matlab数学建模程序and语法

合集下载

数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解数学建模是通过数学方法对实际问题进行数学描述、分析和求解的过程。

MATLAB是一款功能强大的数学软件,广泛用于数学建模中的问题求解。

在数学建模中,常用的方法有数值求解、优化求解和符号计算。

下面将介绍MATLAB在数学建模中常用的方法和求解示例。

1.数值求解方法:数值求解是利用数值计算方法来近似求解实际问题的数学模型。

MATLAB提供了许多数值求解函数,如方程求根、解线性方程组、曲线拟合、积分和微分等。

以方程求根为例,可以使用fsolve函数来求解非线性方程。

示例:求解非线性方程sin(x)=0.5```matlabx0=0;%初始点x = fsolve(fun,x0);```2.优化求解方法:优化求解是在给定约束条件下,寻找使目标函数取得最优值的变量值。

MATLAB提供了许多优化求解函数,如线性规划、二次规划、非线性规划、整数规划等。

以线性规划为例,可以使用linprog函数来求解线性规划问题。

示例:求解线性规划问题,目标函数为max(3*x1+4*x2),约束条件为x1>=0、x2>=0和2*x1+3*x2<=6```matlabf=[-3,-4];%目标函数系数A=[2,3];%不等式约束的系数矩阵b=6;%不等式约束的右端向量lb = zeros(2,1); % 变量下界ub = []; % 变量上界x = linprog(f,A,b,[],[],lb,ub);```3.符号计算方法:符号计算是研究数学符号的计算方法,以推导或计算数学表达式为主要任务。

MATLAB提供了符号计算工具箱,可以进行符号计算、微积分、代数运算、求解方程等。

以符号计算为例,可以使用syms函数来定义符号变量,并使用solve函数求解方程。

示例:求解二次方程ax^2+bx+c=0的根。

```matlabsyms x a b c;eqn = a*x^2 + b*x + c == 0;sol = solve(eqn, x);```以上是MATLAB在数学建模中常用的方法和求解示例,通过数值求解、优化求解和符号计算等方法,MATLAB可以高效地解决各种数学建模问题。

matlab数学建模程序代码

matlab数学建模程序代码

matlab数学建模程序代码【实用版】目录1.MATLAB 数学建模概述2.MATLAB 数学建模程序代码的基本结构3.常用的 MATLAB 数学建模函数和命令4.MATLAB 数学建模程序代码的编写流程5.MATLAB 数学建模程序代码的示例正文一、MATLAB 数学建模概述MATLAB(Matrix Laboratory)是一款强大的数学软件,广泛应用于数学建模、数据分析、可视化等领域。

通过 MATLAB,用户可以方便地进行数学计算、编写程序以及绘制图表等。

在数学建模领域,MATLAB 为研究人员和工程师提供了丰富的工具箱和函数,使得数学模型的构建、求解和分析变得更加简单高效。

二、MATLAB 数学建模程序代码的基本结构MATLAB 数学建模程序代码通常分为以下几个部分:1.导入 MATLAB 库:在建模过程中,可能需要使用 MATLAB 提供的某些库或工具箱,需要在代码开头进行导入。

2.定义变量和参数:在建模过程中,需要定义一些变量和参数,用于表示模型中的各个要素。

3.建立数学模型:根据实际问题,编写相应的数学表达式或方程,构建数学模型。

4.求解模型:通过调用 MATLAB 内置函数或使用自定义函数,对数学模型进行求解。

5.分析结果:对求解结果进行分析,提取所需的信息,例如计算均值、方差等统计量。

6.可视化结果:使用 MATLAB 绘制图表,将结果以直观的形式展示出来。

三、常用的 MATLAB 数学建模函数和命令MATLAB 提供了丰富的数学建模函数和命令,例如:1.线性规划:使用`linprog`函数求解线性规划问题。

2.非线性规划:使用`fmincon`或`fsolve`函数求解非线性规划问题。

3.优化问题:使用`optimize`函数求解优化问题。

4.数据处理:使用`mean`、`std`等函数对数据进行统计分析。

5.图表绘制:使用`plot`、`scatter`等函数绘制各种图表。

数学建模案例MATLAB实用程序百例

数学建模案例MATLAB实用程序百例

数学建模案例MATLAB实用程序百例实例1:三角函数曲线(1)functionhili01h0=figure('toolbar','none',...'poition',[198********],...'name','实例01');h1=a某e('parent',h0,...'viible','off');某=-pi:0.05:pi;y=in(某);plot(某,y);某label('自变量某');ylabel('函数值Y');title('SIN()函数曲线');gridon实例2:三角函数曲线(2)functionhili02h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例02');某=-pi:0.05:pi;y=in(某)+co(某);plot(某,y,'-某r','linewidth',1);gridon某label('自变量某');ylabel('函数值Y');title('三角函数');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例3:图形的叠加functionhili03h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例03');某=-pi:0.05:pi;y1=in(某);y2=co(某);plot(某,y1,...'-某r',...某,y2,...'--og');gridon某label('自变量某');ylabel('函数值Y');title('三角函数');实例4:双y轴图形的绘制functionhili04h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例04');某=0:900;a=1000;b=0.005;y1=2某某;y2=co(b某某);[ha某e,hline1,hline2]=plotyy(某,y1,某,y2,'emilogy','plot');a某e(ha某e(1))ylabel('emilogplot');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]a某e(ha某e(2))ylabel('linearplot');实例5:单个轴窗口显示多个图形functionhili05h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例05');t=0:pi/10:2某pi;[某,y]=mehgrid(t);ubplot(2,2,1)plot(in(t),co(t))a某iequalubplot(2,2,2)z=in(某)-co(y);plot(t,z)a某i([02某pi-22])ubplot(2,2,3)h=in(某)+co(y);plot(t,h)a某i([02某pi-22])ubplot(2,2,4)g=(in(某).^2)-(co(y).^2);plot(t,g)a某i([02某pi-11])实例6:图形标注functionhili06h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]'poition',[200150450400],...'name','实例06');t=0:pi/10:2某pi;h=plot(t,in(t));某label('t=0到2\\pi','fontize',16);ylabel('in(t)','fontize',16);title('\\it{从0to2\\pi的正弦曲线}','fontize',16)某=get(h,'某data');y=get(h,'ydata');imin=find(min(y)==y);ima某=find(ma某(y)==y);te某t(某(imin),y(imin),...['\\leftarrow最小值=',num2tr(y(imin))],...'fontize',16)te某t(某(ima某),y(ima某),...['\\leftarrow最大值=',num2tr(y(ima某))],...'fontize',16)实例7:条形图形functionhili07h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例07');tiao1=[56254822454541445745512];tiao2=[4748575854526548];t=0 :7;bar(t,tiao1)某label('某轴');ylabel('TIAO1值');/1.t某t[2022/5/141:14:29]h1=gca;h2=a某e('poition',get(h1,'poition'));plot(t,tiao2,'linewidth',3) et(h2,'ya某ilocation','right','color','none','某ticklabel',[])实例8:区域图形functionhili08h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例08');某=91:95;profit1=[8875849377];profit2=[5164545668];profit3=[425434252 4];profit4=[263818154];area(某,profit1,'facecolor',[0.50.90.6],...'edgecolor','b',. ..'linewidth',3)holdonarea(某,profit2,'facecolor',[0.90.850.7],...'edgecolor','y', ...'linewidth',3)holdonarea(某,profit3,'facecolor',[0.30.60.7],...'edgecolor','r',. ..'linewidth',3)holdonarea(某,profit4,'facecolor',[0.60.50.9],...'edgecolor','m',. ../1.t某t[2022/5/141:14:29]'linewidth',3)holdoffet(gca,'某tick',[91:95])et(gca,'layer','top')gte某t('\\leftarrow第一季度销量')gte 某t('\\leftarrow第二季度销量')gte某t('\\leftarrow第三季度销量')gte某t('\\leftarrow第四季度销量')某label('年','fontize',16);ylabel('销售量','fontize',16);实例9:饼图的绘制functionhili09h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例09');t=[542135;685435;452512;486845;685469];某=um(t);h=pie(某);te某tobj=findobj(h,'type','te某t');tr1=get(te某tobj,{'tring'});val1=get(te某tobj,{'e某tent'});olde某t=cat(1,val1{:});name={'商品一:';'商品二:';'商品三:'};tr2=trcat(name,tr1);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]et(te某tobj,{'tring'},tr2)val2=get(te某tobj,{'e某tent'});newe某t=cat(1,val2{:});offet=ign(olde某t(:,1)).某(newe某t(:,3)-olde某t(:,3))/2;po=get(te某tobj,{'poition'});te某tpo=cat(1,po{:});te某tpo(:,1)=te某tpo(:,1)+offet;et(te某tobj,{'poition'},num2cell(te某tpo,[3,2]))实例10:阶梯图functionhili10h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例10');a=0.01;b=0.5;t=0:10;f=e某p(-a某t).某in(b某t);tair(t,f)holdonplot(t,f,':某')holdoffglabel='函数e^{-(\\alpha某t)}in\\beta某t的阶梯图';gte某t(glabel,'fontize',16)某label('t=0:10','fontize',16)a某i([010-1.21.2])file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例11:枝干图functionhili11h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例11');某=0:pi/20:2某pi;y1=in(某);y2=co(某);h1=tem(某,y1+y2);holdonh2=plot(某,y1,'^r',某,y2,'某g');holdoffh3=[h1(1);h2];legend(h3,'y1+y2','y1=in(某)','y2=co(某)')某label('自变量某');ylabel('函数值Y');title('正弦函数与余弦函数的线性组合');实例12:罗盘图functionhili12h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例12');winddirection=[54246584256122356212532434254];windpower=[255368127614108];file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例13:轮廓图functionhili13h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例13');[th,r]=mehgrid((0:10:360)某pi/180,0:0.05:1);[某,y]=pol2cart(th,r);z=某+i某y;f=(z.^4-1).^(0.25);contour(某,y,ab(f),20)a某iequal某label('实部','fontize',16);ylabel('虚部','fontize',16);h=polar([02某pi],[01]);delete(h)holdoncontour(某,y,ab(f),20)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例14:交互式图形functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例14:交互式图形file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例15:变换的傅立叶函数曲线functionhili15file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))et(h,'value',j)m(:,j)=getframe(gcf);endc lf;a某e('poition',[0011]);movie(m,30)实例16:劳伦兹非线形方程的无序活动functionhili15h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]et(h,'value',j)m(:,j)=getframe(gcf);endclf;a某e('poition',[0011]);movie(m,30)实例17:填充图functionhili17h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例17');t=(1:2:15)某pi/8;某=in(t);y=co(t);fill(某,y,'r')a某iquareoffte某t(0,0,'STOP',...'color',[111],...'fontize',50,...'horizontalalignment','cent er')实例18:条形图和阶梯形图functionhili18h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例18');ubplot(2,2,1)某=-3:0.2:3;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]y=e某p(-某.某某);bar(某,y)title('2-DBarChart')ubplot(2,2,2)某=-3:0.2:3;y=e某p(-某.某某);bar3(某,y,'r')title('3-DBarChart')ubplot(2,2,3)某=-3:0.2:3;y=e某p(-某.某某);tair(某,y)title('StairChart')ubplot(2,2,4)某=-3:0.2:3;y=e某p(-某.某某);barh(某,y)title('HorizontalBarChart')实例19:三维曲线图functionhili19h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例19');ubplot(2,1,1)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,y1,z1,某,y2,z2,某,y3,z3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:3-DPlot')ubplot(2,1,2)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,z1,y1,某,z2,y2,某,z3,y3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:3-DPlot') file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例20:图形的隐藏属性functionhili20h0=figure('toolbar','none',...'poition',[200150450300],...'name','实例20');ubplot(1,2,1)[某,y,z]=phere(10);meh(某,y,z)a某iofftitle('Figure1:Opaque')hiddenonubplot(1,2,2)[某,y,z]=phere(1 0);meh(某,y,z)a某iofftitle('Figure2:Tranparent')hiddenoff实例21PEAKS函数曲线functionhili21h0=figure('toolbar','none',...'poition',[200100450450],...'name','实例21');[某,y,z]=peak(30);ubplot(2,1,1)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]z(i,j)=nan某z(i,j);urfc(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:urfc函数形成的曲面')ubplot(2,1,2)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);z(i,j)=nan某z(i,j);urfl(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:urfl函数形成的曲面')实例22:片状图functionhili22h0=figure('toolbar','none',...'poition',[200150550350],...'name','实例22');ubplot(1,2,1)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]trimeh(t,某,y,z)hiddenofftitle('Figure1:TriangularSurfacePlot');ubplot(1,2,2)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);triurf(t,某,y,z)title('Figure1:TriangularSurfacePlot');实例23:视角的调整functionhili23h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例23');某=-5:0.5:5;[某,y]=mehgrid(某);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;ubplot(2, 2,1)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a 某i')title('Figure1')view(-37.5,30)ubplot(2,2,2)urf(某,y,z) file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure2')view(-37.5+90,30)ubplot(2,2,3)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure3')view(-37.5,60)ubplot(2,2,4)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure4')view(180,0)实例24:向量场的绘制functionhili24h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例24');ubplot(2,2,1)z=peak;ribbon(z)title('Figure1')file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]ubplot(2,2,2)[某,y,z]=peak(15);[d某,dy]=gradient(z,0.5,0.5);contour(某,y,z,10)holdonquiver(某,y,d 某,dy)holdofftitle('Figure2')ubplot(2,2,3)[某,y,z]=peak(15);[n某,ny,nz]=urfnorm(某,y,z);urf(某,y,z)holdonquiver3(某,y,z,n某,ny,nz)holdofftitle('Figure3')ubplot(2,2,4)某=rand(3,5);y=rand(3,5);z=rand(3,5);c=rand(3,5);fill3(某,y,z,c)gr idontitle('Figure4')实例25:灯光定位functionhili25h0=figure('toolbar','none',...'poition',[200150450250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'name','实例25');vert=[111;121;221;211;112;122;222;212];fac=[1234;2673;4378;1584;1265;5678];gridoffphere(36)h=findobj('type','urface');et(h,'facelighting','phong',...'facecolor',...'interp',...'edgecolor',[0.40.40.4],...'backfacelighting',...'lit')holdo npatch('face',fac,'vertice',vert,...'facecolor','y');light('p oition',[132]);light('poition',[-3-13]);materialhinya某ivi3doffholdoff实例26:柱状图functionhili26h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'poition',[20050450450],...'name','实例26');ubplot(2,1,1)某=[521873986555432];bar(某)某label('某轴');ylabel('Y轴');title('第一子图');ubplot(2,1,2)y=[521873986555432];barh(y)某label('某轴');ylabel('Y轴');title('第二子图');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]实例27:设置照明方式functionhili27h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例27');ubplot(2,2,1)pherehadingflatcamlightleftcamlightrightlighti ngflatcolorbara某iofftitle('Figure1')ubplot(2,2,2)pherehadingflatcamlightleftcaml ightrightlightinggouraudcolorbara某iofftitle('Figure2')ubplot(2,2,3)pherehadinginterpcamlightrightc amlightleftlightingphongfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colorbara某iofftitle('Figure3')ubplot(2,2,4)pherehadingflatcamlightleftcaml ightrightlightingnonecolorbara某iofftitle('Figure4')实例28:羽状图functionhili28h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例28');ubplot(2,1,1)alpha=90:-10:0;r=one(ize(alpha));m=alpha某pi/180;n=r某10;[u,v]=pol2cart(m,n);feather(u,v)title('羽状图')a 某i([020010])ubplot(2,1,2)t=0:0.5:10;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]某=0.05+i;y=e某p(-某某t);feather(y)title('复数矩阵的羽状图')实例29:立体透视(1)functionhili29h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例29');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);gridonfori=-2:0.5:2;h1=urf(linpace(-2,2,20),...linpace(-2,2,20),...zero(20)+i);rotate(h1,[1-11],30)d某=get(h1,'某data');dy=get(h1,'ydata');dz=get(h1,'zdata');delete(h1) lice(某,y,z,v,[-22],2,-2)holdonlice(某,y,z,v,d某,dy,dz)holdoffa某itightfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]view(-5,10)drawnowend实例30:立体透视(2)functionhili30h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例30');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);[d某,dy,dz]=cylinder;lice(某,y,z,v,[-22],2,-2)fori=-2:0.2:2 h=urface(d某+i,dy,dz);rotate(h,[100],90)某p=get(h,'某data');yp=get(h,'ydata');zp=get(h,'zdata');delete(h)holdonh=lice (某,y,z,v,某p,yp,zp);a某itight某lim([-33])view(-10,35)drawnowdelete(h)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]holdoffend实例31:表面图形functionhili31h0=figure('toolbar','none',...'poition',[200150550250],...'name','实例31');ubplot(1,2,1)某=rand(100,1)某16-8;y=rand(100,1)某16-8;r=qrt(某.^2+y.^2)+ep;z=in(r)./r;某lin=linpace(min(某),ma某(某),33);ylin=linpace(min(y),ma 某(y),33);[某,Y]=mehgrid(某lin,ylin);Z=griddata(某,y,z,某,Y,'cubic');meh(某,Y,Z)a某itightholdonplot3(某,y,z,'.','Markerize',20)ubplot(1,2,2)k=5;n=2^k-1;theta=pi某(-n:2:n)/n;phi=(pi/2)某(-n:2:n)'/n;某=co(phi)某co(theta);Y=co(phi)某in(theta);Z=in(phi)某one(ize(theta));file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colormap([000;111])C=hadamard(2^k);urf(某,Y,Z,C)a某iquare 实例32:沿曲线移动的小球h0=figure('toolbar','none',...'poition',[198********],...'name','实例32');h1=a某e('parent',h0,...'poition',[0.150.450.70.5],...'viible','on');t= 0:pi/24:4某pi;y=in(t);plot(t,y,'b')n=length(t);h=line('color',[00.50.5],...'linetyle','.',...'markerize',25,...'eraemode','某or');k1=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[801005030],...'tring','开始',...'callback',[...'i=1;',...'k=1;,',...'m=0;,',...'while1,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'ifk==0,',...'break,',...'end,',...'ifk~=0,',...'et(h,''某data'',t(i),''ydata'',y(i)),',...'drawnow;,',...'i=i+1;,', (i)i>n,',...'m=m+1;,',...'i=1;,',...'end,',...'end,',...'end']);k2= uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[1801005030],...'tring','停止',...'callback',[...'k=0;,',...'et(e1,''tring'',m),',...'p=get(h,''某data'');,',...'q=get(h,''ydata'');,',...'et(e2,''tring'',p);,',. ..'et(e3,''tring'',q)']);k3=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[2801005030],...'tring','关闭',...'callback','cloe');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]e1=uicontrol('parent',h0,...'tyle','edit',...'poition',[60306020]);t1=uicontrol('parent',h0,...'tyle','te某t',...'tring','循环次数',...'poition',[60506020]);e2=uicontrol('parent',h0,...'tyle','edit',...'poition',[180305020]);t2=uicontrol('parent ',h0,...'tyle','te某t',...'tring','终点的某坐标值',...'poition',[1555010020]);e3=uicontrol('parent',h0,...'tyle', 'edit',...'poition',[300305020]);t3=uicontrol('parent',h0,...'ty le','te某t',...'tring','终点的Y坐标值',...'poition',[2755010020]);实例33:曲线转换按钮h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例33');某=0:0.5:2某pi;y=in(某);h=plot(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]gridonhuidiao=[...'ifi==1,',...'i=0;,',...'y=co(某);,',...'delete(h),',...'et(hm,''tring'',''正弦函数''),',...'h=plot(某,y);,',...'gridon,',...'eleifi==0,',...'i=1;, ',...'y=in(某);,',...'et(hm,''tring'',''余弦函数''),',...'delete(h),',...'h=plot(某,y);,',...'gridon,',...'end,' ,...'end'];hm=uicontrol(gcf,'tyle','puhbutton',...'tring','余弦函数',...'callback',huidiao);i=1;et(hm,'poition',[250206020]);et(gca,'poition',[0.20.20.60.6] )title('按钮的使用')holdon实例34:栅格控制按钮h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'poition',[200150450250],...'name','实例34');某=0:0.5:2某pi;y=in(某);plot(某,y)huidiao1=[...'et(h_toggle2,''value'',0),',...'gridon,',...];huidiao2=[...'et(h_toggle1,''value'',0),',...'gridoff,',...];h_toggle1=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idon',...'value',0,...'poition',[20455020],...'callback',huidiao1);h_toggle2=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idoff',...'value',0,...'poition',[20205020],...'callback',huidiao2);et(gca,'poition',[0.20.20.60.6])title('开关按钮的使用')实例35:编辑框的使用h0=figure('toolbar','none',...'poition',[200150350250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'name','实例35');f='Pleaeinputtheletter';huidiao1=[...'g=upper(f);,',...'et(h2_edit,''tring'',g),',...];huidiao2=[ ...'g=lower(f);,',...'et(h2_edit,''tring'',g),',...];h1_edit=uicontrol(gcf,'tyle','edit',...'poition',[1002001005 0],...'HorizontalAlignment','left',...'tring','Pleaeinputtheletter',...'callback','f=get(h1_edit,''tring'');',...'background','w ',...'ma某',5,...'min',1);h2_edit=uicontrol(gcf,'tyle','edit',...'HorizontalAlignment','left',...'poition',[10010010050],...' background','w',...'ma某',5,...'min',1);h1_button=uicontrol(gcf,'tyle','puhbutton',...'tring','小写变大写',...'poition',[1004510020],...'callback',huidiao1);h2_button=ui control(gcf,'tyle','puhbutton',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'tring','大写变小写',...'poition',[1002010020],...'callback',huidiao2);实例36:弹出式菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例36');某=0:0.5:2某pi;y=in(某);h=plot(某,y);gridonhm=uicontrol(gcf,'tyle','popupmenu',...'tring',...'in(某)|co(某)|in(某)+co(某)|e某p(-in(某))',...'poition',[250205020]);et(hm,'value',1)huidiao=[...'v=get(hm,''value'');,',...'witchv,',...'cae1,',...'delete(h ),',...'y=in(某);,',...'h=plot(某,y);,',...'gridon,',...'cae2,', ...'delete(h),',...'y=co(某);,',...'h=plot(某,y);,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'gridon,',...'cae3,',...'delete(h),',...'y=in(某)+co(某);,', ...'h=plot(某,y);,',...'gridon,',...'cae4,',...'delete(h),',...' y=e某p(-in(某));,',...'h=plot(某,y);,',...'gridon,',...'end'];et(hm,'callback',huidiao)et(gca,'poition',[0.20.20.60.6])tit le('弹出式菜单的使用')holdonfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]实例37:滑标的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例37');[某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);h1=a某e('poition',...[0.20.20.50.5],...'viible','off');hte某t=uicontrol(gcf,...'unit','point',...'poition',[20304515],...'tring','brightne' ,...'tyle','te某t');hlider=uicontrol(gcf,...'unit','point',...'poition',[101030015],...'min',-1,...'ma某',1,...'tyle','lider',...'callback',...'brighten(get(hlider,''value''))');实例38:多选菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例38');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31][某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);hlit=uic ontrol(gcf,'tyle','litbo某',...'tring','default|pring|ummer|autumn|winter',...'ma某',5,...'min',1,...'poition',[202080100],...'callback',[...'k=get(hlit,''value' ');,',...'witchk,',...'cae1,',...'colormapdefault,',...'cae2,',...'colormappring,',...'cae3,',...'colormapummer,',...'cae4,',...'colormapautumn,',...'cae5,',...'colormapwinter,',...'end']);实例39:菜单控制的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例39');某=0:0.5:2某pi;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]y=co(某);h=plot(某,y);gridonet(gcf,'toolbar','none')hm=uimenu('label','e某ample');huidiao1=[...'et(hm_gridon,''checked'',''on''),',...'et(hm_gridoff,''chec ked'',''off''),',...'gridon'];huidiao2=[...'et(hm_gridoff,''checked'',''on''),',...'et(hm_gridon,''chec ked'',''off''),',...'gridoff'];hm_gridon=uimenu(hm,'label','gridon',...'checked','on',...'c allback',huidiao1);hm_gridoff=uimenu(hm,'label','gridoff',...'checked','off',.. .'callback',huidiao2);实例40:UIMENU菜单的应用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例40');h1=uimenu(gcf,'label','函数');h11=uimenu(h1,'label','轮廓图',...'callback',[...'et(h31,''checked'',''on''),',...'et(h32,''checked'',''off'' ),',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]'[某,y,z]=peak;,',...'contour3(某,y,z,30)']);。

如何使用MATLAB进行数学建模与分析

如何使用MATLAB进行数学建模与分析

如何使用MATLAB进行数学建模与分析第一章 MATLAB简介与安装MATLAB是一款强大的数值计算软件,广泛应用于科学计算、工程建模、数据处理和可视化等领域。

本章将介绍MATLAB的基本特点、主要功能以及安装方法。

首先,MATLAB具有灵活的编程语言,可以进行复杂的数学运算和算法实现。

其次,MATLAB集成了丰富的数学函数库,包括线性代数、优化、常微分方程等方面的函数,方便用户进行数学建模和分析。

最后,MATLAB提供了直观友好的图形界面,使得数据处理和结果展示更加便捷。

为了使用MATLAB进行数学建模与分析,首先需要安装MATLAB软件。

用户可以从MathWorks官网上下载最新版本的MATLAB安装程序,并按照提示进行安装。

安装完成后,用户需要根据自己的需要选择合适的许可证类型,并激活MATLAB软件。

激活成功后,用户将可以使用MATLAB的全部功能。

第二章 MATLAB基本操作与语法在开始进行数学建模与分析之前,用户需要了解MATLAB的基本操作和语法。

本章将介绍MATLAB的变量定义与赋值、矩阵运算、函数调用等基本操作。

首先,MATLAB使用变量来存储数据,并可以根据需要对变量进行重新赋值。

变量名可以包含字母、数字和下划线,但不允许以数字开头。

其次,MATLAB支持矩阵运算,可以方便地进行矩阵的加减乘除、转置和求逆等操作。

用户只需要输入相应的矩阵运算符和矩阵变量即可。

然后,MATLAB提供了丰富的数学函数,用户可以直接调用这些函数进行数学运算。

最后,用户可以根据需要编写自定义函数,实现更复杂的算法和数学模型。

第三章数学建模与优化数学建模是利用数学方法和技巧,对实际问题进行描述、分析和求解的过程。

本章将介绍如何使用MATLAB进行数学建模与优化。

首先,数学建模的第一步是问题描述和模型构建。

用户需要明确问题的目标、约束条件和决策变量,并将其转化为数学模型。

其次,用户可以使用MATLAB提供的优化函数,对数学模型进行求解。

02 Matlab programs 数学建模

02  Matlab programs 数学建模

教堂顶部曲面面积的计算方法的部分Matlab程序(仅供参考).%画教堂顶部曲面图clear all;clc;R=30;a=30.6;b=29.6;N=20;[x,y]=meshgrid(-a:a/N:a,-b:b/N:b);z=R*sqrt(1-x.^2./a^2-y.^2./b^2);surfl(x,y,z)%利用Matlab库函数’dblquad’(二重积分函数)求积分值clear all;clc;R=30;a=30.6;b=29.6;%use the expression(2.3)in page10Ans_1=dblquad(@(x,y)a*b*sqrt(1+R^2*x.^2*(cos(y)*cos(y).../a^2+sin(y)*sin(y)/b^2)./(1-x.^2+eps)).*x,0,1,0,2*pi);I_1=vpa(Ans_1,10)%use the expression(2.13)in page12(after transformation)Ans_2=dblquad(@(x,y)a*b*sqrt(x.^2+R^2*(1-x.^2)*(cos(y)*cos(y).../a^2+sin(y)*sin(y)/b^2)),0,1,0,2*pi);I_2=vpa(Ans_2,10)%程序输出结果I_1=5679.813415I_2=5679.813466%建立被积函数的表达式(二元函数)function Out=Myfun02(x,y)R=30;a=30.6;b=29.6;Out=a*b*sqrt(y^2+R^2*(1-y^2)*(cos(x)^2/a^2+sin(x)^2/b^2));%使用梯形法求教堂顶部曲面面积的主程序clear all;clc;ticdisplay(’This program computing the top area’)display(’of the church by trapezoid method.’)%-------------R=30;a=30.6;b=29.6;fprintf(’The values of R=%f,a=%f,b=%f\n’,R,a,b)%-------------flag_1=1;while flag_1==1display(’Please input the value of the m:’)Value_m=input(’which is a positive integer!’);if(Value_m>0)&round(Value_m)==Value_mm=Value_m;flag_1=0;elsewarning(’m is a POSITIVE INTEGER!!!’)endend%------------------------------flag_2=1;while flag_2==1display(’Please input the value of the n:’)Value_n=input(’which is a positive integer!’);if(Value_n>0)&round(Value_n)==Value_nn=Value_n;flag_2=0;elsewarning(’n is a POSITIVE INTEGER!!!’)endend%-----------------------------c=2*pi;d=1;k=c/m;h=d/n;s=0:c/m:c;t=0:d/n:d;%The subscript of array or matrix in Matlab begin with1,not0.%You should be more careful when designing the program%by the expressions in the textbook!%------------------------%I_ij的循环迭代部分for i=1:mfor j=1:nI(i,j)=k*h*(Myfun02(s(i),t(j))+Myfun02(s(i+1),t(j))+...Myfun02(s(i),t(j+1))+Myfun02(s(i+1),t(j+1)))/4;endendSum_I=sum(sum(I));%------------------------display(’-----------------------------------------------------------------’) fprintf(’The value of I when m=%f and n=%f by trapezoid methord\n’,m,n)I=vpa(Sum_I,10)display(’-----------------------------------------------------------------’) Ans_1=dblquad(@(x,y)a*b*sqrt(1+R^2*x.^2*(cos(y)*cos(y)/...a^2+sin(y)*sin(y)/b^2)./(1-x.^2+eps)).*x,0,1,0,2*pi);display(’The value of I by the Matlab function dblquad is:’)fprintf(’I=%f\n\n’,Ans_1)toc%程序输出结果This program computing the top area of the church by trapezoidmethod.The values of R=30.000000,a=30.600000,b=29.600000Please input the value of the m:which is a positive integer!9Please input the value of the n:which is a positive integer!19-----------------------------------------------------------------The value of I when m=9.000000and n=19.000000by trapezoid methordI=5679.821100-----------------------------------------------------------------The value of I by the Matlab function dblquad is:I=5679.813415Elapsed time is23.408716seconds.%Taylor展开clear all;clc;syms x y;f=1/(1-x*y^2)^(1/2);F=taylor(f,x,8);pretty(F)FF=subs(F,’y’,’sin(Theta)’);pretty(FF)%n=4;%syms x;%int(sin(x)^(2*n),0,pi/2)%输出结果24263358463105231126 1+1/2x y+3/8y x+5/16y x+---y x+---y x+----y x1282561024429147+----y x2048242631+1/2x sin(Theta)+3/8sin(Theta)x+5/16sin(Theta)x358463105231126+---sin(Theta)x+---sin(Theta)x+----sin(Theta)x1282561024429147+----sin(Theta)x2048。

matlab数学建模常用模型及编程

matlab数学建模常用模型及编程

matlab数学建模常用模型及编程摘要:一、引言二、MATLAB 数学建模的基本概念1.矩阵的转置2.矩阵的旋转3.矩阵的左右翻转4.矩阵的上下翻转5.矩阵的逆三、MATLAB 数学建模的常用函数1.绘图函数2.坐标轴边界3.沿曲线绘制误差条4.在图形窗口中保留当前图形5.创建线条对象四、MATLAB 数学建模的实例1.牛顿第二定律2.第一级火箭模型五、结论正文:一、引言数学建模是一种将现实世界中的问题抽象成数学问题,然后通过数学方法来求解的过程。

在数学建模中,MATLAB 作为一种强大的数学软件,被广泛应用于各种数学问题的求解和模拟。

本文将介绍MATLAB 数学建模中的常用模型及编程方法。

二、MATLAB 数学建模的基本概念在使用MATLAB 进行数学建模之前,我们需要了解一些基本的概念,如矩阵的转置、旋转、左右翻转、上下翻转以及矩阵的逆等。

1.矩阵的转置矩阵的转置是指将矩阵的一行和一列互换,得到一个新的矩阵。

矩阵的转置运算符是单撇号(’)。

2.矩阵的旋转利用函数rot90(a,k) 将矩阵a 旋转90 的k 倍,当k 为1 时可省略。

3.矩阵的左右翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,依次类推。

matlab 对矩阵a 实施左右翻转的函数是fliplr(a)。

4.矩阵的上下翻转matlab 对矩阵a 实施上下翻转的函数是flipud(a)。

5.矩阵的逆对于一个方阵a,如果存在一个与其同阶的方阵b,使得:a·bb·a=|a|·|b|·I,则称矩阵b 是矩阵a 的逆矩阵。

其中,|a|表示矩阵a 的行列式,I 是单位矩阵。

在MATLAB 中,我们可以使用函数inv(a) 来求解矩阵a 的逆矩阵。

三、MATLAB 数学建模的常用函数在MATLAB 数学建模过程中,我们经常需要使用一些绘图和数据处理函数,如绘图函数、坐标轴边界、沿曲线绘制误差条、在图形窗口中保留当前图形、创建线条对象等。

matlab数学建模程序代码

matlab数学建模程序代码

matlab数学建模程序代码
当进行数学建模时,MATLAB是一个强大的工具,用于实现和测试模型。

下面是一个简单的MATLAB代码示例,演示如何使用MATLAB进行一维线性回归建模:
```matlab
%生成示例数据
x=[1,2,3,4,5];
y=[2.8,3.9,4.8,5.5,6.3];
%进行一维线性回归
coefficients=polyfit(x,y,1);
slope=coefficients(1);
intercept=coefficients(2);
%绘制原始数据和回归线
scatter(x,y,'o','DisplayName','原始数据');
hold on;
plot(x,polyval(coefficients,x),'r-','DisplayName','回归线');
hold off;
%添加标签和图例
xlabel('X轴');
ylabel('Y轴');
title('一维线性回归建模示例');
legend('show');
%输出回归方程的系数
fprintf('回归方程:y=%.2fx+%.2f\n',slope,intercept);
```
此代码生成了一些示例数据,然后使用一维线性回归对数据进行建模。

回归方程的系数将被计算,并且原始数据与回归线将在图上显示。

请注意,这只是一个简单的示例,实际上,你可能需要根据你的具体问题修改代码。

如何用MATLAB进行数学建模

如何用MATLAB进行数学建模

如何用MATLAB进行数学建模下面是一个关于如何用MATLAB进行数学建模的文章范例:MATLAB是一种强大的数学软件工具,广泛应用于各种数学建模问题的解决。

通过合理利用MATLAB的功能和特性,可以更加高效地进行数学建模,并得到准确的结果。

本文将介绍如何使用MATLAB进行数学建模,并给出一些实际例子。

一、数学建模的基本步骤数学建模是指将实际问题转化为数学模型,并利用数学方法对其进行求解和分析的过程。

在使用MATLAB进行数学建模之前,我们需要明确问题的具体要求,然后按照以下基本步骤进行操作:1. 理解问题:深入了解问题背景、影响因素以及目标要求,确保对问题有一个清晰的认识。

2. 建立模型:根据问题的特性,选择合适的数学模型,并将问题转化为相应的数学表达式。

3. 编写MATLAB代码:利用MATLAB的计算功能和算法库,编写用于求解数学模型的代码。

4. 数据处理和结果分析:在获得计算结果后,根据需要进行数据处理和结果分析,评估模型的准确性和可行性。

二、MATLAB的数学建模工具MATLAB提供了一系列用于数学建模的工具箱和函数,这些工具可以帮助我们快速构建数学模型,并进行求解。

下面是一些常用的数学建模工具:1. 符号计算工具箱:MATLAB的符号计算工具箱可以实现符号运算,用于建立和求解复杂的数学表达式。

2. 优化工具箱:优化工具箱可以用于求解多种优化问题,如线性规划、非线性规划、整数规划等。

3. 数值解工具箱:数值解工具箱提供了各种数值方法和算法,用于求解微分方程、积分方程、差分方程等数学问题。

4. 统计工具箱:统计工具箱可以进行统计建模和分析,包括假设检验、回归分析、时间序列分析等。

5. 控制系统工具箱:控制系统工具箱用于建立和分析控制系统模型,包括经典控制和现代控制方法。

三、数学建模实例为了更好地展示使用MATLAB进行数学建模的过程,我们给出一个实际的数学建模例子:求解物体的自由落体运动。

数学建模算法的matlab代码

数学建模算法的matlab代码

二,hamiton回路算法提供一种求解最优哈密尔顿的算法---三边交换调整法,要求在运行jiaohuan3(三交换法)之前,给定邻接矩阵C和节点个数N,结果路径存放于R中。

bianquan.m文件给出了一个参数实例,可在命令窗口中输入bianquan,得到邻接矩阵C和节点个数N以及一个任意给出的路径R,,回车后再输入jiaohuan3,得到了最优解。

由于没有经过大量的实验,又是近似算法,对于网络比较复杂的情况,可以尝试多运行几次jiaohuan3,看是否能到进一步的优化结果。

%%%%%%bianquan.m%%%%%%%N=13;for i=1:Nfor j=1:NC(i,j)=inf;endendfor i=1:NC(i,i)=0;endC(1,2)=6.0;C(1,13)=12.9;C(2,3)=5.9;C(2,4)=10.3;C(3,4)=12.2;C(3,5)=17.6;C(4,13)=8.8;C(4,7)=7.4;C(4,5)=11.5;C(5,2)=17.6;C(5,6)=8.2;C(6,9)=14.9;C(6,7)=20.3;C(7,9)=19.0;C(7,8)=7.3;C(8,9)=8.1;C(8,13)=9.2;C(9,10)=10.3;C(10,11)=7.7;C(11,12)=7.2;C(12,13)=7.9;for i=1:Nfor j=1:Nif C(i,j) < infC(j,i)=C(i,j);endendendfor i=1:NC(i,i)=0;endR=[4 7 6 5 3 2 1 13 12 11 10 9 8];<pre name="code" class="plain">%%%%%%%%jiaohuan3.m%%%%%%%%%%n=0;for I=1:(N-2)for J=(I+1):(N-1)for K=(J+1):Nn=n+1;Z(n,:)=[I J K];endendendR=1:Nfor m=1:(N*(N-1)*(N-2)/6)I=Z(m,1);J=Z(m,2);K=Z(m,3); r=R;if J-I~=1&K-J~=1&K-I~=N-1 for q=1:(J-I)r(I+q)=R(J+1-q);endfor q=1:(K-J)r(J+q)=R(K+1-q);endendif J-I==1&K-J==1r(K)=R(J);r(J)=R(K);endif J-I==1&K-J~=1&K-I~=N-1 for q=1:(K-J)r(I+q)=R(I+1+q); endr(K)=R(J);endif K-J==1&J-I~=1&K~=Nfor q=1:(J-I)r(I+1+q)=R(I+q); endr(I+1)=R(K);endif I==1&J==2&K==Nfor q=1:(N-2)r(1+q)=R(2+q);endr(N)=R(2);endif I==1&J==(N-1)&K==Nfor q=1:(N-2)r(q)=R(1+q);endr(N-1)=R(1);endif J-I~=1&K-I==N-1for q=1:(J-1)r(q)=R(1+q);endr(J)=R(1);endif J==(N-1)&K==N&J-I~=1r(J+1)=R(N);for q=1:(N-J-1)r(J+1+q)=R(J+q);endendif cost_sum(r,C,N)<cost_sum(R,C,N)R=rendendfprintf('总长为%f\n',cost_sum(R,C,N))%%%%%%cost_sum.m%%%%%%%%functiony=cost_sum(x,C,N)y=0;for i=1:(N-1)y=y+C(x(i),x(i+1));endy=y+C(x(N),x(1));三,灰色预测代码<pre name="code" class="plain">clearclcX=[136 143 165 152 165 181 204 272 319 491 571 605 665 640 628];x1(1)=X(1);X1=[];for i=1:1:14x1(i+1)=x1(i)+X(i+1);X1=[X1,x1(i)];endX1=[X1,X1(14)+X(15)]for k=3:1:15p(k)=X(k)/X1(k-1);p1(k)=X1(k)/X1(k-1);endp,p1clear kZ=[];for k=2:1:15z(k)=0.5*X1(k)+0.5*X1(k-1);Z=[Z,z(k)];endZB=[-Z',ones(14,1)]Y=[];clear ifor i=2:1:15Y=[Y;X(i)];endYA=inv(B'*B)*B'*Yclear ky1=[];for k=1:1:15y(k)=(X(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1); y1=[y1;y(k)];endy1clear kX2=[];for k=2:1:15x2(k)=y1(k)-y1(k-1);X2=[X2;x2(k)];endX2=[y1(1);X2]e=X'-X2m=abs(e)./X's=e'*en=sum(m)/13clear ksyms ky=(X(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1)Y1=[];for j=16:1:21y11=subs(y,k,j)-subs(y,k,j-1);Y1=[Y1;y11];endY1%程序中的变量定义:alpha是包含α、μ值的矩阵;%ago是预测后累加值矩阵;var是预测值矩阵;%error是残差矩阵; c是后验差比值function basicgrey(x,m) %定义函数basicgray(x)if nargin==1 %m为想预测数据的个数,默认为1 m=1;endclc; %清屏,以使计算结果独立显示if length(x(:,1))==1 %对输入矩阵进行判断,如不是一维列矩阵,进行转置变换x=x';endn=length(x); %取输入数据的样本量x1(:,1)=cumsum(x); %计算累加值,并将值赋及矩阵be for i=2:n %对原始数列平行移位 Y(i-1,:)=x(i,:);endfor i=2:n %计算数据矩阵B的第一列数据z(i,1)=0.5*x1(i-1,:)+0.5*x1(i,:);endB=ones(n-1,2); %构造数据矩阵BB(:,1)=-z(2:n,1);alpha=inv(B'*B)*B'*Y; %计算参数α、μ矩阵for i=1:n+m %计算数据估计值的累加数列,如改n+1为n+m可预测后m个值ago(i,:)=(x1(1,:)-alpha(2,:)/alpha(1,:))*exp(-alpha(1, :)*(i-1))+alpha(2,:)/alpha(1,:);endvar(1,:)=ago(1,:);f or i=1:n+m-1 %可预测后m个值var(i+1,:)=ago(i+1,:)-ago(i,:); %估计值的累加数列的还原,并计算出下m个预测值end[P,c,error]=lcheck(x,var); %进行后验差检验[rela]=relations([x';var(1:n)']); %关联度检验ago %显示输出预测值的累加数列alpha %显示输出参数α、μ数列var %显示输出预测值error %显示输出误差P %显示计算小残差概率 c %显示后验差的比值crela %显示关联度judge(P,c,rela) %评价函数显示这个模型是否合格<pre name="code" class="plain">function judge(P,c,rela) %评价指标并显示比较结果if rela>0.6'根据经验关联度检验结果为满意(关联度只是参考主要看后验差的结果)'else'根据经验关联度检验结果为不满意(关联度只是参考主要看后验差的结果)'endif P>0.95&c<0.5'后验差结果显示这个模型评价为“优”'else if P>0.8&c<0.5'后验差结果显示这个模型评价为“合格”'else if P>0.7&c<0.65'后验差结果显示这个模型评价为“勉强合格”' else'后验差结果显示这个模型评价为“不合格”' endendendfunction [P,c,error]=lcheck(x,var)%进行后验差检验n=length(x);for i=1:nerror(i,:)=abs(var(i,:)-x(i,:)); %计算绝对残差c=std(abs(error))/std(x); %调用统计工具箱的标准差函数计算后验差的比值cs0=0.6745*std(x);ek=abs(error-mean(error));pk=0;for i=1:nif ek(i,:)<s0pk=pk+1;endendP=pk/n; %计算小残差概率%附带的质料里有一部分讲了关联度function [rela]=relations(x)%以x(1,:)的参考序列求关联度[m,n]=size(x);for i=1:mfor j=n:-1:2x(i,j)=x(i,j)/x(i,1);endfor i=2:mx(i,:)=abs(x(i,:)-x(1,:)); %求序列差endc=x(2:m,:);Max=max(max(c)); %求两极差Min=min(min(c));p=0.5; %p称为分辨率,0<p<1,一般取p=0.5for i=1:m-1for j=1:nr(i,j)=(Min+p*Max)/(c(i,j)+p*Max); %计算关联系数endendfor i=1:m-1rela(i)=sum(r(i,:))/n; %求关联度end四,非线性拟合function f=example1(c,tdata)f=c(1)*(exp(-c(2)*tdata)-exp(-c(3)*tdata));<pre name="code" class="plain">function f=zhengtai(c,x) f=(1./(sqrt(2.*3.14).*c(1))).*exp(-(x-c(1)).^2./(2.*c( 2)^2));x=1:1:12;y=[01310128212]';c0=[2 8];for i=1:1000c=lsqcurvefit(@zhengtai,c0,x,y);c0=c;endy1=(1./(sqrt(2.*3.14).*c(1))).*exp(-(x-c(1)).^2./(2.*c (2)^2));plot(x,y,'r-',x,y1);legend('实验数据','拟合曲线')x=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16]';y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4]';f=@(c,x)c(1)*(exp(-c(2)*x)-exp(-c(3)*x));c0=[114 0.1 2]';for i=1:50opt=optimset('TolFun',1e-3);[c R]=nlinfit(x,y,f,c0,opt)c0=c;hold onplot(x,c(1)*(exp(-c(2)*x)-exp(-c(3)*x)),'g')endt=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16];y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4];c0=[1 1 1];for i=1:50 c=lsqcurvefit(@example1,c0,t,y);c0=c;endy1=c(1)*(exp(-c(2)*t)-exp(-c(3)*t));plot(t,y,' +',t,y1);legend('实验数据','拟合曲线')五,插值拟合相关知识在生产和科学实验中,自变量及因变量间的函数关系有时不能写出解析表达式,而只能得到函数在若干点的函数值或导数值,或者表达式过于复杂而需要较大的计算量。

matlab数学建模pdf

matlab数学建模pdf

matlab数学建模pdfMATLAB是一种高级编程语言和交互式环境,主要用于数值计算、数据分析和可视化。

它在数学建模方面具有广泛的应用,因为它提供了一个方便的编程环境,支持矩阵和数组操作、函数和方程求解、数据分析和可视化等功能。

以下是一些使用MATLAB进行数学建模的示例:1.线性回归模型:MATLAB提供了一个名为`fitlm`的函数,用于拟合线性回归模型。

以下是一个简单的示例:```matlab%创建自变量和因变量数据x=[1,2,3,4,5];y=[2.2,2.8,3.6,4.5,5.1];%拟合线性回归模型lm=fitlm(x,y);%显示模型摘要summary(lm)```2.非线性最小二乘法拟合:MATLAB提供了一个名为`fitnlm`的函数,用于拟合非线性最小二乘法模型。

以下是一个简单的示例:```matlab%创建自变量和因变量数据x=[1,2,3,4,5];y=[1.2,2.5,3.7,4.6,5.3];%定义非线性模型函数modelfun=@(params,xdata) params(1)*exp(-params(2)*xdata)+params(3); %拟合非线性最小二乘法模型startPoint=[1,1,1];%初始参数值options=optimset('Display','off');%不显示优化过程信息lm=fitnlm(x,y,modelfun,startPoint,options); %显示模型摘要summary(lm)```3.微分方程求解:MATLAB提供了一个名为`ode45`的函数,用于求解常微分方程。

以下是一个简单的示例:```matlab%定义微分方程dy/dx=f(x,y)f=@(x,y)-0.5*y;%初始条件和时间跨度y0=1;tspan=[0,10];%使用ode45进行求解[t,y]=ode45(f,tspan,y0);%可视化结果plot(t,y(:,1))%y是解的矩阵,(:,1)表示取第一列数据作为纵坐标进行绘图xlabel('Time(s)')ylabel('Solution')```。

Matlab中的数学建模方法介绍

Matlab中的数学建模方法介绍

Matlab中的数学建模方法介绍Matlab是一种非常常用的科学计算和数学建模软件,它具有强大的数学运算能力和用户友好的界面。

在科学研究和工程技术领域,Matlab被广泛应用于数学建模和数据分析。

本文将介绍一些在Matlab中常用的数学建模方法,帮助读者更好地理解和应用这些方法。

一、线性回归模型线性回归模型是一种经典的数学建模方法,用于分析数据之间的关系。

在Matlab中,我们可以使用regress函数进行线性回归分析。

首先,我们需要将数据导入Matlab,并进行数据预处理,如去除异常值和缺失值。

然后,使用regress函数拟合线性回归模型,并计算相关系数和残差等统计量。

最后,我们可以使用plot 函数绘制回归线和散点图,以观察数据的拟合程度。

二、非线性回归模型非线性回归模型适用于数据呈现非线性关系的情况。

在Matlab中,我们可以使用lsqcurvefit函数进行非线性回归分析。

首先,我们需要定义一个非线性方程,并设定初始参数值。

然后,使用lsqcurvefit函数拟合非线性回归模型,并输出拟合参数和残差信息。

最后,我们可以使用plot函数绘制拟合曲线和散点图,以评估模型的拟合效果。

三、差分方程模型差分方程模型用于描述离散时间系统的动态行为。

在Matlab中,我们可以使用diffeq函数求解差分方程模型的解析解或数值解。

首先,我们需要定义差分方程的形式,并设置初值条件。

然后,使用diffeq函数求解差分方程,并输出解析解或数值解。

最后,我们可以使用plot函数绘制解析解或数值解的图形,以观察系统的动态行为。

四、优化模型优化模型用于求解最优化问题,如寻找函数的最大值或最小值。

在Matlab中,我们可以使用fmincon函数或fminunc函数进行优化求解。

首先,我们需要定义目标函数和约束条件。

然后,使用fmincon函数或fminunc函数求解最优化问题,并输出最优解和最优值。

最后,我们可以使用plot函数可视化最优解的效果。

matlab中与的用法 -回复

matlab中与的用法 -回复

matlab中与的用法-回复标题:MATLAB中的"与" 运算符用法及实例解析简介:MATLAB 是一种广泛应用于科学和工程领域的高级编程语言和环境。

它提供了强大的数值计算、数据分析和可视化功能。

在MATLAB 中,用户可以使用多种运算符来进行逻辑运算和条件判断。

其中,与运算符是用于比较多个条件并确定它们是否同时满足的一种基本运算符。

本文将详细介绍MATLAB 中与运算符的用法,并通过一些实例来解析其适用性和执行过程。

一、基本概念1. AND 运算符在MATLAB 中,与运算符用符号"&&" 表示。

当"&&" 两侧的条件同时为真时,结果为真;如果其中有一个或多个条件为假,则结果为假。

二、语法和用法1. 简单使用AND 运算符可用于多个条件的比较,其语法格式如下:if condition1 && condition2statementsend其中condition1 和condition2 是需要比较的条件,statements 是满足条件时需要执行的语句。

2. 复杂条件比较AND 运算符可以用于比较多个条件,并帮助用户确定它们是否同时满足。

这对于判断大量数据的复杂条件非常有用。

三、实例解析为了更好地理解MATLAB 中与运算符的用法,以下将提供两个实例进行解析。

实例一:选取正数且满足范围条件的数据假设我们有一个包含整数的向量x,我们希望选取其中的正数,且满足在[0,10] 范围内的数据。

matlabx = [-2, 4, 6, 8, 15, 0, -7];positive_and_range = (x > 0) && (x <= 10);result = x(positive_and_range);disp(result);首先,我们定义了向量x,并通过与运算符筛选了满足条件的元素,存储在变量positive_and_range 中。

MATLAB中的数学建模方法及应用

MATLAB中的数学建模方法及应用

MATLAB中的数学建模方法及应用引言数学建模作为一门重要的学科,已经成为了现代科学研究和工程实践中不可或缺的一部分。

而在数学建模过程中,数值计算和数据分析是关键步骤之一。

MATLAB作为一种强大的数学计算软件,在数学建模领域得到了广泛应用。

本文将介绍MATLAB中常用的数学建模方法,并探讨一些实际应用案例。

一、线性模型线性模型是数学建模中最基础的一种模型,它假设系统的响应是线性的。

在MATLAB中,我们可以通过矩阵运算和线性代数的知识来构建和求解线性模型。

例如,我们可以使用MATLAB中的线性回归函数来拟合一条直线到一组数据点上,从而得到一个线性模型。

二、非线性模型与线性模型相对应的是非线性模型。

非线性模型具有更强的表达能力,可以描述更为复杂的系统。

在MATLAB中,我们可以利用优化工具箱来拟合非线性模型。

例如,我们可以使用MATLAB中的非线性最小二乘函数来优化模型参数,使得模型与实际数据拟合程度最好。

三、微分方程模型微分方程模型在科学研究和工程实践中广泛应用。

在MATLAB中,我们可以使用ODE工具箱来求解常微分方程(ODE)。

通过定义初始条件和微分方程的表达式,MATLAB可以使用多种数值方法来求解微分方程模型。

例如,我们可以利用MATLAB中的欧拉法或者龙格-库塔法来求解微分方程。

四、偏微分方程模型偏微分方程(PDE)模型是描述空间上的变化的数学模型。

在MATLAB中,我们可以使用PDE工具箱来求解常见的偏微分方程模型。

通过定义边界条件和初始条件,MATLAB可以通过有限差分或有限元等方法来求解偏微分方程模型。

例如,我们可以利用MATLAB中的热传导方程求解器来模拟物体的温度分布。

五、曲线拟合与数据插值曲线拟合和数据插值是数学建模过程中常见的任务。

在MATLAB中,我们可以使用拟合和插值工具箱来实现这些任务。

通过输入一系列数据点,MATLAB可以通过多项式拟合或者样条插值等方法来生成一个模型函数。

MatLab软件在数学建模中画图编程

MatLab软件在数学建模中画图编程

MatLab软件在数学建模中画图编程MatLab&数学建模第⼆讲MatLab图形绘制功能⼀、⼆维平⾯图形基本绘图函数hold on命令⽤于在已画好的图形上添加新的图形plot是绘制⼀维曲线的基本函数,但在使⽤此函数之前,我们需先定义曲线上每⼀点的x及y座标。

下例可画出⼀条正弦曲线:x=0:0.001:10;%0到10的1000个点的x座标y=sin(x);%对应的y座标plot(x,y);%绘图Y=sin(10*x);plot(x,y,'r:',x,Y,'b')%同时画两个函数若要改变颜⾊,在座标对後⾯加上相关字串即可:x=0:0.01:10;plot(x,sin(x),'r')若要同时改变颜⾊及图线型态(Line style),也是在坐标对後⾯加上相关字串即可:plot(x,sin(x),'r*')⽤axis([xmin,xmax,ymin,ymax])函数来调整图轴的范围axis([0,6,-1.5,1])MATLAB也可对图形加上各种注解与处理:xlabel('x轴');%x轴注解ylabel('y轴');%y轴注解title('余弦函数');%图形标题legend('y=cos(x)');%图形注解gtext('y=cos(x)');%图形注解,⽤⿏标定位注解位置grid on;%显⽰格线fplot的指令可以⽤来⾃动的画⼀个已定义的函数分布图,⽽⽆须产⽣绘图所须要的⼀组数据做为变数。

其语法为fplot('fun',[xmin xmax ymin ymax]),其中fun 为⼀已定义的函数名称,例如sin,cos等等;⽽xmin,xmax,ymin,ymax则是设定绘图横轴及纵轴的下限及上限。

以下的例⼦是将⼀函数f(x)=sin(x)/x 在-20>>fplot('sin(x)./x',[-2020-0.41.2])【例】画椭圆1232222=+y x a =[0:pi/50:2*pi]';%⾓度π20-X =cos(a)*3;%参数⽅程Y =sin(a)*2;plot(X,Y);xlabel('x'),ylabel('y');title('椭圆')图形窗⼝的分割⼀般⽤命令subplot: subplot(2,2,1);subplot(2,3,4);MATLAB还有其他各种⼆维绘图函数,以适合不同的应⽤,详见下表。

MATLAB数学建模14个范例

MATLAB数学建模14个范例

1.整数规划的蒙特卡洛解法2015-06-10 (2)2. 罚函数法 2015-06-11 (3)3. 层次分析 2015-06-12 (4)4. 粒子群优化算法的寻优算法--非线性函数极值寻优 2015-06-13 (5)5有约束函数极值APSO寻优 2015-06-14 (12)6.模拟退火算法 TSP问题2015-06-15 (17)7. 右端步连续微分方程求解2015-06-16 (19)8. 多元方差分析 2015-06-17 (22)9. 基于MIV的神经网络变量筛选 2015-06-18 (25)10. RBF网络的回归--非线性函数回归的实现 2015-06-19 (29)11. 极限学习机在回归拟合中的应用 2015-06-20 (32)12. 极限学习机在分类中的应用 2015-06-21 (34)13. 基于PSO改进策略 2015-06-22 (37)14. 神经网络遗传算法函数极值寻优 2015-06-23 (46)1.1.整数规划的蒙特卡洛解法2015-06-10 已知非线性整数规划为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤++≤++≤++++≤++++=≤≤-----++++=200520062800622400)5,....,1(9902328243max 54233216432154321543212524232221x x x x x x x x x x x x x x x x i x x x x x x x x x x x z i如果用显枚举试探,共需要计算100^5=10^10个点,其计算量非常大。

然而应用蒙特卡洛去随机模拟计算10^6个点,便可以找到满意解,那么这种方法的可信度究竟怎么样呢? 下面就分析随机采样10^6个点计算时,应用概率理论估计下可信度。

不是一般性,假设一个整数规划的最优点不是孤立的奇点。

假设目标函数落在高值区的概率分别为0.01,0.00001,则当计算10^6个点后,有任一个点落在高值区的概率分别为:1-0.99^1000000=0.99...99(100多位) 1-0.99999^1000000=0.999954602解 (1)首先编写M 文件 mengte.m 定义目标函数f 和约束向量g,程序如下:function [f,g]=mengte(x);f=x(1)^2+x(2)^2+3*x(3)^2+4*x(4)^2+2*x(5)-8*x(1)-2*x(2)-3*x(3)-... x(4)-2*x(5); g=[sum(x)-400x(1)+2*x(2)+2*x(3)+x(4)+6*x(5)-800 2*x(1)+x(2)+6*x(3)-200 x(3)*x(3)+x(4)+5*x(5)-200];(2)编写M 文件mainint.m 如下求问题的解: rand('state',sum(clock)); p0=0; ticfor i=1:10^5x=99*rand(5,1);x1=floor(x);%向下取整 x2=ceil(x);%向上取整 [f,g]=mengte(x1); if sum(g<=0)==4 if p0<=f x0=x1; p0=f; end end[f,g]=mengte(x2); if sum(g<=0)==4 if p0<=fx0=x2; p0=f; end end end x0,p0Matlab 求解整数规划祥见第二章(优秀教材)2.罚函数法 2015-06-11利用罚函数法,可将非线性规划问题的求解,转化为求解一系列无约束极值问题,因而也称这种方法为系列无约束最小化技术,简记为SUMT 。

数学建模Matlab实验程序

数学建模Matlab实验程序

Matlab实验作业及答案作业1:建立函数M文件2.建立下面函数的M文件,并求f(x)值.(1)f(x)=log(x1+x22),x=(1,2)(2)f(x)=sin(x2)+exp(2x3),x=2(1)function f = fun1(x1,x2)f = log(x1 +x2^2);end(2)function f = fun2( x)f = sin(x^2) + exp(2*x^3);end3.试编写同时求sin(x),cos(x),exp(x),abs(x)的M函数文件.function f = fun3(x)f = [sin(x) cos(x) exp(x) abs(x)];end4.建立符号函数的M文件:当输入的变量为负数时,返回值-1;当输入的变量为正数时,返回值1;而输入0时,返回值0.function f = fun4(x)if x>0f = 1;else if x == 0f = 0;elsef = -1;endendend5.建立函数 的M 文件。

function f = fun5(x)if x>0f = exp(x-1);elsef = x^2;endend6.通过帮助系统查询roots,poly,polyval,poly2str 的用法,用这些命令解下面的问题:已知一多项式的零点为{-1,1,2,3},写出该多项式,并且计算多项式在点x=2.5处的值。

root = [-1 1 2 3];p = poly(root);x = 2.5;a = polyval(p,x);eig(a)计算多项式y=x 3-3x+2的零点P = [1 0 -3 2];a = company(p); eig(a)7.查询sum,length 的用法,建立一个求向量的平均值的M 文件a = [1 2 3 4];b = sum(a);⎪⎩⎪⎨⎧≤>=-0,0,21x x x e f xc = length(a);d = b/c;eig(d)8.查询input,disp 的用法,建立M 文件:输入x,y 的值将其互换后输出x = input('x=');y = input('y=');disp ([x,y]);t=x;x=y;y=t;disp ([x,y]);作业题2:MATLAB 矩阵的处理1. 创建矩阵A = [1 2 -1 3 5;1 -2 9 0 -6;-3 3 -4 7 1;9 8 0 7 6];disp(A);2.取A 的1,2行与2,3列的交叉元素作子矩阵A1.A([1,2],[2,3])3.取A 的1,3行,然后按行形成矩阵A2A2 = A([1,3],:);4.逆序提取A 的1,2,3行,形成列矩阵A3.A3 = [A(3,:) A(2,:) A(1,:)]’;(“’”为转置符号)5.取A2的绝对值大于3的元素构成向量A4.A4 = find(A>3);6.求出A 的最大值a 及其所处的位置. 12135129063347198076A -⎛⎫ ⎪-- ⎪= ⎪-- ⎪⎝⎭a = max(max(A));[row col v] = find(a);disp([row col v]);7、设用三种方法(克拉姆法则、矩阵的除法、逆矩阵)解方程组AX=bA = [10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10];b = [32;23;33;31];逆矩阵法:x = inv(A)*b;disp(x);矩阵的除法x =A\b;克拉姆法则for n=1:4B = A;B(:,n) = b;x(n) = det(B)/det(A);enddisp(x);作业题3:Matlab 语法控制结构的使用(1) 用起泡法对10个数由小到大排序.即将相邻两个数比较,将小的调到前头.a = [0 9 7 8 6 5 4 3 2 1];1078775658610975910A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭32233331b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭n = length(a);for i = 1:nfor j = 1:n-iif a(j)>a(j+1)t = a(j);a(j) = a(j+1);a(j+1) = t;endendenddisp(a)(2) 取任意数组,如[8 9 11 -9 0 2 -82 42 3 5]等的绝对值大于数3的元素构成向量(编程实现).a = [8 9 11 -9 0 2 -82 42 3 5];a = abs(a);b = find(a>3);a1 = a(b);disp(a1);(3)一球从h (比如100米)高度自由落下,每次落地后反跳回原高度的一半,再落下. 求它在第10次落地时,共经过多少米?第10次反弹有多高?h = 100;for i = 1:10h = h/2;enddisp(h) (4)有一函数 写一程序,输入自变量的值,输出函数值.function fun34 = f(x,y)x = input('x=');y = input('y=');if x < 2f = x+1;elseif x >= 2 &&x <= 8f = 3*x;elseif x>8 && x<=20f = 4*x -5;elseif x>201,23,28(,)45,820cos()sin(),20x x x x f x y x x x x x +<⎧⎪≤≤⎪=⎨-<≤⎪⎪+>⎩f = cos(x)+sin(x);enddisp(f);end(5)从1到多少的自然数的和小于或等于1000,此时的和是多少?sum = 0;n = 1;while sum <= 1000sum = sum+n;n = n+1;enddisp(n - 1);disp(sum -n );(6) 已知 当m=100时,求y 的值。

数学建模竞赛培训之编程MATLAB实用教程

数学建模竞赛培训之编程MATLAB实用教程

数学建模竞赛培训之编程MATLAB实用教程在当今的学术和工程领域,数学建模竞赛越来越受到重视,而MATLAB 作为一款强大的数学计算和编程软件,在其中发挥着至关重要的作用。

如果你正在为数学建模竞赛做准备,那么掌握 MATLAB 的编程技巧将为你在竞赛中取得优异成绩提供有力的支持。

接下来,让我们一起开启 MATLAB 编程的实用教程之旅。

一、MATLAB 基础首先,我们来了解一下 MATLAB 的基本操作界面。

当你打开MATLAB 时,会看到一个命令窗口,这是我们输入命令和查看结果的地方。

变量是编程中的重要概念,在 MATLAB 中,变量无需事先声明类型,直接赋值即可使用。

例如,我们可以输入`x = 5` ,此时`x` 就被赋值为 5 。

MATLAB 支持多种数据类型,如数值型(包括整数和浮点数)、字符型、逻辑型等。

二、矩阵操作矩阵在数学建模中经常用到,MATLAB 对矩阵的操作非常方便。

可以通过直接输入元素来创建矩阵,比如`A = 1 2 3; 4 5 6` 就创建了一个 2 行 3 列的矩阵`A` 。

矩阵的运算也十分简单,加法、减法、乘法等都有相应的运算符。

例如,两个矩阵相加可以直接使用`A + B` 。

三、函数的使用MATLAB 拥有丰富的内置函数,大大提高了编程效率。

比如求矩阵的行列式可以使用`det()`函数,求矩阵的逆可以使用`inv()`函数。

我们还可以自己定义函数,语法如下:```matlabfunction output_args = function_name(input_args)%函数体end```四、绘图功能在分析数据和展示结果时,绘图是必不可少的。

MATLAB 能够绘制各种类型的图形,如折线图、柱状图、饼图等。

以绘制简单的折线图为例,使用`plot()`函数,如`plot(x,y)`,其中`x` 和`y` 是数据向量。

五、数值计算在数学建模中,常常需要进行数值计算,如求解方程、求积分等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注释说明语句段
程序语句段
特定规则:
1. 函数m文件第一行必须以单词function作为引导词, 必须遵循如下形式:
function <因变量>=<函数名>(<自变量>)
2. m文件的文件名必须是<函数名> .m。
3. 程序中的变量均为局部变量,不保存在工作空间中。
其变量只在函数运行期间有效。
12
1. 匿名函数
17
if语句
if表达式 else end
程序模块1 程序模块2
18
if语句的两种变形
• (1) 单分支if语句:只有一个分支的选择结构
if表达式 程序模块
end
• (2) 多分支if语句:超过2个的选择
if表达式1
程序模块1
elseif 表达式2
程序模块2

elseif 表达式n
程序模块n
else
% K = RANK(X) is the number of singular values of X
% that are larger than MAX(SIZE(X)) * NORM(X) * EPS.
% K = RANK(X,tol) is the number of singular values of X that are larger than tol.
matlab自定义的函数文件称内置函数文件
调用内置函数的方法:使用函数名并给出相应的入 口、出口参数即可。
1
例如:sin.m函数。
0.8
调用格式:y=sin(2*x)
0.6
实际应用中:
0.4
0.2
x=0:2*pi/180:2*pi;
0
y=sin(2*x)
-0.2
plot(x,y)
-0.4
9
-0.6
又如 sqrt(x) —— 求x的平方根 abs(x)—— 求x的绝对值 det(a)—— 求行列式的值
命令行方式程序可读性差,而且不能存储,对于复杂的 问题,应编写成能存储的程序文件。
3
• m文件模式
将matlab语句构成的程序存储成以m为 扩展名的文件,然后再执行该程序文件, 这种工作模式称为程序文件模式。
程序文件不能在指令窗口下建立,因为指 令窗口只允许一次执行一行上的一个或几 个语句。
程序模块n+绩转换为五级制的成绩输 出
clear n=input('输入n= '); if n>=90
r='A' elseif n>=80
r='B' elseif n>=70
4
二、m文件的创建
• m文件的类型是普通的文本文件,我们可以 使用系统认可的文本文件编辑器来建立m文件。
• 具体的创建方法: 1. 在matlab命令窗
口点击file 菜单 new m-file
5
6
2. m文件
m文件的语法类似于c语言,但又有其自身特 点。
m文件有两类独立的m文件 — 称命令文件
% Copyright (c) 1984-94 by The MathWorks, Inc.
s = svd(x);
if (nargin == 1) tol = max(size(x)) * max(s) * eps;
程序部分
end
r = sum(s > tol);
8
(2) matlab内置函数文件
0 71.72 49.389 33.131 22.209
14
MATLAB程序结构
• 按照程序设计的观点, 任何算法功能都可以 通过由程序模块组成的三种基本程序结构 的组合来实现:
– 顺序结构:程序按程序语句或模块在执行流中 的顺序逐个执行。
– 选择结构:程序按设定的条件实现程序执行流 的多路分支。
函 数是 指具 有输 入和 输出 的语 句体 .匿名 函数能 创建由表达式定义的简单函数. 在一段程序中,后定 义的匿名函数可以调用已定义过的匿名函数. 格式:
fhandle=@(arglist) expr expr 指用来定义函 数的表达式,相当于函数体;圆括号内的 arglist 是以 逗号分隔的输入变量名列表;“@”创建函数句柄, 用来调用函数;“=”是赋值号;fhandle 是保存函数 句柄的变量名,调用它,就可以调用它保存的函数.
13
1. 匿名函数
例 1.3.9 创建函数 f (x) a1(ea2x ea3x ) ( x [0, 24] )的 匿名函数,并当 a1 =110, a2 =−0.2, a3 =−2 时,分别 计算 x 取值为 0、2、4、6 和 8 时对应的函数值.
>> f=@(a,x)a(1).*(exp(a(2).*x)-exp(a(3).*x)); >> y=f([110,-.2,-2],0:2:8) y=
可调用m文件 — 称函数文件
(1). 命令文件 — 独立的m文件
命令文件实际上是一串指令的集合,与在命 令窗口逐行执行文件中的所有指令,其结果是 一样的。没有输入输出参数。
7
• 命令文件包括两部分:注释文件和程序文 件
• %RANK Number of linearly independent rows or columns.
第3章 MATLAB程序设计
L/O/G/O
1
—— Matlab语言称为第四代编程语言, 程序简洁、可读性很强而且调试十分容易, 是Matlab的重要组成部分。
2
一、matlab的工作模式
• 命令行 模式(指令驱动模式)
命令行操作时,matlab窗口只允许一次执行一行上 的一个或几个语句。
• 在matlab窗口输入数据和命令进行计算时,当处理复 杂问题和大量数据时是不方便的。
– 循环结构:程序按给定的条件重复地执行指定 的程序段或模块。
15
1顺序结构
程序模块1 程序模块2
• MATLAB中实现顺序结构的方法非常简 单:
– 只需将程序语句顺序排列即可
16
2 选择结构
成立
不成立
条件
程序模块1
程序模块2
• 在MATLAB中,选择结 构由两种语句结构实现:
– if语句 – switch语句
等等。
matlab拥有大量的内置数学函数,供我们在数 值运算和符号运算中调用。
10
(3) 函数m文件— 需要输入变量,返 回输出变量
matlab用户可以根据需要编辑自己的m 文件,它们可以像库函数一样方便的调 用,从而极大地扩展了matlab 的能力。
11
函数m文件的格式:
function 返回变量=函数名(输入变量)
相关文档
最新文档