线性回归方程高考题整理

合集下载

高考数学基础训练:回归分析含详解

高考数学基础训练:回归分析含详解

高考数学基础训练:回归分析一、单选题1.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是.A .90B .75C .60D .452.对两个变量y 与x 进行回归分析,分别选择不同的模型,它们的相关系数r 如下,其中拟合效果最好的模型是()A .0.2B .0.8C .-0.98D .-0.73.为研究变量x ,y 的相关关系,收集得到下面五个样本点(x ,y ):x 99.51010.511y1110865若由最小二乘法求得y 关于x 的回归直线方程为 3.2y x a=-+,则据此计算残差为0的样本点是()A .(9,11)B .(10,8)C .(10.5,6)D .(11.5)4.据一组样本数据()11,x y ,()22,x y ,…,(),n n x y ,求得经验回归方程为ˆ 1.50.5yx =+,且3x =.现发现这组样本数据中有两个样本点()1.2,2.2和()4.8,7.8误差较大,去除后重新求得的经验回归直线l 的斜率为1.2,则()A .变量x 与y 具有正相关关系B .去除两个误差较大的样本点后,重新求得的回归方程仍为ˆ 1.50.5yx =+C .去除两个误差较大的样本点后,y 的估计值增加速度变快D .去除两个误差较大的样本点后,相应于样本点()2,3.75的残差为0.055.对于样本相关系数,下列说法错误的是()A .可以用来判断成对样本数据相关的正负性B .可以是正的,也可以是负的C .样本相关系数越大,成对样本数据的线性相关程度也越高D .取值范围是[]1,1-6.下列说法中正确的是A .先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为m ,然后抽取编号为50,100,150,m m m +++ 的学生,这种抽样方法是分层抽样法B .线性回归直线ˆˆy bxa =+不一定过样本中心()x y C .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .若一组数据2,4,a ,8的平均数是5,则该组数据的方差也是57.某同学用收集到的6组数据对(),(1,2,3,4,5,6)i i x y i =制作成如图所示的散点图(点旁的数据为该点坐标),并由最小二乘法计算得到回归直线1l 的方程:µµ11y b x a =+$,相关系数为1r ,相关指数为21R :经过残差分析确定点E 为“离群点”(对应残差过大的点),把它去掉后,再用剩下的5组数据计算得到回归直线2l 的方程:µµ22y b x a =+$,相关系数为2r ,相关指数为22R .则以下结论中,正确的是()①10r >,20r >;②µ10b >,µ20b >;③µµ12b b >;④2212R R >A .①②B .①②③C .②④D .②③④8.已知变量y 关于x 的非线性经验回归方程为0.5ˆe bx y-=,其一组数据如下表所示:x 1234ye3e 4e 5e 若5x =,则预测y 的值可能为()A .152e B .112e C .7e D .5e 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题9.高中女学生的身高预报体重的回归方程是 0.7575.5y x =-(其中x , y 的单位分别是cm ,kg ),则此方程在样本()160,46处残差的绝对值是______.10.甲、乙、丙、丁四位同学在建立变量x ,y 的回归模型时,分别选择了4种不同模型,计算可得它们的相关指数R 2分别如下表:甲乙丙丁R 20.980.780.500.85建立的回归模型拟合效果最好的同学是__________.11.在一组样本数据()11,x y ,()22,x y ,…,(),n n x y (122,,,,n n x x x ≥⋅⋅⋅不全相等)的散点图中,若所有样本点()(),1,2,3,,i i x y i n =⋅⋅⋅都在直线210x y +-=上,则这组样本数据的相关系数r 为______.12.在一组样本数据()11,x y ,()22,x y ,…,()66,x y 的散点图中,若所有样本点(),i i x y ()1,2,,6i = 都在曲线212y bx =-附近波动.经计算6112i i x ==∑,6114i i y ==∑,62123ii x==∑,则实数b 的值为________.三、解答题13.某科技公司研发了一项新产品A ,经过市场调研,对公司1月份至6月份销售量及销售单价进行统计,销售单价x (千元)和销售量y (千件)之间的一组数据如下表所示:月份i 123456销售单价i x 99.51010.5118销售量iy 111086515(1)试根据1至5月份的数据,建立y 关于x 的回归直线方程;(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过065.千件,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?参考公式:回归直线方程ˆˆˆybx a =+,其中i ii 122ii 1ˆnnx y n x yb xnx==-⋅⋅=-∑∑.参考数据:5i i i 1392x y ==∑,52i i 1502.5x ==∑.14.为了巩固拓展脱贫攻坚的成果,振兴乡村经济,某知名电商平台决定为脱贫乡村的特色水果开设直播带货专场.该特色水果的热卖黄金时段为2021年7月10日至9月10日,为了解直播的效果和关注度,该电商平台统计了已直播的2021年7月10日至7月14日时段中的相关数据,这5天的第x 天到该电商平台专营店购物的人数y (单位:万人)的数据如下表:日期7月10日7月11日7月12日7月13日7月14日第x 天12345人数y (单位:万人)75849398100(1)依据表中的统计数据,请判断该电商平台的第x 天与到该电商平台专营店购物的人数y (单位:万人)是否具有较高的线性相关程度?(参考:若0.30.75r <<,则线性相关程度一般,若0.75r >,则线性相关程度较高,计算r 时精确度为0.01)(2)求购买人数y 与直播的第x 天的线性回归方程;用样本估计总体,请预测从2021年7月10日起的第38天到该专营店购物的人数(单位:万人).参考数据:521(434i iy y =-=∑,51(64i i i x x y y =--=∑65.979≈.附:相关系数()()ni i x x y y r --=∑,回归直线方程的斜率121()()()niii nii x x y y bx x ==--=-∑∑ ,截距a y bx =-$$.15.近年来,明代著名医药学家李时珍故乡黄冈市蕲春县大力发展大健康产业,蕲艾产业化种植已经成为该县脱贫攻坚的主要产业之一,已知蕲艾的株高y (单位:cm)与一定范围内的温度x (单位:℃)有关,现收集了蕲艾的13组观测数据,得到如下的散点图:现根据散点图利用y a =+或dy c x=+建立y 关于x 的回归方程,令s =1t x=得到如下数据:xyst10.15109.943.040.16113niii s ys y=-⋅∑13113iii t yt y=-⋅∑1322113ik ss=-∑1322113ii t t =-∑ 1322113ii yy =-∑13.94-2.111.670.2121.22且(i s ,i y )与(i t ,i y )(i =1,2,3,…,13)的相关系数分别为1r ,2r ,且2r =﹣0.9953.(1)用相关系数说明哪种模型建立y 与x 的回归方程更合适;(2)根据(1)的结果及表中数据,建立 y 关于x 的回归方程;(3)已知蕲艾的利润z 与x 、y 的关系为1202z y x =-,当x 为何值时,z 的预报值最大.参考数据和公式:0.21×21.22=4.4562,11.67×21.22=247.637415.7365,对于一组数据(i u ,i v )(i =1,2,3,…,n ),其回归直线方程v u αβ=+的斜率和截距的最小二乘法估计分别为 1221ni i i nii u vnu v unuβ==-⋅=-∑∑, v u αβ=-,相关系数ni i u vnu vr -⋅∑.参考答案:1.A 【解析】【详解】样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36,∴样本总数为.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.考点:频率分布直方图.2.C 【解析】【分析】由相关系数的绝对值越大,越具有强大相关性,即可求解【详解】∵相关系数的绝对值越大,越具有强大相关性,C 相关系数的绝对值最大约接近1,∴C 拟合程度越好.故选:C 3.B 【解析】【分析】先求出线性方程的样本中心点,从而可求得 3.240y x =-+,再根据残差的定义可判断.【详解】由题意可知,99.51010.511105x ++++==,111086585y ++++==所以线性方程的样本中心点为(10,8),因此有 8 3.21040aa =-⨯+⇒=,所以 3.240y x =-+,在收集的5个样本点中,(10,8)一点在 3.240y x =-+上,故计算残差为0的样本点是(10,8).故选:B 4.A 【解析】【分析】由条件可知样本中心不变,可求出新的回归直线方程,即可判断.【详解】因为重新求得的经验回归直线l 的斜率为1.2,所以变量x 与y 具有正相关关系,故A 正确;当3x =时,315055y ..=⨯+=,设去掉两个误差较大的样本点后,横坐标的平均值为x ',纵坐标的平均值为y ',则12636322n x x x x n n n ++⋅⋅⋅+--=--'==,1210510522n y y y n n n y ++⋅⋅⋅+--'==--=,因为去除两个误差较大的样本点后,重新求得回归直线l 的斜率为1.2,所以ˆ53 1.2a =⨯+,解得 1.4ˆa =,所以去除两个误差较大的样本点后的经验回归方程为ˆ 1.2 1.4yx =+,故B 错误;因为1.5 1.2>,所以去除两个误差较大的样本点后y 的估计值增加速度变慢,故C 错误;因为ˆ 1.22 1.4 3.8y=⨯+=,所以ˆ 3.75 3.80.05y y -=-=-,故D 错误.故选:A.5.C 【解析】【分析】根据相关系数的概念,依次分析各选项即可得答案.【详解】解:对于A 选项,当相关系数为正时,表明变量之间是正相关,相关系数为负数时,表明相关系数为负数,故A 选项正确;对于B ,D 选项,相关系数范围是[]1,1-,故可以为正,也可以为负,故B ,D 选项正确;对于C 选项,当相关系数为负数时,样本相关系数越大,线性相关性就越弱,故C 选项错误;故选:C6.D 【解析】A 是系统抽样,B 选项线性回归直线ˆˆy bxa =+一定过样本中心(),x y ,C 选项若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,D 选项若一组数据2,4,a ,8的平均数是5,求出a ,则该组数据的方差即可求解.【详解】A 选项:先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为m ,然后抽取编号为50,100,150,m m m +++ 的学生,这种抽样方法是系统抽样法,所以该选项不正确;B 选项:线性回归直线ˆˆy bxa =+一定过样本中心(),x y ,所以该选项不正确;C 选项:若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,所以该选项不正确;D 选项:若一组数据2,4,a ,8的平均数是5,24854a +++=,解得6a =,则该组数据的方差是()()()()22222545658554-+-+-+-=,所以该选项正确.故选:D 【点睛】此题考查抽样方法,回归直线,相关关系的辨析,求平均数和方差,关键在于熟练掌握相关概念和公式,准确计算.7.B 【解析】【分析】根据散点图逐项进行判断即可.【详解】①:由散点图可知,,x y 之间是正相关关系,所以10r >,20r >,故①正确;②③:由散点图可知,回归直线的斜率是正数,且1l 的斜率大于2l 的斜率,所以µ10b >,µ20b >,µµ12b b >,故②③正确;④:由散点图可知,去掉“离群点”E 后,相关性更强,拟合的效果更好,所以2212R R <,故④错误;故选:B.8.C 【解析】【分析】将0.5ˆe bx y-=两边同时取对数,得ln 0.5y bx =-,设0.5z bx =-,由样本中心()x z 必在回归直线0.5z bx =-上,可求出b ,从而即可求解.【详解】解:由题意,将0.5ˆe bx y-=两边同时取对数,得ln 0.5y bx =-,设0.5z bx =-,则x1234z13451234 2.54x +++==,13453.254z +++==,由0.5z bx =-,得3.25 2.50.5b =-,解得 1.5b =,所以 1.50.5e x y -=,所以当5x =时, 1.550.57e e y ⨯-==,故选:C.9.1.5##32【解析】【分析】利用回归直线方程,求出160x =的估计值,然后求解残差的绝对值.【详解】由样本数据得到,女大学生的身高预报体重的回归方程是 0.7575.5y x =-,当160x =时, 0.7516075.544.5y =⨯-=,此方程在样本()160,46处残差的绝对值:44.546 1.5-=.故答案为:1.5.10.选甲相关指数R 2越大,表示回归模型拟合效果越好.【解析】【分析】相关指数越大,相关性越强,拟合效果越好.根据相关指数的大小即可判断.【详解】相关指数2R 越大,相关性越强,回归模型拟合效果越好,所以效果最好的是甲.【点睛】如果两个变量间的关系是相关关系,相关指数2R 越大,相关系数r 越接近1,残差平方和越接近0,都代表拟合效果越好.11.1-【解析】【分析】根据直线斜率可知两个变量负相关,结合数据点都在直线上可确定1r =-.【详解】直线210x y +-=的斜率20k =-<,∴这两个变量成负相关,0r ∴<,又所有样本点都在直线210x y +-=上,1r ∴=-.故答案为:1-.12.1723【解析】【分析】设2t x =,可得回归直线方程为12y bt =-,求出样本中心点(),t y 代入可得b 的值.【详解】令2t x =则212y bx =-即12y bt =-,6212366i i x t ===∑,61147663ii y y ====∑,因为样本中心点237,63⎛⎫ ⎪⎝⎭在回归直线12y bt =-上,所以7231362b =-,可得:1723b =,故答案为:1723.13.(1)ˆ3240y x =-+.;(2)是.【解析】【分析】(1)先由表中的数据求出,x y ,再利用已知的数据和公式求出 ,ba ,从而可求出y 关于x 的回归直线方程;(2)当8x =时,求出 y 的值,再与15比较即可得结论【详解】(1)因为()199.51010.511105x =++++=,()1111086585y =++++=,所以23925108ˆ 3.2502.5510b -⨯⨯==--⨯,得()ˆ8 3.21040a=--⨯=,于是y 关于x 的回归直线方程为 3.240ˆyx =-+;(2)当8x =时,ˆ 3.284014.4y=-⨯+=,则ˆ14.4150.60.65yy -=-=<,故可以认为所得到的回归直线方程是理想的.14.(1)具有较高的线性相关程度(2) 6.470.8y x =+,314万人【解析】【分析】(1)由已知计算相关系数r 即可.(2)由列表计算 a、b ,可得线性回归方程进一步可得解.(1)由表中数据可得3,90x y ==,所以521()10i i x x =-=∑,又55211()434,()()64i i i i i y y x x y y ==-=--=∑∑,所以()()50.970.75i i x x y y r --=>∑,所以该电商平台直播黄金时段的天数x 与购买人数y 具有较高的线性相关程度.所以可用线性回归模型拟合人数y 与天数x 之间的关系.(2)由表中数据可得()()()5152164ˆ 6.410i i i i i x x y y b x x ==--===-∑∑,则ˆˆ90 6.4370.8a y bx =-=-⨯=,所以 6.470.8y x =+,令38x =,可得 6.4387031ˆ.84y =⨯+=(万人)15.(1)用d y c x =+模型建立y 与x 的回归方程更合适;(2)10ˆ111.54y x =-;(3)当温度为20时这种草药的利润最大.【解析】【分析】(1)利用相关系数1r ,2r ,比较1||r 与2||r 的大小,得出用模型d y c x=+建立回归方程更合适;(2)根据(1)的结论求出y 关于x 的回归方程即可;(3)由题意写出利润函数ˆz ,利用基本不等式求得利润z 的最大值以及对应的x 值.【详解】(1)由题意知20.9953r =-,10.8858r =,因为121r r <<,所有用d y c x =+模型建立y 与x 的回归方程更合适.(2)因为1311322113 2.1ˆ100.2113i i i i i t y t yd tt ==-⋅-===--∑∑,ˆˆ109.94100.16111.54cy dt =-=+⨯=,所以ˆy 关于x 的回归方程为10ˆ111.54y x=-(3)由题意知11012020(111.54ˆˆ)22z y x x x =-=--20012230.8()2x x =-+2230.8202210.8≤-=,所以22.8ˆ10z≤,当且仅当20x =时等号成立,所以当温度为20时这种草药的利润最大.。

线性回归方程高考题讲解

线性回归方程高考题讲解

线性回归方程高考题讲解线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 62.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 2 2.22 3 3.83 4 5.54 5 6.55 6 7.0∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 2.5 3 4 4.5(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 306 10 10 13 16深度y(m)(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。

线性回归方程高考题

线性回归方程高考题

线性回归方程高考题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 63 4(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤(参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 22 33 44 55 6∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 3 4(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图;(1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 3 4(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 30深度y(m) 6 10 10 13 16(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。

高二线性回归方程试题及答案

高二线性回归方程试题及答案

回归直线方程1、某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.] (1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元) 1 2 3 4 5 销售收益(单位:万元)2 3 27由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.401221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-==--∑∑4x y x y y x2、某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调()完成列联表,并判断在犯错误的概率不超过的前提下,能否认为选题与性 别有关.(Ⅰ)按照分层抽样的方法,从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷.若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为,求的分布列及数学期望. 附: ,其中.ξξE ξ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++3、面向全市招聘事业编工作人员,由人事、劳动、纪检等部门联合组织招聘考试,招聘考试分为两个阶段:笔试和面试.现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.(Ⅰ)求出上表中的x,y,z,s,p的值;(Ⅱ)按规定,笔试成绩不低于90分的应聘人员可以参加面试,且面试的方式采用单循环,以参加面试人员胜出的场数决定是否录用(即参加面试的所有人员中每两人必需进行一个场次的PK比赛).已知松山区有两名应聘人员取得面试资格,在所有的比赛中,求有松山区选手参加比赛的概率.答案1、某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.] (1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元) 1 2 3 4 5 销售收益(单位:万元)2 3 27由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.解:(1)设各小长方形的宽度为,由频率分布直方图中各小长方形的面积总和为1,可知,故,即图中各小长方形的宽度为2. …3分(2)由(1)知各小组依次是, 其中点分别为,对应的频率分别为,故可估计平均值为.7分 (3)由(2)可知空白栏中填5.由题意可知, ,401221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-==--∑∑4x y x y y x m (0.080.10.140.120.040.02)0.51m m +++++⋅==2m =[0,2),[2,4),[4,6),[6,8),[8,10),[10,12]1,3,5,7,9,110.16,0.20,0.28,0.24,0.08,0.0410.1630.250.2870.2490.08110.045⨯+⨯+⨯+⨯+⨯+⨯=12345232573, 3.855x y ++++++++====,,根据公式,可求得 ………………10分, ………………11分 所以所求的回归直线方程为. ………………12分2、某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调()完成列联表,并判断在犯错误的概率不超过的前提下,能否认为选题与性别有关.(Ⅰ)按照分层抽样的方法,从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷.若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为,求的分布列及数学期望. 附: ,其中.【解析】(Ⅰ)51122332455769i ii x y=⨯+⨯+⨯+⨯+⨯==∑522222211234555ii x==++++=∑26953 3.8121.2,555ˆ310b-⨯⨯===-⨯3.8 1.230ˆ.2a=-⨯= 1.20.2y x =+ξξE ξ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++,故不能认为选题与性别有关.…………………5分(Ⅱ)选择“坐标系与参数方程”与选择“不等式选讲”的人数比例为100:60=5:3, 所以抽取的8人中倾向“坐标系与参数方程”的人数为5,倾向“不等式选讲”的人 数为3.依题意,得,,,, . …………………9分 故的分布列如下:所以. …………………12分 3、面向全市招聘事业编工作人员 ,由人事、劳动、纪检等部门联合组织招聘考试,招聘考试分为两个阶段:笔试和面试.现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.(Ⅰ)求出上表中的x ,y ,z ,s ,p 的值;(Ⅱ)按规定,笔试成绩不低于90分的应聘人员可以参加面试,且面试的方式采用单循环,以参加面试人员胜出的场数决定是否录用(即参加面试的所有人员中每两人必需进行一个场次的 PK 比赛).已知松山区有两名应聘人员取得面试资格,在所有的比赛中,求有松山区选手参加比赛的概率. 解:(1)由题意知,参加招聘考试的人员共有p == 50人, ∴x == 0.18, 22160(9001800) 3.74 5.0241055510060K -=≈<⨯⨯⨯3,1,1,3=--ξ33381(3)56C P C =-==ξ12533815(1)56C C P C =-==ξ21533830(1)56C C P C ===ξ30533810(3)56C C P C ===ξξ115301033(1)135********E =-⨯+-⨯+⨯+⨯=ξ160.32950y = 50×0.38 = 19, Z = 50﹣9﹣19﹣16 = 6, S = = 0.12 ----------------------------------------------------------6分(Ⅱ)由(Ⅱ)知,参加面试的应聘人员共6人.若参加面试的6人分别记为:S 1 , S 2 , a , b , c , d .( 其中S 1 , S 2 表示松山区的参赛选手,a , b , c , d 表示其他旗、县的选手)则所有的比赛为: (S 1 , S 2 ) (S 1 , a ) (S 1 ,b ) (S 1 ,c ) (S 1 , d ) (S 2 , a ) (S 2 , b ) (S 2 , c ) (S 2 ,d ) (a , b ) ( a , c ) ( a , d ) ( b , c ) (b , d ) (c , d ) 共十五个场次的比赛,有松山区选手出现的比赛有9场. 若有松山区选手参加比赛的事件为:A 则P (A ) =-------------------------------12分65035。

2020年高考数学一轮复习专题6.5相关系数及回归方程练习(含解析)

2020年高考数学一轮复习专题6.5相关系数及回归方程练习(含解析)

6.5 相关系数及回归方程两个变量间的相关关系:①有关概念:相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.如果一个变量的值由小变大时另一个变量的值由小变大,这种相关称为正相关;如果一个变量的值由小变大时另一个变量的值由大变小,这种相关称为负相关;如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系.②回归方程: 是两个具有线性相关关系的变量的一组数据的回归方程,其中是待定参数. 的计算公式.考向一 样本中心【例1-1】某种产品的广告费支出与销售额之间有如下对应数据(单位:百万元),根据下表求出关于的线性回归方程为,则表中的值为( )A. B. C. D.y bx a =+1122()()()n n x y x y x y ,,,,,,a b 、a b 、1122211()()()()nni i i ii i nni ii i x x y y x y nx yb x x xn x a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑x y y x 6.5175ˆ.yx =+a 505456.564【答案】B【解析】根据规律知道回归直线一定过样本中心,故得到,将坐标代入方程得到的值为.故答案为:B. 【例1-2】已知表中数据y 与x 有较好的线性关系,通过计算得到y 关于x 的线性回归方程为ˆˆ1.05yx a =+,则相应于下列各点的残差中绝对值最小的是( )A .(2,4)B .(4,6)C .(8,10)D .(10,12.5)【答案】D【解析】ˆˆˆ6,8.3,8.3 1.056,2, 1.052x y aa y x ==∴=⨯+∴=∴=+, 相应于点(2,4),(4,6),(8,10),(10,12.5)的残差分别为0.1,0.2,0.4,0---,故选D.【举一反三】1.“关注夕阳、爱老敬老”—某马拉松协会从2013年开始每年向敬老院捐赠物资和现金.下表记录了第x 年(2013年是第一年)与捐赠的现金y (万元)的对应数据,由此表中的数据得到了y 关于x 的线性回归方程.ˆ035ymx =+,则预测2019年捐赠的现金大约是( ) A .5万元B .5.2万元C .5.25万元D .5.5万元【答案】C5,196x y a ==+6.5175ˆ.yx =+a 54【解析】由已知得,29t =, 所以样本点的中心点的坐标为(4.5,3.5),代入.ˆ035ymx =+, 得3.5 4.50.35m =+,即0.7m =,所以0.7035ˆ.x y=+, 取7x =,得ˆ0.770.35 5.25y=⨯+=, 预测2019年捐赠的现金大约是5.25万元.2.某同学将收集到的6组数据对,制作成如图所示的散点图(各点旁的数据为该点坐标),并由这6组数据计算得到回归直线l :y bx a =+$$$和相关系数r .现给出以下3个结论:①0r >;②直线l 恰过点D ;③1b >. 其中正确结论的序号是( )A .①②B .①③C .②③D .①②③【答案】A【解析】由图像可得,从左到右各点是上升排列的,变量具有正相关性,所以0r >,①正确; 由题中数据可得: 1.5 2.4 3.54 5.8 6.846x +++++==, 2.1 2.8 3.3 3.5 4.35 3.56y +++++==,所以回归直线过点(4,3.5)D ,②正确;又61621()()10.360.514120.14()iii ii x x yy b x x ==--==≈<-∑∑,③错误.故选A 3.有一散点图如图所示,在5个(,)x y 数据中去掉(3,10)D 后,下列说法正确的是( )A .残差平方和变小B .相关系数r 变小C .相关指数2R 变小D .解释变量x 与预报变量y 的相关性变弱【答案】A【解析】∵从散点图可分析得出:只有D 点偏离直线远,去掉D 点,变量x 与变量y 的线性相关性变强, ∴相关系数变大,相关指数变大,残差的平方和变小,故选:A.考向二回归方程【例2】某人经营淡水池塘养草鱼,根据过去40期的养殖档案,该池塘的养殖重量X (百斤)都在20百斤以上,其中不足40百斤的有8期,不低于40百斤且不超过60百斤的有20期,超过60百斤的有12期.根据统计,该池塘的草鱼重量的增加量y (百斤)与使用某种饵料的质量x (百斤)之间的关系如图所示.(1)根据数据可知y 与x 具有线性相关关系,请建立y 关于x 的回归方程ˆˆˆybx a =+;如果此人设想使用某种饵料10百斤时,草鱼重量的增加量须多于5百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.(2)养鱼的池塘对水质含氧量与新鲜度要求较高,某商家为该养殖户提供收费服务,即提供不超过3台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量X 有如下关系:若某台增氧冲水机运行,则商家每期可获利5千元;若某台冲水机未运行,则商家每期亏损2千元.视频率为概率,商家欲使每期冲水机总利润的均值达到最大,应提供几台增氧冲水机? 附:对于一组数据()()()1122,,,,n n x y x y x y ,其回归方程ˆˆˆybx a =+的斜率和截距的最小二乘估计公式分别为1221ˆni ii ni i x y nxy bx nx ==-=-∑∑()()()121,niii ni i x x y y x x ==--=-∑∑ˆˆay bx =- 【答案】(1)337y 1313x =+$当10x =时,此方案可行.(2)应提供2台增氧冲水机 【解析】(1)依题意,5,4,x y ==()()5126iii x x y x =--=∑()()()515213ˆ,13iii i i x x y y bx x ==--∴==-∑∑337ˆ451313a y bx =-=-⨯=$所以3371313y x =+$当10x =时,67ˆ513y=>,故此方案可行. (2)设盈利为Y ,安装1台时,盈利5000Y =, 安装2台时,12040,3000,5X Y p <<==;440,10000,5X Y p ==…. 14()300010000860055E Y ∴=⨯+⨯=安装3台时,12040,1000,5X Y p <<==; 4060,8000,X Y =剟3;5P =160,15000,5X Y P >==. 13()1000800055E Y ∴=⨯+⨯11500080005+⨯=.86008000>,故应提供2台增氧冲水机.【举一反三】1.李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据(),(1,2,,6)i i x y i =,如表所示:已知611606i i y y ===∑.(1)若变量,x y 具有线性相关关系,求产品销量y (百件)关于试销单价x (千元)的线性回归方程ˆˆˆy bx a =+;(2)用(1)中所求的线性回归方程得到与i x 对应的产品销量的估计值i y .当销售数据(),i i x y 对应的残差的绝对值ˆ1i i y y -≤时,则将销售数据(),i i x y 称为一个“好数据”.现从6个销售数据中任取3个子,求“好数据”个数ξ的分布列和数学期望()E ξ.(参考公式:线性回归方程中ˆˆ,ba 的估计值分别为1221ˆˆˆ,)ni ii nii x y nxyb ay bx xnx =-=-==--∑∑. 【答案】(1) ˆ482yx =-+ (2)见解析 【解析】(1)由611606i i y y ===∑,可求得48t =,故11910ni ii x y==∑,=1980nx y ,21199ni i x ==∑,2=181.5nx ,代入可得122119101980704199181.517.5ni ii ni i x y nx yb x nx==---====---∑∑,ˆˆ604 5.582ay bx =-=+⨯=, 所以所求的线性回归方程为ˆ482yx =-+. (2)利用(1)中所求的线性回归方程ˆ482yx =-+可得,当13x =时,170y =;当24x = 时,266y =;当35x =时,362y =;当46x =时,458y =;当57x =时,554y =;当68x =时,650y =.与销售数据对比可知满足||1(1,2,,6)i i y y i -≤=的共有4个“好数据”:(3,70)、(4,65)、(5,62)、(6,59) 于是ξ的所有可能取值为1,2,31242361(1)5C C P C ξ===,2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===, ∴ξ 的分布列为:所以1232555E ξ=⨯+⨯+⨯=.考向三 非线性回归【例3】近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:根据以上数据,绘制了如图所示的散点图.(1)根据散点图判断,在推广期内,y a bx =+与(,xy c d c d =⋅均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表l 中的数据,求y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表所示:已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客,享受7折优惠的概率为16,享受8折优惠的概率为13,享受9折优惠的概率为12.根据所给数据以事件发生的频率作为相应事件发生的概率,估计一名乘客一次乘车的平均费用. 参考数据:其中lg i i u y =,7117i i u u ==∑.【答案】(1)xy c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型;(2)y 关于x 的回归方程式为:0.25ˆ 3.4710xy=⨯,第8天使用扫码支付的人次为347人次;(3)1.66元.【解析】(1)根据散点图判断,x y c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型;(2)由(1)知回归方程为x y c d =⋅,两边同时取常用对数得:()lg lg lg lg xy c dc d x =⋅=+⋅,设lg y u =,lg lg u c d x ∴=+⋅,又4x =, 1.54u =,721140i i x ==∑,7172221750.1274 1.547lg 0.2514074287i ii i i x u xu d x x==--⨯⨯∴====-⨯-∑∑,把样本中心点()4,1.54代入lg lg u c d x =+⋅,即1.54lg 0.254c =+∙,解得:4ˆl 0.5gc=, 0.5405ˆ.2ux ∴=+, lg 0.540.25y x ∴=+,y ∴关于x 的回归方程式为:()0.540.250.540.250.2510101040ˆ 3.71xx x y +==⨯=⨯,把8x =代入上式得,23.4734ˆ107y=⨯=, 活动推出第8天使用扫码支付的人次为347人次;(3)记一名乘客乘车支付的费用为Z ,则Z 的取值可能为:2,1.8,1.6,1.4, 则()20.1P Z==,()11.80.30.152P Z ==⨯=, ()11.60.60.30.73P Z ==+⨯=,()11.40.30.056P Z ==⨯=; 分布列为:所以,一名乘客一次乘车的平均费用为:20.1 1.80.15 1.60.7 1.40.05 1.66⨯+⨯+⨯+⨯=(元). 【举一反三】1.为方便市民出行,倡导低碳出行.某市公交公司推出利用支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,在推广期内采用随机优惠鼓励市民扫码支付乘车.该公司某线路公交车队统计了活动推广期第一周内使用扫码支付的情况,其中 (单位:天)表示活动推出的天次, (单位:十人次)表示当天使用扫码支付的人次,整理后得到如图所示的统计表1和散点图. 表1:(1)由散点图分析后,可用作为该线路公交车在活动推广期使用扫码支付的人次关于活动推出天次的回归方程,根据表2的数据,求此回归方程,并预报第8天使用扫码支付的人次(精确到整数).表2:表中,.(2)推广期结束后,该车队对此期间乘客的支付情况进行统计,结果如表3.表3:统计结果显示,扫码支付中享受5折支付的频率为,享受7折支付的频率为,享受9折支付的频率为.已知该线路公交车票价为1元,将上述频率作为相应事件发生的概率,记随机变量为在活动期间该线路公交车搭载乘客一次的收入(单位:元),求的分布列和期望.参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为参考数据:,,.【答案】(1) ,人次为2447 (2)见解析【解析】(1)由题意得,,,关于的线性回归方程为,关于的回归方程为,当时,,第8天使用扫码支付的人次为2447;(2)由题意得的所有取值为0.5,0.7,0.9,1,,,,,的分布列为:1.有下列说法:①若某商品的销售量y (件)关于销售价格x (元/件)的线性回归方程为5350y x =-+,当销售价格为10元时,销售量一定为300件;②线性回归直线y bx a =+$$$一定过样本点中心(,)x y ;③若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1;④在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关;⑤在线性回归模型中,相关指数2R 表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好;其中正确的结论有几个( ) A .1 B .2C .3D .4【答案】B【解析】①当销售价格为10时,销售量的预估值为300件,但预估值与实际值未必相同,①错误; ②由最小二乘法可知,回归直线必过(),x y ,②正确;③若两个随机变量为负相关,若线性相关性越强,相关系数r 越接近1-,③错误; ④残差图中,带状区域越窄,模型拟合度越高,④错误;⑤相关指数2R 越接近1,拟合度越高,则在线性回归模型中,回归效果越好,⑤正确. 可知正确的结论为:②⑤,共2个本题正确选项:B2.已知下表为x 与y 之间的一组数据,若y 与x 线性相关,则y 与x 的回归直线y bx a =+必过点( )A .(2,2)B .(1.5,0)C .(1,2)D .(1.5,4)【答案】D【解析】由题可得32x =,4y =, 22223333(0)(14)(1)(34)(2)(54)(3)(74)102222ˆ233335(0)(1)(2)(3)2222b --+--+--+--===-+-+-+-,3ˆ4212a=-⨯=,则回归方程为ˆ21yx =+,将A ,B ,C ,D 四项分别代入方程,只有(1.5,4)这个点在直线上,故选D 。

线性回归方程高考的题目讲解

线性回归方程高考的题目讲解

线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 62.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 2 2.22 3 3.83 4 5.54 5 6.55 6 7.0∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 2.5 3 4 4.5(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 306 10 10 13 16深度y(m)(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。

考点32 线性回归方程与列联表 ——2021年高考数学专题复习讲义

考点32 线性回归方程与列联表 ——2021年高考数学专题复习讲义

考点32 回归方程与独立性检验【思维导图】【常见考法】考法一 回归方程1.某工厂某产品产量(千件)与单位成本(元)满足回归直线方程,则以下说法中x y 77.36 1.82y x =-正确的是( )A .当产量为千件时,单位成本为元 175.54B .当产量为千件时,单位成本为元 273.72C .产量每增加件,单位成本约下降元 1000 1.82D .产量每减少件,单位成本约下降元1000 1.822.已知某种商品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如下对应数据:x 2 4 5 6 8y30 40 50 60 70根据上表可得回归方程,计算得,则当投入10万元广告费时,销售额的预报值为 y bx a =+$$$7b= A .75万元 B .85万元 C .99万元 D .105万元3.某企业为了参加上海的进博会,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(,)(),如表所示: i x i y 1,2,,6i =⋅⋅⋅试销单价/元 x 45 6 7 8 9产品销量/件 yq 84 83 80 75 68已知.611806i i y y ===∑(1)求的值;q (2)已知变量,具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程x y y x; ˆˆˆybx a =+(3)用表示用正确的线性回归方程得到的与对应的产品销量的估计值,当时,将销售数ˆi yi x ˆ1i i y y -≤据(,)称为一个“好数据”,现从6个销售数据中任取2个,求抽取的2个销售数据中至少有一个i x i y 是“好数据”的概率.参考公式:,. ()()()1122211ˆnni i iii i nniii i x y nx y x x y y bxnxx x =-==---==--∑∑∑∑ˆˆay bx =-考法二 非线性回归方程1.某同学的父亲决定今年夏天卖西瓜赚钱,根据去年6月份的数据统计连续五天内每天所卖西瓜的个数与温度之间的关系如下表:温度 x(°C)32 33 35 37 38西瓜个数 y 20 22 24 30 34(1)求这五天内所卖西瓜个数的平均值和方差;(2)求变量之间的线性回归方程,并预测当温度为时所卖西瓜的个数.x,y 30 °C 附:(精确到).b =∑nx i y i-nxyi =1ia =y -bx 0.12.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足()y g ()mm x 关系式(b ,c 为大于0的常数).按照某指标测定,当产品质量与尺寸的比在区间b y c x =⋅()0.302,0.388内时为优等品.现随机抽取6件合格产品,测得数据如下:尺寸()mm x 38 48 58 68 78 88质量()y g 16.8 18.8 20.7 22.4 24 25.5质量与尺寸的比y x0.442 0.392 0.357 0.329 0.308 0.290(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率; (2)根据测得数据作了初步处理,得相关统计量的值如下表:()61ln ln i i i x y =⋅∑()61ln i i x =∑()61ln i i y =∑()621ln i i x =∑75.3 24.6 18.3 101.4根据所给统计量,求y 关于x 的回归方程.附:对于样本,其回归直线的斜率和截距的最小二乘法估计公式分别(),(1,2,,6)i i v u i = u b v a =⋅+为:,,. ()()()1122211ˆn niii i i i nniii i v v u u v u nv ubv v vnv ====---==--∑∑∑∑ˆˆa u bv=- 2.7183e ≈3.为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数: 温度(单位:x )C21 23 24 27 29 32死亡数(单y 位:株)61120275777经计算:,,,,611266i i x x ===∑611336i i y y ===∑61(557i i i x x y y =--=∑621()84i i x x =-=∑,,,其中,分别为试验数据中的温度和死621()3930ii y y =-=∑621()23.6ˆ64i i y y=-=∑8.0653167e ≈i x i y 亡株数,.1,2,3,4,5,6i =(1)若用线性回归模型,求关于的回归方程(结果精确到0.1);y x ^^^y b x a =+(2)若用非线性回归模型求得关于的回归方程,且相关指数为. y x 0.23030.06ˆx ye =20.9522R =(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;2R (ii )用拟合效果好的模型预测温度为时该紫甘薯死亡株数(结果取整数).35C 附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘11(,)u v 22(,)u v (,)n n u v ˆˆv u αβ∧=+估计分别为:,;相关指数为:.121()(()niii ni i u u v v u u β∧==--=-∑∑a v u β∧∧=-22121()1()niii niii v v R v v ∧==-=--∑∑考法三 独立性检验1.为大力提倡“厉行节约,反对浪费”,某市通过随机调查100名性别不同的居民是否做到“光盘”行动,得到如下列联表:做不到“光盘”行动 做到“光盘”行动男 45 10女 30 15经计算. 附表:()()()()()22 3.03n ad bc K a b c d a c b d -=≈++++()20Kk ≥0.10 0.050.0250k 2.706 3.8415.024参照附表,得到的正确结论是( )A .在犯错误的概率不超过的前提下,认为“该市居民能否做到光盘行动与性别有关” 1%‘’B .在犯错误的概率不超过的前提下,认为“该市居民能否做到光盘行动与性别无关” 1%‘’C .有以上的把握认为“该市居民能否做到光盘行动与性别有关” 90%‘’D .有以上的把握认为“该市居民能否做到光盘行动与性别无关” 90%‘’2.2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取名学生对线上教学进行调查,其中男生与女生的人数之比为,抽取的学生中男生有1009:11人对线上教学满意,女生中有名表示对线上教学不满意.3010(1)完成列联表,并回答能否有的把握认为“对线上教学是否满意与性别有关”;22⨯90%(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取名学生,再在这名学生中抽取名学552生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.附:.()()()()()22n ad bc K a b c d a c b d ⋅=++++3.“微信运动”是一个类似计步数据库的公众账号,用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人记录了他们某一天的走路步数,并将数据整理如下:步数/步0~3000 3001~6000 6001~8000 8001~10000 10000以上男性人数/人 1 2 7 15 5女性人数/人 0 3 5 9 3规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)填写下面列联表(单位:人),并根据列联表判断是否有90%的把握认为“评定类型与性别有22⨯关”;积极性 懈怠性 总计男女总计附:()20P K k ≥0.10 0.05 0.010 0.005 0.0010k 2.706 3.841 6.635 7.879 10.828,其中. ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步数在3001~6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.4.为了提高生产效益,某企业引进一批新的生产设备,为了解设备生产产品的质量情况,分别从新、旧设备所生产的产品中,各随机抽取件产品进行质量检测,所有产品质量指标值均在以内,规100(]15,45定质量指标值大于的产品为优质品,质量指标值在以内的产品为合格品.旧设备所生产的产品30(]15,30质量指标值如频率分布直方图所示,新设备所生产的产品质量指标如频数分布表所示.质量指标值 频数(]15,20 2 (]20,258(]25,30 20(]30,35 30 (]35,4025(]40,45 15合计100(1)请分别估计新、旧设备所生产的产品优质品率;(2)优质品率是衡量一台设备性能高低的重要指标,优质品率越高说明设备的性能越高.根据已知图表数据填写下面列联表(单位:件),并判断是否有的把握认为“产品质量高低与新设备有关”; 95% 非优质品 优质品 合计新设备产品旧设备产品合计(3)已知每件产品的纯利润(单位:元)与产品质量指标的关系式为.若每台新y t 2,30451,1530t y t <≤⎧=⎨<≤⎩设备每天可以生产件产品,买一台新设备需要万元,请估计至少需要生产多少天才可以收回设备100080成本.参考公式:,其中. ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++ ()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.0050.0010k 2.072 2.706 3.841 5.024 6.635 7.87910.828如何学好数学1.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。

2022版高考数学一轮复习第10章第3讲线性回归与独立性检验训练含解析

2022版高考数学一轮复习第10章第3讲线性回归与独立性检验训练含解析

第十章 第3讲[A 级 基础达标]1.若回归直线方程为y ^=3-2x ,则变量x 增加一个单位,y ( ) A .平均增加3个单位 B .平均增加2个单位 C .平均减少3个单位 D .平均减少2个单位【答案】D2.(2020年南昌模拟)已知一组样本数据点(x 1,y 1),(x 2,y 2),(x 3,y 3),…,(x 6,y 6),用最小二乘法得到其线性回归方程为y ^=-2x +4,若数据x 1,x 2,x 3,…,x 6的平均数为1,则y 1+y 2+y 3+…+y 6等于( )A .10B .12C .13D .14【答案】B3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0C .12D .1【答案】D4.如果根据是否爱吃零食与性别的列联表得到K 2≈5.852,所以判断是否爱吃零食与性别有关,那么这种判断犯错的可能性不超过( )A .2.5%B .0.5%C .1%D .0.1%P (K 2≥k )0.100 0.050 0.025 0.010 0.001 k2.7063.8415.0246.63510.8285.某考察团对10个城市的职工人均工资x (千元)与居民人均消费y (千元)进行调查统计,得出y 与x 具有线性相关关系,且回归方程为y ^=0.6x +1.2.若某城市职工人均工资为5千元,估计该城市人均消费额占人均工资收入的百分比为( )A .66%B .67%C .79%D .84%【答案】D【解析】因为y 与x 具有线性相关关系,满足回归方程y ^=0.6x +1.2,该城市居民人均工资为x =5,所以可以估计该城市的职工人均消费额y =0.6×5+1.2=4.2(元),所以可以估计该城市人均消费额占人均工资收入的百分比为4.25=84%.6.(2020年成都模拟)某公司一种新产品的销售额y 与宣传费用x 之间的关系如表:已知销售额y 与宣传费用x 具有线性相关关系,并求得其回归直线方程为y ^=b ^x +9,则b ^的值为________.【答案】6.5【解析】由表中数据,得x =0+1+2+3+45=2,y =10+15+20+30+355=1105=22,又回归直线方程y ^=b ^x +9过样本中心点(2,22),得22=2b ^+9,解得b ^=132=6.5.7.(2020年滦南期末)2017年3月15日,某市物价部门对本市的5家商场的某种商品的一天销售量及其价格进行调查,5家商场的售价x (元)和销售量y (件)之间的一组数据如下表所示:y =-3.2x +a ,则a =________.【答案】40 【解析】根据题意:x -=9+9.5+10+10.5+115=10,y -=11+10+8+6+55=8,因为y -=-3.2x +a ,所以a =3.2×10+8=40.8.(2020年六安期末)“埃博拉病毒”在西非的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ).【答案】95%【解析】由题中数据可得:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100(10×30-40×20)250×50×30×70=10021≈4.762>3.841,根据临界值表可得:犯错误的概率不超过0.05.即有95%的把握认为“小动物是否感染与服用疫苗有关”.故答案为95%.9.(2020年南阳月考)2021年将在日本东京举办第32届夏季奥林匹克运动会,简称为“奥运会”.为了解不同年龄的人对“奥运会”的关注程度,某机构随机抽取了年龄在20~70岁之间的100人进行调查.经统计,“年轻人”与“中老年人”的人数之比为2∶3.(1)的把握认为是否关注“奥运会”与年龄段有关;(2)现采用分层抽样的方法从中老年人中选取6人进行问卷调查.若再从这6人中选取2人进行面对面询问,求事件“选取的2人中至少有1人关注奥运会”的概率.K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .解:(1)“年轻人”共有100×25=40(人),“中老年人”共有100×35=60(人),由此填写列联表如下:根据表中数据,计算K 2=100(30×40-20×10)240×60×50×50=503≈16.67>10.828,所以有99.9%的把握认为是否关注“奥运会”与年龄段有关. (2)用分层抽样法选取6位中老年人中有4人不关注,2人关注, 则所求概率为p =1-C 24C 26=35.10.(2020年湖南雅礼中学月考)近年来,国资委党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某扶贫小组为更好地执行精准扶贫政策,为某扶贫县制定了具体的扶贫政策,并对此贫困县从2015年到2019年的居民家庭人均纯收入(单位:百元)进行统计,数据如下表:(1)求人均纯收入y (2)是否有99.9%的把握认为村民的年龄与对扶贫政策的满意度具有相关性?参考公式:回归直线y ^=a +bx 中斜率和截距的最小二乘估计公式分别为:b ^=∑n =1ix i y i -n x - y-∑n =1ix 2i -n x -2=∑n =1i(x i -x -)(y i -y -)∑n =1i(x i -x -)2,a =y --b x -,K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .临界值表:解:(1)依题意:t =15×(1+2+3+4+5)=3,y =15×(5.8+6.6+7.2+8.8+9.6)=7.6,故∑i =15(t i -t )2=4+1+0+1+4=10,∑i =15(t i -t )(y i -y )=(-2)×(-1.8)+(-1)×(-1)+0×(-0.4)+1×1.2+2×2=9.8,b =∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2=0.98,所以a =y -b t =7.6-0.98×3=4.66. 所以y ^=0.98t +4.66. (2)依题意,完善表格如下:计算得K 2k 2=300×(150×50-50×50)2200×100×200×100=300×5 000×5 000200×100×200×100=18.75>10.828,故有99.9%的把握认为村民的年龄与扶贫政策的满意度具有相关性.[B 级 能力提升]11.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b ^x +a ,其中b ^=0.76,a =y -b ^x .据此估计,该社区一户年收入为15万元的家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元【答案】B【解析】由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,所以a ^=8-0.76×10=0.4,所以当x =15时,y ^=0.76×15+0.4=11.8(万元).12.(2020年九江期末)针对“中学生追星问题”,某校团委对“中学生性别和追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的13,女生追星的人数占女生人数的23,若有95%的把握认为中学生追星与性别有关,则男生至少有______人.参考数据及公式如下:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .【答案】30【解析】设男生人数为x ,由题意得列联表如下:计算K 2=32x ·⎝⎛⎭⎫13x ·16x -23x ·13x 2x ·12x ·23x ·56x=320x >3.841,解得x >20×3.8413. 又x =6k ,k ∈N *,所以x min =30,即有95%的把握认为中学生追星与性别有关时,男生至少有30人.13.(一题两空)(2020年吉林模拟)2019年末至2020年初,某在线教育公司为了适应线上教学的快速发展,近5个月加大了对该公司的网上教学使用软件的研发投入,过去5个月资金投入量x (单位:百万元)和收益y (单位:百万元)的数据如下表:若y 与x 的线性回归方程为y =3x +a ,则a =________,资金投入量为16百万元时,该月收益的预报值为________百万元.【答案】8.04 56.04 【解析】由题意得x =2+4+8+10+125=7.2,y -=14.21+20.31+31.18+37.83+44.675=29.64,所以a =y --b ^x =29.64-3×7.2=8.04.所以y 关于x 的回归方程为y ^=3x +8.04.把x =16代入回归方程得y ^=3×16+8.04=56.04,故预报值为56.04百万元.14.新型冠状病毒爆发以来,各地高度重视新型冠状病毒感染的肺炎的防控和卫生健康监督检查工作,务必将督导检查落实到位.某地对8个工厂的生产车间进行了“原料采购加工标准”和“卫生标准”的检查和评分,其评分情况如下表所示:(1)已知x 与y 之间具有线性相关关系,求y 关于x 的线性回归方程;(2)现从8个被检查的工厂中任意抽取两个组成一组,若两个工厂的“原料采购加工标准”和“卫生标准”的评分均超过80分,则组成“对比标兵工厂”,求该组被评为“对比标兵工厂”的概率.参考公式:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y --b ^x ;参考数据:∑i =18x i y i =53 844,∑i =18x 2i =55 656.解:(1)由题意,得x =18×(100+95+93+83+82+75+70+62)=82.5,y =18×(86.5+83.5+83.5+81.5+80.5+79.5+77.5+76.5)=81.125,所以b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2=53 844-8×82.5×81.12555 656-8×82.52=14.所以a ^=y -b ^x =81.125-14×82.5=60.5.所以y 关于x 的线性回归方程为y ^=14x +60.5.(2)从8个中任取2个,共有C 28=28个基本事件.“原料采购加工标准”和“卫生标准”的评分均超过80分有C 25=10种情况,故所求的概率为p =1028=514.15.(2020年新课标Ⅱ)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑i =120x i =60,∑i =120y i =1 200,∑i =120(x i -x)2=80,∑i =120 (y i -y -)2=9 000,∑i =120(x i -x )(y i -y -)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =∑i =1n(x i -x )(y i -y -)∑i =1n(x i -x )2∑i =1n(y i -y -)2,2≈1.414.解:(1)已知∑i =120y i =1 200,所以20个样区野生动物数量的平均数为120∑i =120y i =60,所以该地区这种野生动物数量的估计值为60×200=12 000. (2)因为∑i =120(x i -x)2=80,∑i =120(y i -y)2=9 000,∑i =120(x i -x )(y i -y )=800,所以r =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2∑i =1n(y i -y )2=80080×9 000=8006002=223≈0.94.(3)更合理的抽样方法是分层抽样,根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.[C 级 创新突破]16.(2020年日照期末)某种疾病可分为Ⅰ、Ⅱ两种类型,为了解该疾病类型与性别的关系,在某地区随机抽取了患该疾病的病人进行调查,其中男性人数为z ,女性人数为2z ,男性患Ⅰ型病的人数占男性病人的56,女性患Ⅰ型病的人数占女性病人的13.与“性别”有关,则男性患者至少有多少人?(2)某药品研发公司欲安排甲、乙两个研发团队来研发此疾病的治疗药物,两个团队各至多安排2个接种周期进行试验.每人每次接种花费m (m >0)元.甲团队研发的药物每次接种后产生抗体的概率为p ,根据以往试验统计,甲团队平均花费为-2mp 2+6m ;乙团队研发的药物每次接种后产生抗体的概率为q ,每个周期必须完成3次接种,若一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个接种周期.假设两个研发团队每次接种后产生抗体与否均相互独立.若p =2q ,从两个团队试验的平均花费考虑,该公司应选择哪个团队进行药品研发? 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解:(1)根据题意填写列联表如下;则k 2=3z ⎝⎛⎭⎫5z 6·4z 3-z 6·2z 32z ·2z ·3z 2·3z 2=2z 3>7.879,解得z >11.818 5,由z 6∈N *,且z3∈N *,所以z 的最小值为12,即男性患者至少有12人. (2)设甲研发试验品花费为X ,则EX =-2mp 2+6m . 设乙研发试验品花费为Y ,则Y 的可能取值为3m,6m , 所以P (Y =3m )=C 23·q 2(1-q )+q 3=-2q 3+3q 2, P (Y =6m )=1+2q 3-3q 2.11 所以EY =3m ·(-2q 3+3q 2)+6m ·(1+2q 3-3q 2)=6mq 3-9mq 2+6m .因为p =2q ,所以EY -EX =6mq 3-9mq 2+6m +2mp 2-6m =6mq 3-9mq 2+2mp 2=6mq 3-mq 2=mq 2(6q -1).①当0<q <16时,6q -1<0,因为m >0,所以mq 2(6q -1)<0,所以EX >EY ,乙团队试验的平均花费较少,所以选择乙团队进行研发;②当16<q <1时,6q -1>0,因为m >0,所以mq 2(6q -1)>0,所以EX <EY ,甲团队试验的平均花费较少,所以选择甲团队进行研发;③当q =16时,mq 2(6q -1)=0,所以EX =EY ,甲团队试验的平均花费和乙团队试验的平均费用相同,从两个团队试验的平均花费考虑,该公司选择甲团队或乙团队进行研发均可.。

线性回归方程题型

线性回归方程题型

欢迎阅读线性回归方程
1.【2014高考全国2第19题】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

b
2.【2016年全国3】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1–7分别对应年份2008–2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
欢迎阅读
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:7
1
9.32 i
i
y =
=
∑,7
1
40.17
i i
i
t y =
=

0.55
=,≈2.646.
3.【2015全国1】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x
8
(I关于年宣传费x
(II
(III)已知这种产品的年利润z与x,y的关系为0.2
z y x
=-,根据(II)的结果回答下列问题:
(i)当年宣传费x=49时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?。

线性回归方程——非线性方程转化为线性方程

线性回归方程——非线性方程转化为线性方程

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载线性回归方程——非线性方程转化为线性方程地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容线性回归方程——非线性方程转化为线性方程例1.(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z (单位:千元)的影响,对近8年的宣传费xi和年销售量yii=1,2,⋯,8数据作了初步处理,得到下面的散点图及一些统计量的值.表中wi=xi ,w =18 i=18wi.(I)根据散点图判断,y=a+bx与y=c+dx,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;(III)已知这种产品的年利润z与x,y的关系为z=0.2y-x ,根据(II)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为:β=i=1n(ui-u)(vi-v)i=1n(ui-u)2,α=v-βu.【答案】(Ⅰ)y=c+dx适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)y=100.6+68x;(Ⅲ)(i)答案见解析;(ii)46.24千元.【解析】(I)由散点图可以判断,y=c+dx适宜作为年销售量y关于年宣传费x的回归方程类型.(II)令w=x,先建立y关于w的线性回归方程,由于d=i=18(wi-w)(yi-y)i=18(wi-w)2=108.81.6=68,∴c=y-dw=563−68×6.8=100.6,∴y关于w的线性回归方程为y=100.6+68w,因此y关于x的回归方程为y=100.6+68x.(III)(ⅰ)由(II)知,当x=49时,年销售量y的预报值y=100.6+6849=576.6,年利润z的预报值为z=576.6×0.2-49=66.32.(ⅱ)根据(II)的结果知,年利润z的预报值z=0.2(100.6+68x)-x=-x+13.6x+20.12,所以当x=13.62=6.8,即x=46.24时,z取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.例2.某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元。

(完整版)线性回归方程必练题(强烈推荐)

(完整版)线性回归方程必练题(强烈推荐)

《线性回归方程》强化训练1、(门槛题) 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x (个) 23 4 5 加工的时间y (小时)2.5344.5(Ⅰ)在给定的坐标系中画出表中数据的散点图;(Ⅱ)求出y 关于x 的线性回归方程ˆˆˆybx a =+,并在坐标系中画出回归直线; (Ⅲ)试预测加工10个零件需要多少时间?附录:参考公式:()()()121ˆniii nii x x y y bx x ==--=-∑∑ ,ˆˆay bx =-.2、(泸州市2017届高三一诊第20题) 某班主任为了解本班学生的数学和物理考试成绩间关系,在某次阶段性测试中,他在全班学生中随机抽取一个容量(Ⅱ)建立y 与x 的线性回归方程(系数精确到0.01),并预测该班数学分数为88的学生的物理分数.附录:参考数据:51450i i y ==∑,5141880i i i x y ==∑ 4.90=;参考公式:相关系数()()niix x y y r --=∑; 回归直线的方程是ˆˆˆybx a =+, 其中对应的回归估计值:()()()121ˆniii ni i x x y y bx x==--=-∑∑ ,ˆˆay bx =- 3.87=.3、(2016年全国新课标高考Ⅲ卷第18题) 下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:,2.646≈. 参考公式:相关系数()()nii y y r t t --=∑,回归方程中斜率和截距的最小二乘估计公式分别为:719.32ii y==∑7140.17i i i t y ==∑0.55=y a bt =+)))121()()()nii i nii tt y y b tt ==--=-∑∑),=.a y bt -)))4、(2015年全国新课标高考Ⅰ卷第19题)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =L 数据作了初步处理,得到下面的散点图及一些统计量的值.x ry u r w u r821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()iii w w yy =--∑46.6 563 6.8289.8 1.6 1469 108.8表中i i w x =,w u r =811.8i i w =∑(Ⅰ)根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费49x =时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x 为何值时,年利润的预报值最大? 附:对于一组数据11(,)u v ,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为:µ121()()=()niii ni i u u v v u u β==---∑∑,µµ=v u αβ-.。

高考数学三轮冲刺专题回归分析及独立性检验练习(含解析)(2021年整理)

高考数学三轮冲刺专题回归分析及独立性检验练习(含解析)(2021年整理)

回归分析及独立性检验一、选择题(本大题共12小题,共60分)1。

设某中学的高中女生体重单位:与身高单位:具有线性相关关系,根据一组样本数据2,3,,,用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是A。

y与x具有正线性相关关系B。

回归直线过样本的中心点C. 若该中学某高中女生身高增加1cm,则其体重约增加D。

若该中学某高中女生身高为160cm,则可断定其体重必为(正确答案)D【分析】本题考查了回归分析与线性回归方程的应用问题,是基础题目根据回归分析与线性回归方程的意义,对选项中的命题进行分析、判断正误即可.【解答】解:由于线性回归方程中x的系数为,因此y与x具有正的线性相关关系,A正确;由线性回归方程必过样本中心点,因此B正确;由线性回归方程中系数的意义知,x每增加1cm,其体重约增加,C正确;当某女生的身高为160cm时,其体重估计值是,而不是具体值,因此D错误.故选:D.2. 为了研究某班学生的脚长单位:厘米和身高单位:厘米的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为,已知,,,该班某学生的脚长为24,据此估计其身高为A。

160 B. 163 C。

166 D. 170(正确答案)C解:由线性回归方程为,则,,则数据的样本中心点,由回归直线方程样本中心点,则,回归直线方程为,当时,,则估计其身高为166,故选C.由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得,将代入回归直线方程即可估计其身高.本题考查回归直线方程的求法及回归直线方程的应用,考查计算能力,属于基础题.3. 为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下收入x 万元支出y 万元据上表得回归直线方程,其中,,据此估计,该社区一户收入为15万元家庭年支出为A. 万元B. 万元C. 万元 D。

万元(正确答案)B解:由题意可得,,代入回归方程可得,回归方程为,把代入方程可得,故选:B.由题意可得和,可得回归方程,把代入方程求得y值即可.本题考查线性回归方程,涉及平均值的计算,属基础题.4. 下列说法错误的是A。

竞赛班高考数学练习专题(9)--线性回归分析

竞赛班高考数学练习专题(9)--线性回归分析

竞赛班高考数学练习(9)——线性回归分析1.在两个变量的回归分析中,作散点图是为了( )A. 直接求出回归直线方程B. 直接求出回归方程C. 根据经验选定回归方程的类型D. 估计回归方程的参数 2.下列四个结论:①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;③线性相关系数|r|越大,两个变量的线性相关性越弱;反之,线性相关性越强;④在回归方程0.52y x =+中,当解释变量x 每增加一个单位时,预报变量y 增加0.5个单位. 其中正确的结论是( ) A. ①② B. ①④C. ②③D. ②④3.某同学在只听课不做作业的情况下,数学总不及格.后来他终于下定决心要改变这一切,他以一个月为周5一个月内每天做题数x 5 8 6 4 7 数学月考成绩y8287848186ˆˆ1.6yx a =+题数为( ) A. 8 B. 9 C. 10 D. 11 4.下列关于回归分析的说法中错误的有( )个(1).残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高.(2).回归直线一定过样本中心(),x y 。

(3)两个模型中残差平方和越小的模型拟合的效果越好。

(4) 甲、乙两个模型的2R 分别约为0.88和0.80,则模型乙的拟合效果更好。

A. 4 B. 3 C. 2 D. 15.两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下,其中拟合效果最好的模型是( )A. 模型3的相关指数2R 为0.50B. 模型2的相关指数2R 为0.80C. 模型1的相关指数2R 为0.98D. 模型4的相关指数2R 为0.256.相关变量x ,y 的散点图如图所示,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程11y b x a =+,相关系数为1r ;方案二:剔除点(10,21),根据剩下数据得到线性回归直线方程:22y b x a =+,相关系数为2r .则( ) A. 1201r r <<< B. 2101r r <<< C. 1210r r -<<<D. 2110r r -<<<7(补).2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7yx =+,其相关指数2R 0.9817=,给出下列结论,其中正确的个数是( D )①公共图书馆业机构数与年份的正相关性较强 ②公共图书馆业机构数平均每年增加13.743个 ③可预测 2019 年公共图书馆业机构数约为3192个 A. 0 B. 1 C. 2 D. 37.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01)(若0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如表关系:周光照量X (单位:小时) 3050X <<5070X ≤≤70X >光照控制仪最多可运行台数321若某台光照控制仪运行,则该台光照控制仪周利润为元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附:相关系数12211()()()()niii nniii i x x yy r x x yy ===--=--∑∑∑,参考数据:51()()6i i i x x y y =--=∑,521()25ii x x =-=∑,521()2,0.30.55ij y y =-=≈∑,0.90.95≈8.东莞市公交公司为了方便广大市民出行,科学规划公交车辆的投放,计划在某个人员密集流动地段增设一个起点站,为了研究车辆发车的间隔时间x 与乘客等候人数y 之间的关系,选取一天中的六个不同的调查小组先从这组数据中选取其中的组数据求得线性回归方程,再用剩下的组数据进行检验,检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数ˆy,再求ˆy 与实际等候人数y 的差,若两组差值的绝对值均不超过1,则称所求的回归方程是“理想回归方程”.(1)若选取的是前4组数据,求y 关于x 的线性回归方程ˆy bxa =+; (2)判断(1)中的方程是否是“理想回归方程”:(3)为了使等候的乘客不超过38人,试用(1)中方程估计间隔时间最多可以设置为多少分钟? 参考公式:用最小二乘法求线性回归方程˙ˆˆˆy bx a =+的系数公式:()()()1122211ˆˆˆ,n niii ii i nnii i ix x y y x y n x ybay bx x x xnx ====---••===---∑∑∑∑,9.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局和某医院抄录了1至该兴趣小组确定的研究方案是先从这组数据中选取组,用剩下的组数据求线性回归方程,再用被选出的2组数据进行检验.(1)若选取的是1月和6月的两组数据,请根据2月至5月的数据求出y 关x 于的线性回归方程;(2)若由线性回归方程得到的估计数,与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的.试问:该小组所得的线性回归方程是否理想?附;()()()1122211=nni i i ii i nni i i i x x y y x y nxyb x x x nx a y bx====⎧---⎪⎪=⎪⎨--⎪⎪=-⎪⎩∑∑∑∑10.某羽绒服卖场为了解气温对营业额的影响,随机记录了该店3月份上旬中某5天的日营业额y(单元:千元)与该地当日最低气温x(单位:°C)的数据,如表:(1)求y 关于x 的回归直线方程ˆˆˆybx a =+; (2)设该地3月份的日最低气温2~(,)X N μσ,其中μ近似为样本平均数,2σ近似为样本方差,求()0.6 3.8P X <<参考公式:()()()1122211ˆnni iiii i nniii i x ynxyx x yy bxnx x x ====---==--∑∑∑∑,ˆˆay bx =- 计算参考值:22222258911295,2125108898117287++++=⨯+⨯+⨯+⨯+⨯=.3.2,()0.6827,(22)0.9545P X P X μσμσμσμσ≈-<<+=-<<+=.竞赛班高考数学练习(9)——参考答案更正第7题第(2)问答案选择题1--6 CDC CCD解答题7.【详解】(1)由已知数据可得2456855x++++==,3444545y++++==所以相关系数()()0.95ni ix x y yr--===≈∑因为0.75r>,所以可用线性回归模型拟合y与x的关系。

线性回归方程[高考数学总复习][高中数学课时训]

线性回归方程[高考数学总复习][高中数学课时训]

线性回归方程1.下列关系中,是相关关系的为 (填序号).①学生的学习态度与学习成绩之间的关系; ②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系; ④家庭的经济条件与学生的学习成绩之间的关系. 答案 ①②2.为了考察两个变量x 、y 之间的线性相关关系,甲、乙两同学各自独立地做10次和15次试验,并利用最小二乘法求得回归直线分别为l 1和l 2.已知在两人的试验中发现变量x 的观测数据的平均值恰好相等,都为s ,变量y 的观测数据的平均值也恰好相等,都为t ,那么下列说法中正确的是 (填序号). ①直线l 1,l 2有交点(s ,t )②直线l 1,l 2相交,但是交点未必是(s ,t ) ③直线l 1,l 2由于斜率相等,所以必定平行 ④直线l 1,l 2必定重合 答案 ①3.下列有关线性回归的说法,正确的是 (填序号). ①相关关系的两个变量不一定是因果关系 ②散点图能直观地反映数据的相关程度③回归直线最能代表线性相关的两个变量之间的关系 ④任一组数据都有回归直线方程 答案 ①②③ 4.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法; ②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线yˆ=b ˆx +a ˆ及回归系数b ˆ,可以估计和预测变量的取值和变化趋势. 其中正确命题的序号是 . 答案 ①②③5.已知回归方程为y ˆ=0.50x -0.81,则x =25时,y ˆ的估计值为 . 答案 11.69例1 下面是水稻产量与施化肥量的一组观测数据: 施化肥量 15 20 25 30 35 40 45 水稻产量320 330 360 410 460 470 480(1)将上述数据制成散点图;(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而基础自测增长吗?解 (1)散点图如下:(2)从图中可以发现施化肥量与水稻产量具有线性相关关系,当施化肥量由小到大变化时,水稻产量由小变大,图中的数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系,但水稻产量只是在一定范围内随着化 肥施用量的增加而增长.例2 (14分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:(1)判断家庭平均收入与月平均生活支出是否相关? (2)若二者线性相关,求回归直线方程. 解 (1)作出散点图:5分观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系. 7分(2)x =101(0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74, y =101(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42, 9分bˆ=∑∑==-∙-ni ini i i x n xyx n y x 1221≈0.813 6,a ˆ=1.42-1.74×0.813 6≈0.004 3, 13分∴回归方程yˆ=0.813 6x +0.004 3.14分例3 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨)标准煤的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程yˆ=b ˆx +a ˆ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解 (1)散点图如下图:(2)x =46543+++=4.5,y =45.4435.2+++=3.5 ∑=41i ii yx =3×2.5+4×3+4×5+6×4.5=66.5.∑=412i ix=32+42+52+62=86∴bˆ=24124144x x yx yx i i i ii -∙-∑∑===25.44865.45.345.66⨯-⨯⨯-=0.7aˆ =y -b ˆx =3.5-0.7×4.5=0.35. ∴所求的线性回归方程为y ˆ=0.7x +0.35. (3)现在生产100吨甲产品用煤 y =0.7×100+0.35=70.35,∴降低90-70.35=19.65(吨)标准煤.1.科研人员为了全面掌握棉花新品种的生产情况,查看了气象局对该地区年降雨量与年平均气温的统计数据(单位分别是mm,℃),并作了统计.(1)试画出散点图;(2)判断两个变量是否具有相关关系. 解 (1)作出散点图如图所示,(2)由散点图可知,各点并不在一条直线附近,所以两个变量是非线性相关关系.2.在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:由资料看y 与x 呈线性相关,试求回归方程. 解 x =30,y =5.1283.1120.850.767.66++++=93.6.bˆ=25125155x xyx yx i ii ii -∙-∑∑==≈0.880 9.aˆ=y -b ˆx =93.6-0.880 9×30=67.173. ∴回归方程为y ˆ=0.880 9x +67.173.3.某企业上半年产品产量与单位成本资料如下:(1)求出线性回归方程;(2)指出产量每增加1 000件时,单位成本平均变动多少? (3)假定产量为6 000件时,单位成本为多少元? 解 (1)n =6,∑=61i ix=21,∑=61i iy=426,x =3.5,y =71,∑=612i i x =79,∑=61i ii yx =1 481,bˆ=26126166x xyx yx i ii ii -∙-∑∑===25.3679715.364811⨯-⨯⨯-=-1.82.aˆ=y -b ˆx =71+1.82×3.5=77.37. 回归方程为yˆ=a ˆ+b ˆx =77.37-1.82x . (2)因为单位成本平均变动bˆ=-1.82<0,且产量x 的计量单位是千件,所以根据回归系数b 的意义有: 产量每增加一个单位即1 000件时,单位成本平均减少1.82元. (3)当产量为6 000件时,即x =6,代入回归方程:yˆ=77.37-1.82×6=66.45(元) 当产量为6 000件时,单位成本为66.45元.一、填空题1.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形对应顺序是.答案 a ,c ,b2.回归方程yˆ=1.5x -15,则下列说法正确的有 个. ①y =1.5x -15 ②15是回归系数a ③1.5是回归系数a ④x =10时,y =0 答案 13.(2009.湛江模拟)某地区调查了2~9岁儿童的身高,由此建立的身高y (cm)与年龄x (岁)的回归模型为yˆ=8.25x +60.13,下列叙述正确的是 . ①该地区一个10岁儿童的身高为142.63 cm ②该地区2~9岁的儿童每年身高约增加8.25 cm③该地区9岁儿童的平均身高是134.38 cm④利用这个模型可以准确地预算该地区每个2~9岁儿童的身高 答案 ②4.三点(3,10),(7,20),(11,24)的回归方程是 .答案 yˆ=1.75x +5.75 5.某人对一地区人均工资x (千元)与该地区人均消费y (千元)进行统计调查,y 与x 有相关关系,得到回归直线方程yˆ=0.66x +1.562.若该地区的人均消费水平为7.675千元,估计该地区的人均消费额占人均工资收入的百分比约为 . 答案 83%6.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值,计算,得∑=81i ix=52,∑=81i iy=228,∑=812i i x =478,∑=81i ii yx =1 849,则其线性回归方程为 .答案 yˆ=11.47+2.62x 7.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系.其中,具有相关关系的是 . 答案 ①③④8.已知关于某设备的使用年限x 与所支出的维修费用y (万元),有如下统计资料:若y 对x 呈线性相关关系,则回归直线方程y ˆ=b ˆx +a ˆ表示的直线一定过定点 . 答案 (4,5) 二、解答题9.期中考试结束后,记录了5名同学的数学和物理成绩,如下表:(1)数学成绩和物理成绩具有相关关系吗?(2)请你画出两科成绩的散点图,结合散点图,认识(1)的结论的特点.解 (1)数学成绩和物理成绩具有相关关系.(2)以x 轴表示数学成绩,y 轴表示物理成绩,可得相应的散点图如下:由散点图可以看出,物理成绩和数学成绩对应的点不分散,大致分布在一条直线附近. 10.(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线. 解 (1)数据对应的散点图如图所示:(2)x =109,y =23.2,∑=512i ix=60 975,∑=51i i iy x=12 952,bˆ=25125155x xyx yx i ii ii -∙-∑∑==≈0.196 2aˆ=y -b ˆx ≈1.814 2 ∴所求回归直线方程为yˆ=0.196 2x +1.814 2. 11.某公司利润y 与销售总额x (单位:千万元)之间有如下对应数据:(1)画出散点图; (2)求回归直线方程;(3)估计销售总额为24千万元时的利润. 解 (1)散点图如图所示:(2)x =71(10+15+17+20+25+28+32)=21, y =71(1+1.3+1.8+2+2.6+2.7+3.3)=2.1, ∑=712i ix=102+152+172+202+252+282+322=3 447,∑=71i i iy x=10×1+15×1.3+17×1.8+20×2+25×2.6+28×2.7+32×3.3=346.3,bˆ=27127177x xyx yx i ii ii -∙-∑∑===221744731.22173.346⨯-⨯⨯-≈0.104,aˆ=y -b ˆx =2.1-0.104×21=-0.084, ∴yˆ=0.104x -0.084. (3)把x =24(千万元)代入方程得, yˆ=2.412(千万元). ∴估计销售总额为24千万元时,利润为2.412千万元.12.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:(1)画出散点图; (2)求回归直线方程;(3)试预测广告费支出为10百万元时,销售额多大? 解 (1)根据表中所列数据可得散点图如下:(2)列出下表,并用科学计算器进行有关计算:因此,x =525=5,y =5250=50, ∑=512i i x =145,∑=512i i y =13 500,∑=51i i iy x=1 380.于是可得:bˆ=25125155x xyx yx i ii ii -∙-∑∑===55514550553801⨯⨯-⨯⨯-=6.5;aˆ=y -b ˆx =50-6.5×5=17.5. 因此,所求回归直线方程为:yˆ=6.5x +17.5. (3)根据上面求得的回归直线方程,当广告费支出为10百万元时,y ˆ=6.5×10+17.5=82.5(百万元),即这种产品的销售收入大约为82.5百万元.。

线性回归方程

线性回归方程

线性回归方程一、解答题1.为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取20名学生的成绩进行以上的把握认为“成绩优秀与教学方式有关”?2.现从上述样本“成绩不优秀”的学生中,抽取3?人进行考核,记“成绩不优秀”的乙班人数为X,求X的分布列和期望.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.100?名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”。

:附:随机变量22()()()()()n ad bcKa b c d a c b d-=++++(其中n a b c d=+++为样本总量).参考数据2()P K k≥0.150 0.100 0.050 0.025k 2.072 2.706 3.841 5.024.2.在高二的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的22⨯列联表,并?非手机迷手机迷合计男女合计3.某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20?名学生,对他们的课外阅读时间进行问卷调查。

现在按课外阅读时间的情况将学生分成三类:A类(不参加课外阅读),B 类(参加课外阅读,但平均每周参加课外阅读的时间不超过3?小时),C类(参加课外阅读,且平均每周参加课外阅读的A类B类C类男生x 5 3女生y 3 390%的把握认为“参加课外阅读与否”与性别有关;男生女生总计不参加课外阅读参加课外阅读总计,记X为抽取的这3?名女生中A类人数和C类人数差的绝对值,求X的数学期望。

附:2 2()n ad bc k-=2()P k k≥0.10 0.05 0.01k 2.706 3.841 6.635模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1500名学生(其中男生900人,女生600 人)中,采用分层抽样的方法从中抽取n 名学生进行调查. 1.已知抽取的n 名学生中含女生20人,求n 的值及抽取到的男生人数;2.学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在1的条件下抽取到的n 名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的22⨯列联表. 请将列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说名,再从这5名学生中抽取2人了解学生对“地理”的选课意向情况,求2人中至少有1名男生的概率. 附:参考公式及数据()()()()()22n ad bc k a b c d a c b d -=++++2男性且休闲方式都是读书的概率是多少? .()()()()()2n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.6.某市春节期间7家超市的广告费支出 x (万元)和销售额y (万元)数据如下:;2.用对数回归模型拟合y 与x 的关系,可得回归方程: 12l 22ˆn yx =+,经计算得出线性回归模型和对数模型的2R 分别约为0.75和0.97,请用说明选择哪个回归模型更合适,并用此模型预测A 超市广告费支出为8万元时的销售额.参数数据及公式: 772118,42,2794,708,i i i i i x y x y x ======∑∑1221,,l ˆˆˆn 20.7ni ii nii x y n xybay bx xnx ==--==-≈-∑∑ 7.一只药用昆虫的产卵数y 与一定范围内的温度x 有关, 现收集了该种药用昆虫的6组观测数据如下表:经计算得: 1266i i x x ===∑,1336i i y y ===∑,1()()557i i i x x y y =--=∑,621()84i i x x =-=∑,621()3930i i y y =-=∑线性回归模型的残差平方和621()236.64iii y y =-=∑,8.06053167e ≈,其中,i i x y 分别为观测数据中的温度和产卵数, 1,2,3,4,5,6i =1.若用线性回归模型,求y 关于x 的回归方程ˆˆˆybx a =+ (精确到0.1); 2.若用非线性回归模型求得y 关于x 的回归方程为0.23030.06ˆxye =,且相关指数20.9522.R =①试与1中的回归模型相比,用2R 说明哪种模型的拟合效果更好.②用拟合效果好的模型预测温度为35C 时该种药用昆虫的产卵数(结果取整数). 附:一组数据()()()1122,,?,,?...,,,?n n x y x y x y 其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘估计为121()()()ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-;相关指数22121()1()niii nii y y R y y ==-=--∑∑.8.《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》第90?条规定:对不礼让行人的驾驶员处以扣3?分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计1.请利用所给数据求违章人数y 与月份之间的回归直线方程ˆˆˆybx a =+ 2.预测该路口7?月份的不“礼让斑马线”违章驾驶员人数3.交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如?参考公式: 1122211()()ˆˆˆ,()nni iiii i nni ii i x y nx y x x y y bay bx x nxx x ====---===---∑∑∑∑, 22()()()()()n ad bc K a b c d a c b d -=++++ (其中n a b c d =+++)2()P K k ≥ 0.150 0.100 0.050 0.025 0.010 0.005 0.001 k2.072 2.7063.841 5.024 6.635 7.879 10.8289.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位: t )和年利润z (单位:千元)的影响.对近8年的年宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.表中i i w x =18i i w w ==∑.1.根据散点图判断, y a bx =+与y c x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)2.根据1的判断结果及表中数据,建立y 关于x 的回归方程.3.已知这种产品的年利润z 与x ,y 的关系为0.2z y x =-.根据2的结果回答下列问题: ①年宣传费49x =时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据()11,u v ,()22,u v ,…, (),n n u v 其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121ˆnii i ni i uu v v u u β==--=-∑∑,ˆˆv u αβ=-. 10.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用x (单位:万元)和利润y (单位:十万元)之间的关系,得到下列数据:x 2 3 4 5 6 8 9 11y 1 2 3 3 4 5 681.请用相关系数r 说明y 与 x 之间是否存在线性相关关系(当0.81r >时,说明y 与 x 之间具有线性相关关系);2.根据1的判断结果,建立y 与 x 之间的回归方程,并预测当24x =时,对应的利润ˆy为多少(ˆˆˆ,,b a y 精确到0.1). 附参考公式:回归方程中ˆˆˆybx a =+中ˆb 和ˆa 最小二乘估计分别为1221ˆni ii nii x ynx y b xnx ==-=-∑∑,ˆˆay bx =-, 相关系数()()12211ni i i nniii i x ynx yr xx yy ===-=--∑∑∑参考数据: ()()88882221111241,356,8.25,6i i iiii i i i x y x xx yy ======-≈-=∑∑∑∑.11.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位: cm ).下面是检验员在一天内依次抽取的16个零件的尺寸抽取次序 1 2345 6 7 8 零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序 910111213141516零件尺寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑, ()()()16162118.518.439,8.5 2.78i i i i x x i ==-≈--=-∑∑其中i x 为抽取的第i 个零件的尺寸, 1,2,16i =。

(完整)线性回归方程高考题

(完整)线性回归方程高考题

线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 62.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 2 2.22 3 3.83 4 5.54 5 6.55 6 7.0∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图;(1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 2.5 3 4 4.5(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 306 10 10 13 16深度y(m)(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。

(完整版)高考线性回归方程总结

(完整版)高考线性回归方程总结

第二讲 线性回归方程1、相关关系:1、⎩⎨⎧<=1||1||r r 不确定关系:相关关系确定关系:函数关系2、相关系数:,其中:∑∑∑===-⋅---=ni i ni i ni iiy y x x y yx x r 12121)()(((1);(2)⎩⎨⎧<>负相关正相关0r r 相关性很弱;相关性很强;3.0||75.0||<>r r 例题1:下列两个变量具有相关关系的是( )A.正方形的体积与棱长;B.匀速行驶的车辆的行驶距离与行驶时间;C.人的身高和体重;D.人的身高与视力。

例题2:在一组样本数据的散点),,,2)(,(),,(),,(212211不全相等n n n x x x n y x y x y x ≥图中,若所有样本点都在直线上,则样本相关系数为),2,1)(,(n i y x i i =121+-=x y ( )21.21.1.1.--D C B A 例题3:是相关系数,则下列命题正确的是:r (1)时,两个变量负相关很强;(2)时,两个变量正相关]75.0,1[--∈r ]1,75.0[∈r 很强;(3)时,两个变量相关性一般;)75.0,3.0[]3.0,75.0(或--∈r (4)(4)时,两个变量相关性很弱。

1.0=r 3、散点图:初步判断两个变量的相关关系。

例题4:在画两个变量的散点图时,下列叙述正确的是( )A.预报变量在轴上,解释变量在轴上;x yB.解释变量在轴上,预报变量在轴上;x yC.可以选择两个变量中的任意一个变量在轴上;xD.可以选择两个变量中的任意一个变量在轴上;y 例题5:散点图在回归分析过程中的作用是( )A.查找个体个数B.比较个体数据的大小C.研究个体分类D.粗略判断变量是否线性相关2、线性回归方程:1、回归方程:a x b yˆˆˆ+=其中,(代入样本点的中心)2121121)()((ˆxn x yx n yx x x y yx x bn i i ni iini in i ii --=---=∑∑∑∑====x b y aˆˆ-=例题1:设是变量个样本点,直线是由这些样本),(),,(),,(2211n n y x y x y x n y x 的和l 点通过最小二乘法得到的线性回归直线(过一、二、四象限),以下结论正确的是()A.直线过点B.当为偶数时,分布在两侧的样本点的个数一定相同l ),(y x n lC.相关系数在0到1之间D.相关系数为直线的斜率的和y x 的和y x l 例题2:工人月工资(元)依劳动生产率(千元)变化的回归直线方程为y x ,下列判断正确的是( )x y9060ˆ+=A.劳动生产率为1000元时,工资为150元;B.劳动生产率提高1000元时,工资平均提高150元;C.劳动生产率提高1000元时,工资平均提高90元;D.劳动生产率为1000元时,工资为90元;例题3:设某大学的女生体重与身高具有线性相关关系,根据一组样本数)(kg y )(cm x 据,用最小二乘法建立的回归方程为,则不正确)2,1)(,(n i y x i i =71.8585.0ˆ-=x y的是( )A.与具有正的线性相关关系;B.回归直线过样本点的中心y x (y xC.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg例题4:为了了解儿子的身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高174176176176178儿子身高175175176177177则对的线性回归方程为( )A. B. C. D.y x 1-=x y 1+=x y x y 2188+=176=y 2、残差:(1)残差图:横坐标为样本编号,纵坐标为每个编号样本对应的残差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性回归方程高考题
1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:)
2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:
若有数据知y对x呈线性相关关系.求:
(1)? 填出下图表并求出线性回归方程=bx+a的回归系数,;
?(2) 估计使用10年时,维修费用是多少.
3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:
?? (1)在给定的坐标系中画出表中数据的散点图;
?? (2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;
?? (3)试预测加工10个零件需要多少时间?
(注:?
4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:
已知:.
??? (Ⅰ)画出散点图;
??? (1I)求纯利与每天销售件数之间的回归直线方程.
5、某种产品的广告费用支出与销售额之间有如下的对应数据:
(1)画出散点图:
(2)求回归直线方程;
(3)据此估计广告费用为10时,销售收入的值.
6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
??? (I)请画出上表数据的散点图;
??? (II)请根据上表提供的数据,求出y关于x的线性回归方程

(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考公式及数据:? ?,)
7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:
(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;
(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)
8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:
(1)画出散点图;
(2)试求腐蚀深度y对时间t的回归直线方程。

参考答案
一、计算题
1、解:(1)
(2)
所以:
??? 所以线性同归方程为:
(3)=100时,,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤.
2、解:(1) 填表
所以
将其代入公式得
(2)????? 线性回归方程为=1.23x+0.08
(3)????? x=10时,=1.23x+0.08=1.23×10+0.08=12.38 (万元) 答:使用10年维修费用是12.38(万元)。

3、解:(1)散点图如图
(2)由表中数据得:
回归直线如图中所示。

(3)将x=10代入回归直线方程,得(小时)
∴预测加工10个零件需要8.05小时。

4、解:(Ⅰ)散点图如图:
(Ⅱ)由散点图知,与有线性相关关系,设回归直线方程:,??? ,
??? ,??? ∵,∴.

??? 故回归直线方程为.5、解:(1)作出散点图如下图所示:
?(2)求回归直线方程.
=(2+4+5+6+8)=5,
×(30+40+60+50+70)=50,
=22+42+52+62+82=145,
=302+402+602+502+702=13500
=1380.
=6.5.
? ??因此回归直线方程为
(3)=10时,预报y的值为y=10×6.5+17.5=82.5.
6、解:(I)如下图
?????? (II)=3 2.5+43+54+6 4.5=66.5?????????????
==4.5? ,?? ==3. 5???
故线性回归方程为?????????????
(III)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7100+0.35=70.35.
故耗能减少了90-70.35=19.65(吨).
7、解:(1)(略)
(2)y=6.5x+17.5
(3)30.5(百万元)健康文档放心下载放心阅读
8、(1)略(2)y=14/37x+183/37。

相关文档
最新文档