相似理论与模型试验.
水轮机 相似理论
数少。 混流式
b0 D1
0.1 0.00065 ns
轴流式
b0 D1
Байду номын сангаас
0.44 21.47
ns
转轮进、出口直径比D1/D2随比转速的增加而减小:
D1
1
D2 0.96 0.00038 ns
ns
nN H54
使用高比转速水轮机能带来经济效益
水轮机:比转速提高,在相同出力与水头条件下,能
解:模型水轮机单位参数:
n11M
nM D1M HM
282 0.46 64.8r
4
min
Q11M
QM D12M H M
0.38 0.9 m3 0.46 2 4
s
模型水轮机最高效率
M max
NM
9.81QM HM
13.1 0.88 9.81 0.38 4
ns 3.13n11 Q11
比转速:同一系列水轮机在相似工况下运行的综合性能。 作为水轮机系列分类的依据。
采用设计工况或最优工况下的比转速作为水轮机分 类的特征参数。
水斗式: 混流式: 斜流式: 轴流式:
ns=10~70 ns=60~350 ns=200~450 ns=400~900
二、比转速与水轮机性能关系
H MsM
84.6Ku1M
nD1 nM D1M 常数
H s
H MsM
2.流量相似定律
Vx Kvx 2gHs
Q0 Vm1F1
Vm1 K vm1 2gH s
F1 D1b0 f fb0 D12 D12
Q 0 D12 H S
K vm1
第十四章相似原理及模型试验简介
2
阻力
紊流阻力平方区
Frr 1
1 Cr 1 r 1, nr Lr / 6
层流区
Rer 1
3
弹性力
E KL2
Fr Er K r Lr
2
Fr t t 1 代入 m r ur
Ca
则
P vP 2
KP
M vM 2
KM
v2
K
Ca P Ca M Car 1
F ma FP Fr FM , mP mr mM , uP ur uM , t P t r t M
原型
FP m P duP du u mu du FP Fr FM mr m M r M r r m M M dt P dt r t M tr dt M
mr ur duM mr ur Fr FM mM = FM tr dt M tr
vr 2 v2P v2M 1 FrP FrM ( gr 1) gP LP gM LM gr Lr vr 2 v2 J 2 J r 2 1 Cr 1 r 1 P M RP RM C R C r Lr
2
阻力
Lr L tr r tr ur
ur
将各比尺代入
Fr t r 1 m r ur
则
Fr FP FM 1 2 2 r L2 v r2 P L2 v P M L2 v M r P M
FP FM 2 2 P L2 v P M L2 v M P M
把无因次数
2 FrP2 FrM vr 2 v2P v2M 1 g P LP J P g M LM J M JP JM gr Lr J r
相似理论及其在模拟试验中的应用
相似理论及其在模拟试验中的应用相似理论是一种通过研究事物之间的相似性来描述和预测复杂系统的理论。
在科学和工程领域,相似理论的应用越来越广泛,尤其是在模拟试验中。
模拟试验是通过对真实系统的数学建模和仿真,来预测和优化系统的性能。
然而,由于真实系统往往非常复杂,很难直接对其进行分析和建模。
因此,相似理论在模拟试验中的应用显得尤为重要。
相似理论主要涉及相似性、相似元、相似图等基本概念。
相似性是指两个或多个系统之间在某些方面具有类似的特性或行为。
相似元是指构成相似性的基本单元,它可以是对称性、周期性、统计规律等。
相似图则是一种用于描述系统相似关系的图形工具。
在模拟试验中,相似理论的应用主要表现在以下几个方面:建立相似模型:通过对真实系统进行详细观察和研究,选择与真实系统具有相似性的模型,并对模型进行必要的简化,以适应计算机仿真的需要。
进行相似变换:将真实系统中的物理量转化为计算机可以处理的数值,并通过对这些数值进行计算和分析,来评估系统的性能。
求解代数方程组:通过建立数学模型,将真实系统转化为代数方程组,并利用计算机技术求解方程组,以获得系统的最优解。
随着科学技术的发展,相似理论也在不断发展和完善。
经典相似理论主要宏观系统的相似性,而现代相似理论则更加注重微观和介观系统的相似性。
智能相似理论也崭露头角,该理论结合了人工智能、机器学习等技术,使得相似性的识别和预测更加准确和高效。
相似理论在模拟试验中扮演着重要的角色,它帮助我们更好地理解和预测复杂系统的行为。
通过建立相似模型、进行相似变换和求解代数方程组,我们可以对真实系统进行有效的仿真和模拟,进而优化系统的性能。
随着科学技术的发展,相似理论也在不断发展和完善,未来将会有更多的理论和技术被应用到相似理论中,以进一步拓展其在科学和工程领域的应用范围。
多重环境时间相似理论是一种基于系统科学和工程仿真的理论体系,主要用于研究不同环境下时间序列数据的相似性。
近年来,该理论在许多领域得到了广泛应用,其中包括沿海混凝土结构耐久性研究。
相似理论与结构模型试验
一、相似理论与结构模型试验相似理论主要应用于指导模型试验,确定“模型”与“原型”的相似程度、等级等。
随着计算机技术的进步,相似理论不但成为物理模型试验的理论而继续存在,而且进一步扩大应用范围和领域,成为计算机“仿真”等领域指导性理论。
相似理论是说明自然界和工程中各相似现象相似原理的学说。
在结构模型试验研究中,只有模型和原型保持相似,才能由模型试验结果推算出原型结构的相应结果。
结构模型中的“相似”主要是指原型结构和模型结构的主要物理量相同或成比例。
常需要满足的相似条件有:几何相似、质量相似、荷载相似、物理相似、时间相似和边界初始条件相似。
1.几何相似模型与原结构之间所对应部分的尺寸成比例,模型比例即为几何相似常数。
S l=l ml p =b mb p=ℎmℎp式中:S l——几何相似常数;l、b、ℎ——结构的长、宽、高三个方向的线性尺寸;m、p——分别代表模型和原型。
对一矩形截面,模型和原型结构的面积相似常数、截面抵抗矩相似常数和惯性矩相似常数分别为:S A=A mA p =ℎm·b mℎp·b p=S l2式中:S A——面积相似常数。
S w=W mW p =16b m·ℎm216b p·ℎp2=S l3式中:S w——截面抵抗矩相似常数。
S I=I mI p =112b m·ℎm3112b p·ℎp3=S l4式中:S I——惯性矩相似常数相似常数。
2.质量相似要求模型与原型结构对应部分质量成比例,质量之比称为质量相似常数。
S m=m mm p式中:S m——质量相似常数。
对于具有分布质量部分,用质量密度ρ表示。
Sρ=S mS V =S mS l3式中:Sρ——质量密度相似常数。
3.荷载相似要求模型与原型在各对应点所受的荷载方向一致,大小成比例。
S p=P mP p =A m·σmA p·σp=Sσ·S l2式中:S p——集中荷载相似常数。
相似理论与模型试验
Page
7
④ 模型试验能预测尚未建造出来的实物对象或根本不 能直接研究的实物对象的性能。 ⑤当其它各种分析方法不可能采用时,模型试验就成了 现象相似性问题唯一的和更为重要的研究手段。 目前,相似理论和模型试验方法已用于物理、化学、工 程结构、热力学、气象、航天等各个领域,并有着广泛的应用 前景。
Page
Page
2
但最先人们采用直接实验的方法发现它有着较大的局限性, 在于它常常只能得出个别量之间的规律性关系,难以发现或抓 住现象的全部本质,从而无法向实验条件范围以外的同类现象 推广。 但通过人们长期实践、总结,一种用于指导自然规律研究 的全新理论——“相似理论”,便应运而生了。它是把数学解 析法和试验法的优点结合起来,用来研究和解决生产和工程中 的问题。这是科学研究的主要方法之一,也是解决生产和工程 问题的一种有效方法。从而扩展了人们探索自然奥秘的领域。
相似理论与模型实验
授课对象:研究生 授课教师:严仁军 二О一四年十月
引 言
1.人们对自然规律的不倦探索
在古代,人们以初等数学为工具从量的方面来探索自然界 的规律性。但初等数学以研究常量为主,只能研究事物在静 止状态下的规律性,这就大大限制了它在客观世界中被利用 的范围。 高等数学的出现,是人们认识客观世界的一个飞跃,也是 探索自然规律的一种有力工具。但自然界的现象毕竟是错综 复杂的。有许多实际问题至今靠高等数学尚不能全部解决或 根本无法解决,于是逼使人们不得不走直接实验的道路。
8
一、物理模拟和数学模拟
物理模拟——是指基本现象相同情况下的模拟。 这时模型与原型的所有物理量相同,物理本质一致。 区别只在于各物理量的大小比例不同。因此,物理模拟也可说 成是保持物理本质一致的模拟。 (两个现象物理量及其性质相同,只有大小不同)。
相似原理与模化实验
1 6 226.8 10 80.64 pa 800 11.25
(3) 说明:以空气为介质作模型:由Re相等,则
m lp 30 p lm
m 180m / s
此时空气压缩性不能忽视,故不能用空气作介质,
则用水质后,
m 11.25m / s
5.3相似定理
三个定理回答了三个问题:
1.实验研究必须测量哪些量→相似第一定理 2.如何做到模型与原型相似→相似第三定理 3.如何对测量结果进行加工整理→相似第二定理
5.3相似定理
5.3相似定理
5.3相似定理
例:
总结: ⒈相似第一定理是对相似性质的总概括,阐明了 相似现象中各物理量之间存在一定关系。 ⒉对于复杂的现象,常存在几个相似准数。 例:对不可压缩粘性流体的不稳定等温流动共有 四个: t H0 均时性准数: 不稳定流体流动必与 t 有关。 l l Re 雷诺准数: 与粘性有关的流动,惯性力/粘性力 付鲁德准数: Fr
b 1 c 1 0 ab vd 1 1 v k d , k
1 b
Re
vd
5.4量纲分析和π定理
5.4.2.2 布金汉(Buckingham)定理
对于某个物理现象或过程,如果存在有n个变量互为函数 关系, f(a1,a2, …an)=0 而这些变量含有m个基本量纲,可把这n个变量转换成为有 (n-m)=i个无量纲量的函数关系式 F(1,2, … n-m)=0 这样可以表达出物理方程的明确的量间关系,并把方程中 的变量数减少了m个,更为概括集中表示物理过程或物 理现象的内在关系。
or 其中:
1 f( 2, 3 n)
1 ——非定性准数 2 n ——定性准数
相似理论
▪ (1)理论基础:量纲齐次方程的数学理论,相似第二定律(即π定理)
▪
•
可以不局限于已知物理方程的物理现象,尤其对于一些机理尚未 弄清及规律还未充分掌握的复杂现象尤为明显;
可以通过相似实验核定所选参数的正确性,从而不断为善实验; 应用范围广,只要方程分析法能用,量纲分析法也能用,而方程 分析法不能用时,量纲分析法也能使用。 很难控制无量纲的量; 考虑不了现象中的单值条件; 不能区别量纲相同,但在方程中却有着不同物理意义的量纲; 量纲分析法并没有体现所研究对象的本质问题,从而导致有时获得 的相似判据不易显示其真正的物理意义。
相似理论与结构模型试验
姓名:张朋 学号:2017200253 专业:建筑与土木工程
目录:
▪ 1.相似概述与模型试验
▪ 2.相似分类及相似定理
▪ 3.相似条件的推导 ▪ 4.总结
1.相似概述与模型试验
▪ 相似:从我们初中学习的相似三角形这一概念出发,进行类比,在 许多现实世界的一些物理现象也可以实现相似,即各种物理量的相 似(如:时间,力,速度,加速度等),从而由现象相似简化到参 数相似。 ▪ 模型试验:是根据实体与原型之间相关联的相似要求设计而得的, 利用模型研究实体是一次认识论的飞跃,模型试验直观、有效的特 点始终是各类科研项目必选的研究方法之一,无论在传统的数学、 物理、化学学科,还是生物医药、航空航天、土木建筑等学科中都 起到了至关重要的作用。但模型不能完全反映实体的各个特征,必 须在实践中不断的摸索与改进,使之能更精确的描述实体。所以模 型试验在科学研究和技术革新等方面还需要更多完善。
谢谢大家观看!!!
▪ 分别以a=1,带入公式(2.68) b=1, c=1, 列出π矩阵:
3.相似条件的推导
相似理论与模型试验
Fp=Fm/kF=1000/1=1000N
力矩M
压强p
kM
功率N
Fl m Fl p
k kl3kv2
动力粘度
kN kM kt 1 k kl 2kv3
kp
pm pp
kF kA
k kv2
k k klkv
46
Dynamic Similarity
Forces at corresponding locations on model and prototype are similar
满足了主要动力相似,抓住了解决问题 的实质。 (注意:对于Eu准数而言,在其他相似准 数作为决定性相似准数满足相等时, Eu 准数同时可以满足)
57
第三节 模型设计与数据换算
1 模型流动设计
设计模型流动,要使之成为原型流动的 相似流动,原则上要满足几何相似、运 动相似和主要动力相似。具体设计时, 首先要考虑该流动性质选择决定性相似 准数,此外还要考虑实验规模和实验室 的条件以及实验时所采用的流体是否与 原型流动中的流体相同且是否同一温度 等因素。
up vp
up um vp vm
vm um
45
三 动力相似(受力相似)
定义:两流动的对应部位上同名力矢成
同一比例。引入力比例系数 也可写成 kF kmka (k kl3)(klkt 2 )
k
kF kl
2kv
Fm Fp
2
C
力学物理量的比例系数可以表示为密度、
尺度、速度比例系数的不同
❖第一节 基本概念
❖ 1、相似 ❖ 指自然界中两个及以上现象在外在表象
及内在规律性方面的一致性。工程界常指 “模型”与“工程原型”之间的一致性。
第五章 相似理论与结构模型试验
2.2.6.边界条件和初始条件
在材料力学和弹性力学中,常用微分方程描
述结构的变形和内力,边界条件和初始条件是求 微分方程的必要条件。原型与模型采用相同组微 分方程和边界条件及初始条件描述。
2.2.6.1 边界条件
原型与模型在外界接触的区域内各种条件 保持相似。如支撑条件、约束情况、边界受力 等相似。
d 水泥砂浆
水泥砂浆被广泛地用来制作钢筋混凝土板壳等 薄壁
似,即模型与原模型结构对应部分的质量成比例 Sm=mm/mp或Sp=ρm/ρp 质量是密度与体积的乘积:
Sp=ρm vmvm/(ρpvpvp)=Sm/S3l
可见,在给定几何常数后,密度相似常数可以
由质量相似常数导出。
2.2.3.荷载相似
模型与原型在各对应点所受的荷载方向一
致,荷载大小成比例。集中荷载与力的量纲相
3.1 模型的类型分类
如按模型试验研究范围可分为:弹性模型试验、强
度模型试验。
如按试验模拟的程度分类:断面模型试验(平面),
半整体模型,整体模型试验。
如按试验加载方法分类:静力结构模型试验,动力
结构模型试验,等等。
3、模型设计
3.2 模型几何尺寸的确定
确定几何尺寸是关键的一步,主要应考虑: a、 模型的尺寸大小要适中,可行,对于与结构 物相互作用问题,应考虑影响范围。 b、 测量手段,应考虑传感器的大小和精确度要 求。当传感器精度不够时应加大模型尺寸。 c、 试验待求量应方便、可以实施 因此,设计时应综合考虑模型类型、制作条件及试 验等,才能确定出一个最优的几何尺寸。
1.3.模型试验特点
经济性好
特点
针对性强 数据准确
1.4.模型试验适用范围
1
机械设计中相似理论与模型试验的应用研究
时 代 农 机TIMES AGRICULTURAL MACHINERY第 45 卷第 4 期2018 年 4 月 Apr.2018 Vol.45 No.42018年第4期228机械设计中相似理论与模型试验的应用研究王 理摘 要:模型试验是现代化机械设计中的一个重要的方法手段,而相似理论则是模型试验的理论基础。
文章就将以现代化的机械设计为例,对相似理论与模型试验在其中的应用进行研究,通过对相关理论的介绍以及特定的例子来说明相似理论和模型试验在机械设计中应用的重要性。
关键词:相似理论;模型试验;机械设计(铁岭师范高等专科学校,辽宁 铁岭 112001)作者简介:王理(1990-),辽宁铁岭人,大学本科,助理实验师,研究方向:机械设计制造及其自动化。
1 相似理论与模型试验(1)相似原理相似理论是对物理现象的相似条件和相似现象性质的一种论述,从20世纪开始就被广泛的运用在各类学科当中。
相似理论包含三条定理,即相似第一定理、相似第二定理与相似第三定理。
相似第一定理,任意两个相似的现象只要满足单值条件相同,就可以确定对应的相似准则的数值也相同。
这是由法国的J Bertrand 所建立的,对于单值条件条件来说,其主要包括以下因素:物理参数、系统的初始条件与几何性质等。
相似第二定理,由美国学者J Buckingham 提出,当一个现象由n 个包含k 个基本量纲的物理量所组成时,在彼此的相似现象中,相似准则只需要通过将各个物理量之间的关系方程式转化成为无量纲方程式的形式就可以自行导出。
相似第三定理,由原苏联人M B Kupnhyeb 提出,即现象的单值条件相似且由其导出的相似准则在数值上相等,则现象就相似。
(2)相似原理的特征相似原理主要存在以下几点特征:一是相似现象能为文字上完全相同的现象所描述;二是对于存在相似现象的物理量来说,其在空间对应的各点和时间上相互对应的各瞬间存在一定的比例规律。
三是各相似常数值都满足一定的自然规律,不能够任意选择。
相似理论在机械工程中的应用探讨
相似理论在机械工程中的应用探讨引言相似理论是工程领域中的一种重要理论,它在机械工程领域中有着广泛的应用。
相似理论通过对实验数据和模型进行比较分析,可以帮助工程师更好地理解和预测机械系统的性能。
本文将探讨相似理论在机械工程中的应用,并从实际案例出发,分析相似理论对机械工程设计和优化的意义。
相似理论的基本概念相似理论是指在一定条件下,两个或多个物体在某种特定的属性上具有相似性。
在工程领域中,相似理论常常用于描述不同尺度下的物理现象或系统。
如果两个机械系统具有相似的几何形状、材料性质和运行条件,那么它们在某些特定属性上就可能是相似的。
相似理论通过建立数学模型和实验验证,可以帮助工程师在不同尺度下进行有效的设计和优化。
相似理论在机械工程中的应用相似理论在机械工程领域具有广泛的应用,可以应用于流体力学、结构力学、热力学等多个领域。
下面将通过实际案例来说明相似理论在机械工程中的应用。
案例一:风电叶片设计风能是一种清洁、可再生的能源,在近年来得到了广泛的应用。
风力发电机的叶片设计是影响发电效率的关键因素之一。
通过相似理论在风洞中进行模型试验,可以在较小的尺度下获取与实际叶片相似的气动性能参数。
基于这些模型试验的结果,工程师可以对实际尺寸的叶片进行优化设计,从而提高风能的利用效率。
案例二:汽车碰撞试验在汽车工程领域,相似理论也被广泛应用于汽车碰撞试验。
通过在实验室中进行小尺度汽车碰撞试验,可以获取相似的碰撞力学性能参数。
这些参数可用于评估汽车在实际碰撞情况下的安全性能,并指导汽车结构的设计和优化。
案例三:水力发电站模型试验水力发电站是一种重要的清洁能源发电方式,其设计和运行都涉及复杂的流体力学特性。
通过在模型试验台上进行水力发电站的模拟实验,可以获取与实际发电站相似的流动特性参数,从而指导实际发电站的设计和运行。
通过以上案例可以看出,相似理论在机械工程中的应用具有重要意义,它通过建立不同尺度下的物理模型和实验验证,可以帮助工程师更准确地理解和预测机械系统的性能。
结构动力模型试验相似理论及其验证
结构动力模型试验相似理论及其验证一、本文概述《结构动力模型试验相似理论及其验证》这篇文章主要探讨结构动力模型试验中的相似理论及其应用。
结构动力模型试验是土木工程领域常用的一种研究方法,通过构建实际结构的小比例模型,在实验室环境下模拟结构在动力荷载作用下的响应,以研究结构的动力性能和抗震性能。
相似理论作为结构动力模型试验的基础,为模型设计和试验结果的解读提供了重要的理论依据。
本文首先介绍了结构动力模型试验的基本原理和方法,阐述了相似理论在模型设计中的重要性和必要性。
接着,文章详细阐述了相似理论的基本概念和原则,包括几何相似、运动相似、动力相似等方面,为后续的模型设计和试验验证提供了理论基础。
在此基础上,文章通过具体的案例分析和试验验证,探讨了相似理论在结构动力模型试验中的应用。
通过对不同比例模型的试验结果进行对比分析,验证了相似理论的正确性和有效性。
文章还探讨了相似理论在实际应用中的限制和影响因素,提出了相应的改进措施和建议。
本文旨在深入探讨结构动力模型试验中的相似理论及其应用,为土木工程领域的相关研究提供有益的参考和借鉴。
通过本文的研究,可以更好地理解和应用相似理论,提高结构动力模型试验的准确性和可靠性,为土木工程结构的动力性能分析和抗震设计提供有力的支持。
二、相似理论基础相似理论是结构动力模型试验的理论基础,其核心在于通过构建与实际结构在几何、材料、边界条件等方面相似的模型,以预测实际结构的动力行为。
该理论建立在量纲分析的基础之上,通过导出相似准则,为模型设计和试验条件的确定提供了指导。
在相似理论中,相似准则是判断模型与实际结构是否相似的关键。
这些准则包括几何相似、运动相似、动力相似等。
几何相似要求模型与实际结构在尺寸上具有相似的比例;运动相似则要求模型与实际结构在对应点的运动轨迹相似;动力相似则要求模型与实际结构在受力、变形、加速度等方面具有相似的特性。
为了实现这些相似准则,需要在模型设计和制作过程中,对材料的物理性能、加载条件、边界约束等进行控制。
——相似理论与模型试验
(1)式实际上可用于描述彼此相似的两个现象。这
但最先人们采用直接实验的方法发现它有着较 大的局限性,在于它常常只能得出个别量之间的规律 性关系,难以发现或抓住现象的本质(全部),从而 无法向实验条件范围以外的同类现象推广。
但通过人们长期实践、总结,一种用于指导自 然规律研究的全新理论——“相似理论”便应运而生了 。它是把数学解析法和试验法的优点结合起来,用来 研究和解决生产和工程中的问题。这是科学研究的主 要方法之一,也是解决生产和工程问题的一种有效方 法。从而扩展了人们探索自然奥秘的领域。
[L]:1=-a-2b+4b+c [F]:0=a+b
a2bc 1 ①
②
a b
∴ 3b c 1
c
a 1
b 3b
∴ y=k q-b[EI]bL1-3b
令:d=-b
∴
y=k q d L(13d )
(EI )d
做二次试验后解得:d=1, k= 5 ∴y= 5ql 4
384
384EI
从上面二例可以看出,采用量纲分析法求等式的关键在于: 选择的物理参数要正确。
量纲分析法除了求导相似准则外,还可用于:(1)、导出无 量纲量;(2)、可简化方程,把多个物理量减少等,其用途较 多。
3、 相 似 理 论
3.1 相似概论 相似——两种物理量对应时刻的对应点成比例,可称
相似。 3.1.1 几何相似 ——对应尺寸成比例。 如两个三角形相似,对应边成比例, 比例值CL称为几何相似常数。
对于完全方程,除以方程中的任一项,将变 为无量纲的量。
如
:
s=v0t+
1 2
gt
2[L]
但对于非完全方程如P=0.013H(重液公式)则 不成立。
相似原理及水力模型试验PPT课件
(3)时间比尺
t
V Q
3L 2.5
L
0L.5
.
29
(4) 力的比尺
F
MPaP MMaM
PVP
dv
dtP
MVMddvtM
液体相同
3L 1
F 3L
(5) 压强比尺
液体相同
p
F A
2L3L
L
1
p L
.
30
(6) 功的比尺
WFL L4
1
W 4L
(7) 功率比尺
N
W t
0L.54L
3L.5
1
F
U 2D2
2
UD
按照什么相似准数设计模型试验?
2
UD
1 Re
相似准数为 Reynolds 数
1f(2)
.
24
Step7:确定模型试验数据
• 采用同样液体-水
– 速度比尺 v 1L 0.1
vL 1
– 时间比尺 t L vL 2100
– 力的比尺 FL3v/t 1
Step8:进行试验,测量
Step9:数据处理,还原
3 1 3
0 1 0 0
101
.
21
Step4:写出无量纲数(5-3=2个)
1
F
U D x1 y1 z1
U D 2
x2 y2 z2
Step5:根据量纲和谐原理求出各量指数
[M L T 2 ] [L 3 M 1 ]x 1 [L T 1 ]y 1 [L ]z 1
1 x1
x1 1
– 水力模型定义:
模拟水利工程、工程流体力学中的流动过程、 流动状态和流动现象的物理模型 (physical model)
水力学第12章 相似理论-2015
(2 )相似准则
(i) 重力相似准则(弗劳德数相似准则)
G
Gp Gm
3 p g pl p 3 g l 3 m gmlm
重力起主要作用时: F G ,
3 3 p g pl p m g m lm 2 2 2 2 pl p v p m lm v m
1 1 a , b 2, c 2 2
Q k d p kd
2
1 2
1 2
2
p
kd
2
gh kd 2 gh
4
令 则
k 2 Q k'
k'
4
d 2 2 gh k ' A 2 gh
2. 定理
•
物理现象涉及 n 个物理量
f ( x1 , x2 ,, xn ) 0
p l vd l f ( , , ) f ( , Re, ) 2 2 2 v d d d d v2 两边乘以 g
p hf , g
令 f 3 (Re, ) d
p l v2 f 3 (Re, ) g d d 2g
l v2 hf d 2g
10
几何相似、运动相似,动力相似是流动相似的重要特征 它们互相联系、互为条件 几何相似是运动相似、动力相似的前提条件
动力相似是决定流动相似的主导因素
运动相似是几何相似和动力相似的表现形式 它们是一个统一的整体,缺一不可。
2 相似准数及相似原理
(1).牛顿数Ne及牛顿相似定律
牛顿数=外力/位移惯性力 惯性力:
•
如
诱导量纲可由量纲公式通过基本量纲导出
[ x] [ L T M ]
第五章相似理论与结构模型试验
第五章相似理论与结构模型试验1.引言在工程设计和实验研究中,通常无法进行真实比例的试验,因此需要采用相似理论和结构模型来进行模拟和预测。
相似理论是根据物体的物理和几何属性之间的相似关系进行推导和分析。
结构模型是将实际系统缩小比例而制成的模型,通过对模型进行试验,可以得到实际系统的响应和行为。
2.相似理论相似理论是将实际系统的物理和几何属性与模型的物理和几何属性之间的相似关系进行研究和描述的理论。
根据相似理论,可以得到各种物理量之间的关系,并且可以根据这些关系对实际系统进行预测和分析。
相似理论主要分为几何相似性、动力相似性和物理相似性。
2.1几何相似性几何相似性是指实际系统和模型之间的几何形状和尺寸之间的相似关系。
根据几何相似理论,可以得到实际系统和模型之间的比例关系,并根据这些比例关系对实际系统进行预测和分析。
例如,在建筑工程中,通常采用比例模型来对建筑结构进行模拟和预测。
2.2动力相似性动力相似性是指实际系统和模型之间的动力响应和行为之间的相似关系。
根据动力相似理论,可以得到实际系统和模型之间的动力特性之间的关系,并根据这些关系对实际系统进行预测和分析。
例如,在风洞实验中,通常采用比例模型来对空气动力学特性进行研究和分析。
2.3物理相似性物理相似性是指实际系统和模型之间的物理属性之间的相似关系。
根据物理相似理论,可以得到实际系统和模型之间的物理量之间的关系,并根据这些关系对实际系统进行预测和分析。
例如,在流体力学实验中,通常采用模型来对流体的流动行为进行模拟和预测。
结构模型试验是指将实际系统缩小比例而制成的模型进行试验和分析。
通过对结构模型进行试验,可以得到实际系统的响应和行为,并对实际系统进行评估和优化。
3.1模型制备在结构模型试验中,首先需要制备结构模型。
根据相似理论,可以确定结构模型的几何形状和尺寸,同时需要选择合适的材料和制备工艺。
模型制备通常采用加工、焊接等技术,以保证模型的质量和精度。
模型试验相似理论研究
例如三角形悬臂梁只受重力作用 , 粱的密度为P , 试求该梁
的应力分量 。
解: 首先进行量纲分析 , 选择粱 的应力 函数 。 物体 内任意一 点 的应力分量 与体力 p g 应成正 比关系 , 还与a 、 x 、 y 有 关。 应力 的 量 纲为 M 3 - - 2 , a 是 无 因量 , x 、 y 的量纲 是L, 体力p g 的量 纲是
间、 材料物理学等相似。 相似第三定理是相似的充分条件 , 而 相 似第 一定理 、 第二定理是相 似的必要条件 ,
1 . 1 相 似 第一 定理
相似第一定理 由法 国J . B e  ̄ r a n d 建立 , 为“ 对相似 的现象 , 其 相似指标 等于l 或相似准则 的数值相 同” 。 当用 相似第一定理指 导模型研究时 , 先导 出相似准 则 , 再通 过模型试验测量 出与相
第 3 3卷第 2 7期
V0 I _ 33 No . 2 7
企 业 技 术 开 发
TECHNOLOGI CAL DEVELOPMENT OF ENTERPRI S E
2 0 1 4年 9月
Se p. 201 4
模 型试 验 相似 理 论 研 究
雷 敏
相似理论与结构模型试验教学课件
开展多尺度、多物理场的相似理 论与结构模型试验,以揭示复杂 结构在不同尺度下的行为和性能 。
THANKS 感谢观看
可分为缩尺模型和原尺寸模型。缩尺模型按一定比例缩小真实结构,主 要用于研究结构和材料的宏观特性;原尺寸模型与真实结构尺寸一致, 主要用于测试结构的整体性能。
按试验环境分类
可分为室内模型试验和室外模型试验。室内试验通常在试验室进行,环 境可控;室外试验则在大自然中进行,模拟真实环境条件。
03
按加载方式分类
相似准则的确定
相似准则的确定是模型设计的 关键步骤,它涉及到几何相似 、边界条件相似、物理量相似 等。根据相似理论,这些相似 准则需要在模型和实际结构之 间建立起来。
模型缩尺比例的选择
在模型设计过程中,需要根据 相似理论选择合适的缩尺比例 。缩尺比例的选择应考虑试验 条件、试验目的以及模型的制 作难度等因素。
经济性原则
在满足试验目的的前提下,应尽量节 约成本,选择合适的材料和工艺制作 模型。
可扩展性原则
设计应考虑未来扩展的可能性,以便 进行更深入的研究或应用于其他类似 结构。
03 相似理论在结构模型试验中的应用
相似理论在模型设计中的应用
相似理论在模型设计中的 应用
在结构模型试验中,相似理论 是指导模型设计的重要理论。 通过相似理论,可以确定模型 与实际结构的相似性,从而确 保试验结果的可靠性。
相似理论的基本概念包括相似准则、 相似判据、相似变换等,这些概念是 用来确定事物之间的相似程度和相似 关系的。
相似理论的应用领域
相似理论在许多领域 都有广泛的应用,如 工程设计、物理实验 、生物医学、社会科 学等。
在工程设计领域,相 似理论可以用于模型 试验和仿真分析,通 过建立相似模型来预 测实际系统的性能和 行为。