多少米?【分析】(1)在Rt△ABC中,利用勾股定理可求出AB的长度,此题得解;(2)在Rt△DBE中,利用勾股定理可求出BE的长度,用其减去BC的长度即可得出结论.【解答】解:(1)在Rt△ABC中,∠ABC=90°,AC=25m,BC=7m,∴AB==24(m).答:这个梯子的顶端A距地面24m.(2)在Rt△DBE中,BD=24﹣4=20m,DE=25m,∴BE==15(m),∴CE=BE﹣BC=15﹣7=8(m).答:如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了8m.【点评】本题考查了勾股定理的应用,解题的关键是:(1)利用勾股定理求出AB;(2)利用勾股定理求出BE.33.在一条东西走向的河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原由C 到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求原来的路线AC的长.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)是,理由是:在△CHB中,∵CH2+BH2=(1.2)2+(0.9)2=2.25,BC2=2.25,∴CH2+BH2=BC2,∴△CHB是直角三角形,∴CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x﹣0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣0.9)2+(1.2)2,解这个方程,得x=1.25,答:原来的路线AC的长为1.25千米.【点评】此题考查勾股定理的应用,关键是根据勾股定理的逆定理和定理解答.34.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面3米,问:发生火灾的住户窗口距离地面BD有多高?【分析】根据AB和AC的长度,构造直角三角形,根据勾股定理就可求出直角边BC的长.【解答】解:过点A作AC⊥BD,垂足为C,由题意可知:AE=CD=3米,AC=9米,AB=15米;在Rt△ABC中,根据勾股定理,得AC2+BC2=AB2,即,BC2+92=152,BC2=152﹣92=144,∴BC=12(米),∴BD=BC+CD=12+3=15(米);答:发生火灾的住户窗口距离地面15米.【点评】此题主要考查了勾股定理的应用,熟练记忆勾股定理公式是解题关键.35.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的)【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB==15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(米),∴AD===6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米.【点评】此题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。

八年级勾股定理易错题总结(含答案)

八年级勾股定理易错题总结(含答案)

八年级勾股定理易错题总结(含答案)一、选择题(本大题共9小题,共27.0分)1.如图,在长方形纸片ABCD中,AB=8,AD=17,折叠纸片使点B落在边AD上的E处,折痕为PQ.当E在AD边上移动时,折痕的端点P,Q也随着移动.若限定P,Q分别在边BA,BC上移动,则点E在边AD上移动的最大距离为()A. 6B. 7C. 8D. 9【答案】A【解析】解:如图1,当点P与点A重合时,根据翻折对称性可得AE=AB=8,如图2,当点C与点Q重合时,根据翻折对称性可得QE=BC=17,在Rt△ECD中,EC2=DE2+CD2,即172=(17−AE)2+82,解得:AE=2,所以点E在AD上可移动的最大距离为8−2=6.故选:A.分别利用当点P与点A重合时,以及当点C与点Q重合时,求出AE的长进而得出答案.本题考查了翻折变换及勾股定理,求出特殊位置的AE值是本题的关键.2.如图,在△ABC中,∠ACB=90°,边AB的垂直平分线交AB于点D,交AC于点E,连接BE,CD,若BC=5,CD=6.5,则△BCE的周长为()A. 16.5B. 17C. 18D. 20【答案】B【解析】【分析】本题主要考查了线段垂直平分线的性质,直角三角形斜边中线的性质和勾股定理,首先由线段垂直平分线的性质得到AE=BE,再由直角三角形斜边中线等于斜边的一半,求出AB的长,然后由勾股定理求出AC的长,再将△BCE的周长转化为BC+AC进行求解即可.【解答】解:∵DE垂直平分AB,∴AE=BE,AD=BD,∵∠ACB=90°,CD=6.5,∴AB=2CD=13,∵BC=5,∴AC=√AB2−BC2=12,∴△BCE的周长为BC+CE+BE=BC+CE+AE=BC+AC=5+12=17.故选B.3.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB边上,AD=AC,AE⊥CD,垂足为F,与BC交于点E,则BE的长是()D. 3A. 1.5B. 2.5C. 83【答案】B【解析】【分析】本题考查了勾股定理、全等三角形的判定与性质、线段垂直平分线的性质,属于中档题.连接DE,由勾股定理求出AB=5,由线段垂直平分线的性质得出CE=DE,由SSS证明△ACE≌△ADE,得出∠ADE=∠ACB=90°,设CE=x,则DE=x,BE=4−x,在Rt△BDE中,由勾股定理,即可得解.【解答】解:如图所示,连接DE,∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=5,∵AD=AC=3,AE⊥CD,∴AE垂直平分CD,BD=AB−AD=2,∴CE=ED,在△ACE和△ADE中,{AC=AD AE=AE CE=DE,∴△ACE≌△ADE,∴∠ADE=∠ACB=90°,∴∠EDB=90°,设CE=x,则DE=x,BE=4−x,在Rt△BDE中,由勾股定理得:DE2+BD2=BE2,即x2+22=(4−x)2,解得:x=1.5,∴BE=BC−CE=4−1.5=2.5.故选B.4.如图,等腰三角形ABC纸片的底和腰分别为m和n(m<n),如图,作高线BD和AE,则下列错误的结论是()A. AE=√4n2−m22B. CD=m22nC. BD=√4n2−m22nD. AD=2n2−m22n【答案】C【解析】【分析】本题考查了等腰三角形的性质,勾股定理等有关知识,A.根据等腰三角形的性质得到CE=12m,根据勾股定理可求AE的长;B.根据勾股定理可求CD的长;C.根据三角形面积公式可求BD的长;D.根据线段的和差关系可求AD的长.【解答】解:A.CE=12m,AE=√n2−(12m)2=√4n2−m22,正确,不符合题意;B.CD=m2−(m√4n2−m22n )2=m22n,正确,不符合题意;C.BD=m×√4n2−m22÷2×2÷n=m√4n2−m22n,原来的错误,符合题意;D.AD=n−m22n =2n2−m22n,正确,不符合题意.故选C.5.在△ABC中,AB=AC=m,P为BC上任意一点,则PA2+PB⋅PC的值为()A. m2B. m2+1C. m2+mD. (m+1)2【答案】A【解析】略6.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A. 95B. 125C. 165D. 185【答案】D【解析】【分析】本题考查的是矩形的性质,折叠的性质,勾股定理有关知识,综合性较强. 连接BF ,根据三角形的面积公式求出BH ,得到BF ,根据直角三角形的判定得到∠BFC =90°,根据勾股定理求出答案.【解答】解:连接BF ,∵BC =6,点E 为BC 的中点, ∴BE =3,又∵AB =4,∴AE =√AB 2+BE 2=5,由折叠知,BF ⊥AE(对应点的连线必垂直于对称轴)∴BH =AB×BE AE =125, 则BF =245,∵FE =BE =EC ,∴∠BFC =90°,∴CF =√62−(245)2=185.故选D .7.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE交AD于点F,连结BD交CE于点G,连结BE.下列结论:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四边形BCDE =12BD⋅CE;⑤BC2+DE2=BE2+CD2.正确的结论个数有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】此题是三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,对角线互相垂直的四边形的面积等于对角线乘积的一半的性质,熟记各性质是解题的关键,根据等腰直角三角形的性质可得AB=AC,AD=AE,然后求出∠BAD=∠CAE,再利用“边角边”证明△ABD和△ACE全等,根据全等三角形对应边相等可得CE=BD,判断①正确;根据全等三角形对应角相等可得∠ABD=∠ACE,从而求出∠BCG+∠CBG=∠ACB+∠ABC=90°,再求出∠BGC=90°,从而得到BD⊥CE,根据四边形的面积判断出④正确;根据勾股定理表示出BC2+DE2,BE2+ CD2,得到⑤正确;再求出AE//CD时,∠ADC=90°,判断出②错误;∠AEC与∠BAE不一定相等判断出③错误【解答】解:∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE.∠BAC=∠DAE=90°,∴∠BAD=∠CAE.在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴CE=BD,故①正确.∵△ABD≌△ACE,∴∠ABD=∠ACE,∴∠BCG+∠CBG=∠ACB+∠ABC=90°,∴∠BGC=180°−(∠BCG+∠CBG)=180°−90°=90°,∴BD⊥CE,,故④正确.∵在Rt△BCG中,由勾股定理,得BC2=BG2+CG2,在Rt△DEG中,由勾股定理,得DE2=DG2+EG2,∴BC2+DE2=BG2+CG2+DG2+EG2.又∵在Rt△BGE中,由勾股定理,得BE2=BG2+EG2,在Rt△CDG中,由勾股定理,得CD2=CG2+DG2,∴BE2+CD2=BG2+CG2+DG2+EG2,∴BC2+DE2=BE2+CD2,故⑤正确.②③无法证明.综上所述,正确的结论有3个.故选C.8.若△ABC中,AB=7,AC=8,高AD=6,则BC的长是()A. 10+√13B. 2√7+√13C. 10±√13D. 2√7±√13【答案】D【解析】略9.如图,在Rt△ABC中,∠C=90°,D为AC上一点.若DA=DB=15,△ABD的面积为90,则CD的长是()A. 6B. 9C. 12D. √189【答案】B【解析】【分析】本题主要考查勾股定理及三角形的面积有关知识,根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵∠C=90,DA=15,DA⋅BC=90,∴S△DAB=12∴BC=12,在Rt△BCD中,CD2+BC2=BD2,即CD2+122=152,解得:CD=9(负值舍去).故选B.二、填空题(本大题共8小题,共24.0分)10.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,动点P从点A出发在射线AC上以2cm/s的速度运动.设运动的时间为ts.当△PAB是等腰三角形时,则t的值是__________.【答案】5或8或258【解析】【分析】本题考查了勾股定理以及等腰三角形等知识,解答本题的关键是掌握勾股定理的应用,以及分情况讨论,注意不要漏解.当AB为底时,点P在AC上,AP=2tcm,CP=(8−2t)cm.作PD垂直平分AB,垂足为点D,交AC于点P,连接BP.可得62+(8−2t)2=(2t)2,解方程即可得解.当BP1为底时,点P1在AC的延长线上,AP1=2tcm.可得2t=10,则t=5.当AP2为底时,点P2在AC的延长线上,AP2=2tcm,P2C=(2t−8)cm,即2t−8=8,可得解.【解答】解:①如图1,当AB为底时,点P在AC上,AP=2tcm,CP=(8−2t)cm.作PD垂直平分AB,垂足为点D,交AC于点P,连接BP.可得:BC=6,∵PD垂直平分AB,∴AP=BP=2tcm.在Rt△BCP中,BC2+CP2=BP2,即62+(8−2t)2=(2t)2,36+64−32t+4t2=4t2,.解得:t=258②如图2,当BP1为底时,点P1在AC的延长线上,AP1=2tcm.∵AP1=AB,∴2t=10,解得:t=5.③如图2,当AP2为底时,点P2在AC的延长线上,AP2=2tcm,P2C=(2t−8)cm.∵P2B=AB,BC⊥P2A,∴P2C=AC(“三线合一”),即2t−8=8,解得:t=8.所以当△PAB是等腰三角形时,t的值为5或8或25.8故答案为5或8或258.11.等边△ABC边长为8.P,Q分别是边AC,BC上的点,连结AQ,BP,交于点O.以下结论:①若AP=CQ,则△BAP≌△ACQ;②若AQ=BP,则∠AOB=120°;③若AP=CQ,BP=7,则PC=5;④若点P和点Q分别从点A和点B同时出发,以相同的速度向点C运动(到达点C就停止),则点O经过的路径长为4√3.其中正确的________.【答案】①④【解析】【分析】本题是道易错题,综合的考查了全等的基本知识以及分类讨论的数学思想.第①个选项直接找到对应的条件,利用SAS证明全等即可;第②③结论都有两种情况,准确画出图之后再来计算和判断;第四个结论要先判断判断轨迹(通过对称性或者全等)在来计算路径长.【解答】解:①在三角形△BAP和△ACQ中{AP=CQ∠BAP=ACQ=60°AB=AC,则△BAP≌△ACQ(SAS),∴①正确②如图,题中AQ=BP,存在两种情况.在P1的位置,∠AO1B=120°;在P2的位置,∠AOB的大小无法确定.∴②错误③如图,作PE垂直于BC于点E,设CP=x,∵∠C=60°,∴CE=12x,BE=8−12x,PE=√32x,PB=7,在Rt△PBE中,根据勾股定理,得PB2=PE2+BE2,化简得x2−8x+15=0,利用完全平方公式化简可得(x−4)2=1,解得x=3或5,∴PC=3或5.故③错误.④由题可得:AP=BQ,由对称性可得(或者证明△ABP和BAQ全等)O的运动轨迹为△ABC中AB边上的中线,如图,延长CO交AB于点E,由AB=8,∠BCE=30°,∴BE=4,运动轨迹为CE=4√3,故答案为:①④.12.如图,长方形ABCD中,AD=8,AB=4,BQ=5,点P在AD边上运动,当△BPQ为等腰三角形时,AP的长为______.【答案】3或52或2【解析】解:∵四边形ABCD是矩形,∴∠A=90°,BC=AD=8,当△BPQ为等腰三角形时,分三种情况:①BP=BQ=5时,AP=√BP2−AB2=√52−42=3;②当PB=PQ时,作PM⊥BC于M,则点P在BQ的垂直平分线上,如图1所示:∴AP=12BQ=52;③当QP=QB=5时,作QE⊥AD于E,如图2所示:则四边形ABQE是矩形,∴AE=BQ=5,QE=AB=4,∴PE=√QP2−QE2=√52−42=3,∴AP=AE−PE=5−3=2;综上所述,当△BPQ为等腰三角形时,AP的长为3或52或2;故答案为:3或52或2.分三种情况:①BP=BQ=5时,由勾股定理得AP=3;②当PB=PQ时,点P在BQ的垂直平分线上,则AP=12BQ=52;③当QP=QB=5时,作QE⊥AD于E,则四边形ABQE是矩形,由勾股定理求出PE=3,得AP=AE−PE=2即可.本题考查了矩形的性质、勾股定理等知识,注意分情况讨论.13.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=2,则AC的长是______.【答案】4√3【解析】【分析】本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理有关知识,求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:∵∠A=30°,∠B=90°,∴∠ACB=180°−30°−90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°−30°=30°,∵BD=2,∴CD=AD=4,∴AB=4+2=6,在Rt△BCD中,由勾股定理得:CB=√DC2−BD2=√42−22=2√3,在Rt△ABC中,由勾股定理得:AC=√AB2+BC2=√62+(2√3)2=4√3.故答案为4√3.14.如图,在长方形ABCD中,AB=4,BC=6,E为BC中点,将△ABE沿AE折叠,使点B落在长方形内部的一点F,连结CF,则CF的长为________.【答案】185【解析】略15.等腰△ABC的腰长AB=AC=10,底边上的高AD=6,则底边BC=______.【答案】16【解析】解:在Rt△ABD中,BD=√AB2−AD2=8.∵△ABC是等腰三角形,∴BC=2BD=16.故答案为:16.根据勾股定理即可求出BD的长,根据等腰三角形的三线合一得BC=2BD.本题考查了勾股定理及等腰三角形的性质,解答本题的关键是掌握等腰三角形的三线合一及勾股定理在直角三角形中的表达式.16.如图,P是等边△ABC外一点,把△ABP绕点B顺时针旋转60°到△CBQ,已知∠AQB=150°,QA:QC=a:b(b>a),则PB:QA=______(用含a,b的代数式表示)【答案】√b2−a2:a【解析】解:如图,连接PQ,∵把△ABP绕点B顺时针旋转60°到△CBQ,∴△ABP≌△CBQ,∠PBQ=60°,∴PA=CQ,PB=BQ,∴△BPQ是等边三角形,∴PQ=PB,∠BQP=60°,∵∠AQB=150°,∴∠PQA=90°,∵QA:QC=a:b,∴设QA=ak,QC=bk=PA,∴PQ=√QC2−QA2=k⋅√b2−a2=PB∴PB:QA=√b2−a2:a,故答案为:√b2−a2:a.如图,连接PQ,由旋转的性质可得PA=CQ,PB=BQ,∠PBQ=60°,可证△BPQ是等边三角形,可得PQ=PB,∠BQP=60°,由勾股定理可求解.本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,把PB和QA转化到同一个直角三角形中是解题的关键.17.将面积为2π的半圆与两个正方形拼接成如图所示的图形,则这两个正方形面积的和为____.【答案】16【解析】【分析】此题考查的知识点是勾股定理,关键是由面积为2π的半圆求出半圆的直径,再根据勾股定理求出这两个正方形面积的和.首先由面积为2π的半圆求出半圆的直径,即直角边的斜边,再根据勾股定理求出两直角边的平方和,即是这两个正方形面积的和.【解答】解:已知半圆的面积为2π,所以半圆的直径为:,即如图直角三角形的斜边为:4,设两个正方形的边长分别为:x,y,则根据勾股定理得:x2+y2=42=16,即两个正方形面积的和为16.故答案为16.三、解答题(本大题共15小题,共120.0分)18.如图,点O为线段AD上一点,CO⊥AD于点O,OA=OB,OC=OD,点M、N分别是AC、BD的中点,连接OM、ON、MN.(1)求证:AC=BD;(2)试判断的形状,并说明理由;(3)若AC=2,在图2中,点M在DB的延长线上,求△AMD的面积.【答案】(1)证明:∵CO⊥AD,∴∠AOC=∠BOD=90°,在△AOC和△BOD中,{OA=OB∠AOC=∠BOD=90°OC=OD,∴△AOC≌△BOD,∴AC=BD.(2)解:△MON是等腰直角三角形,理由如下:由(1)得:△AOC≌△BOD,则∠A=∠OBD,在Rt△AOC中,∵M是AC的中点,∴OM=12AC,同理可得ON=12BD,因为AC=BD,∴OM=ON,∵∠A=∠AOM,∠NBO=∠NOB,∠A=∠OBD,∴∠NOB=∠MOA,又∵∠AOC=90°,∴∠MON=90°,∵∠MON=90°,OM=ON,∴△MON是等腰直角三角形.(3)解:由(1)得:AC=BD,由(2)得:△MON是等腰直角三角形,∵点M,N分别是AC,BD的中点,且AC=2,∴AM=ND=BN=1,∵在Rt△AOC中,点M是AC的中点,AC=BD,∴OM=AM=1,∴ON=1,在Rt△MON中,OM2+ON2=MN2,1+1=MN2,∴MN=√2,∴MD=√2+1,∵△AOC≌△BOD,∴∠C=∠D,又∵∠A+∠C=90°,∴∠A+∠D=90°,∴∠AMD=90°,∴△AMD是直角三角形,∴△AMD面积为:12×1×(√2+1)=√2+12.【解析】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,三角形的面积,勾股定理,属于较难题.(1)欲证明AC=BD,只要证明△AOC≌△BOD即可;(2)结论:△MON是等腰直角三角形.只要证明OM=ON,∠MON=90°即可;(3)可得∠A+∠D=90°,得出△AMD是直角三角形,由此可得解.19.如图,等边三角形ABC的边长为4,E为边AB上一点,过点E作DE⊥BC,交BC于点D,在DE右侧作等边三角形DEP,记P到BC的距离为m1,P到AC的距离为m2.(1)若BD=43,试求线段DE的长,并求m1,m2的值;(2)若BD=x(1≤x≤2),用含x的代数式表示m1,m2,并求P在∠C的平分线上时x的值.【答案】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠BDE=90°,∵BD=43,∴DE=4√33,∵△DEP是等边三角形,∴PD=DE=4√33,∠PDE=60°,过P作PF⊥BC于F,∴∠PDF=30°,∴PF=12PD=2√33,∴m1=2√33;延长DP交AC于G,∵∠C=60°,∠CDG=30°,∴∠CGD=90°,∴PG=m2.∵BC=4,BD=43,∴CD=83,∴CG=12CD=43,∴DG=√CD2−CG2=4√33,∴PG=DG−PD=0,∴m2=0;(2)∵BD=x,同(1)可得,DE=PD=√3x,∴PF=m1=12PD=√32x,∵BC=4,BD=x,∴CD=4−x,∴CG=12CD=2−12x,∴DG=√CD2−CG2=2√3−√32x,∴PG=DG−PD=2√3−3√32x,∴m2=2√3−3√32x;当P在∠C的平分线上时,PF=PG,∴√32x=2√3−3√32x;解得:x=1.【解析】(1)根据等边三角形的性质得到∠B=60°,PD=DE=4√33,∠PDE=60°,过P作PF⊥BC于F,根据直角三角形的性质得到m1=2√33;延长DP交AC于G,根据勾股定理得到DG=√CD2−CG2=4√33,于是求得m2=0;(2)同(1)可得,DE=PD=√3x,得到PF=m1=12PD=√32x,求得CG=12CD=2−12x,根据勾股定理得到DG=√CD2−CG2=2√3−√32x,求得PG=DG−PD=2√3−3√32x,得到m2=2√3−3√32x;根据角平分线的性质即可得到结论.本题考查了等边三角形的性质,含30°角的直角三角形的性质,正确的作出辅助线是解题的关键.20.在△ABC中,点D在BC上,AB=AC=BD,点E在BC的延长线上,∠E=15°.(1)如图1,若∠BAC=80°,求∠DAE的度数;(2)如图2,若CE=CA,AD=2√2,求线段AC的长.【答案】解:(1)如图1,∵AB=AC,∠BAC=80°,(180°−∠BAC)=50°,∴∠B=∠ACB=12∵BD=AB,(180°−∠B)=65°,∴∠BAD=∠BDA=12∵∠E=15°,∴∠DAE=∠BAD−∠E=65°−15°=50°;(2)如图,作DF⊥AC于F,,∵AC=CE,∴∠CAE=∠E=15°,∵∠ACD=∠CAE+∠E=2∠E,∴∠ACD=30°,∵AB=AC=BD,∴∠B=∠ACD=30°,∠BAC=120°,∠BAD=∠ADB=75°,∴∠DAC=∠BAC−∠BAD=45°,∴∠ADF=90°−45°=45°,∴AF=DF,在Rt△AFD中,∵AD=2√2,由勾股定理得:AF2+AD2=AD2,=2,∴AF=√AD22∴DF=2,在Rt△DFC中,∵∠ACD=30°,∠DFC=90°,∴DC=4,∴FC=√DC2−DF2=√16−4=2√3,∴AC=2+2√3答:AC的长为2+2√3.【解析】此题主要考查等腰三角形的性质,三角形内角和定理,三角形外角的性质,勾股定理.(1)根据等腰三角形的性质,利用三角形内角和定理求出∠B和∠BAD,再利用三角形外角的性质即可解答;(2)作DF⊥AC于F,首先利用等腰三角形的性质,三角形内角和定理,三角形外角的性质求出∠ACD=30°,∠ADF=45°,然后利用勾股定理即可求出线段AC的长.21.如图,已知,在Rt△ABC中,∠C=Rt∠,BC=6,AC=8.用直尺与圆规作线段AB的中垂线交AC于点D,连接DB.并求△BCD的周长和面积.【答案】解:如图所示:设AD=x,则DC=8−x,则62+(8−x)2=x2,解得x=6.25,即AD=6.25.则CD=1.75,×6×1.75=5.25.所以△BCD的周长为6+8=18,面积为12【解析】根据中垂线的作法作图,设AD=x,则DC=8−x,根据勾股定理求出x的值,继而依据周长和面积公式计算可得.此题考查了复杂作图及中垂线的性质,熟悉勾股定理的性质是解题的关键.22.已知∠α,线段a,b,请按要求作图并回答问题;(1)作△ABC,使∠C=α,AC=b,BC=a;(2)已知∠α=45°,a=4√2,b=7,求△ABC的面积.【答案】解:(1)如图所示,△ABC即为所求;(2)如图,作BE⊥AC于E,∵∠α=45°,a=4√2,b=7,BE=CE,∴Rt△CBE中,BE2+CE2=(4√2)2,BE=4,∴S△ABC=1×7×4=14.2【解析】(1)先作出∠ACB=∠α,然后在边CB上截取BC=a得到点B,在边CA上截取AC=b得到点A,即可得到符合要求的图形.(2)先过B作BE⊥AC于E,则根据已知条件可求得BE长,进而得出△ABC的面积.本题主要考查了三角形面积的计算以及作一个角等于已知角,作一条线段等于已知线段的作法,都是基本作图,需要熟练掌握.23.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90º,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=√2.①若P为AB中点,则线段PB=;②猜想:连结BQ,则BQ与AB的位置关系为;PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论是否仍然成立,请你利用图②给出证明过程.【答案】解:(1)1;AB⊥BQ;PA2+PB2=PQ2;(2)结论仍然成立,理由如下:如图②:过点C作CD⊥AB,垂足为D.连接BQ,∵▵ABC和▵PCQ均为等腰直角三角形,∴AC=BC,PC=CQ,∠ACB=∠PCQ=90∘.∴∠ACP=∠BCQ,∴▵APC≌▵BQC(SAS).∴BQ=AP,∠CBQ=∠CAB=45∘,∴∠ABQ=∠ABC+∠CBQ=90∘,即AB⊥BQ,∴▵PBQ为直角三角形.∴PB2+BQ2=PQ2,∴PA2+PB2=PQ2.【解析】略24.如图,AD//BC,∠A=90°,E是AB上的一点,且AD=BE,∠AED=∠ECB.(1)判断△DEC的形状,并说明理由.(2)若AD=3,AB=9,请求出CD的长.【答案】解:(1)△DEC是等腰直角三角形,理由如下:∵AB//BC,∠A=90°,∴∠B=180°−90°=90°,又∵AD=BE,∠AED=∠ECB,∴△DAE≌△BEC(AAS),∴DE=EC,∠BEC=∠ADE,∴∠AED+∠BEC=90°,∴∠DEC=90°,∴△DEC为等腰直角三角形;(2)由(1)可知:△DAE≌△BEC,又∵AD=3,AB=9,∴AE=BC=6,∴ED=EC=√9+36=3√5,∵△DEC为等腰直角三角形∴CD=√2ED=3√10.【解析】(1)由“AAS”可证△DAE≌△BEC,可得DE=EC,∠BEC=∠ADE,由余角的性质可得∠DEC=90°,可得结论;(2)由勾股定理可求DE的长,由等腰直角三角形的性质可求解.本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,证明△DAE≌△BEC是本题的关键.25.在下列4×4网格中分别画出一个符合条件的直角三角形,要求三角形的顶点均在格点上,且满足:(1)三边均为有理数.(2)其中只有一边为无理数.【答案】解:(1)如图①,三边长分别为:3,4,5.(2)如图,三边长分别为:2,4,2√5.【解析】(1)根据网格即可画出三边均为有理数的直角三角形;(2)根据网格即可画出其中只有一边为无理数的直角三角形.本题考查了作图−复杂作图,解决本题的关键是利用勾股定理及其逆定理.26.已知,DA,DB,DC是从点D出发的三条线段,且DA=DB=DC.(1)如图①,若点D在线段AB上,连结AC,BC.试判断△ABC的形状,并说明理由.(2)如图②,连结AC,BC,AB,且AB与CD相交于点E.若AC=BC,AB=16,DC=10,求CE和AC的长.【答案】解:(1)△ABC是直角三角形,理由:∵DA=DB=DC,∴∠A=∠ACD,∠B=∠BCD,∵∠A+∠ACD+∠B+∠BCD=180°,∴∠ACD+∠BCD=90°,∴∠ACB=90°,∴△ABC是直角三角形;(2)∵DA=DB,∴点D在线段AB的垂直平分线上,∵AC=BC,∴点C在线段AB的垂直平分线上,∴CD垂直平分AB,∴∠AEC=∠AED=90°,∵AB=16,DC=10,∴AE=8,AD=CD=10,∴DE=√AD2−AE2=6,∴CE=CD−DE=4,∴AC=√AE2+CE2=√82+42=4√5.【解析】略27. 如图,已知:ΔABC 中,∠ABC =∠ACB =45∘.(1)如图1,D 是△ABC 内一点,B 、D 、E 在同一直线上,∠ADE =∠AED =45°,探究CE 和BD 的关系(数量关系与位置关系).(2)如图2,D 是ΔABC 外一点,且AD =5,CD =3,∠ADC =45∘,求BD 的长.【答案】解:(1)结论:BD =CE ,BD ⊥CE ,理由:∵∠ABC =∠ACB =45°,∠ADE =∠AED =45°,∴∠BAC =∠DAE =90°,AB =AC ,AD =AE ,∴∠BAD =∠CAE ,在△BAD 和△CAE 中,{AB =AC ∠BAD =∠CAE AD =AE, ∴△BAD≌△CAE ,∴BD =CE ,∠ADB =∠AEC =135°,∵∠AED =45°,∴∠BEC =90°,即BD ⊥CE ,(2)如图:以AD 为直角边在AD 的上方作等腰直角三角形ADE ,连接CE ,∵∠ADE =45°,∠DAE =90°,AD =5,∴DE =√2AD =5√2,∵∠ADC =45°,∴∠CDE =∠ADC +∠ADE =90°,∵CD =3,∴CE =√CD 2+DE 2=√32+(5√2)2=√59,∵∠BAC =∠DAE =90°,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,{AB =AC ∠BAD =∠CAE AD =AE, ∴△BAD≌△CAE ,∴BD =CE =√59.【解析】本题主要考查了等腰直角三角形,全等三角形的判定与性质以及勾股定理,本题综合性强,证明三角形全等是解题的关键.(1)先根据全等三角形的判定定理证明△BAD≌△CAE ,再根据全等三角形的性质即可得出结论;(2)以AD 为直角边在AD 的上方作等腰直角三角形ADE ,连接CE ,则∠ADE =45°,∠DAE =90°,AD =5,进而得出DE =√2AD =5√2,由∠ADC =45°,可得∠CDE =∠ADC +∠ADE =90°,根据勾股定理可得CE 的长,然后证明△BAD≌△CAE ,最后利用全等三角形的性质即可得出结论.28. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,点E 是BC 延长线上的一点,且BD =DE.点G 是线段BC 的中点,连结AG ,交BD 于点F ,过点D 作DH ⊥BC ,垂足为H .(1)求证:△DCE 为等腰三角形;(2)若∠CDE =22.5°,DC =√2,求GH 的长;(3)探究线段CE ,GH 的数量关系并用等式表示,并说明理由.【答案】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠ACB,∵BD=DE,∴∠DBC=∠E=12∠ACB,∵∠ACB=∠E+∠CDE,∴∠CDE=12∠ACB=∠E,∴CD=CE,∴△DCE是等腰三角形(2)∵∠CDE=22.5°,CD=CE=√2,∴∠DCH=45°,且DH⊥BC,∴∠HDC=∠DCH=45°∴DH=CH,∵DH2+CH2=DC2=2,∴DH=CH=1,∵∠ABC=∠DCH=45°∴△ABC是等腰直角三角形,又∵点G是BC中点∴AG⊥BC,AG=GC=BG,∵BD=DE,DH⊥BC∴BH=HE=√2+1∵BH=BG+GH=CG+GH=CH+GH+GH=√2+1∴1+2GH=√2+1∴GH=√2 2(3)CE=2GH理由如下:∵AB=CA,点G是BC的中点,∴BG=GC,∵BD=DE,DH⊥BC,∴BH=HE,∵GH=GC−HC=GC−(HE−CE)=12BC−12BE+CE=12CE,∴CE=2GH【解析】本题是三角形综合题,考查了角平分线的定义,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.(1)根据题意可得∠CBD=12∠ABC=12∠ACB,由BD=DE,可得∠DBC=∠E=12∠ACB,根据三角形的外角性质可得∠CDE=12∠ACB=∠E,可证△DCE为等腰三角形;(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,BH=HE=√2+1,即可求GH的值;(3)CE=2GH,根据等腰三角形的性质可得BG=GC,BH=HE,可得GH=GC−HC=GC−(HE−CE)=12BC−12BE+CE=12CE,即CE=2GH.29.如图,AC平分∠BAD,CE⊥AB,CD⊥AD,点E、D为垂足,CF=CB.(1)求证:BE=FD;(2)若AC=10,AD=8,求四边形ABCF的面积.【答案】解:(1)证明:∵AC平分∠BAD,CE⊥AB,CD⊥AD,∴CE=CD,在Rt△BCE与Rt△FCD中,{CE=CDCB=CF,∴Rt△BCE≌Rt△FCD(HL),∴BE=FD;(2)∵在Rt△ACD中,AC=10,AD=8,CD⊥AD,∴CD=√102−82=6,∵CD⊥AD,CE⊥AB,∴∠ADC=∠AEC=90°,在Rt△ADC与Rt△AEC中,{CD=CEAC=AC,∴Rt△ADC≌Rt△AEC(HL),∴S△ACD=S△ACE 又∵Rt△BCE≌Rt△FCD,∴S四边形ABCF =S四边形AECD=2S△ACD=2×12×6×8=48.【解析】略30.定义:如图1,等腰△ABC中,点E,F分别在腰AB,AC上,连结EF,若AE=CF,则称EF为该等腰三角形的逆等线.(1)如图1,EF是等腰△ABC的逆等线,若EF⊥AB,AB=AC=5,AE=2,求逆等线EF的长;(2)如图2,若直角△DEF的直角顶点D恰好为等腰直角△ABC底边BC上的中点,且点E,F分别在AB,AC上,求证:EF为等腰△ABC的逆等线;(3)如图3,边长为6的等边三角形△AOC 的边OC 与X 轴重合,EF 是该等边三角形的逆等线.F 点的坐标为(5,√3);试求点E 的坐标。

专题02勾股定理(考题猜想,易错4个考点40题专练)解析版

专题02勾股定理(考题猜想,易错4个考点40题专练)解析版

专题02勾股定理(考题猜想,易错4个考点40题专练)易错点1没有明确斜边与直角边导致出错特别提醒:在直接三角形中,已知边长但未明确斜边与直角边时,需要分类讨论.易错点2对勾股数的理解出错特别提醒:勾股定理首先需要满足较小的两个数的平方和等于最大数的平方,其次必须是正整数,每组勾股数的相同正整数倍也是勾股数,即同时扩大为原来的k (k 为正整数)倍,依然是勾股数.勾股定理勾股定理的逆定理 勾股数 勾股定理的应用一.勾股定理(共12小题)1.(2023春•岳池县期末)一个直角三角形的两条直角边分别长3和4,则斜边的长为()A B .5C .5D .5或7【分析】根据勾股定理求解即可.【解答】解:∴直角三角形的两条直角边分别长3和4,∴5=.故选:B .【点评】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么222a b c +=.2.(2023春•鄂州期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8cm ,则图中所有正方形的面积的和是1922cm .【分析】设图中正方形的面积分别为A ,B ,C ,D ,E ,F ,根据勾股定理得A B E +=,C D F +=,2864E F +==,从而解决问题.【解答】解:如图,设图中正方形的面积分别为A ,B ,C ,D ,E ,F ,由勾股定理得,A B E +=,C D F +=,2864E F +==,∴图中所有正方形的面积的和2643192()cm ⨯=,故答案为:192.【点评】本题主要考查了勾股定理,熟练掌握勾股定理是解题的关键.3.(2023春•滑县月考)如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以AB ,BC ,CD ,DA 为一边向外作正方形甲、乙、丙、丁,若用S 甲,S 乙,S 丙,S 丁来表示它们的面积,则S S +乙甲=S S +丙丁(填>,<或)=.【分析】连接AC ,分别在Rt ABC ∆和Rt ADC ∆中,利用勾股定理可得222AB BC AC +=,222AD CD AC +=,从而可得2222AB BC AD CD +=+,即可解答.【解答】解:连接AC ,90ABC ADC ∠=∠=︒ ,222AB BC AC ∴+=,222AD CD AC +=,2222AB BC AD CD ∴+=+,S S S S ∴+=+乙甲丙丁,故答案为:=.【点评】本题考查了勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.4.(2023春•潜江月考)已知a 的整数部分,2b c +=+,其中b 是整数,且01c <<,那么以a 、b 为两边的直角三角形的第三边的长度是【分析】先估算出的值的范围,从而可得2a =,再估算出2+从而可得4b =,1c =,然后分两种情况:当4b =为直角边时;当4b =为斜边时,分别利用勾股定理进行计算,即可解答.【解答】解:469<< ,23∴<<,∴的整数部分是2,2a ∴=,23<< ,425∴<+<,2b c +=+,其中b 是整数,且01c <<,4b ∴=,242c =+-=-,分两种情况:当4b =为直角边时,∴第三边的长度===;当4b=为斜边时,∴第三边的长度===综上所述:第三边的长度是或,故答案为:.【点评】本题考查了勾股定理,估算无理数的大小,分两种情况讨论是解题的关键.5.(2023春•江门校级期中)两根木条的长度分别是4cm和5cm,再添加一根木条,钉成一个直角三角形木架,则所添加木条的长度可以是或3cm.【分析】分两种情况分别利用勾股定理列式计算即可:添加的木条作为斜边;添加的木条作为直角边.)cm=;3()cm=或3cm.【点评】本题考查了勾股定理在计算中的应用,明确勾股定理并分类计算是解题的关键.6.(2022春•铁东区校级期中)如图,在Rt ABC∆中,90C∠=︒,3BC=,1AC=,AB的垂直平分线DE 交BC于点D,连接AD,则CD的长为43.【分析】根据线段垂直平分线的性质可得DA DB=,从而可设DA DB x==,则3CD BC BD x=-=-,然后在Rt ACD∆中,利用勾股定理列出关于x的方程,进行计算即可解答.【解答】解:DE是AB的垂直平分线,DA DB∴=,设DA DB x==,3BC=,3CD BC BD x∴=-=-,90C∠=︒,222AC CD AD∴+=,2221(3)x x∴+-=,解得:53x =,433CD x ∴=-=,故答案为:43.【点评】本题考查了勾股定理,线段垂直平分线的性质,熟练掌握勾股定理是解题的关键.7.(2023春•甘井子区校级月考)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,若3AD =,5BC =,则22AB CD +=34.【分析】根据“垂美”四边形的定义得到BD AC ⊥,根据勾股定理计算,得到答案.【解答】解: 四边形ABCD 为“垂美”四边形,BD AC ∴⊥,90AEB AED BEC DEC ∴∠=∠=∠=∠=︒,在Rt AED ∆中,2229AE DE AD +==,在Rt BEC ∆中,22225BE CE BC +==,222292534AE DE BE CE ∴+++=+=,在Rt AEB ∆中,222AE BE AB +=,在Rt CED ∆中,222CE DE CD +=,22222292534AB CD AE DE BE CE ∴+=+++=+=,故答案为:34.【点评】本题考查的是勾股定理、“垂美”四边形的定义,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222a b c +=.8.(2023春•张店区期末)如图,在平面直角坐标系xOy 中,点A ,B 分别是x 轴正半轴和y 轴正半轴上的动点,连接AB ,作AB 的中点P ,在x 轴和y 轴上分别取点(4,0)C ,(0,6)D ,连接CP ,DP .若4AB =,2CP DP m +=,则m 的最小值为【分析】如图,在OA 上取一点J ,使得1OJ =,连接PJ ,OP ,DJ .构造相似三角形解决问题.【解答】解:如图,在OA 上取一点J ,使得1OJ =,连接PJ ,OP ,DJ .(4,0)C ,(0,6)D 4OC ∴=,6OD =,90AOB ∠=︒ ,4AB =,PB PA =,122OP AB ∴==,2OP OJ OC ∴=⋅,∴OP OC OJ OP=,POJ COP ∠=∠ ,POJ COP ∴∆∆∽,∴12PJ OP PC DO ==,2PC PJ ∴=,22()2m CP PD PJ PD DJ ∴=+=+,226137DJ =+= 237m ∴,m ∴的最小值为37故答案为:237【点评】本题主要考查了勾股定理的知识、二次根式的知识,有一定的难度.9.(2023春•岳麓区期中)如图,在Rt ABC ∆,90ACB ∠=︒,以ABC ∆的三边为边向外作正方形ACDE ,正方形CBGF ,正方形AHIB ,P 是HI 上一点,记正方形ACDE 和正方形AHIB 的面积分别为1S ,2S ,若116S =,225S =,则四边形ACBP 的面积等于18.5.【分析】根据正方形的面积公式可得:4AC =,5AB AH ==,然后在Rt ABC ∆中,利用勾股定理求出BC 的长,最后根据四边形ACBP 的面积ABC =∆的面积ABP +∆的面积,进行计算即可解答.【解答】解: 正方形ACDE 和正方形AHIB 的面积分别为1S ,2S ,116S =,225S =,4AC ∴=,5AB AH ==,90ACB ∠=︒ ,3BC ∴===,∴四边形ACBP 的面积ABC =∆的面积ABP +∆的面积1122AC BC AB AH =⋅+⋅11435522=⨯⨯+⨯⨯612.5=+18.5=,故答案为:18.5.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.10.(2023春•海淀区校级期中)如图所示的边长为1的正方形网格中,ABC ∆的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则点A 到边BC 的距离等于13.【分析】先用割补法求出三角形的面积、BC边的长,再利用三角形面积公式列方程求解.【解答】解:设点A到边BC的距离等于h,ABC∆的面积111 535122336222=⨯-⨯⨯-⨯⨯-⨯⨯=,BC=,12BC h ABC⋅=∆的面积,13h∴==.故答案为:626 13.【点评】本题以网格背景考查勾股定理、三角形面积计算公式,网格中图形面积的计算.熟练利用面积法是解题的关键.11.(2023秋•邳州市期中)如图,在Rt ABC∆中,90ACB∠=︒,4AC=,3BC=,将ABC∆扩充为等腰三角形ABD,使扩充的部分是以AC为直角边的直角三角形,则CD的长为3或76或2.【分析】分三种情况讨论:①当AD AB=时,容易得出CD的长;②当AD BD=时,设CD x=,则3AD x=+,由勾股定理得出方程,解方程即可;③当BD AB=时,由勾股定理求出AB,即可得出CD的长.【解答】解:分三种情况:①如图1所示:当AD AB=时,由AC BD⊥,可得3CD BC==;②如图2所示:当AD BD=时,设CD x=,则3AD x=+,在Rt ADC∆中,由勾股定理得:222(3)4x x+=+,解得:76 x=,76CD∴=;③如图3所示:当BD AB=时,在Rt ABC∆中,5AB==,5BD∴=,532CD∴=-=;综上所述:CD的长为3或76或2.故答案为:3或76或2.【点评】本题主要考查对勾股定理,等腰三角形的性质等知识点的理解和掌握,能通过分类求出等腰三角形的所有情况是解此题的关键.12.(2023春•金安区校级期末)如图,在ABC ∆中,15AB =,14BC =,13AC =,求ABC ∆的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD BC ⊥于D ,设BD x =,用含x 的代数式表示CD ,则CD =14x -;(2)请根据勾股定理,利用AD 作为“桥梁”建立方程,并求出x 的值;(3)利用勾股定理求出AD 的长,再计算三角形的面积.【分析】(1)直接利用BC 的长表示出DC 的长;(2)直接利用勾股定理进而得出x 的值;(3)利用三角形面积求法得出答案.【解答】解:(1)14BC = ,BD x =,14DC x ∴=-,故答案为:14x -;(2)AD BC ⊥ ,222AD AC CD ∴=-,222AD AB BD =-,222213(14)15x x ∴--=-,解得:9x =;(3)由(2)得:12AD ===,1114128422ABC S BC AD ∆∴=⋅⋅=⨯⨯=.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出AD 的长是解题关键.二.勾股定理的逆定理(共15小题)13.(2023秋•鼓楼区校级期末)以下列各组数为三角形的三边长,其中能构成直角三角形的是()A .2,3,4B .6,8,9C .1,2D .5,12,13【分析】利用勾股定理的逆定理进行计算,逐一判断即可解答.【解答】解:A 、222313+= ,2416=,222234∴+≠,∴不能构成直角三角形,故A 不符合题意;B 、2268100+= ,2981=,222689∴+≠,∴不能构成直角三角形,故B 不符合题意;C 、22215+= ,27=,22221∴+≠,∴不能构成直角三角形,故C 不符合题意;D 、22512169+= ,213169=,22251213∴+=,∴能构成直角三角形,故D 符合题意;故选:D .【点评】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.14.(2023春•福田区校级期末)满足下列条件时,ABC ∆不是直角三角形的是()A .AB =,4BC =,5AC =B .::3:4:5AB BC AC =C .::3:4:5A B C ∠∠∠=D .1123A B C ∠=∠=∠【分析】依据勾股定理的逆定理以及三角形内角和定理进行计算,即可得出结论.【解答】解:A 、22254251641+=+== ,ABC ∴∆是直角三角形,不合题意;B 、222222(3)(4)91625(5)x x x x x +=+== ,ABC ∴∆是直角三角形,不合题意;C 、::3:4:5A B C ∠∠∠= ,51807590345C ∴∠=⨯︒=︒≠︒++,ABC ∴∆不是直角三角形,符合题意;D 、1123A B C ∠=∠=∠ ,90C ∴∠=︒,30A ∠=︒,60B ∠=︒,ABC ∴∆是直角三角形,不合题意;故选:C .【点评】本题主要考查了勾股定理的逆定理,勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.15.(2023春•保山期末)满足下列条件的三角形中,不是直角三角形的是()A .三个内角之比为1:2:3B .三条边长分别为1,2C .三条边长之比为3:4:5D .三个内角之比为3:4:5【分析】根据勾股定理的逆定理,三角形内角和定理进行计算,逐一判断即可解答.【解答】解:A 、 三个内角之比为1:2:3,三角形内角和是180︒,∴三个内角分别为30︒,60︒,90︒,∴此三角形是直角三角形,故A 不符合题意;B 、2214+= ,224=,22212∴+=,∴此三角形是直角三角形,故B 不符合题意;C 、 三条边长之比为3:4:5,∴设三条边分别为3a ,4a ,5a ,222(3)(4)25a a a += ,22(5)25a a =,222(3)(4)(5)a a a ∴+=,∴此三角形是直角三角形,故C 不符合题意;D 、 三个内角之比为3:4:5,三角形内角和是180︒,∴三个内角分别为45︒,60︒,75︒,∴此三角形不是直角三角形,故D 符合题意;故选:D .【点评】本题考查了勾股定理的逆定理,三角形内角和定理,熟练掌握勾股定理的逆定理,以及三角形内角和定理是解题的关键.16.(2023春•长寿区期末)若ABC ∆的三边长为a ,b ,c ,则下列不是直角三角形的是()A .6a =,7b =,8c =B .1a =,b =,c =C . 1.5a =,2b =, 2.5c =D .3a =,4b =,5c =【分析】根据勾股定理的逆定理进行计算,逐一判断即可解答.【解答】解:A 、22226785a b +=+= ,22864c ==,222a b c ∴+≠,ABC ∴∆不是直角三角形,故A 符合题意;B 、22221(2)3a c +=+= ,22(3)3b ==,222a c b ∴+=,ABC ∴∆是直角三角形,故B 不符合题意;C 、22221.52 6.25a b +=+= ,222.5 6.25c ==,222a b c ∴+=,ABC ∴∆是直角三角形,故C 不符合题意;D 、22223425a b +=+= ,22525c ==,222a b c ∴+=,ABC ∴∆是直角三角形,故D 不符合题意;故选:A .【点评】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.17.(2023春•汕尾期末)如图,在正方形方格中,每个小正方形的边长都为1,则ABC ∠是()A .锐角B .直角C .钝角D .无法确定【分析】连接AC ,根据勾股定理的逆定理可证ABC ∆是直角三角形,从而可得90ABC ∠=︒,即可解答.【解答】解:连接AC ,由题意得:222125AB =+=,222125CB =+=,2221310AC =+=,222AB BC AC ∴+=,ABC ∴∆是直角三角形,90ABC ∴∠=︒,故选:B .【点评】本题考查了勾股定理,勾股定理的逆定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.18.(2023秋•环翠区期末)在下列条件:①A B C ∠+∠=∠;②90A B ∠-∠=︒;③::1:310AB AC BC =④2()()AC BC AC BC AB +-=中,能确定ABC ∆是直角三角形的条件有()A .1个B .2个C .3个D .4个【分析】根据勾股定理的逆定理,三角形内角和定理进行计算,逐一判断即可解答.【解答】解:①A B C ∠+∠=∠ ,180A B C ∠+∠+∠=︒,2180C ∴∠=︒,90C ∴∠=︒,ABC ∴∆是直角三角形;②90A B ∠-∠=︒ ,90A B ∴∠=︒+∠,ABC ∴∆不是直角三角形;③::1:310AB AC BC = ,∴设AB a =,则3AC a =,10BC a =,22222(3)10AB AC a a a +=+= ,222(10)10BC a a ==,222AB AC BC ∴+=,ABC ∴∆是直角三角形;④2()()AC BC AC BC AB +-= ,222AC BC AB ∴-=,222AC AB BC ∴=+,ABC ∴∆是直角三角形;所以,上列条件,能确定ABC ∆是直角三角形的条件有3个,故选:C .【点评】本题考查了勾股定理的逆定理,三角形内角和定理,熟练掌握勾股定理的逆定理,以及三角形内角和定理是解题的关键.19.(2023春•绥江县期中)在ABC ∆中,点D 在直线AB 上,且222AD CD AC +=,则下列结论正确的是()A .90ACB ∠=︒B .90BCD ∠=︒C .90BDC ∠=︒D .90CAD ∠=︒【分析】根据勾股定理的逆定理,即可解答.【解答】解:如图:222AD CD AC += ,ADC ∴∆是直角三角形,90ADC ∴∠=︒,点D 在直线AB 上,18090BDC ADC ∴∠=︒-∠=︒,故选:C .【点评】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.20.(2023春•蚌山区月考)已知a ,b ,c 是ABC ∆的三条边,满足下列条件仍不能判断ABC ∆是直角三角形的是()A .222b c a -=B .::5:12:13a b c =C .::3:4:5A B C ∠∠∠=D .C A B∠=∠-∠【分析】根据勾股定理的逆定理,三角形内角和定理,进行计算逐一判断即可解答.【解答】解:A 、222b c a -= ,222b a c ∴=+,ABC ∴∆是直角三角形,故A 不符合题意;B 、::5:12:13a b c = ,∴设5a k =,则12b k =,13c k =,222169a b k += ,22169c k =,222a b c ∴+=,ABC ∴∆是直角三角形,故B 不符合题意;C 、::3:4:5A B C ∠∠∠= ,180A B C ∠+∠+∠=︒,518075345C ∴∠=︒⨯=︒++,ABC ∴∆不是直角三角形,故C 符合题意;D 、C A B ∠=∠-∠ ,C B A ∴∠+∠=∠,180A B C ∠+∠+∠=︒ ,2180A ∴∠=︒,90A ∴∠=︒,ABC ∴∆是直角三角形,故D 不符合题意;故选:C .【点评】本题考查了勾股定理的逆定理,三角形内角和定理,熟练掌握勾股定理的逆定理,以及三角形内角和定理是解题的关键.21.(2023春•西乡塘区校级月考)如图,在四边形ABCD 中,AB BC ⊥,AB =,BC =7CD =,24AD =,求四边形ABCD 的面积.【分析】连接AC ,根据垂直定义可得90ABC ∠=︒,然后在Rt ABC ∆中,利用勾股定理求出AC 的长,再利用勾股定理的逆定理证明ADC ∆是直角三角形,从而可得90ADC ∠=︒,最后根据四边形ABCD 的面积ABC =∆的面积ADC +∆的面积,进行计算即可解答.【解答】解:连接AC ,AB BC ⊥ ,90ABC ∴∠=︒,105AB = 55BC =2222(105)(55)25AC AB BC ∴=++,7CD = ,24AD =,2222724625AD CD ∴+=+=,2225625AC ==,222AD CD AC ∴+=,ADC ∴∆是直角三角形,90ADC ∴∠=︒,∴四边形ABCD 的面积ABC =∆的面积ADC +∆的面积1122AB BC AD DC =⋅+⋅111055524722=⨯+⨯⨯12584=+209=,∴四边形ABCD 的面积为209.【点评】本题考查了勾股定理的逆定理,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.(2023春•巨野县期中)如图所示,是一块地的平面图,其中4AD =米,3CD =米,13AB =米,12BC =米,90ADC ∠=︒,求这块地的面积.【分析】连接AC ,在Rt ACD ∆中,利用勾股定理求出AC 的长,然后利用勾股定理的逆定理证明ABC ∆是直角三角形,从而可得90ACB ∠=︒,最后根据这块地的面积ABC =∆的面积ADC -∆的面积,进行计算即可解答.【解答】解:连接AC ,90ADC ∠=︒ ,4AD =米,3CD =米,2222345AC CD AD ∴=+=+=(米),13AB = 米,12BC =米,2222512169AC BC ∴+=+=,2213169AB ==,222AC BC AB ∴+=,ABC ∴∆是直角三角形,90ACB ∴∠=︒,∴这块地的面积ABC =∆的面积ADC -∆的面积1122AC BC CD AD =⋅-⋅115123422=⨯⨯-⨯⨯306=-24=(平方米),∴这块地的面积为24平方米.【点评】本题考查了勾股定理的逆定理,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.23.(2023春•思明区校级期中)如图,在ABC ∆中,D 是边BC 上的一点,已知52AB =5AD =,17BC =,12DC =,求边AC 的长.【分析】根据已知可得5BD =,然后利用勾股定理的逆定理证明ABD ∆是直角三角形,从而可得90ADB ∠=︒,进而可得90ADC ∠=︒,然后在Rt ADC ∆中,利用勾股定理进行计算即可解答.【解答】解:17BC = ,12DC =,17125BD BC CD ∴=-=-=,52AB = ,5AD =,22225550AD BD ∴+=+=,22(52)50AB ==,222AD BD AB ∴+=,ABD ∴∆是直角三角形,90ADB ∴∠=︒,18090ADC ADB ∴∠=︒-∠=︒,222251213AC AD CD ∴=+=+=,AC ∴的长为13.【点评】本题考查了勾股定理的逆定理,勾股定理,熟练掌握勾股定理的逆定理,以及勾股定理是解题的关键.24.(2023春•玉州区期中)如图,四边形ABCD 中,25AB =45BC =6AD =,8CD =,90B ∠=︒.(1)直接写出AC 的长为10;(2)求四边形ABCD 的面积.【分析】(1)连接AC ,在Rt ABC ∆中,利用勾股定理进行计算即可解答;(2)先利用勾股定理的逆定理证明ACD ∆是直角三角形,再利用四边形ABCD 的面积ABC =∆的面积ADC +∆的面积进行计算即可解答.【解答】解:(1)连接AC ,25AB = ,5BC =,90B ∠=︒,2222(25)(45)10AC AB BC ∴=++,故答案为:10;(2)6AD = ,8CD =,10AC =,222268100AD CD ∴+=+=,2210100AC ==,222AD CD AC ∴+=,ACD ∴∆是直角三角形,90D ∴∠=︒,∴四边形ABCD 的面积ABC =∆的面积ADC +∆的面积1122AB BC AD CD =⋅+⋅112556822=⨯+⨯⨯2024=+44=,∴四边形ABCD 的面积为44.【点评】本题考查了勾股定理的逆定理,勾股定理,熟练掌握勾股定理的逆定理是解题的关键.25.(2023春•兰山区期中)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的顶点均在格点上.(Ⅰ)直接写出线段AC 、CD 、AD 的长;(Ⅱ)求ACD ∠的度数;(Ⅲ)求四边形ABCD 的面积.【分析】(Ⅰ)利用勾股定理,进行计算即可解答;(Ⅱ)利用(Ⅰ)的结论,根据勾股定理的逆定理进行计算即可解答;(Ⅲ)根据四边形ABCD 的面积ABC =∆的面积ACD +∆的面积,进行计算即可解答.【解答】解:(Ⅰ)由题意得:222425AC =+=,22125CD =+=,22345AD =+=,∴线段AC 的长为25,线段CD 5,线段AD 的长为5;(Ⅱ)由(1)得:22(25)20AC ==,22(5)5CD ==,22525AD ==,222AC CD AD ∴+=,ACD ∴∆是直角三角形,90ACD ∴∠=︒,ACD ∴∠的度数为90︒;(Ⅲ)如图:由题意得:四边形ABCD 的面积ABC =∆的面积ACD +∆的面积1122BC AE AC CD =⋅+⋅114422=⨯⨯+⨯85=+13=,∴四边形ABCD 的面积为13.【点评】本题考查了勾股定理,勾股定理的逆定理,熟练掌握勾股定理,以及勾股定理的逆定理是解题的关键.26.(2023春•张北县期末)如图,AD 是ABC ∆的中线,DE AC ⊥于点E ,DF 是ABD ∆的中线,且2CE =,4DE =,8AE =.(1)求证:90ADC ∠=︒;(2)求DF 的长.【分析】(1)利用勾股定理的逆定理,证明ADC ∆是直角三角形,即可得出ADC ∠是直角;(2)根据三角形的中线的定义以及直角三角形的性质解答即可.【解答】证明:(1)DE AC ⊥ 于点E ,90AED CED ∴∠=∠=︒,在Rt ADE ∆中,90AED ∠=︒,222228480AD AE DE ∴=+=+=,同理:220CD =,22100AD CD ∴+=,8210AC AE CE =+=+= ,2100AC ∴=,222AD CD AC ∴+=,ADC ∴∆是直角三角形,90ADC ∴∠=︒;(2)AD 是ABC ∆的中线,90ADC ∠=︒,AD ∴垂直平分BC ,10AB AC ∴==,在Rt ADB ∆中,90ADB ∠=︒,点F 是边AB 的中点,152DF AB ∴==.【点评】本题主要考查了直角三角形的性质与判定,熟记勾股定理与逆定理是解答本题的关键.27.(2023春•武昌区期中)如图,在四边形ABCD 中,已知90B ∠=︒,30ACB ∠=︒,3AB =,10AD =,8CD =.(1)求证:ACD ∆是直角三角形;(2)求四边形ABCD 的面积.【分析】(1)根据直角三角形的性质得到26AC AB ==,根据跟勾股定理的逆定理即可得到结论;(2)根据勾股定理得到BC =【解答】(1)证明:在Rt ABC ∆中,90B ∠=︒,30ACB ∠=︒,3AB =,26AC AB ∴==,在ACD ∆中,6AC =,8CD =,10AD =,2228610+= ,即222AC CD AD +=,90ACD ∴∠=︒,即ACD ∆是直角三角形;(2)解:在Rt ABC ∆中,90B ∠=︒,3AB =,6AC =,BC ∴==,Rt ABC ∴∆的面积为11322AB BC ⋅⋅=⨯⨯又Rt ACD ∆ 的面积为11862422AC CD ⋅⋅=⨯⨯=,∴四边形ABCD 的面积为:93242+.【点评】本题考查了勾股定理,勾股定理的逆定理,三角形的面积,熟练掌握勾股定理的逆定理是解题的关键.三.勾股数(共2小题)28.(2023秋•衡阳期末)勾股定理222a b c +=本身就是一个关于a ,b ,c 的方程,满足这个方程的正整数解(a ,b ,)c 通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),⋯.分析上面勾股数组可以发现,41(31)=⨯+,122(51)=⨯+,243(71)=⨯+,⋯分析上面规律,第5个勾股数组为(11,60,61).【分析】由勾股数组:(3,4,5),(5,12,13),(7,24,25)⋯中,41(31)=⨯+,122(51)=⨯+,243(71)=⨯+,⋯可得第5组勾股数中间的数为:5(111)60⨯+=,进而得出(11,60,61).【解答】解:由勾股数组:(3,4,5),(5,12,13),(7,24,25)⋯中,41(31)=⨯+,122(51)=⨯+,243(71)=⨯+,⋯可得第4组勾股数中间的数为4(91)40⨯+=,即勾股数为(9,40,41);第5组勾股数中间的数为:5(111)60⨯+=,即(11,60,61),故答案为:(11,60,61).【点评】本题主要考查了勾股定理的逆定理,关键是找出数据之间的关系,掌握勾股定理逆定理.29.(2022春•西山区期末)在学习“勾股数”的知识时,爱思考的小琪同学发现了一组有规律的勾股数,并将它们记录在如下的表格中,则当18a =时,b c +的值为()a 68101214⋯b815243548⋯c 1017263750⋯A .242B .200C .188D .162【分析】根据表格中数据确定a 、b 、c 的关系,然后再代入18a =求出b 、c 的值,进而可得答案.【解答】解:根据表格中数据可得:222a b c +=,并且2c b =+,则222(2)a b b +=+,当18a =时,22218(2)b b +=+,解得:80b =,则80282c =+=,则162b c +=.故选:D .【点评】此题主要考查了勾股数,关键是注意观察表格中的数据,确定a 、b 、c 的数量关系.四.勾股定理的应用(共11小题)30.(2023春•怀柔区期末)如图,在我军某次海上演习中,两艘航母护卫舰从同一港口O 同时出发,1号舰沿东偏南60︒方向以9节(1节1=海里/小时)的速度航行,2号舰沿南偏西60︒方向以12节的速度航行,离开港口2小时后它们分别到达A ,B 两点,此时两舰的距离是()A .9海里B .12海里C .15海里D .30海里【分析】根据题意可得:18AO =海里,24BO =海里,60AOE ∠=︒,60COB ∠=︒,90EOC ∠=︒,从而可得30AOC ∠=︒,然后利用角的和差关系可得90AOB ∠=︒,从而在Rt AOB ∆中,利用勾股定理求出AB 的长,即可解答.【解答】解:如图:由题意得:2918AO =⨯=(海里),21224BO =⨯=(海里),60AOE ∠=︒,60COB ∠=︒,90EOC ∠=︒,30AOC EOC EOA ∴∠=∠-∠=︒,90AOB AOC BOC ∴∠=∠+∠=︒,在Rt AOB ∆中,2222182430AB AO OB =+=+=(海里),∴此时两舰的距离是30海里,故选:D .【点评】本题考查了勾股定理的应用,根据题目的已知条件并结合图形进行分析是解题的关键.31.(2023春•新抚区期中)小莉在秀美安顺的某风景处划船结束后,如图,在离水面高度为5m 的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13m ,此人以0.5/m s 的速度收绳.10s 后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)【分析】在Rt ABC ∆中,利用勾股定理计算出AB 长,再根据题意可得CD 长,然后再次利用勾股定理计算出AD 长,再利用BD AB AD =-可得BD 长.【解答】解: 在Rt ABC ∆中,90CAB ∠=︒,13BC m =,5AC m =,2213512()AB m ∴=-=,此人以0.5/m s 的速度收绳,10s 后船移动到点D 的位置,130.5108()CD m ∴=-⨯=,22228539()AD CD AC m ∴=-=-=,(1239)BD AB AD m ∴=-=-.答:船向岸边移动了(1239)m .【点评】此题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,正确理解图形.领会数形结合的思想的应用.32.(2023春•巴东县月考)【问题背景】勾股定理是重要的数学定理,它有很多种证明方法【定理表述】(1)用文字语言叙述勾股定理的内容:如果直角三角形的两直角边长为a ,b ,斜边长为c ,那么222a b c +=【定理证明】(2)以图1中的直角三角形为基础,延长BE 到点C ,使CE a =,过点C 作:CD CE ⊥,使CD b =,连接DE ,AD (如图2),则AE DE ⊥,AD =,四边形ABCD 是以a 为底、()a b +为高的直角梯形,请利用图2证明勾股定理.【定理应用】(3)当a b ≠时,利用图2,可以证明a b +<.证明步骤如下:如图3,过点A 作AF CD ⊥于点F ,则AF AD <,90AFC ∠=︒,又,90ABC BCF ∠=∠=︒,∴四边形ABCF 为,AF ∴=,BC ∴AD ,又BC a b =+ ,AD =,a b ∴+<.【分析】【定理表述】(1)由勾股定理得出结论;【定理证明】(2)利用SAS 可证ABE ECD ∆≅∆,可得对应角相等,结合90︒的角,可证90AED ∠=︒,利用梯形面积等于三个直角三角形的面积和,可证222a b c +=;【定理应用】(3)根据题干中的过程及矩形的性质可直接得出结论.【解答】【定理表述】(1)解:如果直角三角形的两直角边长为a ,b ,斜边长为c ,那么222a b c +=.故答案为:如果直角三角形的两直角边长为a ,b ,斜边长为c ,那么222a b c +=.【定理证明】(2)证明:Rt ABE Rt ECD ∆≅∆ ,AEB EDC ∴∠=∠;又90EDC DEC ∠+∠=︒ ,90AEB DEC ∴∠+∠=︒;90AED ∴∠=︒;Rt ABE Rt DEC Rt AED ABCD S S S S ∆∆∆∴=++梯形,∴21111()()2222a b a b ab ab c ++=++,即2221111(2)2222a ab b ab abc ++=++,整理得222a b c +=.【定理应用】(3)如图3,过点A 作AF CD ⊥于点F ,则AF AD <,90AFC ∠=︒,又,90ABC BCF ∠=∠=︒,∴四边形ABCF 为矩形,AF BC ∴=,BC AD ∴<,又BC a b =+ ,AD =,a b ∴+<.故答案为:矩形;BC ;<.【点评】本题考查了勾股定理的应用,涉及全等三角形的判定和性质,矩形的性质,面积分割法,勾股定理等知识.熟练掌握勾股定理的证明是解题的关键.33.(2023春•岳池县期末)图1是某品牌婴儿车,图2为其简化结构示意图.根据安全标准需满足BC CD ⊥,现测得6AB CD dm ==,3BC dm =,9AD dm =,其中AB 与BD 之间由一个固定为90︒的零件连接(即90)ABD ∠=︒,通过计算说明该车是否符合安全标准.【分析】在Rt ABD ∆中,由勾股定理求出BD ,在BCD ∆中,通过计算,根据勾股定理逆定理判断即可.【解答】解:在Rt ABD ∆中,222229645BD AD AB =-=-=,在BCD ∆中,22223645BC CD +=+=,222BC CD BD ∴+=,90BCD ∴∠=︒,BC CD ∴⊥.故该车符合安全标准.【点评】本题主要考查了勾股定理和勾股定理逆定理,熟练掌握勾股定理逆定理的应用是解决问题的关键.34.(2023春•久治县期末)为推进乡村振兴,把家乡建设成为生态宜居、交通便利的美丽家园,某地大力修建崭新的公路.如图,现从A 地分别向C 、D 、B 三地修了三条笔直的公路AC 、AD 和AB ,C 地、D 地、B 地在同一笔直公路上,公路AC 和公路CB 互相垂直,又从D 地修了一条笔直的公路DH 与公路AB 在H 处连接,且公路DH 和公路AB 互相垂直,已知9AC =千米,15AB =千米,5BD =千米.(1)求公路CD 、AD 的长度;(2)若修公路DH 每千米的费用是2000万元,请求出修建公路DH 的费用.【分析】(1)根据勾股定理得出2212BC AB AC -=千米,再求出7CD =千米,然后根据勾股定理即可得出答案;(2)根据面积相等得出1122ABD S BD AC AB DH ∆=⋅=⋅,即可得出答案.【解答】解:(1)90C ∠=︒ ,9AC =千米,15AB =千米,∴12BC =千米,5BD = 千米,7CD ∴=千米,∴AD 千米;(2)DH AB ⊥ ,∴1122ABD S BD AC AB DH ∆=⋅=⋅,解得:3DH =千米,∴修建公路DH 的费用为320006000⨯=(万元).【点评】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.35.(2023春•防城港期末)【问题情境】某数学兴趣小组想测量学校旗杆的高度.【实践发现】数学兴趣小组实地勘查发现:系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.【实践探究】设计测量方案:第一步:先测量比旗杆多出的部分绳子的长度,测得多出部分绳子的长度是1米;第二步:把绳子向外拉直,绳子的底端恰好接触地面的点C ,再测量绳子底端C 与旗杆根部B 点之间的距离,测得距离为5米;【问题解决】设旗杆的高度AB 为x 米,通过计算即可求得旗杆的高度.(1)依题知BC =5米,用含有x 的式子表示AC 为米;(2)请你求出旗杆的高度.【分析】(1)根据“测量绳子底端C 与旗杆根部B 点之间的距离,测得距离为5米”和“测得多出部分绳子的长度是1米”填空;(2)因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x 米,则绳子的长度为(1)x +米,根据勾股定理即可求得旗杆的高度.【解答】解:(1)根据题意知:5BC =米,(1)AC x =+米.故答案为:5;(1)x +;(2)在直角ABC ∆中,由勾股定理得:222BC AB AC +=,即2225(1)x x +=+.解得12x =.答:旗杆的高度为12米.【点评】本题考查了勾股定理的应用,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.36.(2023春•镇江期末)我国某巨型摩天轮的最低点距离地面10m ,圆盘半径为50m .摩天轮的圆周上均匀地安装了若干个座舱(本题中将座舱视为圆周上的点),游客在距离地面最近的位置进舱.小明、小丽先后从摩天轮的底部入舱出发开始观光,当小明观光到点P 时,小丽到点Q ,此时90POQ ∠=︒,且小丽距离地面20m .(1)OCP ∆与QDO ∆全等吗?为什么?(2)求此时两人所在座舱距离地面的高度差.【分析】(1)分别证明90QDO OCP ∠=∠=︒,Q COP ∠=∠,即可利用AAS 证明OCP QDO ∆≅∆;(2)由全等三角形的性质可得QD OC =,再根据线段之间的关系求出40OD m =,进而利用勾股定理求出30OC QD m ==,则10CD OD OC m =-=,由此可得两人所在座舱距离地面的高度差为10m .【解答】解:(1)OCP QDO ∆≅∆,理由如下:QD BD ⊥ ,PC BD ⊥,90QDO OCP ∴∠=∠=︒,90POQ ∠=︒ ,90DOQ Q DOQ COP ∴∠+∠=︒=∠+∠,Q COP ∴∠=∠,。

《勾股定理》易错题集用

《勾股定理》易错题集用

《勾股定理》易错题集选择题1、工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A、80cmB、错误!未找到引用源。

C、80cm或错误!未找到引用源。

D、60cm考点:勾股定理的应用。

分析:可将截取的钢条做为直角边或斜边,然后根据勾股定理,计算出钢条的长度,看其是否符合题意.解答:解:将钢条看作直角边,则钢条长度l2+3600=10000,得到l=80(cm),将钢条看作斜边,则l2=3600+10000,所以l=错误!未找到引用源。

>90cm,不合题意;故选A.点评:本题主要考查对于勾股定理的应用,要注意钢条的长度是否符合题意.2、现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A、错误!未找到引用源。

米B、错误!未找到引用源。

米C、错误!未找到引用源。

米或错误!未找到引用源。

米D、错误!未找到引用源。

米考点:勾股定理的应用。

专题:分类讨论。

分析:分两种情况讨论:①第三根铁棒的长为斜边;②第三根铁棒的长为直角边.解答:解:①第三根铁棒为斜边时,其长度为:错误!未找到引用源。

=错误!未找到引用源。

米;②第三根铁棒的长为直角边时,其长度为:错误!未找到引用源。

=错误!未找到引用源。

米.故选C.点评:本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.3、现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()A、30厘米B、40厘米C、50厘米D、以上都不对考点:勾股定理的应用。

分析:由于不明确直角三角形的斜边,故应分两种情况讨论.解答:解:此题要分两种情况:(1)当50是直角边时,所需木棒的长是错误!未找到引用源。

=10错误!未找到引用源。

;(2)当50是斜边时,所需木棒的长是30.故选D.点评:解答此题的关键是运用勾股定理解答,注意此题的两种情况.4、(2005•贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A、6cmB、12cmC、13cmD、16cm考点:平面展开-最短路径问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
A B
D
人教版八年级下册勾股定理全章
类题总结
类型一:等面积法求高
【例题】如图,△AB C中,∠
ACB=900,A C
=7,BC=24,C D⊥AB 于D 。

(1)求AB 的长; (2)求C D的长。

类型二:面积问题
【例题】如下左图,所有的四边形都是正方形,所有的三
角形都是直角三角形,其中最大的正方形的边和长为7cm,
则正方形A,B,C,D 的面积之和为___________cm 2。

【练习1】如上右图,每个小方格都是边长为1的正方形, (1)求图中格点四边形AB CD的面积和周长。

(2)求∠AD C的度数。

【练习2】如图,四边形ABCD 是正方形,AE ⊥BE ,且AE =3,BE =4,阴影部分的面积是______.
【练习3】如图字母B 所代表的正方形的面积是( )
A . 12 B. 13 C. 144 D. 194
类型三:距离最短问题
【例题】 如图,A、B两个小集镇在河流C D的同侧,分别到河的距离为AC=10千米,B D=30千米,且C D=30千米,现在要在河边建一自来水厂,向A、B 两镇供水,铺设水管的费用为每千米3万,请你在河流C D上选择水厂的位置M,使铺设水管的费用最节省,并
求出总费用是多少?
ﻫ ﻫ【练习1】如图,一圆柱体的底面周长为2
0cm ,高AB 为4cm,BC 是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.ﻫ

【练习2】如图,一个牧童在小河的南4km 的A 处
牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
A
B
C
D
7cm
B
D
E
25
A B
C
D
L
小河 A
B
北 牧童 小屋
类型四:判断三角形的形状
【例题】如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。


ﻫ【练习1】已知△ABC的三边分别为m2-n2,2mn, m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形.
【练习2】若△ABC的三边a、b、c满足条件
a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状.
【练习3】.已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为( )三角形
A.直角ﻩB.等腰 C.等腰直角D.等腰或直角
【练习4】三角形的三边长为
ab
c
b
a2
)
(2
2+
=
+,
则这个三角形是( ) 三角形
(A)等边(B)钝角(C)直角(D)锐角ﻫ
类型五:直接考查勾股定理ﻫ【例题】在Rt△ABC中,∠C=90°
(1)已知a=6, c=10,求b;(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.。

ﻫ【练习】:如图∠B=∠ACD=90°,AD=13,CD=12, BC=3,则AB的长是多少?
类型六:构造应用勾股定理
【例题】如图,已知:在中,,,.求:BC的长.

【练习】四边形ABCD中,∠B=90°,AB=3,BC=4,
CD=12,AD=13,求四边形A
BCD的面积。


类型七:利用勾股定理作长为n的线段
例1在数轴上表示的点。


作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径,
以O为圆心做弧,弧与数轴的交点B即为。

【练习】在数轴上表示13的点。

类型八:勾股定理及其逆定理的一般用法
【例题】若直角三角形两直角边的比是3:4,斜边
长是20,求此直角三角形的面积。

【练习1】等边三角形的边长为2,求它的面积。

【练习2】以下列各组数为边长,能组成直角三角形的是
( )A、8,15,17
B、4,5,6C、5,8,10 D、8,39,40
类型九:生活问题ﻫ【例题】如下左图,在高2米,坡角为30°
的楼梯表面铺地毯,地毯的长至少需________米.
【练习1】种盛饮料的圆柱形杯(如上右图),测得内部底
面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至
少要露出4.6㎝,问吸管要做㎝。

【练习2】如下左图学校有一块长方形花园,有极少数人为
了避开拐角而走“捷径”,在花园内走出了一条“路”。


们仅仅少走了__________步路(假设2步为1m),却踩
伤了花草。


【练习3】如上右图,校园内有两棵树,相距12米,
一棵树高13米,另一棵树高8米,一只小鸟从一棵树的
顶端飞到另一棵树的顶端,小鸟至少要飞_________
__米.
ﻫ类型十:翻折问题
【例题】如图,有一个直角三角形纸片,两直角边AC
=6cm,BC=8cm,现将直角边AC沿直线AD折叠,
使它落在斜边AB上,且与AE重合,你能求出CD的
长吗?
【练习1】如图所示,折叠矩形的一边AD,使点D落在B
C边的点F处,已知AB=8cm,BC=10cm,求EF的
长。

C
B
A
D
E
【练习2】如图,△ABC中,∠C=90°,AB垂直平分线交BC于D若BC=8,AD=5,求AC的长。

相关文档
最新文档