1.2.1排列(优质公开课教案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1排列
上课班别:高二 授课教师:
教材:人教版 选修2—3
教学目标:
1、知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,
并能运用排列数公式进行计算。
2、过程与方法:能运用所学的排列知识,正确地解决的实际问题
3、情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.
教学重点:排列数公式的理解与运用;排列应用题常用的方法有直接法,间接法
教学难点:排列数公式的推导
授课类型:新授课
课时安排:1课时
教 具:多媒体
内容分析:
分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题. 只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础
分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.
排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.
教学过程: 一、复习引入:
1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++L 种不同的方法
2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有
12n N m m m =⨯⨯⨯L 种不同的方法
二、讲解新课:
问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?
图 1.2一1
把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是 ab,ac,ba,bc,ca, cb,
共有 3×2=6 种.
问题2.从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?
第 1 步,确定百位上的数字,在 1 , 2 , 3 , 4 这 4 个数字中任取 1 个,有 4 种方法; 第 2 步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的 3 个数字中去取,有 3 种方法;
第 3 步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的 2 个数字中去取,有 2 种方法.
根据分步乘法计数原理,从 1 , 2 , 3 , 4 这 4 个不同的数字中,每次取出 3 个数字,按“百”“十”“个”位的顺序排成一列,共有
4×3×2=24
种不同的排法, 因而共可得到24个不同的三位数,如图1. 2一2 所示.
由此可写出所有的三位数:
123,124, 132, 134, 142, 143,
213,214, 231, 234, 241, 243,
312,314, 321, 324, 341, 342,
412,413, 421, 423, 431, 432 。
同样,问题 2 可以归结为:
从4个不同的元素a, b, c ,d 中任取 3 个,然后按照一定的顺序排成一列,共有多少种
不同的排列方法?
所有不同排列是
abc, abd, acb, acd, adb, adc,bac, bad, bca, bcd, bda, bdc,
cab, cad, cba, cbd, cda, cdb,dab, dac, dba, dbc, dca, dcb.
共有4×3×2=24种.
树形图如下
a b c d
b c d a c d a b d a b c
2.排列的概念:
从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺....序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;
(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同
3.排列数的定义:
从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m
n A 表示 注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....
排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号m
n A 只表示排列数,而不表示具体的排列 4.排列数公式及其推导:
求3n A 可以按依次填3个空位来考虑,∴3
n A =(1)(2)n n n --,
求m n A 以按依次填m 个空位来考虑(1)(2)(1)m n A n n n n m =---+L , 排列数公式:
(1)(2)(1)m n A n n n n m =---+L
(,,m n N m n *
∈≤)
说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个
少1,最后一个因数是1n m -+,共有m 个因数;
(2)全排列:当n m =时即n 个不同元素全部取出的一个排列 全排列数:(1)(2)21!n n A n n n n =--⋅=L (叫做n 的阶乘)
另外,我们规定 0! =1 .
!()!n m
n n
n m n m A n A A n m --==-.