统计学各章练习——时间数列分析

合集下载

时间数列分析

时间数列分析

第五章时间数列分析、填空题:1、时间数列有两个特点:一是_____________ ,二是 ______________ O2、时间数列按指标表现形式的不同可以分为: ___________ 、___________ 和___________ O按指标值来源可以分为____________ 和___________ O3、各环比发展速度的____________ 等于相对应的定基发展速度,各环比(逐期)增长量 ___________ 等于定基(累计)增长量。

4、年距增长量为____________ o5、在计算平均发展速度时,若侧重点是从最后水平(报告期水平)出发研究问题时,一般采用 ____________ 计算,若侧重点是从各年发展水平累计总和出发来研究问题时,一般采用 _____________ 计算。

6、使用最小平方法的两个基本前提(两点要求)是____________ 和____________ o7、在趋势直线Yc=a+bx中,b的含义是____________ o& 年据发展速度的作用是消除______________ 的影响。

9、如果时间数列_____________ 大体相同,可拟合直线,如果时间数列 ______________大体相同,可拟合二次曲线,如果时间数列 _____________ 大体相同,可拟合指数曲线。

、单项选择题:1、我国历年粮食产量属于()A时期数列B时点数列C相对数时间数列D平均数时间数列2、下列资料中属于时点数列的是()。

A我国历年石油产量B我国历年全民所有制企业数C某商店历年商品流通费用率D我国历年煤炭产量3、下列属于相对数时间数列的有()。

A某企业第一季度产值B某企业第一季度各月产值C某企业第一季度人均产值D某企业一季度各月人均产值45、某企业产值80年…83年增长5% 83年…85年增长10% 85年…86年降低2% 87年…88年增长15% 1983年到1988年该企业产值总发展速度为()。

统计学罗文宝主编 第八章时间序列分析单选题多选题参考答案

统计学罗文宝主编 第八章时间序列分析单选题多选题参考答案

第八章 时间序列分析二、单项选择题1.根据时期数列计算序时平均数应采用( C )。

A 、几何平均法 B.加权算术平均法 C.简单算术平均法 D.首末折半法2.间隔相等的时点数列计算序时平均数应采用(D )。

A.几何平均法B.加权算术平均法C.简单算术平均法D.首末折半法3.数列中各项数值可以直接相加的时间数列是(B )。

A.时点数列B.时期数列C.平均指标动态数列D.相对指标动态数列4.时间数列中绝对数列是基本数列,其派生数列是(D )。

A. 时期数列和时点数列B. 绝对数时间数列和相对数时间数列C. 绝对数时间数列和平均数时间数列D.相对数时间数列和平均数时间数列5.下列数列中哪一个属于动态数列( D )。

A.学生按学习成绩分组形成的数列B.工业企业按地区分组形成的数列C.职工按工资水平高低排列形成的数列D.出口额按时间先后顺序排列形成的数列6.已知某企业1月、2月、3月、4月的平均职工人数分别为190人、195人、193人和201人。

则该企业一季度的平均职工人数的计算方法为(B )。

7.说明现象在较长时期内发展的总速度的指标是(C )。

A 、环比发展速度 B.平均发展速度 C.定基发展速度 D.环比增长速度8.已知各期环比增长速度为2%、5%、8%和7%,则相应的定基增长速度的计算方法为(A )。

A.(102%×105%×108%×107%)-100%B. 102%×105%×108%×107%C. 2%×5%×8%×7%D. (2%×5%×8%×7%)-100%4201193195190+++、A 3193195190++、B 1422011931952190-+++、C 422011931952190+++、D9.平均发展速度是( C )。

A.定基发展速度的算术平均数B.环比发展速度的算术平均数C.环比发展速度的几何平均数D.增长速度加上100%10.若要观察现象在某一段时期内变动的基本趋势,需测定现象的( C )。

《统计学》-第五章-时间数列(补充例题)

《统计学》-第五章-时间数列(补充例题)

第五章动态数列例1、“九五”时期我国国内生产总值资料如下:单位:亿元解:【分析】这是时期数列资料,可按简单算术平均数(n a)计算平均发展水平。

计算结果如下:国内生产总值平均发展水平78432.7亿元33711 83AF 莯+)31116 798C 禌22548 5814 堔23888 5D50 嵐35943 8C67 豧其中:第一产业平均发展水平14258.3亿元;第二产业平均发展水平39100.1亿元;第三产业平均发展水平25074.2亿元。

例2、我国人口自然增长情况见下表:试计算我国在“七五”时期年平均增加人口数量。

解:【分析】新增长人口是时期指标,故平均增加人口数量仍用na a ∑=计算。

年平均增加4.1696516291678172617931656=++++==∑na a (万人)例3、某商店2010年商品库存资料如下:30139 75BB 疻\22102 5656 噖36028 8CBC 貼j20316 4F5C 作$试计算第一季度、第二季度、上半年、下半年和全年的平均库存额。

解:这是一个等间隔时点数列,用“首末折半法”计算:试计算2002年该企业平均工人数。

解:【分析】这是不等间隔时点数列,用间隔月数进行加权的公式计算平均工人数:12111232121)(21)(21)(21---+++++++++=n n n n f f f f a a f a a f a a a 133221124124123241241432414408224083352233533012330326+++++⨯++⨯++⨯++⨯++⨯++⨯+==385(人) 例5、某企业2002年各季度计划利润和利润计划完成程度的资料如下:试计算该企业年度利润计划平均完成百分比。

解:【分析】应该按两个时期数列对比组成的相对指标动态数列计算序时平均数的算式计算: 该企业利润年平均计划完成百分比(%)%132898875887860%125898%138875%135887%130860=+++⨯+⨯+⨯+⨯=例6、1995-2000年各年底某企业职工工人数和工程技术人员数资料如下:解:【分析】这是由两个时点数列对比所组成的相对指标动态数列计算序时平均数的问题。

《统计学》_第五章_时间数列[补充例题]

《统计学》_第五章_时间数列[补充例题]

第五章 动态数列例1、“九五”时期我国国内生产总值资料如下:单位:亿元试计算“九五”时期我国国内生产总值和其中各产业的平均发展水平。

解:【分析】这是时期数列资料,可按简单算术平均数(na ∑)计算平均发展水平。

计算结果如下: 国内生产总值平均发展水平78432.7亿元其中:第一产业平均发展水平14258.3亿元;第二产业平均发展水平39100.1亿元;第三产业平均发展水平25074.2亿元。

例2、我国人口自然增长情况见下表:单位:万人试计算我国在“七五”时期年平均增加人口数量。

解:【分析】新增长人口是时期指标,故平均增加人口数量仍用na a ∑=计算。

年平均增加4.1696516291678172617931656=++++==∑na a (万人)例3、某商店2010年商品库存资料如下:单位:万元试计算第一季度、第二季度、上半年、下半年和全年的平均库存额。

解:这是一个等间隔时点数列,用“首末折半法”计算:12121121-++++=-n a a a a a nn (万元)第一季度平均库存额8.5632485560263=+++= (万元)第二季度平均库存额4432504043248=+++=(万元)第三季度平均库存额8.4632454548250=+++=(万元)第四季度平均库存额8.5732686057245=+++= (万元)上半年平均库存额4.502448.56=+=(万元)下半年平均库存额3.5228.578.46=+=(万元)全年平均库存额35.5148.578.46448.56=+++=例4、某企业2002年各月份记录在册的工人数如下:试计算2002年该企业平均工人数。

解:【分析】这是不等间隔时点数列,用间隔月数进行加权的公式计算平均工人数:12111232121)(21)(21)(21---+++++++++=n n n n f f f f a a f a a f a a a133221124124123241241432414408224083352233533012330326+++++⨯++⨯++⨯++⨯++⨯++⨯+==385(人)例5、某企业2002年各季度计划利润和利润计划完成程度的资料如下:解:【分析】应该按两个时期数列对比组成的相对指标动态数列计算序时平均数的算式计算:∑∑∑∑=÷=ba nb n a a该企业利润年平均计划完成百分比(%)%132898875887860%125898%138875%135887%130860=+++⨯+⨯+⨯+⨯=解:【分析】这是由两个时点数列对比所组成的相对指标动态数列计算序时平均数的问题。

《统计学》-第五章-时间数列

《统计学》-第五章-时间数列

第五章时间数列(一)填空题1、增长量可分为逐期增长量、累积增长量。

两者的关系是累积增长量是相应的逐期增长量之和。

2、时间数列按其排列的指标不同可分为总量指标时间数列(绝对数时序)、相对指标时间数列(相对数时序)、平均指标时间数列(平均数时序)三种,其中总量指标时间数列是基本数列。

3、根据时间数列中不同时间的发展水平所求的平均数叫平均发展水平,又称序时平均数。

4、计算平均发展速度的方法有水平法和累计法。

且两种方法计算的结果一般是不相同的。

必须按照动态数列的性质和研究目的来决定采用哪种方法。

如果动态分析中侧重于考察最末一年达到的水平,采用水平法为好;如果动态分析中侧重于考察各年发展水平的总和,宜采用累计法。

5、进行长期性趋势测定的方法有时距扩大法、移动平均法、趋势线配合法、曲线趋势的测定与分析等。

(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、某企业2000年利润为2000万元,2003年利润增加到2480万元,则2480万元是( A )A. 发展水平B. 逐期增长量C. 累积增长量D. 平均增长量2、对时间数列进行动态分析的基础是(A )A 、发展水平B 、发展速度C 、平均发展水平D 、增长速度3、已知某企业连续三年的环比增长速度分别为6%,7%,8%,则该企业这三年的平均增长速度为 ( D ) A. B.4、序时平均数又称作(B )A 、平均发展速度B 、平均发展水平C 、平均增长速度D 、静态平均数5、假定某产品产量2002年比1998年增加50%,那么1998-2002年的平均发展速度为( D )6、现有5年各个季度的资料,用四项移动平均对其进行修匀,则修匀后的时间数列项数为(B )A 、12项B 、16项C、17项D 、18项7、累积增长量与其相应的各个逐期增长量的关系是( A )A. 累积增长量等于其相应的各个逐期增长量之和B. 累积增长量等于其相应的各个逐期增长量之积C. 累积增长率与其相应增长量之差D. 两者不存在任何关系8、最基本的时间数列是(A )A 、绝对数时间数列B 、相对数时间数列C 、平均数时间数列D 、时点数列%8%7%6⨯⨯%8%7%6++9、由时期数列计算平均数应是( A )A. 简单算术平均数B. 加权算术平均数C. 几何平均数D. 序时平均数10、历年的物资库存额时间数列是(B)A、时期数列B、时点数列C、动态数列D、相对数动态数列11、由时间间隔相等的连续时点数列计算序时平均数应按( A)A. 简单算术平均数B. 加权算术平均数C. 几何平均数D. 序时平均数12、由间隔不等的时点数列计算平均发展水平,以(C)为权数A、时期长度B、时点长度C、间隔长度D、指标值项数13、计算动态分析指标的基础指标是(D)A、总量指标B、相对指标C、平均指标D、发展水平14、用移动平均法修匀时间数列时,在确定平均的项数时(A)A、必须考虑现象有无周期性变动B、不必须考虑现象有无周期性变动C、可以考虑也可以不考虑周期性变动D、平均的项数必须是奇数15、时间数列中,每个指标值可以相加的是(B)A、相对数时间数列B、时期数列C、平均数时间数列D、时点数列16、一般平均数与序时平均数的共同点是(A)A、两者都是反映现象的一般水平B、都可消除现象在时间上波动的影响C、都是反映同一总体的一般水平D、共同反映同质总体在不同时间上的一般水平17、已知各期环比增长速度为7.1%、3.4%、3.6%、5.3%,则定基增长速度是(D)A、7.1%*3.4%*3.6%*5.3%B、(7.1%*3.4%*3.6%*5.3%)-1C、107.1%*103.4%*103.6%*105.3%D、(107.1%*103.4%*103.6%*105.3%)-118、平均增长速度是(D)A、环比增长速度的算术平均数B、总增长速度的算术平均数C、环比发展速度的算术平均数D、平均发展速度减100%19、时间数列中的平均发展速度是(D)A、各时期环比发展速度的调和平均数B、各时期环比发展速度的算术平均数C、各时期定基发展速度的调和平均数D、各时期环比发展速度的几何平均数20、已知各时期环比发展速度和时期数,便能计算出(A)A、平均发展速度B、平均发展水平C、各期定基发展速度D、各期逐期增长量21、半数平均法适用于(A)A、呈直线趋势的现象B、呈二次曲线趋势的现象C、呈指数曲线趋势的现象D、三次曲线趋势的现象22、用最小平方法配合直线趋势,如果y=a+bx中b为正值,则这条直线呈(B)A、下降趋势B、上升趋势C、不升不降D、无法确定23、用最小平方法配合直线趋势,如果y=a+bx中b为负值,则这条直线呈(A)A、下降趋势B、上升趋势C、不升不降D、无法确定24、如果时间数列的逐期增长量大致相等,则适宜配合(A)A、直线模型B、抛物线模型C、曲线模型D、指数曲线模型25、累计增长量等于(C)A、报告期水平与基期水平之差B、报告期水平与前一期水平之差C、报告期水平与某一固定基期水平之差D、逐期增长量之差26、增长1%的绝对值是(D)A、增长量与增长速度之比B、逐期增长量与定基增长速度之比C、增长量与发展速度之比D、前期水平除以100(三)多项选择题(在每小题备选答案中,至少有两个答案是正确的)1、历年的环比发展速度的连乘积等于其最后一年的( ACD )A. 总发展速度B. 总增长速度C. 定基发展速度D. 发展总速度2、各项指标值不能直接相加的时间数列有(BCD)A、时期数列B、时点数列C、相对数时间数列D、平均数时间数列E、变量数列3、时期数列的特点有( ABDE)A. 数列中各个指标数值之间具有可比性B. 数列中各个指标数值之间具有可加性C. 数列中各个指标数值的大小与包括的时期长短无关D. 数列中各个指标数值的大小与包括的时期长短有关E. 数列中各个指标数值具有连续统计的特点4、时期数列的特点是(ACE)A、指标数值具有可加性B、指标数值不能直接相加C、指标数值通过连续登记加总取得D、指标数值只能间断计量E、指标数值的大小与时间长短有直接关系5、以下数列中属于时点数列的有(ACE)A、历年银行年末储蓄存款余额B、历年产值C、各月末职工人数D、各月商品销量E、历年粮食库存量6、下面等式中,正确的有( ABC)A. 增长速度=发展速度-1B. 定基发展速度=定基增长速度+1C. 环比发展速度=环比增长速度+1D. 平均发展速度=平均增长速度-17、历年国民生产总值数列是(AD)A、绝对数时间数列B、相对数时间数列C、平均数时间数列D、时期数列E、时点数列8、某企业2000年总产值为50万元,2003年为100万元,则2003年的总产值比2000年(ABD)A、增长了50万元B、增长了100%C、增长了50%D、翻了一番E、翻了两番9、已知各时期环比发展速度和时期数,便能计算出(AC)A、平均发展速度B、平均发展水平C、各期定基发展速度D、各期逐期增长量E、累计增长量10、平均发展速度是(ACDE)A、环比发展速度的动态平均数B、环比发展速度的算术平均数C、环比发展速度的几何平均数D、各个环比发展速度的代表值E、最末水平与最初水平之比的N次方根11、编制时间数列应遵循的原则有(ABCD)A、时间长短应该一致B、总体围应该一致C、指标的经济容应该一致D、指标的计算方法、计算价格、计量单位应该一致E、指标数值的变化幅度应该一致12、时间数列按统计指标的表现形式不同可分为(CDE)A、时期数列B、时点数列C、绝对数时间数列D、相对数时间数列E、平均数时间数列13、定基发展速度与环比发展速度的数量关系是(AB)A、定基发展速度等于相应的环比发展速度的连乘积B、两个相邻的定基发展速度之比等于相应的环比发展速度C、定基发展速度与环比发展速度的基期一致D、定基发展速度等于相应的环比发展速度之和E、定基发展速度等于相应的环比发展速度之差14、以下社会经济现象属于时期数列的有(BE)A、某商店各月商品库存额B、某商店各月商品销售额C、某企业历年部职工调动工种人次数D、某供销社某年各月末人数E、某企业历年产品产量15、时间数列的水平指标具体包括(ABD)A、发展水平B、平均发展水平C、发展速度D、增长量E、增长速度16、时间数列的速度指标具体包括(ABCE)A、发展速度B、平均发展速度C、增长速度D、增长量E、平均增长速度17、影响时间数列变化的因素有(ABDE)A、基本因素B、偶然因素C、主观因素D、循环变动因素E、季节因素18、测定长期趋势的方法有(ABCD)A、时距扩大法B、移动平均法C、分段平均法D、最小平方法E、趋势剔除法19、在直线趋势方程y=a+bt中的参数b表示(CD)A、趋势值B、趋势线的截距C、趋势线的斜率D、当t变动一个单位时y平均增减的数值E、当t=0时,y的数值(四)是非题1、将总体系列不同的综合指标排列起来就构成时间数列。

统计学 任务5 动态分析—时间数列分析

统计学 任务5 动态分析—时间数列分析

季度




销售(万元)
500
600
800
1000
时间数列的特点主要有:
①时期数列中各个指标具有可加性,相加后的观察值表示
现象在更长时期内发展过程的总量。
②时期数列中每个指标数值的大小与时期的长短有直接关
系。时期越长其指标数值相加的绝对值越大。
③时期数列中的统计指标一般是连续统计的。
5·1 时间数列的概念和种类
2
4
3
2
1
2
2
2
2
2
2 43 21
1192(头)
5·2 时间数列的动态水平指标分析
2.计算相对数时间数列求序时平均数
相对数时间序时平 分 均子 数数列的序时平均数 分母数列的序时平均数
用符号表示,则有:
c a b
式中: c 为相对数时间数列的序时平均数; a 为分
子数列的序时平均数; b 为分母数列的序时平均数。
第三季度
1.2
1.5
1.6
第四季度 2
5·1 时间数列的概念和种类
5.1.3编制时间数列的原则 1.时间长短应当一致 2.总体范围应一致 3.经济内容要一致 4.计算方法、计算价格和计量单位等应一致
5·2 时间数列的动态水平指标分析
5.2.1 发展水平(a) 在时间数列中: 第一个观察数值称为最初水平(a0); 最后一个观察数值称为最末水平(an); 其余各个观察数值称为中间水平(a1、a2、 a3……an-1)。
b
50 60 55
5·2 时间数列的动态水平指标分析
如果将例 5-8 作一个变通,见表 5-12。
表 5-12 某企业第一季度某种产品有关资料

统计学第八章 时间数列分析试题及答案

统计学第八章   时间数列分析试题及答案

第八章时间数列分析(二) 单项选择题1、组成动态数列的两个基本要素是(A )。

A、时间和指标数值B、变量和次数(频数)C、主词和宾词D、水平指标和速度指标2、下列数列中哪一个属于动态数列( C )A、学生按学习成绩分组形成的数列B、职工按工资水平分组形成的数列C、企业总产值按时间顺序形成的数列D、企业按职工人数多少形成的分组数列3、下列属于时点数列的是( C )。

A、某工厂各年工业总产值;B、某厂各年劳动生产率;C、某厂历年年初固定资产额D、某厂历年新增职工人数。

3、时间数列中,各项指标数值可以相加的是( A )。

A、时期数列B、相对数时间数列C、平均数时间数列D、时点数列5、工人劳动生产率时间数列,属于( C )。

A、时期数列B、时点数列C、相对数时间数列D、平均数时点数列6、在时点数列中,称为“间隔”的是( C )。

A、最初水平与最末水平之间的距离;B、最初水平与最末水平之差;C、两个相邻指标在时间上的距离;D、两个相邻指标数值之间的距离。

7、对时间数列进行动态分析基础指标是( A )。

A、发展水平;B、平均发展水平;C、发展速度;D、平均发展速度。

8、计算序时平均数与一般平均数的资料来源是( D)A、前者为时点数列,后者为时期数列B、前者为时期数列,后者为时点数列C、前者为变量数列,后者为时间数列D、前者为时间数列,后者为变量数列9、根据时期数列计算序时平均数应采用( B )A、首尾折半法B、简单算术平均法C、加权算术平均法D、几何平均法10、某企业某年1-4月初的商品库存额如下表:(单位:万元)月份 1 2 3 4月初库存额 20 24 18 22则第一季度的平均库存额为( C )A、(20+24+18+22)/4B、(20+24+18)/3C、(10+24+18+11)/3D、(10+24+9)/311、上题中如果把月初库存额指标换成企业利润额,则第一季度的平均利润额为( B )A、(20+24+18+22)/4B、(20+24+18)/3C、(10+24+18+11)/3D、(10+24+9)/312、某企业某年一季度的利润额为150万元,职工人数120人,则一季度平均每月的利润额和平均每月的职工人数分别为:( B )A、50万元,40人B、 50万元,120人C、150万元,120人D、以上全错13、定基增长量和环比增长量的关系是( B )。

统计学时间序列统计学练习题课件

统计学时间序列统计学练习题课件

20、时间序列中的平均发展速度为( ) A、各期定基发展速度的序时平均数 B、各期环比发展速度的算术平均数 C、各期环比发展速度的调和平均数 D、各期环比发展速度的几何平均数 21.若无季节变动,则各月(或各季)的季节比率是( ) A、0 B、1 C、 大于1 D、小于 22.元宵的销售一般在“元宵节”前后达到旺季, 则“元宵节” 所在月份的季节指数将是( ) A、小于100% B、大于100% C、 等于100% D、大于1200%
ty A、a= n ty C、b= t y D、a= n
y B、b= t
2
ty E、b= t
2
12、用水平法计算平均发展速度的公式有(

A、 R x C、 n an a0 D、 n
n
an n B、 a0
E、 x
n
13、时间序列按指标的表现形式不同分为 ( ) A、绝对数时间序列 B、时点数列 C、相对数时间序列 D、时期数列 E、平均数时间序列 14、下列属于时点数列的有( ) A、全国每年大专院校毕业生人数 B、某企业年末职工人数 C、某商店各月末商品库存额 D、某企业职工工资总额 E、某农场历年年末生猪存栏数
2月
284
ቤተ መጻሕፍቲ ባይዱ
3月
280
四月
300
五月 六月 七月
302 304 320
则该车间上半年的月平均人数( )
A、345
B、300
C、201.5
D、295
11、下列数列中属于时点数列的有( ) A、某高校“十五”期间毕业人数 B、某高校“十五”期间各年利税额 C、某地区“十五”期间年末人口数
D、某地区“十五”期间粮食产量
7.已知各期环比增长速度为3%、2%、7%和5%,则相应的定基增长速 度为_______; 8.增长量分为——和——,两者的关系为 ____。 9.季节变动是分析现象在呈现出 _______季节变动的情况下,为了

统计学习题答案 第9章 时间序列分析

统计学习题答案 第9章  时间序列分析

第9章 时间序列分析——练习题●1. 某汽车制造厂2003年产量为30万辆。

(1)若规定2004—2006年年递增率不低于6%,其后年递增率不低于5%,2008年该厂汽车产量将达到多少?(2)若规定2013年汽车产量在2003年的基础上翻一番,而2004年的增长速度可望达到7.8%,问以后9年应以怎样的速度增长才能达到预定目标?(3)若规定2013年汽车产量在2003年的基础上翻一番,并要求每年保持7.4%的增长速度,问能提前多少时间达到预定目标?解:设i 年的环比发展水平为x i ,则由已知得:x 2003=30, (1)又知:320042005200620032004200516%x x x x x x ≥+(),2200720082006200715%x x x x ≥+(),求x 2008由上得32200820072008200320032007(16%)(15%)x x x x x x =≥++ 即为3220081.061.0530x ≥,从而2008年该厂汽车产量将达到 得 x 2008≥30× 31.06×21.05= 30×1.3131 = 39.393(万辆) 从而按假定计算,2008年该厂汽车产量将达到39.393万辆以上。

(2)规定201320032x x =,20042003x x =1+7.8%由上得=107.11%==可知,2004年以后9年应以7.11%的速度增长,才能达到2013年汽车产量在2003年的基础上翻一番的目标。

(3)设:按每年7.4%的增长速度n 年可翻一番, 则有 201320031.0742na a == 所以 1.074log 20.30103log 29.70939log1.0740.031004n ====(年)可知,按每年保持7.4%的增长速度,约9.71年汽车产量可达到在2003年基础上翻一番的预定目标。

原规定翻一番的时间从2003年到2013年为10年,故按每年保持7.4%的增长速度,能提前0.29年即3个月另14天达到翻一番的预定目标。

统计基础试题——时间数列分析

统计基础试题——时间数列分析

第四章时间数列分析一、填空题1、动态数列分为、和动态数列三种。

2、动态数列由和两要素构成。

3、编制动态数列必须坚持原则。

4、平均发展水平是对求平均数,统计上又叫。

5、发展速度由于采用基期的不同,可分为发展速度和发展速度。

二者之间的数量关系可用公式、表示。

6、发展速度和增长速度之间的关系是。

7、年距增长速度= 。

8、平均发展速度是的平均数。

9、平均发展速度有和两种计算方法。

10、测定季节变动的最重要指标是。

二、单项选择题1、动态数列中,每个指标数值相加有意义的是()。

A. 时期数列B. 时点数列C. 相对数数列D. 平均数数列2、序时平均数计算中的“首末折半法”适合于计算()。

A. 时期数列B. 连续时点数列C. 间隔相等的间断时点数列D. 间隔不等的间断时点数列3、已知某地区2000年的粮食产量比1900年增长了1倍,比1995年增长了0.5倍,那么1995年粮食产量比1990年增长了()。

A. 0.33倍B. 0.50倍C. 0.75倍D. 2倍4、已知一个数列的环比增长速度分别为3%、5%、8%,则该数列的定基增长速度为()A. 3%×5%×8%B. 103%×105%×108%C. (3%×5%×8%)+1 D(103%×105%×108%)-15、企业生产的某种产品2002年比2001年增长了8%,2003年比2001年增长了12%,则2003年比20年增长了()。

A. 3.7%B. 50%C. 4%D. 5%6、某企业2000年的利润为100万元,以后三年每年比上年增加10万元,则利润的环比增长速度()。

A年年增长 B. 年年下降 C. 年年保持不变 D. 无法做结论7、1980年为基期,2003年为报告期,计算粮食产量的年平均发展速度时,需要()A. 开24次方B. 开23次方C. 开22次方D. 开21次方8、若无季节变动,则季节比率应()。

统计学:时间序列分析习题与答案

统计学:时间序列分析习题与答案

一、单选题1、根据季度数据测定季节比率时,各季节比率之和为()。

A.100%B.0C.400%D.1200%正确答案:C2、增长1%水平值的表达式是()。

A.报告期增长量/增长速度B.报告期发展水平/100C.基期发展水平/100D.基期发展水平/1%正确答案:C3、若报告期水平是基期水平的8倍,则我们称之为()。

A.翻了 3番B.翻了 8番C.发展速度为700%D.增长速度为800%正确答案:A4、若时间数列呈现出长时间围绕水平线的周期变化,这种现象属于()。

A.无长期趋势、有循环变动B.有长期趋势、有循环变动C.无长期趋势、无循环变动D.有长期趋势、无循环变动正确答案:B5、银行年末存款余额时间数列属于()。

A.平均指标数列B.时点数列C.时期数列D.相对指标数列正确答案:B6、某一时间数列,当时间变量t=1,2,3,...,n时,得到趋势方程为y=38+72t,那么,取t=0,2,4,6,8,...时,方程中的b将为()。

A.36B.34C.110D.144正确答案:A7、某企业2018年的产值比2014年增长了 200%,则年平均增长速度为()。

A.50%B.13.89%C.29.73%D.31.61%正确答案:D8、2010年某市年末人口为120万人,2020年年末达到153万人,则年平均增长量为()万人。

A. 3B.33C. 3.3D.30正确答案:C9、在测定长期趋势时,如果时间数列逐期增长量大体相等,则宜拟合()。

A.抛物线模型B.直线模型C.曲线模型D.指数曲线模型正确答案:B10、在测定长期趋势时,当时间数列的逐期增长速度基本不变时,宜拟合()。

A.逻辑曲线模型B.二次曲线模型C.直线模型D.指数曲线模型正确答案:D二、多选题1、编制时间数列的原则有()。

A.经济内容的一致性B.计算方法的一致性C.时间的一致性D.总体范围的一致性正确答案:A、B、C、D2、以下表述正确的有()。

统计学时间数列习题及答案

统计学时间数列习题及答案

第十章时间数列分析和预测一、填空题1.同一现象在不同时间的相继____________排列而成的序列称为_______________。

2.时间序列在__________重复出现的____________称为季节波动。

3.时间序列在___________呈现出来的某种持续_______________称长期趋势。

4.增长率是时间序列中_________观察值与基期观察值______减1 后的结果。

5.由于比较的基期不同,增长率可分为_____________和______________。

6.复合型序列是指含有___________季节性和___________的序列。

7.某企业2005年的利润额比2000年增长45%,2004年2000年增长30%,则2005年比2004年增长_______;2004年至2000年平均增长率__________。

8.指数平滑法是对过去的观察值__________进行预测的一种方法。

9.如果时间序列中各期的逐期增减量大致相等,则趋势近似于_____________;各期环比值大体相等,则趋势近似于___________。

10.测定季节波动的方法主要有____________和_____________。

二、单项选择题1.用图形描述时间序列,其时间一般绘制在()A. 纵轴上B. 横轴上C. 左端D. 右端2.求解()趋势参数方法是先做对数变换,将其化为直线模型,然后用最小二乘法求出模型参数A. 三次曲线B. 指数曲线C. 一次直线D. 二次曲线3.对运用几个模型分别对时间序列进行拟合后,()最小的模型即位最好的拟合曲线模型A. 判定系数B. 相关系数C. 标准误差D.D—W值4.当数据的随机波动较大时,选用的移动间隔长度K应该()A. 较大B. 较小C. 随机D. 等于n5.在进行预测时,最新观察值包含更多信息,可考虑权重应()A. 更大B. 更小C. 无所谓D. 任意6. 按季度资料计算的季节指数S的取值范围是()A. 0≤ S ≤4B. 0 ≤S≤ 1C. 1 ≤S ≤4D. 1≤ S≤ 2三、多项选择题1. 时间序列可以分解为下列因素的影响 ( )A. 长期趋势B. 季节变动C. 周期波动D. 不规则变动E. 随机误差因素2. 某地区国民收入2000年为140亿元,2005年比2000年增长45%,则()A. 国民收入2005年比2000年增加了63亿元B. 2000年每增长1%的绝对值为1.4亿元C. 五年间平均增长率是9%D. 国民收入2005年达到210亿元E. 国民收入2005年达到203亿元3.测定季节变动A. 可以依据年度资料B. 可以依据月度资料C. 可以依据季度资料D. 需要三年以上资料E. 可以依据任何资料4. 时间序列分解较常用的模型有()A. 加法模型B. 乘法模型C. 直线模型D. 指数模型E. 多项式模型5.一次指数平滑法的初值的确定可以()A. 取第一期的实际值B. 取最初三期的加权平均值C. 取最初几期的平均值D. 取初值=1E. 取任意值四、简答题1. 简述时间序列的构成要素2. 利用增长率分析时间序列时应注意哪些问题3. 简述用平均趋势剔除法求季节指数的步骤4. 简述用剩余法求循环波动的基本步骤5. 试比较移动平均法与一次指数平滑法五、计算题1.某企业利润额资料如下:要求:(1) 求出直线趋势方程(2)预测2006年的利润额2.已知某煤矿(1)求五期移动平均;(2)取α= 0.9,求一次指数平滑3.某地财政收入资料如下试用指数曲线拟合变动趋势4.某商场销售资料如下:(单位:百万元)试就其进行季节变动分析5.某企业职工人数逐年增加,有1992—2004年的资料,求得∑t = 0,∑ty=9100,∑y = 15600;试求出直线趋势方程,并估计2006年职工人数。

统计学第八章课后题及答案解析

统计学第八章课后题及答案解析

第八章一、单项选择题1.时间数列的构成要素是()A.变量和次数 B.时间和指标数值C.时间和次数 D.主词和时间2.编制时间数列的基本原则是保证数列中各个指标值具有()A.可加性 B.连续性C.一致性 D.可比性3.相邻两个累积增长量之差,等于相应时期的()A.累积增长量 B.平均增长量C.逐期增长量 D.年距增长量4.统计工作中,为了消除季节变动的影响可以计算()A.逐期增长量 B.累积增长量C.平均增长量 D.年距增长量5.基期均为前一期水平的发展速度是()A.定基发展速度 B.环比发展速度C.年距发展速度 D.平均发展速度6.某企业2003年产值比1996年增长了1倍,比2001年增长了50%,则2001年比1996年增长了()A.33% B.50%C.75% D.100%7.关于增长速度以下表述正确的有()A.增长速度是增长量与基期水平之比 B.增长速度是发展速度减1C.增长速度有环比和定基之分 D.增长速度只能取正值8.如果时间数列环比发展速度大体相同,可配合()A.直线趋势方程 B.抛物线趋势方程C.指数曲线方程 D.二次曲线方程二、多项选择题1.编制时间数列的原则有()A.时期长短应一致 B.总体范围应该统一C.计算方法应该统一 D.计算价格应该统一E.经济内容应该统一2.发展水平有()A.最初水平 B.最末水平C.中间水平 D.报告期水平E.基期水平3.时间数列水平分析指标有()A.发展速度 B.发展水平C.增长量 D.平均发展水平E.平均增长量4.测定长期趋势的方法有()A.时距扩大法 B.移动平均法C.序时平均法 D.分割平均法E.最小平方法三、填空题1.保证数列中各个指标值的_______是编制时间数列的最主要规则。

2.根据采用的基期不同,增长量可以分为逐期增长量和_______增长量两种。

3.累积增长量等于相应的_______之和。

两个相邻的_______之差,等于相应时期的逐期增长量。

2015年《统计学》第十章 时间序列分析习题及满分答案

2015年《统计学》第十章 时间序列分析习题及满分答案

2015年《统计学》第十章时间序列分析习题及满分答案一、单项选择:1.时间数列中,每项指标数值可以相加的是(B )A.绝对数时间数列 B. 时期数列C. 时点数列D.相对数或平均数时间数列2. 下列属于时点数列的是(D)A. 某厂各年工业产值B.某厂各年劳动生产率C.某厂各年生产工人占全部职工的比重D.某厂各年年初职工人数3.发展速度与增长速度的关系是( B )A. 环比增长速度等于定基发展速度-1B. 环比增长速度等于环比发展速度-1C. 定基增长速度的连乘积等于定基发展速度D. 环比增长速度的连乘积等于环比发展速度4.年距增长速度是(C) A. 报告期水平/基期水平 B. (报告期水平—基期水平)/基期水平 C. 年距增长量/去年同期发展水平 D. 环比增长量/前一时期水平5.几何平均法平均发展速度数值的大小(C)A. 不受最初水平和最末水平的影响B. 只受中间各期发展水平的影响C. 只受最初水平和最末水平的影响,不受中间各期发展水平的影响D. 既受最初水平和最末水平的影响,也受中间各期发展水平的影响6.某厂第一季度三个月某种产品的实际产量分别为500件、612件、832件、分别超计划0%、2%和4%,则该厂第一季度平均超额完成计划的百分数为( C ) A. 102% B. 2% C. 2.3% D. 102.3%7.时期数列中的每个指标数值是(B)。

A、每隔一定时间统计一次 B、连续不断统计而取得C、间隔一月统计一次D、定期统计一次8.一般平均数与序时平均数的共同之处是(A)。

A、两者都是反映现象的一般水平 B、都是反映同一总体的一般水平C、共同反映同质总体在不同时间上的一般水平D、都可以消除现象波动的影响9.某企业1997年产值比1990年增长了1倍,比1995年增长了0.5倍,则1995年比1990年增长了( A )。

A、0.33 B、0.5 C、0.75 D、110.假设有如下资料:则该企业一季度平均完成计划为(B)。

统计学考试题目 时间序列分析

统计学考试题目  时间序列分析

统计学考试题目时间序列分析(总3页)-本页仅作为预览文档封面,使用时请删除本页-B C C A A, A C B D D , B B D B D , B A第六章时间序列分析一、单项选择题1.某地区1990—1996年排列的每年年终人口数动态数列是( b)。

A、绝对数动态数列B、绝对数时点数列C、相对数动态数列D、平均数动态数列2.某工业企业产品年生产量为20 万件,期末库存万件,它们( c)。

A、是时期指标 B、是时点指标C、前者是时期指标,后者是时点指标D、前者是时点指标,后者是时期指标3.间隔相等的不连续时点数列计算序时平均数的公式为(c )。

4.某地区连续4 年的经济增长率分别为%,9%,8%,%,则该地区经济的年平均增长率为( a)。

5.某工业企业生产的产品单位成本从2005年到2007年的平均发展速度为98%,说说明该产品单位成本( a)。

A、平均每年降低2%B、平均每年降低1%C、2007 年是2005 年的98%D、2007年比2005年降低98%6.根据近几年数据计算所的,某种商品第二季度销售量季节比率为,表明该商品第二季度销售( a)。

A、处于旺季B、处于淡季C、增长了70%D、增长了170%7.对于包含四个构成因素(T,S,C,I)的时间序列,以原数列各项数值除以移动平均值(其平均项数与季节周期长度相等)后所得比率(c )。

A、只包含趋势因素B、只包含不规则因素C、消除了趋势和循环因素D、消除了趋势和不规则因素8.当时间序列的长期趋势近似于水平趋势时,测定季节变动时(b )。

A、要考虑长期趋势的影响B、可不考虑长期趋势的影响C、不能直接用原始资料平均法D、剔除长期趋势的影响9.在对时间序列作季节变动分析时,所计算的季节比率是( d)。

A、某一年月或季平均数相对于本年度序列平均水平变动的程度B、某一年月或季平均数相对于整个序列平均水平变动的程度C、各年同期(月或季)平均数相对于某一年水平变动的程度D、各年同期(月或季)平均数相对于整个序列平均水平变动的程度10.企业5月份计划要求销售收入比上月增长8%。

统计学课件及习题的答案06第六章 时间数列分析

统计学课件及习题的答案06第六章  时间数列分析
★年距增长量=报告年某期水平—上年同期水平
四、平均增长量
平均增长量:是某一现象各逐期增长量的序时平
均数,反映现象在较长一段时期 内 平 量。均增 逐 逐 长 增减期 期 量 变化增 增 的一般长 长 水平累 量 量 。又计 n 项 之 叫递增 增数 和长
【教学资料】河南1954年总耕地面积9062千公顷,到2019年耕地面积 减少至8080千公顷,平均每年减少18.9千公顷,人均耕地也由1954年 的0.2公顷减少到2019年的0.08公顷,也低于全国人均耕地面积0.1公顷 的平均水平。。
动态 平均 指标
四、时间数列的编制原则
编制时间数列应遵守的基本原则:可比性。表现在:
(一)时间上要可比 (二)总体范围要可比 (三)指标的经济内容要可比 (四)计算方法、计算价格和计量单位上要可比
第二节 时间数列的水平分析指标
主要内容 ★ 发展水平 ☆ 平均发展水平 ★ 增长量 ☆ 平均增长量
一、发展水平
时间 1月初 人数 100
某企业职工人数资料
5月初
8月初
160
200
12月末 180
1 010 64 0 3 0 1 620 03 0 3 0 2 010 85 0 30101064016200302010850
a 2
2
2
2
2
2
4 3 0 3 3 0 5 30
第三节 时间数列的速度分析指标
本节内容
发展速度和增长速度 平均速度(平均发展速度和平均增长速度) 计算和运用速度指标应注意的问题
一、发展速度
发展速度:说明现象发展变动的相对程度。其值可 大于、等于或小于1。基本公式为:
按对比的 基期不同

第4章_时间序列分析

第4章_时间序列分析

校级精品课程《统计学》习题第四章时间序列一、单项选择题1.时间序列是()A.分配数列B.分布数列C.时间数列D.变量数列2.时期序列和时点序列的统计指标()。

A.都是绝对数B.都是相对数C.既可以是绝对数,也可以是相对数D.既可以是平均数,也可以是绝对数3.时间序列是( )。

A.连续序列的一种B.间断序列的一种C.变量序列的一种D.品质序列的一种4.最基本的时间序列是( )。

A.时点序列B.绝对数时间序列C.相对数时间序列D.平均数时间序列5.为便于比较分析,要求时点序列指标数值的时间间隔( )。

A.必须连续B.最好连续C.必须相等D.最好相等6.时间序列中的发展水平( )。

A.只能是总量指标B.只能是相对指标C.只能是平均指标D.上述三种指标均可7.在平均数时间序列中各指标之间具有( )。

A.总体性B.完整性C.可加性D.不可加性8.序时平均数与一般平均数相比较()。

A.均抽象了各总体单位的差异B.均根据同种序列计算C.序时平均数表明现象在某一段时间内的平均发展水平,一般平均数表明现象在规定时间内总体的一般水平D.严格说来,序时平均数不能算作平均数9.序时平均数与一般平均数的共同点是( )。

A.两者均是反映同一总体的一般水平B.都是反映现象的一般水平C.两者均可消除现象波动的影响D.都反映同质总体在不同时间的一般水平10.时期序列计算序时平均数应采用( )。

A.加数算术平均法B.简单算术平均法C.简单算术平均法D.加权算术平均数11.间隔相等连续时点序列计算序时平均数,应采用( )。

A.简单算术平均法B.加数算术平均法C.简单序时平均法D.加权序时平均法12.由间断时点序列计算序时平均数,其假定条件是研究现象在相邻两个时点之间的变动为( )。

A.连续的B.间断的C.稳定的D.均匀的13.时间序列最基本速度指标是( )。

A.发展速度B.平均发展速度C.增减速度D.平均增减速度14.用水平法计算平均发展速度应采用( )。

统计学第八章

统计学第八章

第八章 时间数列分析一、单项选择题1.时间序列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值大小排列的C 前者是根据时间顺序排列的,后者是根据变量值大小排列的D 前者是根据变量值大小排列的,后者是根据时间顺序排列的 2.时间序列中,数值大小与时间长短有直接关系的是( )A 平均数时间序列B 时期序列C 时点序列D 相对数时间序列 3.发展速度属于( )A 比例相对数B 比较相对数C 动态相对数D 强度相对数 4.计算发展速度的分母是( )A 报告期水平B 基期水平C 实际水平D 计划水平 5.某车间月初工人人数资料如下:则该车间上半年的平均人数约为( )A 296人B 292人C 295 人D 300人6.某地区某年9月末的人口数为150万人,10月末的人口数为150.2万人,该地区10月的人口平均数为( )A 150万人B 150.2万人C 150.1万人D 无法确定 7.由一个9项的时间序列可以计算的环比发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 8.采用几何平均法计算平均发展速度的依据是( )A 各年环比发展速度之积等于总速度B 各年环比发展速度之和等于总速度C 各年环比增长速度之积等于总速度D 各年环比增长速度之和等于总速度9.某企业的科技投入,2010年比2005年增长了58.6%,则该企业2006—2010年间科技投入的平均发展速度为( )A 5%6.58B 5%6.158C 6%6.58D 6%6.15810.根据牧区每个月初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采用的公式是( ) A 简单平均法 B 几何平均法 C 加权序时平均法 D 首末折半法 11.在测定长期趋势的方法中,可以形成数学模型的是( )A 时距扩大法B 移动平均法C 最小平方法D 季节指数法 12.动态数列中,每个指标数值相加有意义的是( )。

A.时期数列 B.时点数列 C.相对数数列 D.平均数数列 13.按几何平均法计算的平均发展速度侧重于考察现象的( ) A.期末发展水平 B.期初发展水平C.中间各项发展水平D.整个时期各发展水平的总和14.累计增长量与其相应的各逐期增长量的关系表现为( ) A.累计增长量等于相应各逐期增长量之和 B.累计增长量等于相应各逐期增长量之差 C.累计增长量等于相应各逐期增长量之积 D.累计增长量等于相应各逐期增长量之商15.已知某地区2010年的粮食产量比2000年增长了1倍,比2005年增长了0.5倍,那么2005年粮食产量比2000年增长了( )。

统计学时间序列习题

统计学时间序列习题

第四章 时间数列习题一、选择:1、作为动态数列水平的指标可以是:(甲〉总量指标;(乙〉相对指标;(丙〉平均指标。

( ) ①甲 ②乙丙 ③甲乙丙 ④甲丙2、我国"九五"时期每年钢产量是:(甲)时期数列;(乙〉时点数列。

计算这个数列的平均水平要运用的算术平均数是:〈丙〉简单算术平均数;(丁)加权算术平均数。

( ) ①甲丁 ②乙丙 ③甲丙 ④乙丁3、最近几年每年年末国家外汇储备是:(甲)时期数列;(乙)时点数列。

计算这个数列的平均水平要运用的平均数是:(丙)简单算术平均数;(丁)“首末折半”序时平均数。

( ) ①甲丙 ②甲丁 ③乙丙 ④乙丁4、某企业工业生产固定资产原值变动资料(单位:千元〉:1998年1月1日8000当年新增2400,当年减少400试确定工业生产固定资产原值平均价值( ) ① 10000 ②9000 ③5000 ④15005、某车间月初工作人员数资料如下:( )一月 二月 三月 四月 五月 六月 七月 280 284 280 300 302 304 320 计算该车间上半年月平均工人数计算式是:①iii f f α∑∑②iiif f α∑∑③inα∑ ④12311122...1n a a a a n -++++-6、2003年上半年某商店各月初棉布商品库存〈千元〉为:( ) 一月 二月 三月 四月 五月 六月 七月 42 34 36 32 36 33 38 试确定上半年棉布平均商品库存。

①35 ②30 ③35.7 ④407、某银行农业贷款余额(千元)如下: 2002年 1月1日 84 2002年 4月1日 81 2002年 7月1日 104 2002年10月1日 106 1999年 1月1日 94 试确定农业贷款平均余额( )①93.8 ②76 ③95 ④117.258、2003年11月某企业在册工作人员发生了如下的变化(人):2003年11月1日在册 919 2003年11月6日离开 29 2003年11月21日录用 15试确定该企业11月份日平均在册工作人员数( ) ①900 ②905 ③912 ④9199、某采购点12月1日有牛300头,12月5日卖出230头,12月19日购进130头。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章时间数列分析
一、名词
1、时间数列:按照时间次序排列起来而形成的统计数列,又可称为动态数列。

2、时期数列:就是由时期指标构成的时间数列。

3、时点数列:就是由时点数构成的时间数列。

4、发展速度:它是时间数列中各个报告期水平与基期水平之比。

5、序时平均数:以时间为序对数列水平进行平均而获得的平均数。

6、平均发展速度:平均发展速度就是时间数列中各个环比发展速度的一般水平,即对各个环比发展速度的平均。

二、填空
1、时间数列的两个要素构成是(按顺序排列起来的时间)和(各时间所对应的数值)。

2、一般把时间数列的第一项指标数值称为(最初水平),把最后一项指标数值称为(最末水平)。

3、时间数列按数列中指标的性质不同分为:(绝对数时间数列)、(相对数时间数列)和(平均数时间数列)。

4、绝对数动态数列按照指标性质不同分为(时期数列)和(时点数列)两种。

5、动态比较指标一般包括:(增长量)、(发展速度)、(增长速度)和(增长1%的绝对值)。

6、发展速度是时间数列中各个(报告期水平)与(基期水平)之比,由于计算时所采用的基期不同,发展速度又分为(环比发展速度)和(定基发展速度)。

7、定基发展速度等于相应时期的环比发展速度的(连乘积)。

8、增长1%的绝对值是指增长速度每增长百分之一的绝对数量。

它是(逐期增长量)与(环比增长速度)之比。

9、平均发展速度是时间数列中各个环比发展速度的一般水平根据所研究现象的不同特点,平均发展速度的计算方法有(水平法)和(累计法)两种。

10、一般来说,时间数列的变动中包含四种影响因素:(长期趋势)、(季节趋势)、(循环变动)和(不规则变动)。

11、长期趋势测定的方法很多,常用的有:(时距扩大法)、(移动平均法)、分割平均法、(最小平方法)等。

三、选择
(一)单项选择
1、在动态数列中,最基本的数列是(A)
A、绝对数时间数列
B、相对数时间数列
C、平均数时间数列
D、时点数列
2、由各年年末人口数组成的时间数列是(D)
A、时期数列
B、相对数时间数列
C、平均数时间数列
D、时点数列
3、两个相邻时期的定基发展水平之比,是这两个时期的(B)
A、定基发展速度
B、环比发展速度
C、定基增长速度
D、环比增长速度
4、根据未经整理的连续时点数列计算序时平均数是采用(C)
A、几何平均法
B、加权算术平均法
C、简单算术平均法
D、首尾折半法
5、已知某企业总产值2001年比2000年增长6%,2002年比2001年增长8%,2003年比2002年增长10%。

则三年来该企业总产值平均每年增长(B)。

A、8%
B、7.99%
C、107.99%
D、7.83%
(二)多项选择
1、时间数列的编制原则包括( ABCD )
A、总体范围的一致性
B、指标内容的一致性
C、计算口径的一致性
D 、编制时间的一致性
E 、各项指标的变动幅度应该一致 2、动态比较指标一般包括( ACDE )
A 、增长量
B 、平均增长量
C 、发展速度
D 、增长速度
E 、增长1%的绝对值 3、定基增长速度等于( ACD )
A 、累积增长量与固定基期之比
B 、累积增长量与前一期之比
C 、环比发展速度的连乘积减去100%
D 、定基发展速度减100%
E 、逐期增长量除以基期发展水平 4、增长1%的绝对值等于( AC )
A 、前期水平除以100
B 、增长量与发展速度之比
C 、增长量与增长速度之比
D 、本期水平除以100
E 、上期逐期增长量除以100 5、计算平均发展速度的几何平均法公式有( ABD )
A 、n
n x x x x ⋅⋅⋅⋅⋅=
-
21 B 、n
n a a x 0
=-
C 、n x x ∑=-
D 、n
R x =
-
E 、0
a a x i
∑=
-
四、计算
1、请根据以下资料计算相应指标,并填入表6-23。

2、某工地年内招收的临时工人情况如表6-24。

根据表6-24所列资料,计算该工地年内平均招工人数。

解:
3、某工地上半年招收的临时工人情况如表6-25。

根据表6-25所列资料,计算该工地上半年的平均招工人数。

解:平均招工人数=[180/2+220+280+380+460+570+590/2]÷(7-1)=382.5
4、某公司规划到2020年,工业总产值要在2000年的基础上翻两番,从2001年到2020年的
)
(2.3442
43322200
380423804803248028032280180人=+++⨯++⨯++⨯++⨯+=a
20年间,该公司工业总产值的年平均发展速度应是多少? 解:%2.107420===-
n R x
5、某企业产量计划规定2005年将比2000年增长150%,试问每年平均应该增长多少才能达到这个水平?若到2003年该产品已经比2000年增长55%,问以后两年中每年平均增长百分之几才能完成计划规定的任务? 解:%1005.25
-=-
x =20.11% =-=-
%100155/250x 27%
6、某企业某种产品产量资料如表6-26所示。

表6-26 某企业某种产品产量情况 要求:用分割平均法对该品种产量,进行直线趋势分析;并对本年9月份和10月份的产量进行预测。

解:(1)判定时
间数列是否呈直线趋势。

从表中可以看出,逐期增长量大致稳定在1左右,可以认为呈直线发展趋势。

(2)选择直线模型。

bx a y +=
(3)把数列分割为前后两段,并分别求出前后两段的平均数。

A 、x 前平均数=(1+2+3+4)/4=2.5
B 、x 后平均数=(5+6+7+8)/4=6.5
C 、y 前的平均数=(1.2+2.0+3.1+3.8)/4=2.525 D
、y 后的平均数=(5.0+6.1+7.2+8.0)/4=6.575
(4)把(2.5,2.525)和(6.5,6.575)代入直线模型bx a y +=。

建立求解方程组,求出a=-0.00625和b=1.0125。

(5)因此方程模型为y=-0.00625+1.0125x (6)利用直线趋势方程预测。

当x=9时,y=-0.00625+1.0125×9=9.10625(千件) 当x=10时,y=-0.00625+1.0125×10=10.11875(千件)
7
、某市2001-2004年各月皮鞋销售量资料如表6-27所示。

解:1、计算同月份的平均数。

分别计算各年1月份、2月份、…、12月份的月平均数。

4
/=x x i 见上表“分月平均”栏。

2、计算总的月平均数。

把“分月平均”的12个数字再进行平均的结果。

3、计算季节指数。

分月季节指数=各月平均数/总的月平均数。

结果见上表“季节指数”栏。

五、简答
1、什么是动态数列?编制动态数列有哪些作用?
答:所谓时间数列,就是把反映某种社会经济现象在不同时间上发展变化的一系指标数值,按照时间次序排列起来而形成的统计数列,又可称为动态数列。

作用:①时间数列可以反映社会经济现象的发展方向和发展趋势。

②通过对不同数列的平行对比,可揭示现象之间发展的速度差异和依存关系。

③通过时间数列,可以计算各种动态分析指标。

④通过时间数列,可对现象进行预测。

2、时期数列和时点数列有哪些不同点?
答:①可加性不同,时期数列数列中的各项指标具有可加性。

时点数列中的各项指标不具有可加性。

②指标大小与指标所属时间长短关系不同。

时期数列中各个指标的大小与指标所属时间的长短直接关系。

时点数列中各个指标的大小与指标所隔时间的长短没有直接关系。

③资料的取得方式不同。

时期数列中各个指标数值的取得方式为:连续登记并汇总的方式。

时点数列中各个指标数值的取得方式为:一次性登记的方式。

3、编制时间数列应遵循哪些原则?
答:总体范围的一致性。

指标内容的一致性。

计算口径的一致性。

编制时间的一致性。

4、序时平均数与一般的平均指标有什么异同?
答:相同点:都是一种平均数。

都是把现象的数量差异抽象化,概括地反映现象的一般水平。

不同点:①性质不同。

一般平均指标是静态平均数,而序时平均数是动态平均数;②计算依据不同。

一般平均指标是依据变量数列计算的,而序时平均数是依据时间数列计算的;③所反映的差异不同。

一般平均指标所反映的是同一时间总体各单位之间的差异(即空间上的差异),而序时平均数所反映的是同一总体单位在不同时间上的差异(即时间上的差异)。

5、如何计算平均发展速度?几何平均法与方程法有何区别?
答:由于现象的总速度等于各环比发展速度的连乘积,所以,平均发展速度的计算方法有水平法和累计法。

区别:几何法是把着眼点放在“整个计划期内最末一年的水平能否达到规定”来计算其平均发展速度的。

而方程法是把着眼点放在“到期末时全期累计总量能否达到规定”来计算其平均发展速度的。

相关文档
最新文档