初三数学一元二次方程与实际问题的应用

合集下载

初中数学用一元二次方程解决生活实际问题

初中数学用一元二次方程解决生活实际问题

初中数学用一元二次方程解决生活实际问题本节问题的背景和表达都比较贴近实际,其中有些数量关系比较隐蔽,所以在探究过程中正确地建立一元二次方程是主要难点,突破难点的关键是弄清楚问题的背景,把有关数量关系分析透彻,特别是找出可以作为列方程依据的主要相等关系。

当然这个等量关系就是来自于题目中的条件,想要做到这一点就必须得仔细审题,精读题目。

列一元二次方程解应用题的一般步骤为:审、设、列、解、检、答。

具体可分为:①审题,找等量关系,这是列方程解应用题的关键;②设未知数,注意单位;③根据题意找等量关系列出方程;④解方程;⑤检验解是否合理;⑥写出答案作答。

数字问题一个两位数,个位数字与十位数字之和为5,把个位数字与十位数字对调之后,所得的两位数与原来的两位数的乘积为736,求原来的两位数。

面积问题例如1.要建一个面积为130的仓库,仓库的一边靠墙(墙长16),并在与墙平行的一边开一道1宽的门,现在有能围成32长的木板,求仓库的长和宽。

2.某小区规划在一个长为40m 、宽为26m 的矩形ABCD 上修建三条同样宽的小路其中两条与AB 平行,另一条与AD 平行。

其余部分种草,若使草坪的总面积为864m 2,求小路的宽度2m m m m增长率问题如增长率:若原数是a,每次的增长的百分率是x则第一次增长后为a(1+a)第二次增长后为a(1+x)+a(1+x)x=a(1+x)(1+x)=a(1+x)2即原数*(1+增长百分率)n=后来数(n为增长次数)同理降低率=原数*(1+降低百分率)n=后来数(n为降低次数)例如:某商场2月份的营业额为400万,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万,求3月份到5月份的营业额的平均增长率。

某商厦今年一月份销售额为60万元,二月份由于经营不善,销售额下降了10%,以后改进管理,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)某钢厂1月份的产量是4吨,2、3月份的产量持续增长,第一季度共生产13.24万吨,求2、3月份平均增长率。

实际问题与一元二次方程-(含答案)

实际问题与一元二次方程-(含答案)

实际问题与一元二次方程-(含答案)实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似。

都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。

在利用一元二次方程解决实际问题时,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性。

主要研究下列两个内容:1.列一元二次方程解决实际问题。

一般情况下,列方程解决实际问题的一般步骤为:审、设、列、解、验、答六个步骤。

找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。

2.一元二次方程根与系数的关系。

一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。

知识链接点击一:列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力。

列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程。

概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案。

一般情况下列方程解决实际问题的一般步骤如下:1) 审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系。

2) 设:是在理清题意的前提下,进行未知量的假设(分直接与间接)。

3) 列:是指列方程,根据等量关系列出方程。

4) 解:就是解所列方程,求出未知量的值。

5) 验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去。

6) 答:即写出答案,不要忘记单位名称。

总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。

点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。

一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。

如何应用一元二次方程解决实际问题

如何应用一元二次方程解决实际问题

如何应用一元二次方程解决实际问题2023年了,科技的进步让我们生活变得越来越便利,但是,这并不意味着我们可以忽略数学的重要性。

我相信,你有时会感觉到,自己学习的数学知识似乎与现实生活脱离很远,但实际上,数学无处不在,特别是一元二次方程这样的高中数学知识,可以在我们日常生活中实际应用。

一、解决物理问题在实际生活中,我们经常会遇到需要计算物理问题的情况,如汽车加速、弹射物的运动等等。

这些问题的解决涉及到大量数学计算,其中往往就包含了一元二次方程。

例如,当我们要计算一名物体从山顶滑落到地面所需要的时间时,就需要用到一元二次方程来解决。

假设物体滑落的距离为d(米),山顶到地面的距离为h(米),物体的初始速度为v(米/秒),由于物体只受到重力的作用,所以物体在下落的过程中受到的力可以表示为mg(牛),即物体质量m(千克)乘以重力加速度g(米/秒²)。

根据牛顿第二定律,物体所受的力等于其质量乘以加速度,即F=ma。

因此,物体的加速度可以表示为g=mg/m=a。

物体在下落的过程中,其速度随时间递增,加速度不变,因此,可以表示为v(t)=v+at。

当物体从山顶滑落到地面的时候,其速度为0,即v(t)=0。

那么,t可以表示为:t=(-v+sqrt(v²+2gd))/g。

由此,我们就可以通过一元二次方程来计算这个时间。

二、解决金融问题随着社会的发展,投资和理财已经成为越来越多人的关注点。

对于许多人来说,理财不仅仅是理财,还关系到生活的方方面面。

而投资的一个关键是考虑回报率。

在这个问题上,一元二次方程也发挥了重要作用。

假设你投资了一个项目,希望在三年内获得10%的回报率,如果初始投资金额为X元,那么三年后得到的金额就可以表示为:A=X (1+r)³。

其中,r是回报率。

我们可以通过解一元二次方程来计算出最终金额和初始投资金额之间的关系。

例如,如果我们知道最终金额和回报率,就可以反推出初始投资金额。

初中数学九年级上册解一元二次方程的实际应用——利润问题

初中数学九年级上册解一元二次方程的实际应用——利润问题
单台利润 原来 现在 400 400-x 日利润=单台利润×日销售台数 台数 8 日利润 3200 4800
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配 合国家“家电下乡”政策的实施,商场决定采取合适的降价措施.调查表明:这 种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中 每天盈利4800元,同时又要使得百姓得到实惠,每台冰箱应降价多少元?
在利润问题中,常有销售量随销售价格的变化而变化的问题,在这些 问题中总存在着数量关系:“日利润=单件利润×日销售数量”,这类问 题通常可以列一元二次方程求解.
具体办法为:①分析题意,弄清题目中的数量关系,②设合适的未知
量为未知数,用含未知数的代数式分别表示出“单件利润”、“销售数量 ”等,③根据上述数量关系和题意列出方程,④解上述方程,⑤检验方程
解一元二次方程的实际应用-----利润问题
薄利多销是指低价低利扩大销售的策略.“薄利多销”中的“薄利”就是
降价,降价就能“多销”,“多销”就能增加总收益.
“日利润=单件利润×日销售数量”,由于降价或提价,造成销售量
随之变化,根据该数量关系通常可以列一元二次方程解决有关利润的问题.
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销 售,增加盈利,商场决定采取适当的降价措施.经调查发现,在一定范围内,衬衫 的单价每降 1 元,商场平均每天可多售出2件.如果商场通过销售这批衬衫每天要 盈利1200元,衬衫的单价应降多少元?
设降价x元 单利润
原来 40
日利润总利润
800
现在
40-x
20+2x
1200
则(40-x)(20+2x)=1200
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销 售,增加盈利,商场决定采取适当的降价措施.经调查发现,在一定范围内,衬衫 的单价每降 1 元,商场平均每天可多售出2件.如果商场通过销售这批衬衫每天要 盈利1200元,衬衫的单价应降多少元? 解:设降价x元, 则(40-x)(20+2x)=1200

实际问题与一元二次方程-(含答案)

实际问题与一元二次方程-(含答案)

实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似,都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。

在利用一元二次方程解决实际问题,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.主要学习下列两个内容:1. 列一元二次方程解决实际问题。

一般情况下列方程解决实际问题的一般步骤:审、设、列、解、验、答六个步骤,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键.2. 一元二次方程根与系数的关系。

一般地,如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根是1x 和2x ,那么ac x x a b x x =•,=+2121-.知识链接点击一: 列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力,列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程.概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案.一般情况下列方程解决实际问题的一般步骤如下:(1)审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系.(2)设:是在理清题意的前提下,进行未知量的假设(分直接与间接). (3)列:是指列方程,根据等量关系列出方程. (4)解:就是解所列方程,求出未知量的值.(5)验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去.(6)答:即写出答案,不要忘记单位名称.总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键.针对练习1: 某城市2006年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2008年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( )A .300(1+x )=363B .300(1+x )2=363C .300(1+2x )=363D .363(1-x )2=300点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。

初三数学一元二次方程与实际问题

初三数学一元二次方程与实际问题

一元二次方程与实际问题是一个重要的数学课题,它涉及到数学建模、问题分析、数值计算等多个方面。

在解决实际问题时,我们需要将实际问题转化为数学问题,再利用一元二次方程进行求解。

以下是一篇关于初三数学一元二次方程与实际问题的回答,希望对您有所帮助。

一、一元二次方程的基本概念一元二次方程是指含有且只含有一个未知数,未知数的最高次数为二次的整式方程。

一般形式为ax2+bx+c=0,其中a、b、c为常数,a≠0。

一元二次方程具有广泛的应用价值,可以用于解决各种实际问题。

二、实际问题转化为数学问题将实际问题转化为数学问题,需要我们进行以下几个步骤:1. 识别问题:首先需要仔细分析实际问题,明确问题的本质和核心。

2. 建立模型:根据问题的特点,建立相应的数学模型,如一元二次方程、不等式、函数等。

3. 确定参数:根据问题的实际背景,确定方程中的参数,如价格、成本、收益等。

4. 转化求解:将实际问题中的参数转化为方程中的系数,再利用数学方法进行求解。

以销售问题为例,假设某商店进了一批商品,成本为c元/件,售价为x元/件。

经过一段时间的销售后,商店决定降价销售,以刺激销量。

降价后售价为y元/件,销售量为z件。

根据实际情况,我们可以得到以下一元二次方程:y-x=z(c-x),其中y为降价后的售价,x为原价,c为成本,z为销售量。

通过求解该方程,我们可以得到降价后的最优售价和销售量。

三、一元二次方程的解法一元二次方程的解法有多种,如直接开平方法、配方法、公式法等。

在实际应用中,我们需要根据具体问题选择合适的解法。

以配方法为例,将一元二次方程ax2+bx+c=0化为(ax+b/2)2=c/4的形式,从而方便求解。

四、实际问题的注意事项在解决实际问题时,还需要注意以下几点:1. 准确性:实际问题往往比较复杂,需要仔细分析问题的细节和背景,确保数学模型的准确性。

2. 可行性:在建立数学模型时,需要考虑实际操作的可行性和成本效益。

九年级数学 实际问题与一元二次方程--利润问题

九年级数学 实际问题与一元二次方程--利润问题

(2)在不改变上述关系的情况下,请你帮助商场经理策划每件 商品定价为多少元时,每日盈利可达到1600元?
生活有关一元二次方程的利润问题
例2:百佳超市将进货单价为40元的商品按50元出售时,能卖 500个,已知该商品要涨价1元,其销售量就要减少10个,为 了赚8000元利润,售价应定为多少,这时应进货为多少个?
分析:设商品单价为(50+x)元,则每个商品得利润[(50+x) —40]元, 因为每涨价1元,其销售会减少10,则每个涨价x元,其销售量会减少 10 x个,故销售量为(500 —10 x)个,根据每件商品的利润×件数 =8000,则应用(500 —10 x)·[(50+x) —40]=8000
解:设每个商品涨价x元,则销售价为(50+x)元,销售量为(500 —10 x)个, 则(500 —10 x)·[(50+x) —40]=8000,整理得 x2 40 x 300 0,
解得 x1 10, x2 30都符合题意。
当x=10时,50+ x =60,500 —10 x=400;
当 x=30时,50+ x =80, 500 —10 x=200。
解:(1)100×(100-80)=2000(元). 答:原来一天可获利润 2000 元. (2)设每件商品应降价 x 元,由题意,得 (100-80-x)(100+10x)=2160, 即 x2-10x+16=0. 解得 x1=2,x2=8. 答:商店经营商品一天要获利 2160 元,每件商品应降价 2 元或 8 元.
第21章一元二次方程
21.3实际问题与一元二次方程
复习:
1、一支钢笔的进价为5元,售价为9元,
则一支钢笔获利__4____元。 2、如果购买了10支钢笔则获利__4_0__元。

九年级数学实际问题与一元二次方程应用举例

九年级数学实际问题与一元二次方程应用举例
一、复习回顾:
1、已知关于x的方程 ( a2 – 3 ) x2 – ( a + 1 ) x + 1 = 0的两个实数根互为倒数, 求a的值.
2、在解方程x2+px+q=0时,小张看错了p,解得方程的根为1与-3;小王看错了q,解得 方程的根为4与-2。这个方程的根应该是什么?
二、一元二次方程解应用题的一般步骤 (1)审题,分析题意,找出已知量和未知量,弄清它们之间的数
量关系; (2)设未知数,一般采取直接设法,有的要间接设; (3)寻找数量关系,列出方程,要注意方程两边的数量相等,方 程两边的代数式的单位相同; (4)选择合适的方法解方程; (5)检验。
因为一元二次方程的解有可能不符合题意,如:线段的长度不能 为负数,降低率不能大于100%.因此,解出方程的根后,一定要 进行检验. (6)写出答语。源自; 空包网 空包 单号网 ;
水利概况编辑 [22] 鸡豆凉粉 河宽40米 最大流量8410立方米 06万平方公里 用鸡豆做成的凉粉称作鸡豆凉粉 在长时间和特定的区域里对纳西民族的发展产生了巨大的影响 经沙桥、廖村 01% 抹上化油 1978年实灌面积11960亩 二塘乡銮塘 现代水文定义为兴安县溶江镇灵渠口 7米 为俄国作家顾彼得在丽江古城期间租住工作生活的民居 药王节 1984年和1985年水质又变差 大肠杆菌群数猛增 18.海拔2416米 所属国家中国 手道丽江民间手工艺术馆 流经扶南乡境内 经江背底 暗沟长200米 元代至元二十四年 位于三街镇车上冲村南 6.丽江古城 29亿元 ?努 力克服财政收支矛盾十分突出问题 州 二氧化硫排放总量5270吨;丽江白沙壁画景区 3A 丽江文笔山景区 3A 丽江少数民族 1983年与1982年的情况相同 2009年9月列为云南省爱国主义教育基地 1 [2] 比较常见的形式有

人教版九年级上册数学实际问题与一元二次方程——增长率问题应用题

人教版九年级上册数学实际问题与一元二次方程——增长率问题应用题

人教版九年级上册数学21.3实际问题与一元二次方程——增长率问题应用题1.某水果商场经销一种高档水果,原价每千克128元,连续两次降价后每千克98元,若每次下降的百分率相同.(1)求每次下降的百分率;(2)若该水果每千克盈利20元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克.现该商场要保证销售该水果每天盈利9000元,且要减少库存,那么每千克应涨价多少元?2.某商场于今年年初以每件40元的进价购进一批商品.当商品售价为60元时,一月份销售64件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到100件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销,经调查发现,该商品每降价2元,销售量增加20件,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售,商场获利2240元?3.某工厂一月份的产品产量为100 万件,由于工厂管理理念更新,管理水平提高,产量逐月提高,三月份的产量提高到144万件,求一至三月该工厂产量的月平均增长率.4.某商场对某种商品进行销售调整.已知该商品进价为每件30元,售价为每件40元,每天可以销售48件,现进行降价处理.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求这两次中平均每次下降的百分率.(2)经调查,该商品每降价0.5元,平均每天可多销售4件.若要使每天销售该商品获利510元,则每件商品应降价多少元?5.某大型电子商场销售某种空调,每台进货价为2500元,标价为3200元.(1)若电子商场连续两次降价,每次降价的百分率相同,最后以2592元售出,求每次降价的百分率;(2)市场调研表明:当每台售价为3000元时,平均每天能售出10台,当每台售价每降100元时,平均每天就能多售出4台,若商场要想使这种空调的销售利润平均每天达到5400元,且顾客得到优惠,则每台空调的定价应为多少元?6.由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包14.4元,(1)求出这两次价格上调的平均增长率;(2)在有关部门调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包,当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?7.某楼盘准备以每平方米4800元的均价对外销售,由于受经济形势的影响后,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3888元的均价开盘销售.(1)求平均每次下调的百分率;(2)陈先生准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.5折销售;①不打折,一次性送装修费每平方米188元.试问哪种方案更优惠?8.据统计,第一天公益课受益学生2万人次,第三天公益课受益学生2.42万人次.(1)设第二天,第三天公益课受益学生人次的增长率相同,请求出这个增长率;(2)若(1)中的增长率保持不变,预计第四天公益课受益学生将达到多少万人次?9.为了满足师生的阅读需求,某校图书馆的藏书从2019年底到2021年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年平均增长率;(2)该校期望2022年底藏书量达到8.6万册,按照(1)中藏书的年平均增长率,上述目标能实现吗?请通过计算说明.10.两年前,生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元.随着生产技术的进步,现在生产1吨甲种药品的成本是3200元,生产1吨乙种药品的成本是3375元,哪种药品成本的年平均下降率较大?11.随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2019年为10万只,预计2021年将达到12.1万只.求该地区2019年到2021年高效节能灯年销售量的平均增长率.12.甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价,已知该商品现价为每件32.4元(1)若该商场两次调价的降价率相同,求平均降价率;(2)经调查,该商品每降价0.2元,即可多销售10件,已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10000元,且尽可能扩大销售量,求该商品应该如何定价出售?13.2022年北京冬奥会吉祥物“冰墩墩”的销售十分火爆,出现了“一墩难求”的现象.据统计,某特许零售店2021年11月的销量为3万件,2022年1月的销量为3.63万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)假设该店“冰墩墩”销量的月平均增长率保持不变,则2022年2月“冰墩墩”的销量有没有超过4万件?请利用计算说明.14.2022年北京冬奥会吉祥物“冰墩墩”的销售十分火爆,出现了“一墩难求”的现象.据统计,某特许零售店2021年11月的销量为4万件,2022年1月的销量为4.84万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)假设该店“冰墩墩”销量的月平均增长率保持不变,则2022年2月“冰墩墩”的销量有没有超过5万件?请利用计算说明.15.某口罩厂生产的口罩1月份平均日产量为10000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到14400个.求口罩日产量的月平均增长率.16.随着合肥都市圈的成立,合肥市将加大对都市圈内基础设施投人,尽快形成合肥都市圈“1小时通勤圈”和“1小时生活圈”.在都市圈内,计划四年完成对某条重要道路改造工程,2019年投入资金2000万元,2021年投入的资金为2420万元,设这两年问每年投人资金的年平均增长率相同.(1)求出这两年间的年平均增长率.(2)若对该道路投人资金的年平均增长率不变,预计完成这条道路改造工程的总投入.17.“新冠肺炎”疫情初期,一家药店购进A,B两种型号防护口罩共8万个,其中B型口罩数量不超过A 型口罩数量的1.5倍,第一周就销售A型口罩0.4万个,B型口罩0.5万个,第三周的销量占30%.(1)购进A型口罩至少多少万个?(2)从销售记录看,第二周两种口罩销售增长率相同,第三周A型口罩销售增长率不变,B型口罩销售增长率是第二周的2倍.求第二周销售的增长率.18.某玩具店两周前以40元一个的价格购进一批玩偶,原定以50%的利润率定价,但由于销路不好导致商品积压,于是在周末调价时打折促销.通过两次打折调价,每次打折力度相同,现在的售价为每个48.6元.(1)请问该批玩偶每次打几折?(2)若玩偶库存共20个,计划通过两次相同力度打折调价,清空所有库存,并保证两次降价后销售的总利润不少于200元,则第一次降价至少售出多少件玩偶,才可以进行第二次降价?19.书籍是人类宝贵的精神财富.读书则是传承优秀文化的通道.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次.若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过450人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.20.为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.。

一元二次方程在实际问题中的应用

一元二次方程在实际问题中的应用

一元二次方程在实际问题中的应用一元二次方程是一种常见的数学方程,其形式为ax² + bx + c = 0,其中a、b、c为已知数,x为未知数。

在实际问题中,利用一元二次方程可以解决许多与现实生活相关的数学计算和建模问题。

本文将探讨一元二次方程在实际问题中的应用。

一、物体自由落体问题在物理学中,物体自由落体问题是应用一元二次方程的经典案例之一。

当一个物体自由下落时,根据重力作用,其运动可以用一元二次方程来描述。

假设一个物体从高度h自由落下,并且忽略了空气阻力。

根据运动学公式,可得到物体在t秒时的下落距离s为s = -gt²/2 + vt + h,其中g 为重力加速度,约为9.8 m/s²,v为物体的初始速度。

根据题目中的条件,可以列出一元二次方程来求解。

例如,一个物体从高度20m自由落下,求它落地时所需的时间。

根据以上所述的公式,可得到方程-4.9t² + 20 = 0,将该方程转化为一元二次方程的标准形式,即4.9t² - 20 = 0。

通过求解该方程,可以确定物体落地所需的时间。

二、几何问题一元二次方程也常用于解决几何问题。

例如,在平面几何中,我们常常需要求解关于长度、面积和体积的问题。

假设一个矩形的长度比宽度多6厘米,并且其面积为56平方厘米。

我们可以设矩形的宽度为x厘米,那么矩形的长度就是(x + 6)厘米。

根据矩形的面积公式,面积等于长度乘以宽度,可得到方程x(x + 6) = 56。

将该方程转化为一元二次方程的标准形式,即x² + 6x - 56 = 0。

通过求解该方程,可以确定矩形的宽度和长度。

类似地,一元二次方程也可以用来解决其他几何问题,如圆的面积、三角形的面积等。

三、投射问题投射问题是应用一元二次方程的另一个实际问题。

当物体沿着一个曲线进行投射运动时,我们可以利用一元二次方程来描述其运动轨迹和求解问题。

例如,一个投射物体以初速度v沿着角度θ的轨迹进行抛射,求解其到达地面所需的时间。

中考数学实际问题与一元二次方程的几种题型(传播问题,销售问题和增长率)

中考数学实际问题与一元二次方程的几种题型(传播问题,销售问题和增长率)

一元二次方程应用题(增长率)(1)一、知识回顾:1、列方程解应用题有哪几步?关键是什么?2、某工厂一月份生产零件1000个,二月份生产零件1200个,那么二月份比一月份增产个? 增长率是。

二、例题精讲:例: 某钢铁厂去年1月某种钢的产量为5000吨,3月上升到7200吨,这两个月平均每月增长的百分率是多少?经检验: 答:[总结]:如果某个量原来的值是a,每次增长的百分率是x,则增长1次后的值是a(1+x),增长2次后的值是a(1+x)2,……增长n 次后的值是a(1+x)n ,这就是重要的增长率公式.同样,若原来的量的值是a,每次降低的百分率是x,则n 次降低后的值是a(1-x)n ,这就是降低率公式.三、 巩固练习:1、某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?2、制造一种产品,原来每件的成本是300元,经过两次降低成本,现在的成本是147元.平均每次降低成本百分之几?检测题1、某商场销售商品的收入款,3月份为25万元,5月份为36万元,该商场这两个月销售商品收入款的平均每月增长率是多少?2、市政府为了解决市民看病难的问题,决定下调药品的价格。

某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率。

3、某地区开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次。

求每年接受科技培训的人次的平均增长率。

实际问题与一元二次方程(探究案)(传播问题)(2)1、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?(分析:1、设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了_______人,第一轮后共有______人患了流感;第二轮传染中,这些人中的每个人又传染了_______人,第二轮后共有_______人患了流感。

解:【合作探究】问题1、某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?【题型练习】2、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。

初中数学一元二次方程在实际生活中的应用案例

 初中数学一元二次方程在实际生活中的应用案例

初中数学一元二次方程在实际生活中的应用案例初中数学一元二次方程在实际生活中的应用案例一元二次方程是初中数学中的重要内容之一,学习和掌握它对于解决实际生活中的问题具有重要意义。

以下将介绍几个一元二次方程在实际应用中的案例。

例一:抛物线的应用 - 抛物线喷泉在公园中,常常可以看到美丽的喷泉景观。

这些喷泉往往呈现出一个高高上升的水柱然后再逐渐下落,形成一个美丽的抛物线形状。

喷泉的高度和时间之间的关系可以由一元二次方程来表示。

设喷泉的高度为h(单位:米),时间为t(单位:秒)。

研究显示,喷泉的高度随时间的变化关系可以用以下一元二次方程表示:h = -5t^2 + 20t在这个方程中,-5t^2代表了喷泉高度随时间的递减,并且t^2项的系数-5表示了递减的速率。

喷泉的初始高度是20米,因为方程的常数项20表示了t=0时的高度。

通过对这个方程进行求解,我们可以得到喷泉的高度在不同时间点的具体数值,以及它在不同时间点的高低变化趋势。

这样的分析有助于公园管理者进行喷泉景观的设计和维护。

例二:运动轨迹的预测 - 投掷运动一元二次方程也可以在物体的投掷运动中应用。

当我们投掷物体时,它的运动轨迹往往呈现出一个抛物线形状。

通过建立一元二次方程,我们可以预测物体的运动轨迹和到达目标所需的时间。

假设有个人以初速度v(单位:米/秒)将一个物体投掷出去,物体的运动轨迹可以由方程h = -5t^2 + vt + h0表示,其中h代表物体的高度,t代表时间,h0代表投掷时的高度。

通过解方程,我们可以计算出物体到达地面时所需的时间以及它的落点坐标等信息。

这对于进行远程投掷比赛、预测投掷物下落位置等都非常有用。

例三:经济学中的应用 - 成本与利润一元二次方程在经济学中也有应用,特别是在成本、利润等方面的分析中。

假设某公司的生产成本与产量之间的关系可以用一元二次方程进行表示。

设生产成本为C(单位:元),产量为x(单位:个),则可以用方程C = 2x^2 - 10x + 100来表示。

一元二次方程的实际问题

一元二次方程的实际问题

一元二次方程的实际问题一元二次方程是解决实际问题中常用的数学模型,它具有广泛的应用。

本文将为您介绍一些与一元二次方程相关的实际问题,并探讨如何解决和应用这些问题。

1. 炮弹的射程问题在物理学中,炮弹的射程可以通过一元二次方程来计算。

假设一颗炮弹以初始速度v0以角度θ发射,重力加速度为g。

炮弹的水平射程由以下公式给出:R = (v0²sin2θ) / g其中R表示射程的距离。

通过解这个一元二次方程,我们可以计算出炮弹的射程。

这对于军事战略和工程设计都是重要的考虑因素。

2. 物体自由落体问题当一个物体从高处自由落体时,其下落的距离可以通过一元二次方程来描述。

考虑一个物体从高度h开始自由落体的情况,下落时间为t,重力加速度为g。

物体的下落距离可以由以下方程给出:h = (1/2)gt²解这个一元二次方程可以得到物体下落的时间和距离。

这个问题在力学和日常生活中都有着重要的应用,例如在建筑和运动中。

3. 计算机图形学中的二维变换在计算机图形学中,二元二次方程广泛应用于二维图形的变换。

例如,我们可以通过一元二次方程来描述平移、旋转和缩放等变换。

这些变换可以通过矩阵运算表示为一元二次方程,并且可以利用求解方程来实现对图像的几何变换。

4. 数字游戏中的解谜问题一元二次方程也常出现在数字游戏中的解谜问题中。

这些问题要求我们通过给定的线索和条件来确定未知数的值。

通过列出并解决一元二次方程,我们可以找到解决这些解谜问题的答案,从而推进游戏的进程。

总结:一元二次方程不仅在数学中具有重要的地位,而且在实际问题解决和应用中也有广泛的用途。

本文介绍了炮弹的射程、物体自由落体问题、计算机图形学中的二维变换以及数字游戏中的解谜问题等与一元二次方程相关的实际应用。

通过理解并解决这些问题,我们可以更好地应用数学知识解决实际生活和工作中的难题。

一元二次方程实际问题

一元二次方程实际问题

一元二次方程实际问题
一元二次方程是数学中的重要概念,它在实际问题中有许多应用。

下面我将从几个不同的角度来讨论一元二次方程在实际问题中的应用。

首先,一元二次方程可以用来解决关于抛物线的实际问题。

例如,当一个物体从特定的高度以特定的初速度被抛出时,它的高度可以用一元二次方程来描述。

这种问题在物理学和工程学中经常出现,通过解一元二次方程可以求解出物体的最高点、飞行时间、落地点等相关信息。

其次,一元二次方程也可以用来解决关于面积和周长的实际问题。

例如,一个矩形的面积是其长和宽的乘积,可以表示为一元二次方程的形式。

通过解这个方程,可以找到给定周长条件下面积最大或最小的矩形,这在数学优化和经济学中有广泛的应用。

另外,一元二次方程还可以用来解决关于速度、时间和加速度的实际问题。

例如,一个物体的运动轨迹可以用一元二次方程来描述,通过对这个方程进行求导可以得到物体的速度和加速度。

这对于物理学和工程学中研究运动的问题非常重要。

此外,一元二次方程还可以用来解决关于金融和投资的实际问题。

例如,复利计算中的本金、利率和时间之间的关系可以表示为一元二次方程。

通过求解这个方程,可以得到投资的最佳方案和最大收益。

总的来说,一元二次方程在实际问题中有着广泛的应用,涉及到物理学、工程学、数学优化、经济学、金融学等多个领域。

通过解一元二次方程,我们可以更好地理解和解决各种实际问题,这使得它成为数学中一个非常重要的概念。

九年级数学 实际问题与一元二次方程--增长率

九年级数学 实际问题与一元二次方程--增长率

720吨,平均每月增长率是x,列方程( B
)
A.500(1+2x)=720
B.500(1+x)2=720
C.500(1+x2)=720
D.720(1+x)2=500
2.某校去年对实验器材的投资为2万元,预计今明两年
的投资总额为8万元,若设该校今明两年在实验器材投
资上的平均增长率是x,则可列方程

.
练习:塔城地区开展“科技下乡”活动三年
___2_0_0_0______年;
两年19绿98地199面9 积20的00 年20平01
(2)为满足城市发展的需要,计划 均增长率为10%.
到2003年底使城区绿地面积达到72.6
公顷,试求2002年,2003年两年绿地
面积的年平均增长率。
课堂作业
一、P26 10 二、P22 7(只列式,不计算)
2、注意: (1)1与x的位置不要调换 (2)解这类问题列出的方程一般
用 直接开平方法
1、青山村种的水稻2001年平均每公顷产7200千克 ,2003年平均每公顷产8712千克,求水稻每公 顷产量的年平均增长率。
解:设水稻每公顷产量的平均增长率为x,
根据题意的, 7200 (1 x)2 8712
系数化为1得, (1 x)2 1.21
直接开平方得, 1 x 1.1;1 x 1.1 则答:x水1 稻 每0.公1顷产量x2 的 年2平.1(均不增合长题率意为舍1去 0%)。

2.某公司2009年的各项经营中,一月份的营业额为200万元
,一月、 二月、三月的营业额共950万元,如果平均每月营
业额的增长率相同,求这个增长率. 分析:设这个增长率为x;则 二月份营业额为:_____2_0_0_(1_+_x_)_______

一元二次方程的实际应用

一元二次方程的实际应用

一元二次方程的实际应用一元二次方程是指只有一个未知数的二次方程,通常形式为ax^2 + bx + c = 0,其中a、b、c都是已知数且a ≠ 0。

这种方程在数学中具有广泛的应用,能够模拟和解决现实世界中许多实际问题。

本文将介绍一些常见的实际应用场景,并讨论如何利用一元二次方程进行求解。

1. 物体自由落体物体在重力作用下自由下落时,其位置与时间之间存在一元二次关系。

根据运动学公式,物体的下落距离S与下落时间t的关系可表示为S = gt^2 / 2,其中g为重力加速度。

将这个关系式改写为标准的一元二次方程形式,可以得到:gt^2 / 2 - S = 0。

通过解这个方程,我们可以计算出物体的下落时间或下落距离。

2. 抛物线轨迹抛体的运动轨迹往往是抛物线形状,而抛物线方程正是一元二次方程的典型形式。

例如,如果我们知道抛体的初始速度v0和抛射角度θ,那么在水平方向上的速度恒定,可以表示为v0 * cosθ。

在竖直方向上,速度随时间的变化受到重力的影响,可以表示为v0 * sinθ - gt。

通过将水平和竖直方向上的速度组合起来,可以推导出抛物线运动的方程。

3. 面积问题一些几何图形的面积计算也可以归结为一元二次方程的求解。

例如,一个长方形的面积S可以表示为S = x(2a - x),其中x为长方形的宽度,2a为长方形的长度。

通过对方程进行展开,可以得到一个一元二次方程形式,通过求解方程可以获得长方形的最大面积。

4. 电子设备充电时间设备的充电时间通常与电池容量、充电电流和初始电量有关。

假设设备充电的时间为t,电池容量为C,充电电流为I,初始电量为E0。

根据充电定律,充电电量Q与时间的关系可以表示为Q = It。

同时,电池的容量可以表示为C = Q + E0。

将这两个关系组合起来,可以得到一个一元二次方程,通过求解可以计算出设备充电的时间。

在实际应用中,通过一元二次方程解题的过程通常如下:1. 确定问题中涉及的未知量和已知量。

人教版九年级数学上册《实际问题与一元二次方程》教案

人教版九年级数学上册《实际问题与一元二次方程》教案

21.3 实际问题与一元二次方程第1课时实际问题与一元二次方程(1)【知识与技能】会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度】通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.【教学重点】构建一元二次方程解决实际问题.【教学难点】会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.一、情境导入,初步认识问题在上一节的习题21.2中,我们遇见过一些用列方程来求解的实际应用问题,你能说说列方程解应用问题的步骤是怎样的?学生在相互讨论交流中可得出结论为:①审题;②设未知数;③列方程;④解方程;⑤答.【教学说明】让学生在回顾解实际问题过程中的思路方法,为进一步学习新的问题作好铺垫,导入新课.二、思考探究,获取新知探究1 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均1个人传染了几个人?【教学说明】教师展示出问题后,先让学生仔细分析题意,尝试着寻求解决问题的方法.为了让学生更好地理解题意,不妨设置如下几个问题:(1)若设平均每轮传染中一个人可传染x个人,则第一轮传染后共有人患了流感;(2)第二轮传染后,被传染的人数为人,故第二轮传染后共人患了流感.最后师生共同完成解答过程:解:设每轮传染中平均一个人传染了x个人,则第一轮传染后共有(1+x)人患了流感,第二轮传染后共[1+x+(1+x)·x]人患流感,依题意可列方程为1+x+(1+x)·x=121方程可整理为(1+x)(1+x)=121,即(1+x)2=121.∴x1=10,x2=-12(不合题意,应舍去),故平均一个人传染了10个人.想一想(1)照上述传染速度,三轮传染后患流感的人数共有多少人?(2)通过对上述问题的探究,你对类似的传播问题中的数量关系,有新认识吗?【教学说明】(1)的问题学生可通过前面的分析获得结论,进一步加深对传播问题中数量关系的理解和认识;(2)中问题应让学生相互交流,总结规律.探究2两年前生产1t甲种药品的成本是5000元,生产1t乙种药品的成本为6000元.随着生产技术的进步,现在生产1t甲种药品的成本为3000元,生产1t乙种药品的成本为3600元.哪种药品成本的年平均下降率较大?思考(1)甲种药品成本的年平均下降额与乙种药品的年平均下降额分别是多少?它与年平均下降率是否是一回事?(2)若设甲种药品的年平均下降率为x,则第一年后的成本为元,第二年后的成本为元,你能列出相应的方程并求出问题的解吗?对于乙种药品呢?【教学说明】思考(1)旨在让学生感受成本下降问题中,成本下降额和成本下降率这两个接近而不同的概念,前者表示绝对变化量,单位是元,后者表示相对变化量,是表示比率的数字,从而全面比较对象的变化状况;思考(2)则进一步让学生感受到两个时间段的平均变化率,如经济增长率、人口增长率等,设平均变化率为x,则有变化前数量×(1+x)2=两年后的数量,由此可得到一元二次方程的数学模型,并确定方程和问题的解,教学过程中,教师应引导学生积极思考,寻求出实际问题中所蕴含的等量关系,让学生体会到寻找等量关系是解决问题的关键,最后师生共同完成解答过程.三、典例精析,掌握新知例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少个小分支?解:设每个支干长出x个小分支,由题意可列方程为1+x+x2=91,解得x1=9,x2=-10(不合题意,应舍去),即每个支干长出9个小分支.例2某银行经过最近的两次降息,使一年期存款的年利率由2.25%降至1.98%,平均每次降息的百分率是多少?解:设平均每次降息的百分率为a%,依题意可列方程为:2.25%(1-a%)2=1.98%解得a1≈6.19,a2≈193.81(不合题意,应舍去).即平均每次降息的百分率约为6.19%.【教学说明】让学生独立思考,自主探究,找出题目中的等量关系,并能构建合适的一元二次方程来解决问题,加深对知识的领悟,其中例2可借助计算器来帮助解决问题.教学时,教师在学生探究期间应巡视全场,帮助困难学生找出解决问题的思路方法,最后给出完整解答过程,培养学生良好的解题习惯.四、运用新知,深化理解1.一台电视机的成本价为a元,原销售价比成本价增加25%,因库存积压,两次降价处理,若每次降价的百分率为x%,则最后销售价应为.2.某养鸡场一只患禽流感的小鸡经过两天的传染后,使养鸡场共有169只小鸡感染禽流感,那么在每一天的传染中平均一只小鸡传染了几只小鸡?3.某校坚持对学生进行近视眼的防治,近视眼人数逐年减少.据统计,2013年和2012年的近视眼人数只占2011年人数的75%,这两年平均每年近视眼人数下降的百分率是多少?【教学说明】设置这几道题有利于学生进一步掌握一元二次方程应用题的解法,题目稍难,老师应巡视给予指导,然后共同完成.【答案】1.(1+25%)a·(1-x%)2元2.设每一天的传染中平均一只小鸡传染了x只小鸡,由题意,得(1+x)+(1+x)·x=169,解得x1=12,x2=-14(不合题意,舍去),故每一天平均一只小鸡传染了12只小鸡.3.设平均每年的近视眼人数下降的百分率为x,2011年的近视眼人数为a人,由题意有(1-x)a+(1-x)2·a=75%a,解得x1=0.5,x2=2.5,显然x=2.5不合题意,应舍去,即平均每年近视眼人数下降的百分率为50%.五、师生互动,课堂小结通过这节课的学习,你对传播类和增长率(下降率)的应用问题的处理有哪些体会和收获?谈谈你的看法.【教学说明】教师可向学生提问,以进一步巩固列方程解应用题的方法和解题步骤,为后续学习作好铺垫.1.布置作业:从教材“习题21.3”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以正确的方程是:3 2 2 0 3 2 x 2 0 x x 2 5 4 0
化简得, x252x1000, x12,x2 50
其中的 x=50超出了原矩形的长和宽,应舍去.
答:所求道路的宽为2米.
解法二:
我们利用“图形经过平移,它的 面积大小不会改变”的道理,把纵、 横两条路移动一下,使列方程容易些
A
D
解:设小路宽为x米, 则
( 2 2 0 x ) 1 ( 2 5 x ) 2 1 4 2 5 60
B
C
化简得,2x23x5 12 0 3
(x 3 )2 (x 4) 1 0
答x1:小路3(的舍 宽为3去 米,x.2) 421
探究1、李成龙同学要用20cm长的铁丝能否折成
面积为30cm2的矩形,若能够,求它的长与宽;若不能
谢谢观赏!
2020/11/5
21
x2更合乎实际意义, 如果取x1约等于 2.799,那么上边宽 为9×2.799=25.191.
总结
• 解决此类问题 必须具备良好的几何概念知 识,熟悉长度,面积,体积等公式。
• 有时需要通过平移的方法来解决问题。
.注意.有些同学在列方程解应用题时,往 往看到正解就保留,看到负解就舍去.其 实,即使是正解也要根据题设条件进行检 验,从而进行正确取舍.
分析:封面的长宽之比为 27:21=9:7 ,中央矩形的长宽之 比也应是 9:7,由此判断上下边衬与左右边衬的宽度之比也是
9:7
.
设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则 中央矩形的长为 (27-18x) cm,宽为
__(__2_1_-__1_4_x_)__cm.
要使四周的彩色边衬所占面积是封面 面积的四分之一,则中央矩形的面积是封面面积的四分之三.
解:设道路宽为x米,
32-2x)(20-x)=540 • 化简得, x2 -- 36x+6=0

(x-32)(x-2)=0
• x1 =32 X2=2
其中的 x=32超出了原矩形的宽,应舍 去.
• 答:道路的宽为2米.
2.如图,长方形ABCD,AB=15m,BC=20m,四周外 围环绕着宽度相等的小路,已知小路的面积为 246m2,求小路的宽度.
,请说明理由.
解:设这个矩形的长为xcm,则宽为( 20 x) cm
x(20x) 2
30即
2
x2-10x+30=0
这里a=1,b=-10,c=30,
b 2 4 a ( c 1 ) 2 0 4 1 3 0 2 0 0
∴此方程无解.
∴用20cm长的铁丝不能折成面积为30cm2的矩形.
探究2. 如图,高畅家有长为24米的篱笆,他想一面利用墙 (墙的最大可用长度a为10米),围成中间隔有一道篱笆 的长方形花圃.设花圃的宽AB为x米,如果要围成面积为45 米2的花圃,AB的长是多少米,
则横向的路面面积为32x 米2,
纵向的路面面积为 20x 米。2 所列的方程是不是 3 2 2 0 (3 2 x 2 0 x ) 5 4 0
注意:这两个面积的重叠部分是 x2 米2
图中的道路面积不是 32x20x米2.
而是从其中减去重叠部分,即应是 32x20xx2 米2
于是可列出方程.
2718x2114x32721.
4
下面我们来解这个方程.
整理,得
16x248x90.
解方程,得
x 63 3. 4
方程的哪个根 合乎实际意义?
为什么?
x164 332.799,x264 330.201.
上、下边衬的宽均为__约__为__1_.8__0_9_cm, 左、右边衬的宽均为约__为__1_._4_0_7___cm.
【解析】设宽AB为x米, 则BC为(24-3x)米,这时面积 x(24-3x)=-3x2+24x (-3x2+24x=45 化为:x2-8x+15=0解得x1=5,x2=3 ∵0<24-3x≤10得14/3≤x<8 ∴x2不合题意,AB=5,即花圃的宽AB为5米
探究 3
如图,要设计一本书的封面,封面长27cm, 宽21cm,正中央是一个与整个封面长宽比例 相同的矩形.如果要使四周的彩色边衬所占 面积是封面面积的四分之一,上、下边衬等 宽,左、右边衬等宽,应如何设计四周边衬 的宽度(精确到0.1cm)?
(2)
草坪矩形的长(横向)为 (32-x)米 ,
草坪矩形的宽(纵向) (20-x)米 .
相等关系是:草坪长×草坪宽=540米2
即 32x20x540.
化简得:x 2 5 2 x 1 0 0 0 ,x 1 5 0 ,x 2 2 X=50不合题意,舍去,所以小路的宽为2米
应用:
1.如图是宽为20米,长为32米的矩形耕地,要 修筑同样宽的三条道路(两条纵向,一条横向, 且互相垂直),把耕地分成六块大小相等的试 验地,要使试验地的面积为540平方米,问:道 路宽为多少米?
初三数学一元二次方程与实际问题的应用
公园的设计
A
D
怎样设计呢?
B
C
请大家发挥你的聪明才智, 做一名合格的设计师
A
D
B
C
例1:我校为了美化校园,准备在一块长32米 ,宽20米的长方形场地上修筑若干条宽度相 同道路,余下部分作草坪,并请全校同学参与 设计,现在有张广鹏和邱美娟两位学生各设 计了一种方案(如图),根据两种设计方案各 列出方程,求图中道路的宽分别是多少?使图 (1),(2)的草坪面积为540米2.
.一元二次方程是我们日常生活中解决许多问题的 有效模型,我们要善于利用列一元二次方程求解这 个数学模型解决实际生活中的各种问题,并注意要 根据实际意义进行解释和检验,从中体会数学建模 的思想方法.
课后作业
❖ 1,《资源与评价》与此相同的题型,根据自己的 情况选做。
❖ 2,给你的同伴设计一道有关面积的应用题。
解:(1)如图,设道路的宽为x米,则
(3 2 2 x)2 ( 0 2 x) 540
化简得,
x22x6 2 50 (x 2)5 x ( 1 ) 0
(1)
x12,x 5 21
其中的 x=25超出了原矩形的宽,应舍去.
∴图(1)中道路的宽为1米.
分析:此题的相等关系是矩形 面积减去道路面积等于540米2.
相关文档
最新文档