直线与圆的位置关系-PPT
合集下载
直线与圆的位置关系课件

研究图形性质
通过研究直线与圆的位置关系,可以进一步研究图形的性质 。例如,通过观察直线与圆的位置关系,可以研究圆的对称 性、中心性等性质。
在物理学中的应用
研究运动轨迹
在物理学中,直线与圆的位置关系可以用于研究物体的运动轨迹。例如,在研究抛物线运动时,可以 通过设定一个初始位置和初始速度,利用直线与圆的位置关系来研究物体的运动轨迹。
几何解释能够直观地描述直线与圆的 位置关系,有助于深入理解相关概念 和性质。
通过几何解释,可以更好地掌握解析 几何的基本思想和方法,提高解决实 际问题的能力。
直线与圆的位置关
04
系的代数表示
代数表示的方法
直线方程
一般式 $Ax + By + C = 0$,斜截式 $y = mx + b$,点斜式 $y - y_1 = m(x - x_1)$
圆方程
一般式 $(x - h)^2 + (y - k)^2 = r^2$,标准式 $x^2 + y^2 + Dx + Ey + F = 0$
直线与圆的位置关系判断
将圆心坐标代入直线方程,根据判别式 $Delta = b^2 - 4ac$ 的 值判断。
代数表示的应用场景
解析几何问题
在解析几何中,直线与圆的位置关系是常见的问题,通过代数表示可以方便地 解决这类问题。
实际应用
在工程、建筑、地理等领域中,经常需要用到直线与圆的位置关系来解决问题 。例如,建筑设计中的平面布局、地理测量中的数据解析等。
代数表示的重要性
简化问题
通过代数表示,可以将复 杂的问题简化为易于处理 的形式,从而方便解决问 题。
提高效率
使用代数表示可以快速地 计算和比较数据,提高解 决问题的效率。
通过研究直线与圆的位置关系,可以进一步研究图形的性质 。例如,通过观察直线与圆的位置关系,可以研究圆的对称 性、中心性等性质。
在物理学中的应用
研究运动轨迹
在物理学中,直线与圆的位置关系可以用于研究物体的运动轨迹。例如,在研究抛物线运动时,可以 通过设定一个初始位置和初始速度,利用直线与圆的位置关系来研究物体的运动轨迹。
几何解释能够直观地描述直线与圆的 位置关系,有助于深入理解相关概念 和性质。
通过几何解释,可以更好地掌握解析 几何的基本思想和方法,提高解决实 际问题的能力。
直线与圆的位置关
04
系的代数表示
代数表示的方法
直线方程
一般式 $Ax + By + C = 0$,斜截式 $y = mx + b$,点斜式 $y - y_1 = m(x - x_1)$
圆方程
一般式 $(x - h)^2 + (y - k)^2 = r^2$,标准式 $x^2 + y^2 + Dx + Ey + F = 0$
直线与圆的位置关系判断
将圆心坐标代入直线方程,根据判别式 $Delta = b^2 - 4ac$ 的 值判断。
代数表示的应用场景
解析几何问题
在解析几何中,直线与圆的位置关系是常见的问题,通过代数表示可以方便地 解决这类问题。
实际应用
在工程、建筑、地理等领域中,经常需要用到直线与圆的位置关系来解决问题 。例如,建筑设计中的平面布局、地理测量中的数据解析等。
代数表示的重要性
简化问题
通过代数表示,可以将复 杂的问题简化为易于处理 的形式,从而方便解决问 题。
提高效率
使用代数表示可以快速地 计算和比较数据,提高解 决问题的效率。
直线与圆的位置关系 课件

则Δ=(2k2+2k-4)2-4(1+k2)(k2+2k+4)=0, 解得 8k2+6k=0,即 k=0 或 k=-34, 因此,所求直线 l 的方程为 y=4 或 3x+4y-13=0.
类型 3 弦长问题 [典例 3] 设直线 y=x+2a 与圆 C:x2+y2-2ay-2 =0 相交于 A,B 两点,若|AB|=2 3,则圆 C 的面积为 ________.
解析:由圆 C:x2+y2-2ay-2=0 可得 x2+(y-a)2= |-a+2a|
a2+2,所以圆心 C(0,a),由题意可知 2 = a2+2-3, 解得 a2=2,所以圆 C 的面积为π(a2+2)=4π.
答案:4π
归纳升华 1.求弦长常用的三种方法: (1)利用圆的半径 r,圆心到直线的距离 d,弦长 l 之 间的关系 r2=d2+2l 2求弦长.
0)为圆心,以 3为半径长的圆.
设xy=k,即 y=kx. 当直线 y=kx 与圆相切时,斜率 k 取最大值和最小值.
|2k-0|
此时
= 3,
k2+1
解得 k=± 3. 故xy的最大值为 3,最小值为- 3.
(2)设 y-x=b,即 y=x+b,当直线 y=x+b 与圆相 切时,纵截距 b 取得最大值和最小值.
法二 (几何法)圆 x2+y2=100 的圆心为(0,0),半径
r=10, 则圆心到直线的距离 d= 3|2a+| 42=|a5|, ①当直线和圆相交时,d<r,即|a5|<10,-50<a<50; ②当直线和圆相切时,d=r,即|a5|=10,a=50 或 a
=-50;
③当直线和圆相离时,d>r, 即|a5|>10,a<-50 或 a>50.
直线与圆的位置关系ppt课件

新知讲解
想一想:自一点引圆的切线的条数 (1)若点在圆外,则过此点可以作几条切线? 若点在圆外,则过此点可以作圆的两条切线. (2)若点在圆上,则过此点只能作几条切线? 若点在圆上,则过此点只能作圆的一条切线,且此点是切点. (3)若点在圆内,则过此点能作几条切线? 若点在圆内,则过此点不能作圆的切线,即可以作0条. 问题:如何刻画直线与圆相切? 公共点的个数只有1个; 圆心到直线的距离等于半径.
2
因此所求切线l的方程为y=-2x或y= 1 x.
2
新知讲解
例2:已知直线l经过点 O (0,0),且与圆C:(x-1)2 + (y-3)2 =5相切,求直线l的方程.
解法2:当直线l的斜率不存在时,直线l的方程为x=0,圆
心C(1,3)到直线l的距离为1≠ 5 ,不合题意.
当直线l的斜率存在时,设直线l的方程为y=kx,即kx-y=0,
新知讲解
例2:已知直线l经过点 O (0,0),且与圆C:(x-1)2 + (y-3)2 =5相切,求直线l的方程.
思路1 直线与圆相切
直线的方程,
圆的方程
0
直线方程
思路2
d r
新知讲解
例2:已知直线l经过点 O (0,0),且与圆C:(x-1)2 + (y-3)2 =5相切,求直线l的方程.
当堂检测
1.(1)直线x+y-2=0与圆x2+y2=2的位置关系为__相__切____ (2)直线x-y-2=0与圆(x-1)2+(y-1)2=1的位置关系为___相__离___ (3)直线x+2y-1=0和圆x2-2x+y2-y+1=0的位置关系为__相__交____
2.5.1直线与圆的位置关系 课件【可编辑图片版】【共40张PPT】

题型三 有关圆的弦长问题 例 2 求直线 l:3x+y-6=0 被圆 C:x2+y2-2y-4=0 截得 的弦长.
分析:弦心距、半弦长与半径构成的直角三角形求解.
解析:法一:圆C:x2+y2-2y-4=0 可化为x2+(y-1)2=5, 其圆心坐标为(0,1),半径r= 5. 点(0,1)到直线l的距离为d=|3×03+2+11-2 6|= 210, l=2 r2-d2= 10,所以截得的弦长为 10. 法二:设直线l与圆C交于A、B两点.
所成的切点处时,DE为最短距离.此时DE的最小值为
|0+0-8| 2
-
1=(4 2-1) km.
即DE的最短距离为(4 2-1) km.
[方法技巧] 求解直线与圆的方程的实际应用问题的四个步骤
1.认真审题,明确题意. 2.建立平面直角坐标系,用方程表示直线和圆,从而在实际 问题中建立直线与圆的方程. 3.利用直线与圆的方程的有关知识求解问题. 4.把代数结果还原为实际问题的解释.
将A′(x0,-3)代入圆的方程,得x0= 51, ∴当水面下降1 m后,水面宽为2x0=2 51(m).
答案:(1)B (2)2 51
易错辨析 忽略了圆的一个隐含条件 例 4 已知圆的方程为 x2+y2+ax+2y+a2=0,一定点 A(1,2), 要使过定点 A(1,2)作圆的切线有两条,则 a 的取值范围为________.
5,则弦长=2
r2-d2=4
5.
答案:4 5
题型一 直线与圆位置关系的判断
1.直线 y=x+1 与圆 x2+y2=1 的位置关系为( )
A.相切
B.相交但直线不过圆心
C.直线过圆心 D.相离
解析:圆心(0,0)到直线y=x+1的距离d=
直线与圆的位置关系ppt课件

x 2 y 2 Dx Ey F 0
( D 2 +E 2 4 F 0)
代数方法
几何
图形性质究过程,如何通过代数方法,
研究直线与圆的位置关系?
联立两直线方程
两直线的位置关系
方程组解的情况
直线与圆的位置关系
联立直线与圆方程
方程组解的情况
求直线被圆截得的弦长.
(法1) 圆心为C (1, 2), 半径为r 2,
圆心C到直线l的距离d
| 2 2+2 |
2 5 2 8 5
2 2 5
2
弦长为2 (2) (
)
.
=
2
5
5
5
5
22 12
x2 y 2 2x 4 y 1 0
(法2)解 : 联立
2.5.1直线与圆的位置关系
春
来
江
水
绿
如
蓝
日
出
江
花
红
胜
火
问题1:把太阳看作一个圆,海天交线看作一条直线,那么在日出的过程中,
体现了直线和圆的哪些位置关系?
相交
相切
相离
探究交流
问题2:如何判断直线与圆的位置关系?
d
d
d
r
r
r
地平线
直线与圆相切
直线与圆相交
1.通过直线与圆的公共点个数判断
直线与圆有两个公共点
2.弦心距:圆心到弦所在直线的距离;
弦心距
A
O
l
C
O
3.垂径定理:垂直于弦的直径平分这条弦,且平分弦所对的两条弧。
4.求弦长:
①两点距离:联立直线与圆的方程求两交点A,B的坐标
直线与圆的位置关系- 完整版课件

直线和圆的位置关系
直线和圆有两个公共点时,叫做直线
•o
和圆相交。这时直线叫做圆的割线
l
直线和圆有唯一公共点时,叫做直
•o
线和圆相切。这时直线叫做圆的切
l 线。唯一的公共点叫切点。
M
直线和圆没有公共点时,叫做直
•o
线和圆相离。
l
直线和圆的位置关系及其判定
直线和圆的位置 相交
图形
公共点个数 圆心到直线距离 d与半径r的关系 公共点名称
变式:若AB等于6cm,
O
则∠AOB=___9_0_°__.
AC
B
2、已知⊙O的半径为2cm,圆心O到直线l 的距离为 3 cm,那么直线l与⊙O的位置关 系是_____
3、已知⊙O的直径为6cm,如果直线l上的一 点C到圆心的距离为3cm,则直线l与⊙O的位 置关系是 _____
4、等边三角形的周长为18,则它的内切圆 面积是_____
直线名称
r •Od
2
d<r
交点 割线
相切
•O rd
1 d=r
相离
•O rd
0
d>r
切点
无
切线 无
切的判定方法有:
①、直线与圆有一个公共点。
②、直线到圆心的距离等于圆的半径。 ③、切线的判定定理。
切线的判定定理:经过半径外端 并且垂直于这条半径的直线是圆 的切线。
切线的性质
1、经过切点的半径垂直于圆的切线
2、经过切点垂直于切线的直线必经
过圆心.
B
O
A
T
三角形的内切圆
1、三角形的内切圆的圆心是_______的 交点
2、三角形的内心的性质_______
直线和圆有两个公共点时,叫做直线
•o
和圆相交。这时直线叫做圆的割线
l
直线和圆有唯一公共点时,叫做直
•o
线和圆相切。这时直线叫做圆的切
l 线。唯一的公共点叫切点。
M
直线和圆没有公共点时,叫做直
•o
线和圆相离。
l
直线和圆的位置关系及其判定
直线和圆的位置 相交
图形
公共点个数 圆心到直线距离 d与半径r的关系 公共点名称
变式:若AB等于6cm,
O
则∠AOB=___9_0_°__.
AC
B
2、已知⊙O的半径为2cm,圆心O到直线l 的距离为 3 cm,那么直线l与⊙O的位置关 系是_____
3、已知⊙O的直径为6cm,如果直线l上的一 点C到圆心的距离为3cm,则直线l与⊙O的位 置关系是 _____
4、等边三角形的周长为18,则它的内切圆 面积是_____
直线名称
r •Od
2
d<r
交点 割线
相切
•O rd
1 d=r
相离
•O rd
0
d>r
切点
无
切线 无
切的判定方法有:
①、直线与圆有一个公共点。
②、直线到圆心的距离等于圆的半径。 ③、切线的判定定理。
切线的判定定理:经过半径外端 并且垂直于这条半径的直线是圆 的切线。
切线的性质
1、经过切点的半径垂直于圆的切线
2、经过切点垂直于切线的直线必经
过圆心.
B
O
A
T
三角形的内切圆
1、三角形的内切圆的圆心是_______的 交点
2、三角形的内心的性质_______
直线和圆的位置关系-PPT课件

l 这时的直线叫切线,
.
O 切点 A
切线
唯一的公共点叫切点.
直线和圆没有公共点,
.
叫做直线和圆相离 .
l
O
抢答
l .O
.O
l (1)
(2)
.O
l (3)
除了用公共点的个数来区分直 线与圆的位置关系外,能否像点和 圆的位置关系一样用数量关系的方 法来判断直线和圆的位置关系?
2.直线和圆的位置关系 d:弦心距 —— 数量特征 r :半径
那么直线与圆分别是什么位置关系? 有几个公共点?
6.5cm
O·
d=4.5cm
AM B
6.5cm
O·
d=6.5cm
N
解 (1) 圆心距 d=4.5cm< r = 6.5cm
有两个公共点;
(2)圆心距 d=6.5cm = r = 6.5cm
有一个公共点;
(3)圆心距 d=8cm>r = 6.5cm
没有公共点.
离为3cm,则⊙O与直线a的位置关系是__相__交____; 直线a与⊙O的公共点个数是_两__个____.
2. 已知⊙O的直径是11cm,点O到直线a的距
离是5.5cm,则⊙O与直线a的位置关系是 _相__切___, 直线a与⊙O的公共点个数是_一___个___.
O dr
l 直线 l 和⊙O相交
d<r
O
r
d
直线 l 和⊙O相离
l
O r
d
l
直线 l 和⊙O相切
d=r d>r
小练习
1.根据直线和圆相切的定义,经过点A用 直尺近似地画出⊙O的切线.
A
·O
2.圆的直径是13cm,如果直线与圆心的距离分别是 (1)4.5cm ; (2) 6.5cm ; (3) 8cm,
.
O 切点 A
切线
唯一的公共点叫切点.
直线和圆没有公共点,
.
叫做直线和圆相离 .
l
O
抢答
l .O
.O
l (1)
(2)
.O
l (3)
除了用公共点的个数来区分直 线与圆的位置关系外,能否像点和 圆的位置关系一样用数量关系的方 法来判断直线和圆的位置关系?
2.直线和圆的位置关系 d:弦心距 —— 数量特征 r :半径
那么直线与圆分别是什么位置关系? 有几个公共点?
6.5cm
O·
d=4.5cm
AM B
6.5cm
O·
d=6.5cm
N
解 (1) 圆心距 d=4.5cm< r = 6.5cm
有两个公共点;
(2)圆心距 d=6.5cm = r = 6.5cm
有一个公共点;
(3)圆心距 d=8cm>r = 6.5cm
没有公共点.
离为3cm,则⊙O与直线a的位置关系是__相__交____; 直线a与⊙O的公共点个数是_两__个____.
2. 已知⊙O的直径是11cm,点O到直线a的距
离是5.5cm,则⊙O与直线a的位置关系是 _相__切___, 直线a与⊙O的公共点个数是_一___个___.
O dr
l 直线 l 和⊙O相交
d<r
O
r
d
直线 l 和⊙O相离
l
O r
d
l
直线 l 和⊙O相切
d=r d>r
小练习
1.根据直线和圆相切的定义,经过点A用 直尺近似地画出⊙O的切线.
A
·O
2.圆的直径是13cm,如果直线与圆心的距离分别是 (1)4.5cm ; (2) 6.5cm ; (3) 8cm,
直线与圆的位置关系PPT教学课件

即 (x 2)2 ( y 1)2 25
P134 A2 (2)
解:AB中点为(2,5)
AB 中垂线中垂线方程为x=2 52
kBC 5 6 7
设AB 的中垂线的斜率为k
k kOA 1
BC中点为
11 2
k
,
3 2
1 7
A(-1,5) O
y
(2,5)
E 2
B(5,5)
x
C(6,-2)
OA 中垂线中垂线方程为
A. ②④ C. ①③
√ B. ①②④ D. ①②③
3、汉武帝“独尊儒术,主要是利用儒家的 :(2002年高考题)
A. “已所不欲,勿施于人”的主张 B. “民贵君轻”的思想
√C. “性善论” D. “大一统”思想
假如有一台时光倒流机,让你 回到西汉王朝,你有幸参见汉武帝 ,你会说什么?
发表高见
β
a l
A α
a
l
a
a l
面面垂直线面垂直
线面垂直
▪ 正方体中包含了丰富的线面关系
线面垂直关系——棱和侧面垂直
D1
C1
A1
B1
D A
C B
D1 A1
C1 B1
D
C
BC1 B1C
BC1 A1B1 B1C A1B1 B1
A
B1C
平面A1B1CD
BC1 BC1
B
平面A1B1CD 平面ABC1D1
y 3 1 (x 11) 27 2
联立两条直线方程
y
3
1
(x
11)
27 2
x 2
x y
2 1
圆心2,1 半径r | OB | 5
P134 A2 (2)
解:AB中点为(2,5)
AB 中垂线中垂线方程为x=2 52
kBC 5 6 7
设AB 的中垂线的斜率为k
k kOA 1
BC中点为
11 2
k
,
3 2
1 7
A(-1,5) O
y
(2,5)
E 2
B(5,5)
x
C(6,-2)
OA 中垂线中垂线方程为
A. ②④ C. ①③
√ B. ①②④ D. ①②③
3、汉武帝“独尊儒术,主要是利用儒家的 :(2002年高考题)
A. “已所不欲,勿施于人”的主张 B. “民贵君轻”的思想
√C. “性善论” D. “大一统”思想
假如有一台时光倒流机,让你 回到西汉王朝,你有幸参见汉武帝 ,你会说什么?
发表高见
β
a l
A α
a
l
a
a l
面面垂直线面垂直
线面垂直
▪ 正方体中包含了丰富的线面关系
线面垂直关系——棱和侧面垂直
D1
C1
A1
B1
D A
C B
D1 A1
C1 B1
D
C
BC1 B1C
BC1 A1B1 B1C A1B1 B1
A
B1C
平面A1B1CD
BC1 BC1
B
平面A1B1CD 平面ABC1D1
y 3 1 (x 11) 27 2
联立两条直线方程
y
3
1
(x
11)
27 2
x 2
x y
2 1
圆心2,1 半径r | OB | 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 :相交 0 : 相切 0 : 相离
142 中学
探究1:如下图,已知直线l:3x y 6 0 和圆
心为C 的圆 x2 y2 2y 4 0 ,判断直线l与圆的
位置关系;如果相交,求它们交点的坐标.
解法一:由直线l与圆的方程,得
3x y 6 0
①
x2
y2
2
y
4
0
②
142 中学
圆弧,其弧长的比为3∶1;(3)圆心到直线l:x - 2 y 0的距离为 5 , 5
求该圆的方程。
解:令圆心坐标为( a,b),半径为 r,
y
则r2 12 a2 ①
由(2)知 ACB 90 r 2 b ②
由(3)
a 2b
12 (2)2
5 5
. 1 r C
|a| |b| r
oA
Bx
a 2b 1 ③
联立①②消去 r 2b2 a2 1 ④
③④
a 2b2
2b a2
1
1
(Ⅰ)或2ab2
2b a2
1 1
(Ⅱ)
142 中学
③④
a 2b2
2b a2
1
1
(Ⅰ)或2ab2
2b a2
1 1
(Ⅱ)
b 1 a 1 r 2 b 2 解(Ⅱ)b 1,a 1,r 2 b 2
由①得
y 3x 6 ③
代入②消去y,得
x2 3x0
所以,直线 l 与圆相交,有两个公共点.
解法二:圆 x2 y2 2 y 4 0 可化为 x2 ( y 1)2 5
其圆心C 的坐标为(0,1),半径长为 5 ,点C (0,
1)到直线 l 的距离
d |3016| 5 5
32 12
10
142 中学
所以,直线l与圆相交,有两个公共点.
由 x2 3x 2 0 ,解得 判断直线与圆的位置关系常
x1 2, x2 1 用几何法(方法二),但如 把 x1 2,代x入2 方1程①,得果求y1交点0坐;标就最好用代数
方法(方法一)了
x1 把2, x2 1代入方程① ,得 y2 3.
综上所述:所求圆的方 程为 (x 1)2 (y 1)2 2
或(x 1)2 (y 1)2 2
142 中学
作业p132---习题1、2、3、4 (选做) 求动点在圆 x2+y2=1上移动 时,它与定点B(3,0)连线的中点的 轨迹方程。
142 中学
4.2 直线、圆的位置关系
142 中学
4.2.1 直线与圆的位置关系
142 中学
问题:你对下面的方程组怎样理解?
142 中学
一.知识回顾
142 中学
想一想,平面几何中,直线与圆有哪几种位置关系?
平面几何中,直线与圆有三种位置关系: (1)直线与圆相交,有两个公共点;
(2)直线与圆相切,只有一个公共点; (3)直线与圆相离,没有公共点.
x2 y2 4y 21 0所截得的弦长为 4 5,
求直线的方程.
解:将圆的方程写成标准形式,得
x2 (y 2)2 25
如图,因为直线l 被圆所截得的弦长是 4 5,所以弦心距为
52 (4 5)2 5 2
142 中学
即圆心到所求直线的距离为 5
因为直线l 过点 M (3,3) ,所以可设所求直线l
d<r
d=r
d>r
判断直线和圆的位置关系 142 中学
几何方法
代数方法
求圆心坐标及半 径r(配方法)
圆心到直线的距离d (点到直线距离公式)
(x a)2 ( y b)2 r 2 Ax By C 0
消去y(或x)
px2 qx t 0
d r : 相交 d r : 相切 d r : 相离
所以,所求直线l有两条,它们的方程分别为
y 3 1 (x 3) 或 y 3 2(x 3)
2
即 x 2y 9 0,或2x y 3 0
142 中学
求实数m,使直线x-my+3=0 和圆x²+y²-6x+5=0 (1)相交;(2)相切; (3)相离
142 中学
例3. 已知圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段
的方程为
y 3 k(x 3)
即
kx y 3k 3 0
根据点到直线的距离公式,得到圆心到直线 l 的
距离
d | 2 3k 3 | k2 1
因此
| 2 3k 3 | 5 k2 1
142 中学
即
| 3k 1| 5 5k 2
两边平方,并整理得到
2k 2 3k 2 0
解得
k 1,或k 2 2
所以,直线 l 与圆有两个交点,它们的坐标分别是
A(2,0),B(1,3)
142 中学
探究2.已知⊙C:(x-1)2+(y-2) 2=2, P(2,-1),
过P作⊙C的切线,切点为A、B。 (1)直线PA、PB的方程; (2)求过P点⊙C切线的长;
142 中学
探究3 已知过点 M (3,3)的直线被圆