克里金插值

合集下载

克里金插值法

克里金插值法

克里金插值法及其适用范围克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国着名统计学家G . Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。

1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。

因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

假设研究区域a 上研究变量Z (x ),在点xi ∈A (i=1,2,……,n )处属性值为Z (xi ),则待插点x0∈A 处的属性值Z (x0)的克里金插值结果Z*(x0)是已知采样点属性值Z (xi )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。

其中Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ(i=1,2,……,n)满足关系式: 11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3)式中,C (xi ,xj )是Z(xi)和Z(xj)的协方差函数。

克里金(kriging)插值的原理与公式推导

克里金(kriging)插值的原理与公式推导

克里金(kriging)插值的原理与公式推导
克里金插值是一种空间插值方法,用于估计未知区域的数值,其
原理是基于空间数据的空间相关性来进行插值。

具体来说,克里金插
值假设空间数据在不同位置之间具有一定的相关性,即在空间上相邻
的点具有相似的数值。

克里金插值利用这种相关性来进行插值,从而
可以更准确地估计未知位置的数值。

克里金插值的公式推导涉及到半变异函数的定义,通常使用高斯
模型、指数模型或球形模型来描述数据的空间相关性。

在推导过程中,会利用已知数据点的数值和位置信息,以及半变异函数的参数来构建
插值模型,进而估计未知位置的数值。

克里金插值的公式可以表示为:
\[Z(u) = \sum_{i=1}^{n} \lambda_i \cdot Z(u_i)\]
其中,\(Z(u)\)为未知位置的数值,\(Z(u_i)\)为已知数据点的
数值,\(\lambda_i\)为插值权重,通过半变异函数及数据点之间的空
间距离计算得出。

除了基本的克里金插值方法外,还有一些相关的扩展方法,如普通克里金、泛克里金等,这些方法在建模和插值的过程中考虑了更多的因素,如均值趋势、空间方向等,使得插值结果更加准确和可靠。

总的来说,克里金插值是一种常用的空间插值方法,适用于各种地学环境下的数据分析与建模。

在实际应用中,需要根据具体数据的特点选择合适的插值方法和模型参数,以获得准确的插值结果。

克里金插值法

克里金插值法

克里金插值法及其适用范围20 巴任若测绘学院克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里金插值法。

1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。

因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

假设研究区域a上研究变量Z(x),在点xi∈A(i=1,2,……,n)处属性值为Z(xi),则待插点x0∈A处的属性值Z(x0)的克里金插值结果Z*(x0)是已知采样点属性值Z(xi)(i=1,2,……,n)的加权和,即:)()(10*i n i i x Z x Z ∑==λ(1)式中i λ是待定权重系数。

其中Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式:11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3)式中,C (xi ,xj )是Z(xi)和Z(xj)的协方差函数。

克里金插值法

克里金插值法

克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。

1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。

因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。

其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。

克里金插值的原理

克里金插值的原理

克里金插值的原理克里金插值是一种用于空间插值的统计方法,其原理基于克里格斯的理论,其目标是根据已知的数据点,在未知的位置上进行推测和估计。

克里金插值方法常被用于地理信息系统(GIS)和环境科学领域,用于生成地表上点或区域的预测值。

克里金插值方法的核心思想是利用空间自相关性,即附近的点之间的相似性,来推断未知位置上的值。

在克里金插值中,一个点的值被预测为周围已知点的加权平均值,而权重则根据距离和数据点之间的相似性来计算。

为了更好地理解克里金插值原理,我们来看一个简单的例子。

假设我们有一块平面上的地图,上面标记了一些气温测量点。

我们想要在地图的未测量区域上预测气温。

首先,我们需要确定克里金插值的前提,即变量在空间上具有小尺度变异性(即变量之间的差异在空间上是逐渐变化的)。

在本例中,我们假设气温的变异性在空间上是连续和光滑的。

接下来,我们需要选择合适的变异模型。

在克里金插值中,有两个常用的变异模型:球面模型和指数模型。

球面模型适用于具有圆形相似性的数据,而指数模型适用于具有指数衰减相似性的数据。

在选择变异模型时,需要参考实际数据的变异性和实际问题的特征。

然后,我们需要计算变异模型的参数。

克里金插值使用半方差函数(semivariogram)来描述变量之间的相似性。

半方差函数反映了两个点之间的变量值差异,随着距离的增加而增加。

在空间统计学中,半方差函数通常是半变异函数的两倍,其中半变异函数定义为半方差平均值。

半方差函数的拟合可以通过实际数据的半方差估计得到。

接下来,我们需要确定权重。

在克里金插值中,权重是根据距离和相似性来计算的。

通常,距离越近的点具有更高的权重,相似性越高的点具有更高的权重。

权重计算使用反距离插值法或克里金公式,其中反距离插值法假设权重与距离的倒数成正比,而克里金公式综合考虑了距离和相似性。

最后,我们可以根据克里金插值方法生成预测地图。

为了插值未知位置的值,我们可以将权重乘以所在位置的值,并将其相加。

克里金插值(kriging)

克里金插值(kriging)

随机场:
P
当随机函数依赖于多个
自变量时,称为随机场。
如具有三个自变量(空间
点的三个直角坐标)的随
机场
随机函数的特征值
协方差(Variance): 二个随机变量ξ,η的协方差为二维随机变量(ξ,
η)的二阶混合中心矩μ11,记为Cov(ξ,η),或σξ,η。
Cov(ξ,η) = σξ,η = E[ξ-E(ξ)][η-E(η)]
块金效应的尺度效应
如果品位完全是典型的随机变量,则不论 观测尺度大小,所得到的实验变差函数曲线总 是接近于纯块金效应模型。
当采样网格过大时,将掩盖小尺度的结构, 而将采样尺度内的变化均视为块金常数。这种 现象即为块金效应的尺度效应。
1
3
3
3
1
2
3
1
1
(h) = C(0) – C(h)
基台值(Sill):代表变量在空间上的总变异性大小。即为变 差函数在h大于变程时的值,为块金值c0和拱高cc之和。 拱高为在取得有效数据的尺度上,可观测得到的变异性幅 度大小。当块金值等于0时,基台值即为拱高。
对于单变量而言:
P
F(u;z)F(uh;z)
可从研究区内所有数据的累积直方图推断而得 (将邻近点当成重复取样点)
太强的假设,不符合实际
二阶平稳
当区域化变量Z(u)满足下列二个条件时,则称其 为二阶平稳或弱平稳:
① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数) x h
相当于要求:Z(u)的变差函数存在且平稳。
可出现协方差函数不存在,但变差函数存在的情况。
例:物理学上的著名的布朗运动是一种呈现出无限 离散性的物理现象,其随机函数的理论模型就是维 纳-勒维(Wiener-Levy)过程(或随机游走过程)。

常用的克里金插值及其变体

常用的克里金插值及其变体

常用的克里金插值及其变体
常用的克里金插值及其变体包括以下几种:
1.普通克里金插值(OrdinaryKriging):这是克里金插值的最基本形式,它基于一系列测量数据,通过最小化预测误差的平方和,对未测量位置的值进行估计。

这种方法假设观测点之间的空间相关性可以用一个随机过程来描述。

2.简单克里金插值(SinlPleKriging):与普通克里金插值类似,但假设空间相关性可以忽略不计,因此每个观测点都被视为独立的。

这种方法适用于观测点之间几乎没有空间相关性,或者已经对观测点进行了充分的空间混合的情况。

3.泛克里金插值(UniVerSalKriging):这是在普通克里金插值的基础上,考虑了非线性趋势的克里金插值。

它适用于那些除了空间相关性之外,还包含非线性趋势的地质数据。

4.协同克里金插值(Co-Kriging):这种插值方法用于评估两个不同但相关的测量数据集之间的空间相关性。

它允许我们同时对两个数据集进行插值,并考虑它们之间的相关性。

5.多变异克里金插值(MUlti-VariateKriging):这是用于处理多个相关变量的插值方法。

它允许不同变量之间的空间相关性被建模,这有助于更好地理解不同变量之间的相互关系。

这些是常见的克里金插值及其变体,选择哪种方法取决于数据的性质以及分析者的需求。

克里金插值(kriging)

克里金插值(kriging)

②设连续型随机变量ξ的可能取值区间为(-∞,+∞),
p(x)为其概率密度函数,若无穷积分
xp(x)dx
绝对收敛,则称它为ξ的数学期望,记为E(ξ)。
E(ξ) = xp(x)dx
•数学期望是随机变量的最基本的数字特征,
相当于随机变量以其取值概率为权的加权平均数。
•从矩的角度说,数学期望是ξ的一阶原点矩。
对于一组样本:
N
( z i )
m i1 N
(2)方差
为随机变量ξ的离散性特征数。若数学期望 E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。
D(ξ)= E[ξ-E(ξ)]2 其简算公式为
D(ξ)=E(ξ2) –[E(ξ)]2
方差的平方根为标准差,记为σξ
跃迁现象
一维情况下的定义:
假设空间点x只在一维的x轴上变化,则将区域化 变量Z(x)在x,x+h两点处的值之差的方差之半定义
为Z(x)在x轴方向上的变差函数,记为 (x,h)
(x,h) =
1 2
Var[Z(x)-Z(x+h)]
=
1 2
E[Z(x)-Z(x+h)]2-{E[Z(x)-Z(x+h)]}2
(h)C (0)C (h)
(二阶平稳假设条件下边查函数与写防查的关系)
变程(Range) :指区域化变量在空间上具有相关性的 范围。在变程范围之内,数据具有相关性;而在变 程之外,数据之间互不相关,即在变程以外的观测 值不对估计结果产生影响。
具不同变程 的克里金插 值图象
块金值(Nugget) :变差函数如果在原点间断,在地质统计学中称 为“块金效应”,表现为在很短的距离内有较大的空间变异性, 无论h多小,两个随机变量都不相关 。它可以由测量误差引起, 也可以来自矿化现象的微观变异性。在数学上,块金值c0相当于 变量纯随机性的部分。

克里金插值在程序算法中

克里金插值在程序算法中

克里金插值在程序算法中一、克里金插值的基本原理1.1 插值的概念和作用插值是在已知数据点的基础上,通过计算或推算得到非数据点的函数值或属性值的方法。

在地球科学、计算机图形学、环境科学等领域中,插值经常被用来预测或估计未知位置处的数值。

1.2 克里金插值的定义克里金插值是一种基于空间相关性的插值方法,它利用已知位置处的点值来推算未知位置处的点值。

克里金插值通过假设数据值的相关性与距离相关,并以此为基础进行插值计算。

1.3 克里金插值的优势和应用场景克里金插值的主要优势是能够保持数据之间的空间相关性,能够较为准确地估计未知位置处的数值。

因此,克里金插值常被用于地质勘探、气象预测、地震监测等领域中。

它可以用来生成等值线图、表面模型等,从而方便分析空间数据的变化趋势和分布规律。

二、克里金插值的算法流程2.1 数据准备和预处理在进行克里金插值之前,首先需要收集和整理相关的数据。

这些数据可以是采样点处的观测值,也可以是已知位置处的数值。

然后,根据实际情况进行数据预处理,如去除异常值、填补缺失值等。

2.2 确定空间相关性模型克里金插值假设数据之间的空间相关性可以通过半方差函数进行描述。

常见的半方差函数有线性、指数、高斯等。

选择合适的半方差函数取决于数据的空间特征和问题的要求。

一般通过拟合半方差函数的参数来确定空间相关性模型。

2.3 构建协方差矩阵根据确定好的空间相关性模型,可以通过计算数据点之间的协方差来获得协方差矩阵。

协方差矩阵反映了数据点之间的相关性程度,是进行插值计算的基础。

2.4 插值公式的推导克里金插值的核心是插值公式的推导。

根据协方差矩阵和已知位置处的点值,可以得到未知位置处的点值的插值公式。

克里金插值有简单克里金和普通克里金两种形式,具体的插值公式会有所不同。

2.5 插值计算和结果评估根据得到的插值公式和数据点,可以进行插值计算。

计算结果可以用来绘制等值线图、表面模型等展示插值效果。

同时,还需要对插值结果进行评估,例如计算预测误差、交叉验证等,以验证插值方法的准确性和可靠性。

python克里金插值法

python克里金插值法

python克里金插值法Python克里金插值法克里金插值法(Kriging)是一种用于空间插值的统计方法,常用于地质学、地球物理学、环境科学等领域。

它通过样本点的空间分布信息,推断未知点的值,并生成一幅连续的表面。

一、克里金插值法的原理克里金插值法的核心思想是通过已知点之间的空间相关性来估计未知点的值。

该方法基于两个假设:1)空间上相近的点具有相似的值;2)相邻点之间的差异可以通过某种函数来描述。

插值的第一步是计算已知点之间的空间相关性。

通常使用半方差函数(semivariogram)来量化相邻点之间的差异。

半方差函数表示了不同距离下的样本点间的差异,可以通过实际数据的半方差函数图来选择合适的函数模型。

插值的第二步是确定权重。

克里金插值法假设未知点的值是已知点的线性组合,权重由已知点之间的空间相关性决定。

一般来说,距离已知点越近且权重越大,距离已知点越远且权重越小。

插值的第三步是计算未知点的值。

根据已知点的值和权重,使用线性插值的方法来估计未知点的值。

这样,就可以生成一幅连续的表面,反映了未知点的分布情况。

二、克里金插值法的应用克里金插值法在地质学、地球物理学、环境科学等领域有广泛的应用。

以下是一些典型的应用案例:1. 地下水位插值地下水位的空间分布对于水资源管理和环境保护至关重要。

通过收集已知点的地下水位数据,可以利用克里金插值法推断未知点的地下水位值,从而绘制出地下水位的分布图。

2. 污染物扩散模拟污染物扩散对于环境风险评估和污染治理具有重要意义。

通过收集已知点的污染物浓度数据,可以利用克里金插值法推断未知点的污染物浓度值,从而模拟污染物的扩散情况。

3. 地震震级插值地震震级是评估地震强度的重要指标。

通过收集已知点的地震震级数据,可以利用克里金插值法推断未知点的地震震级值,从而绘制出地震震级的分布图。

4. 土壤质量评估土壤质量是农业生产和生态环境保护的关键因素。

通过收集已知点的土壤质量数据,可以利用克里金插值法推断未知点的土壤质量值,从而评估土壤质量的空间分布。

克里金插值

克里金插值

克里金插值克里金(Kriging)插值克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最优内插法。

克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围内的采样点来估计待插点的属性值。

该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点处的确定值)的方法。

它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后进行加权平均来估计块段品位的方法。

但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信度较高。

克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。

常规克里金插值其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。

块克里金插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸现象。

按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金(Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,最优是指估计的误差方差最小。

在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:Inverse Distance to a Power(反距离加权插值法)Kriging(克里金插值法)Minimum Curvature(最小曲率)Modified Shepard's Method(改进谢别德法)Natural Neighbor(自然邻点插值法)Nearest Neighbor(最近邻点插值法)Polynomial Regression(多元回归法)Radial Basis Function(径向基函数法)Triangulation with Linear Interpolation(线性插值三角网法)Moving Average(移动平均法)Local Polynomial(局部多项式法)下面简单说明不同算法的特点。

克里金插值法

克里金插值法

克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。

1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。

因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即: )()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。

其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。

克里金插值方法

克里金插值方法

克里金插值方法克里金插值方法(Kriging Interpolation)是一种常用的空间插值技术,用于预测未知位置的属性值。

它是由南非地质学家克里金(Danie G. Krige)在20世纪60年代提出的。

克里金插值方法通过对已知点周围的样本点进行空间插值,推断出未知点的属性值,从而实现对空间数据的预测。

克里金插值方法的基本思想是建立一个局部的空间模型,考虑样本点之间的空间相关性,并利用这种相关性来预测未知点的属性值。

它的核心思想是将空间数据看作是一个随机场,通过对随机场的统计分析来确定未知点的属性值。

克里金插值方法的具体步骤如下:1. 数据收集:首先需要收集一定数量的已知点数据,这些数据应该包含未知点的属性值以及其空间坐标。

2. 变异函数拟合:根据已知点的属性值和空间坐标,建立变异函数模型。

变异函数描述了样本点之间的空间相关性,可以采用不同的函数形式进行拟合,如指数函数、高斯函数等。

3. 半变异函数计算:通过对已知点之间的差异进行半变异函数计算,确定样本点之间的空间相关性。

4. 克里金权重计算:根据已知点的属性值、空间坐标和半变异函数,计算未知点与已知点之间的空间权重。

5. 属性值预测:利用已知点的属性值和克里金权重,对未知点进行属性值预测。

预测值可以根据不同的权重计算方法得到,如简单克里金、普通克里金、泛克里金等。

6. 模型验证:对预测结果进行验证,可以使用交叉验证等方法评估预测的准确性。

克里金插值方法在地质学、环境科学、农业、地理信息系统等领域广泛应用。

它可以用于地下水位、气象数据、土壤污染等空间数据的插值预测。

克里金插值方法不仅可以提供对未知点的预测值,还能估计预测误差,并提供空间数据的空间分布图。

尽管克里金插值方法具有很多优点,但也存在一些限制。

首先,克里金插值方法假设样本点之间的空间相关性是平稳的,即在整个研究区域内具有一致性。

然而,在实际应用中,样本点之间的空间相关性可能会随着距离的增加而变化。

克里金插值法的基本 做法

克里金插值法的基本 做法

克里金插值法的基本做法
克里金插值法是一种空间插值方法,用于估计地理空间上某一点的未知数值。

其基本做法包括以下几个步骤:
1. 数据收集,首先,需要收集一定数量的已知数值点的数据,这些数据通常是在地理空间上具有坐标位置的点上观测得到的。

这些数据可以是地面测量、遥感获取、传感器监测等手段得到的。

2. 半变异函数的拟合,接下来,需要对所收集到的数据进行半变异函数的拟合。

半变异函数描述了地点之间的变异程度,是克里金插值法的关键。

通过拟合半变异函数,可以得到地点之间的空间相关性。

3. 克里金插值模型的建立,在获得半变异函数后,可以建立克里金插值模型。

这个模型可以根据已知点的数据和半变异函数的拟合结果,对未知点进行插值估计。

4. 插值估计,最后,利用建立的克里金插值模型,对未知点进行插值估计。

通过模型计算,可以得到未知点的估计数值,并且估计值的精度也可以通过模型得到。

需要注意的是,克里金插值法的基本做法是基于对空间数据的
模型化和空间相关性的分析,因此在实际应用中需要根据具体的数
据特点和空间变异性进行适当的调整和参数设定。

同时,对于较大
规模的数据集,也需要考虑计算效率和模型精度之间的平衡。

总之,克里金插值法是一种常用的空间插值方法,通过合理的数据处理和
模型建立,可以对地理空间上的未知数值进行较为准确的估计。

克里金插值法

克里金插值法

克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域对区域化变量进行无偏最优估计的一种方法,是地统计学的主要容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G . Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。

1 克里金插值法原理克里金插值法的适用围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行插或外推。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。

因此,克里金插值法是根据未知样点有限领域的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。

其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n,2,1)(,(),(11niijjiniijxxCxxCλμλ,(3)式中,C(x i,x j)是Z(x i)和Z(x j)的协方差函数。

克里金插值法原理

克里金插值法原理

克里金插值法原理克里金插值法,又称作多项式插值法,是一种重要的数学多项式插值方法,由俄国数学家莫罗雷夫克里金(M.A.Korolev)于1898年发表于《东欧数学杂志》第六期上提出。

其本质是由一些给定的离散数据,通过穿插方法构造一个多项式来进行插值拟合,可以用来表示未知函数或进行未知函数的作图等工作。

克里金插值原理已经广泛应用于微分方程、积分方程、图像处理、信号处理等等,因其在拟合数据方面的高度精确性及简洁的形式而备受青睐。

克里金插值原理主要有三个部分,分别是解析型插值、拟合函数型插值和组合函数型插值,这三种插值方法本质上是一致的,但是在实际应用中有较大的不同。

1、解析型插值解析型插值方法是根据位置的精度和多项式的次数来确定多项式的系数,并求解拟合出未知函数的解析形式。

这种插值法最具有代表性的是克里金插值,也是应用最多的一种插值方法。

克里金插值原理如下:给定n+1个离散点(xi,yi)(i=0,1,2…n),其中xi互异,它们可以通过一个多项式Pn(x)来拟合,即Pn(x)=a0+a1x+a2x2+a3x3+…+anxn通过确定相应的系数,可以拟合出xi,yi之间的完美关系,即可以精确求解未知函数。

克里金插值原理表示为:Pn(x)=y0+b1(x-x0)+b2(x-x0)(x-x1)+…+bn(x-x0)(x-x1)…(x-xn1)其中,b1,b2,..,bn别为克里金插值的系数,可以由如下的解析公式由:b1=[y1y0](x1x0),b2=[y2y0](x2x0)(x2x1),..,bn=[yny0](xnx0)(xnx1)...(xnxn1) 通过确定系数b1,b2,..,bn,便可以根据Pn(x)拟合出完美的多项式,来插补所有的未知数据,从而实现函数求解。

2、拟合函数型插值拟合函数型插值方法是根据给定的点编织一个拟合函数,并将未知函数拟合出来。

这类插值方法更加灵活,拟合精度更高,常用的拟合函数有正太曲线、指数曲线等,可以更加灵活的拟合出复杂的函数。

克里金插值(kriging)[知识探索]

克里金插值(kriging)[知识探索]
Var[Z(u)-Z(u+h)] = E[Z(u)-Z(u+h)]2-{E[Z(u)-Z(u+h)]}2 = E[Z(u)-Z(u+h)]2 = 2γ(u,h) = 2γ(h),
相当于要求:Z(u)的变差函数存在且平稳。
峰谷文书
19
可出现协方差函数不存在,但变差函数存在的情况。
例:物理学上的著名的布朗运动是一种呈现出无限 离散性的物理现象,其随机函数的理论模型就是维 纳-勒维(Wiener-Levy)过程(或随机游走过程)。
σξ=
D( ) E[ - E( )]2 E( 2) -[E( )]2
•从矩的角度说,方差是ξ的二阶中心矩。
峰谷文书
10
2. 随机函数
研究范围内的一组随机变量。
{Z(u),u 研究范围} 简记为 Z(u)
条件累积分布函数(ccdf)
F(u1,,uK ; z1,, zK | (n)) Prob{Z(u1) z1,, Z(uK ) zK | (n)}
峰谷文书
21
三、克里金估计(基本思路
----以普通克里金为例
设 x1,, xn 为区域上的一系列观测点,zx1 ,, zxn
为相应的观测值。区域化变量在 x0处的值 z* x0 可
采用一个线性组合来估计:
n
z*x0 i zxi i 1
无偏性和估计方差最小被作为 i 选取的标准
无偏 E Zx0 Z * x0 0 最优 Var Zx0 Z * x0 min
峰谷文书
2
H. S. Sichel (1947) D.G. Krige (1951)
应用统计学方法研究金矿品位
Kriging法(克里金法,克立格 法):“根据样品空间位置不同、样 品间相关程度的不同,对每个样品 品位赋予不同的权,进行滑动加权 平均,以估计中心块段平均品位”

克里金插值公式推导

克里金插值公式推导

克里金插值公式推导克里金插值(Kriging Interpolation)是一种空间插值方法,它是由法国数学家达卡斯特罗(Georges Matheron)在1951年提出的。

克里金插值在地质学、环境科学、地理信息系统等领域有广泛的应用。

克里金插值的基本思想是通过已知离散点的观测值,推断和估计未知位置处的值。

它的特点是能够提供具有空间连续性的插值结果,并且能够提供对预测值的误差估计。

克里金插值的推导基于统计学中的协方差函数和高斯过程。

假设我们有 n 个观测点(x1, y1, z1)、(x2, y2, z2)、..、(xn, yn, zn),其中 (xi, yi) 为观测点的坐标,zi 为观测值。

我们需要推断和估计未知位置 (x0, y0) 处的值 z0。

首先,我们需要定义一个协方差函数 C(h),其中 h 为两个点之间的距离。

协方差函数用来描述两个点之间的相关性,通常采用指数型(Exponential)、高斯型(Gaussian)或球型(Spherical)等函数形式。

接下来,我们可以利用协方差函数构建协方差矩阵 K。

协方差矩阵是一个对称正定矩阵,其元素 kij 表示点 i 和点 j 之间的协方差。

然后,我们需要定义一个权重函数W(x0,y0),其中(x0,y0)是未知位置的坐标。

权重函数的作用是为未知位置处的值z0分配权重,权重与样本点之间的距离以及协方差函数的取值相关。

权重函数的形式可以根据具体问题的需求进行选择,常见的有逆距离权重法(Inverse Distance Weighting)和克里金权重法(Kriging Weighting)。

逆距离权重法主要考虑了样本点与未知位置之间的距离,而克里金权重法则同时考虑了距离和协方差。

最后,我们可以利用权重函数和观测值计算未知位置处的值z0。

根据克里金插值的思想,插值结果是观测值的加权平均,权重由权重函数给出。

具体的计算公式如下:z0=∑(Wi*Zi)其中,Wi表示未知位置与观测点i之间的权重,Zi表示观测点i的观测值。

克里金插值算法原理

克里金插值算法原理

克里金插值算法原理克里金插值算法是一种常用的地统计学方法,用于估计未知位置的属性值。

它基于空间自相关性的假设,通过已知点的属性值来推断未知点的属性值。

克里金插值算法的原理可以简单概括为以下几个步骤。

1. 数据收集和预处理在进行克里金插值之前,首先需要收集一定数量的已知点数据。

这些数据应该包含位置信息和对应的属性值。

收集到的数据应该经过预处理,包括数据清洗、异常值处理和数据转换等步骤,以确保数据的准确性和可靠性。

2. 空间自相关性分析克里金插值算法的核心思想是基于空间自相关性。

通过分析已知点之间的空间关系,可以确定属性值在空间上的变异性。

常用的方法是计算半方差函数,该函数描述了不同点对之间的属性值差异。

半方差函数的图像可以反映出属性值的空间相关性,从而确定合适的插值模型。

3. 插值模型的建立根据半方差函数的图像,可以选择合适的插值模型。

常用的插值模型包括球型模型、指数模型和高斯模型等。

选择合适的插值模型需要考虑数据的空间特征和变异性。

插值模型的建立可以通过拟合半方差函数来实现,拟合的结果可以用于后续的插值计算。

4. 插值计算在插值计算阶段,需要根据已知点的属性值和位置信息,以及插值模型的参数,推断未知点的属性值。

克里金插值算法通过对已知点进行加权平均来估计未知点的属性值。

加权平均的权重由插值模型和已知点与未知点之间的距离决定。

距离越近的已知点权重越大,距离越远的已知点权重越小。

5. 结果验证和误差分析插值计算完成后,需要对结果进行验证和误差分析。

可以通过交叉验证等方法来评估插值结果的准确性和可靠性。

误差分析可以帮助我们了解插值误差的分布情况,从而对插值结果进行修正和优化。

克里金插值算法的原理基于空间自相关性的假设,通过已知点的属性值来推断未知点的属性值。

它在地统计学、地质学、环境科学等领域有着广泛的应用。

通过合理选择插值模型和进行结果验证,克里金插值算法可以提供准确可靠的空间插值结果,为决策提供科学依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

克里金(Kriging)插值
克里金(Kriging)插值法又称空间自协方差最佳插值法,它是以南非矿业工程师D.G.Krige的名字命名的一种最
优内插法。

克里金法广泛地应用于地下水模拟、土壤制图等领域,是一种很有用的地质统计格网化方法它
首先考虑的是空间属性在空间位置上的变异分布.确定对一个待插点值有影响的距离范围,然后用此范围
内的采样点来估计待插点的属性值。

该方法在数学上可对所研究的对象提供一种最佳线性无偏估计(某点
处的确定值)的方法。

它是考虑了信息样品的形状、大小及与待估计块段相互间的空间位置等几何特征以
及品位的空间结构之后,为达到线性、无偏和最小估计方差的估计,而对每一个样品赋与一定的系数,最后
进行加权平均来估计块段品位的方法。

但它仍是一种光滑的内插方法在数据点多时,其内插的结果可信
度较高。

克里金法类型分常规克里金插值(常规克里金模型/克里金点模型)和块克里金插值。

常规克里金插值
其内插值与原始样本的容量有关,当样本数量较少的情况下,采用简单的常规克里金模型内插的结果图会
出现明显的凹凸现象;块克里金插值是通过修改克里金方程以估计子块B内的平均值来克服克里金点模
型的缺点,对估算给定面积实验小区的平均值或对给定格网大小的规则格网进行插值比较适用。

块克里金
插值估算的方差结果常小于常规克里金插值,所以,生成的平滑插值表面不会发生常规克里金模型的凹凸
现象。

按照空间场是否存在漂移(drift)可将克里金插值分为普通克里金和泛克里金,其中普通克里金
(Ordinary Kriging简称OK法)常称作局部最优线性无偏估计.所谓线性是指估计值是样本值的线性组
合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,
最优是指估计的误差方差最小。

在科学计算领域中,空间插值是一类常用的重要算法,很多相关软件都内置该算法,其中
GodenSoftware 公司的Surfer软件具有很强的代表性,内置有比较全面的空间插值算法,主要包括:
Inverse Distance to a Power(反距离加权插值法)
Kriging(克里金插值法)
Minimum Curvature(最小曲率)
Modified Shepard's Method(改进谢别德法)
Natural Neighbor(自然邻点插值法)
Nearest Neighbor(最近邻点插值法)
Polynomial Regression(多元回归法)
Radial Basis Function(径向基函数法)
Triangulation with Linear Interpolation(线性插值三角网法)
Moving Average(移动平均法)
Local Polynomial(局部多项式法)
下面简单说明不同算法的特点。

1、距离倒数乘方法
距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。

对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。

计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。

当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。

当一个观测点与一个格网结点重合时,该观测点被给予一个实际为1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。

换言之,该结点被赋给与观测点一致的值。

这就是一个准确插值。

距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。

用距离倒数格网化时可以指定一个圆滑参数。

大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。

圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。

2、克里金法
克里金法是一种在许多领域都很有用的地质统计格网化方法。

克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。

克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。

3、最小曲率法
最小曲率法广泛用于地球科学。

用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲
量的长条形薄弹性片。

最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。

使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。

4、多元回归法
多元回归被用来确定你的数据的大规模的趋势和图案。

你可以用几个选项来确定你需要的趋势面类型。

多元回归实际上不是插值器,因为它并不试图预测未知的Z 值。

它实际上是一个趋势面分析作图程序。

使用多元回归法时要涉及到曲面定义和指定XY的最高方次设置,曲面定义是选择采用的数据的多项式类型,这些类型分别是简单平面、双线性鞍、二次曲面、三次曲面和用户定义的多项式。

参数设置是指定多项式方程中X 和Y组元的最高方次。

5、径向基本函数法
径向基本函数法是多个数据插值方法的组合。

根据适应你的数据和生成一个圆滑曲面的能力,其中的复二次函数被许多人认为是最好的方法。

所有径向基本函数法都是准确的插值器,它们都要为尊重你的数据而努力。

为了试图生成一个更圆滑的曲面,对所有这些方法你都可以引入一个圆滑系数。

你可以指定的函数类似于克里金中的变化图。

当对一个格网结点插值时,这些个函数给数据点规定了一套最佳权重。

6、谢别德法
谢别德法使用距离倒数加权的最小二乘方的方法。

因此,它与距离倒数乘方插值器相似,但它利用了局部最小二乘方来消除或减少所生成等值线的"牛眼"外观。

谢别德法可以是一个准确或圆滑插值器。

在用谢别德法作为格网化方法时要涉及到圆滑参数的设置。

圆滑参数是使谢别德法能够象一个圆滑插值器那样工作。

当你增加圆滑参数的值时,圆滑的效果越好。

7、三角网/线形插值法
三角网插值器是一种严密的插值器,它的工作路线与手工绘制等值线相近。

这种方法是通过在数据点之间连线以建立起若干个三角形来工作的。

原始数据点的连结方法是这样:所有三角形的边都不能与另外的三角形相交。

其结果构成了一张覆盖格网范围的,由三角形拼接起来的网。

每一个三角形定义了一个覆盖该三角形内格网结点的面。

三角形的倾斜和标高由定义这个三角形的三个原始数据点确定。

给定三角形内的全部结点都要受到该三角形的表面的限制。

因为原始数据点被用来定义各个三角形,所以你的数据是很受到尊重的。

8.自然邻点插值法
自然邻点插值法(NaturalNeighbor)是Surfer7.0才有的网格化新方法。

自然邻点插值法广泛应用于一些研究领域中。

其基本原理是对于一组泰森(Thiessen)多边形,当在数据集中加入一个新的数据点(目标)时,
就会修改这些泰森多边形,而使用邻点的权重平均值将决定待插点的权重,待插点的权重和目标泰森多边形成比例[9]。

实际上,在这些多边形中,有一些多边形的尺寸将缩小,并且没有一个多边形的大小会增加。

同时,自然邻点插值法在数据点凸起的位置并不外推等值线(如泰森多边形的轮廓线)。

9.最近邻点插值法
最近邻点插值法(NearestNeighbor)又称泰森多边形方法,泰森多边形(Thiesen,又叫Dirichlet或Voronoi多边形)分析法是荷兰气象学家A.H.Thiessen提出的一种分析方法。

最初用于从离散分布气象站的降雨量数据中计算平均降雨量,现在GIS和地理分析中经常采用泰森多边形进行快速的赋值[2]。

实际上,最近邻点插值的一个隐含的假设条件是任一网格点p(x,y)的属性值都使用距它最近的位置点的属性值,用每一个网格节点的最邻点值作为待的节点值[3]。

当数据已经是均匀间隔分布,要先将数据转换为SURFER 的网格文件,可以应用最近邻点插值法;或者在一个文件中,数据紧密完整,只有少数点没有取值,可用最近邻点插值法来填充无值的数据点。

有时需要排除网格文件中的无值数据的区域,在搜索椭圆(SearchEllipse)设置一个值,对无数据区域赋予该网格文件里的空白值。

设置的搜索半径的大小要小于该网格文件数据值之间的距离,所有的无数据网格节点都被赋予空白值。

在使用最近邻点插值网格化法,将一个规则间隔的XYZ 数据转换为一个网格文件时,可设置网格间隔和XYZ数据的数据点之间的间距相等。

最近邻点插值网格化法没有选项,它是均质且无变化的,对均匀间隔的数据进行插值很有用,同时,它对填充无值数据的区域很有效。

相关文档
最新文档